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Summary

Graphical modelling is an important branch of statistics that has been successfully applied in bi-
ology, social science, causal inference and so on. Graphical models illuminate connections between
many variables and can even describe complex data structures or noisy data. Graphical models
have been combined with supervised learning techniques such as regression modelling and classifi-
cation analysis with multi-class responses. This paper first reviews some fundamental graphical
modelling concepts, focusing on estimation methods and computational algorithms. Several ad-
vanced topics are then considered, delving into complex graphical structures and noisy data. Appli-
cations in regression and classification are considered throughout.

Key words: computational algorithm; complex and noisy data; conditional inference; graphical LASSO;
graphical models; multivariate linear models; network structure; optimisation; pairwise dependence;
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1 Introduction

In the era of Big Data, high-dimensional data become available and make data structures
complicated. One of the important features induced by high-dimensional data is dependence
among variables, which frequently appears in many research topics such as genetic data (e.g.
He et al., 2019; Kumar et al., 2020), social science (e.g. Gough et al., 2018), spatial analysis
(e.g. Besag, 1974; Okabe, 2017) and so on. To explore the complex dependence structure of
high-dimensional variables, graphical models have proven to be useful tools.

Mathematically, let 7 be the set of vertices and let E CV x V' denote the set of
edges. A graph is usually expressed as G = (V, E). Figure 1 illustrates the concept of a
graph, which is constructed by vertices V ={1,2,3,4,5} and edges E=
{(1,2), (1,5), (2,3), (2,4), (3,4), (4,5)}. In the framework of graphical models, undirected
graphs and directed graphs are two important branches. The main difference between the two
types of graph is that the undirected graph only considers the relationship/pairwise dependence
between any two vertices by using edges, while an arrow is added to edges in the directed graph.
Unlike the undirected graph, as displayed in Figure 1, the directed graph emphasises that the
ordering of the variables is taken into account and the relationship between any two vertices
is not reversible (e.g. i—j does not imply j—i). For practical applications, the undirected graph
is usually applied to the study of network structure in the biological data, while the directed graph
is frequently applied in causal inference (Edwards, 2000, chapter 8; Maathuis ef al., 2019, part
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Figure 1. The graphical structures. The lefi graph is undirected; the right graph is directed.

IV). In this article, our discussion focuses on the undirected graph; the detailed descriptions of the
directed graph can be found in Edwards (2000, chapter 7) and Scutari & Denis (2014).

In statistical perspectives, based on the undirected graph, vertices represent random vari-
ables and edges reflect the dependence structure of random variables. As a result, a crucial
problem is to identify the dependence structure of high-dimensional random variables. In
the framework of graphical model analysis, a big picture of fundamental concepts has been
available in many monographs, such as Hastie ef al. (2015, chapter 9), Hastie et al. (2008,
chapter 17), Wainwright (2019, chapter 11), and Maathuis et al. (2019, chapters 9 and 12).
In addition, some early references also comprehensively summarised developments of many
types of graphical models and their applications. For example, Koller & Friedman (2009) primar-
ily discussed some probabilistic graphical models as well as their inferential methods and optimi-
sation strategies, including Bayesian network, Gaussian network models and temporal models.
Jordan (2004) summarised some algorithmic ideas to deal with large-scale data analysis and pre-
sented some applications to error-control coding and language processing. A textbook edited by
Jordan (1999) collected several research results for Bayesian network and other structures, such as
directed network with hidden variables or latent variable models. For applications of graphical
models in bioinformatics, Sinoquet & Mourad (2014) summarised several topics of graphical
model analysis to gene expression, genetic association studies and causality.

In recent years, complex structures and noisy data have been frequently explored in the esti-
mation of graphical models, which are regarded as extensions of early settings with restricting
assumptions removed. Several interesting topics have been included in the handbook edited by
Maathuis ef al. (2019); however, some important materials are still not well summarised. Due to
the limited scope in a paper-length treatment, we focus on some important topics in the devel-
opments of graphical models, including

quantile graphical models;
non-parametric graphical models;
multiple graphical models;
multi-dimensional graphical models;
error-prone graphical models;

latent variable graphical models;
time series graphical models.

NN N bW~

Specifically, the first 4 topics belong to complex model structures, and the last 3 topics con-
tain challenges to noisy data.
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In addition to detecting network structures of high-dimensional data that are regarded as ‘un-
supervised learning’, graphical models have also been applied to supervised learning in recent
years, such as high-dimensional regression models, classification and prediction, and lifetime
data analysis. There are some impressive results, but to the best of knowledge, they have not
been comprehensively summarised yet.

While many methods have been developed to deal with estimation of graphical models as well
as their various extensions, a few of articles systematically summarise the existing approaches and
the estimation of complex settings, especially for those published in recent years. Hence, in this
paper, we aim to present some contemporary and important frameworks of graphical models that
have not been comprehensively summarised in existing references (e.g. Jordan, 1999, 2004;
Koller & Friedman, 2009; Maathuis et al., 2019; Sinoquet & Mourad, 2014), including some
commonly used models and estimation procedures. We first review probabilistic models based
on different types of distributions to high-dimensional data, including exponential family distrib-
uted graphical models and mixed graphical models. In addition, we summarise and compare
some famous strategies for the estimation of network structures, such as the graphical LASSO
and conditional inference methods as well as their variants. Those comprehensive discussions
were not fully explored in the past monograph (e.g. Koller & Friedman, 2009). After that, we se-
lect several important topics and introduce advanced approaches whose ideas are extended from
existing estimation methods. Furthermore, we discuss applications of network structures to re-
gression models and classification problems. Different from existing monographs, this paper
provides methodological perspectives based on computational algorithms and optimisation
approaches. In addition, we also add more research results that have not been included in existing
monographs, so that the discussion becomes more comprehensive.

The remainder is organised as follows. In Section 2, we introduce some well-known graphical
models and review some popular estimation methods in graphical model theory. In Section 3,
we further introduce some selected topics of complex structures and noisy data and outline
key strategies in existing methods to address those problems. In Section 4, we present some ap-
plications of graphical models in building regression models and classification. To demonstrate
applications, we adopt several estimation methods to analyse two real datasets and compare the
performance of existing methods in Section 5. Finally, we give a summary of this paper and dis-
cuss some future research directions in Section 6.

2 Basic Theory of Graphical Models

In this section, we introduce some well-known graphical models and review some fundamen-
tal estimation methods to derive graphical structures. In addition, we also briefly outline rele-
vant developments and advanced approaches to estimate the associated parameters in graphical
models. To easily understand estimations methods and strategies, we also summarise methods
discussed in this section in Table 1.
Before presenting the main discussion, we first define some unified notation that will be used
in the remaining of this paper. For a p X p matrix 4=[a,] for s,t=1, ..., p, define
P P

Il = /> > a2 and || 4]| oy = max |ay| as the Frobenius norm and the maximum norm,
s=1 =1 s, t=1,...p

respectively. 4>0 indicates that A is a positive definite matrix. For a p-dimensional vector

[P
a=(a, ... ap)T, let |lall, = Y ?_,|as| and ||a||, = Zaf represent Ly and L,-norms, re-
s=1

spectively. Let ||a||., = max lag| denote the infinity norm. Moreover, let (a, b) denote the
s=1,.p
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Table 1. Summary of estimation methods for graphical models in Section 2. Models summarise the commonly used models in
Section 2.1. Estimation methods show the strategies for estimating graphical models. References reflect the citations of

methods.

Models

Estimation methods

References

Gaussian graphical models and related
precision matrices

Exponential family distributed graphical
models

Mixture graphical models

(1) GLASSO

(2) Adaptive GLASSO

(3) P-GLASSO and DP-
GLASSO

(4) G-ISTA

(5) QUIC

(6) G-AMA

(7) CLIME

(8) Robust estimation for
precision matrices

(1) Conditional inference
(2) SPACE
(3) CONCORD

(1) Conditional inference

(2) Group LASSO

(3) Stable edge-specific
penalty selection

(4) Exponentially distributed

vertices
(5) Involvement of latent
variables

Friedman et al. (2008), Yuan & Lin (2007)
Zhou et al. (2009)
Mazumder & Hastie (2012a)

Guillot et al. (2012)

Hsieh er al. (2014)

Dalal & Rajaratnam (2017)

Cai et al. (2011)

Chun et al. (2018), Avella-Medina
et al. (2018)

Ravikumar et al. (2010), Hastie et al. (2015),
Yang et al. (2015)

Peng et al. (2009)

Khare et al. (2015)

Lee & Hastie (2015)
Cheng et al. (2017)
Sedgewick ef al. (2016)

Chen et al. (2015),
Yang et al. (2014)
Fan et al. (2017)

inner product of two vectors @ and b. Given a p-dimensional vector a, let a\() =

(@1 ooy Qg 1y As 41y -ney ap)T denote a (»p — 1)-dimensional vector of @ with the s-th compo-
nent removed. Finally, let E( - ) denote the expectation.

2.1 Some Well-Known Graphical Models

LetX = (X 1y 0y X p)T denote a p-dimensional random vector with each component X being
a random variable with a distribution forj = 1, ..., p. Letx = (x1, ..., xp)T denote the realisa-
tion values of X. In graphical models, we let X; denote a vertex, and an edge is used to link two
vertices X; and X forj # k. Let n denote the sample size in datasets. Fori =1, ..., n, let X; g
denote the s-th random variable for the i-th subject. Let X, . denote the p-dimensional vector for
asubjecti,i = 1, ..., n. In the following subsections, we introduce some specific distributions of
X and the corresponding graphical models.

2.1.1 The Gaussian Graphical Model

Suppose that the random vector X follows the Gaussian distribution with mean ¢ and positive
definite covariance matrix X, that is, X ~ N(u, X), then its density function can be written as

| 1 S
Pﬂ,z(x)ZW exp{—i(x—ﬂ) I (x #)} (1)

Lety =X 'uand® = X!, then (1) can be re-parameterised as (e.g. Hastie et al., 2015, p. 246)
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P, o(x) =expy > —126 +ogdet (2 )
y0(x) = exp Y Xs 5 XX 2og e 2] [
seEV (s,1) €E

where y, is the s-th component in the vector y and a p x p matrix ® = [6y,] is often called the
precision matrix. The model (2) is called the Gaussian graphical model (GGM).

2.1.2  The Ising Model

When the random variable is binary, that is, X, € {—1, 1} for every s = 1, ..., p, then such
graphical model is called the Ising model that is formulated as

Poo@)=exp| > Ox 4+ > Ouxx, — AO) 3)
rev (s,1) € E
with 0 = (61, ..., 6,) T , where 6, and 6, are parameters associated with X, and X, X, respec-

tively, and (@) is called normalising constant, which makes (3) be integrated as one. The Ising
model was first proposed in Ising’s PhD thesis (Ising, 1925) and was applied in statistical me-
chanics (e.g. Huang, 1987, chapter 14). The other typical application of the Ising model is
the social network study. According to the descriptions in Hastie et al. (2015), an example is
the voting behaviour of politicians. By assuming that politician » provides either a ‘yes’ vote
(X, =-+1)ora ‘no’ vote (X, =—1),08, > 0(or 0, < 0)in the model (3) indicates that pol-
itician 7 is likely to vote ‘yes’ (or ‘no’), and 6, > 0 can be interpreted as two politician s and ¢
are more likely to share the same vote (i.e. both yes or both no) than to disagree while 6,, < 0
gives the opposite interpretation.

2.1.3  Exponential Family Type Graphical Models

In biological studies, RNA sequencing (RNA-seq) is known as count data and the existence
of network structure is ubiquitous (e.g. Grimes ef al., 2019). Because the RNA-seq data are usu-
ally non-normal, using Gaussian graphical models is not suitable to detect network structure of
the RNA-seq data. Due to this concern, instead of specifying binary or Gaussian distributions, it
is natural to consider the exponential family distribution. To see this, we follow the framework
in Yang et al. (2015) and consider

Ppo(x) =expd Y ABx)+ Y. 04B(x)Bx)+ > Clx)— AP, 0)p, (4
rev (s,t) €E rev
T
where f = ( 1s ...ﬂp> is the p-dimensional parameter vector and B( - ) and €( - ) are given

functions. The function (S, ©) is normalising constant, or called the log-partition function,
which makes (4) be integrated as 1. The specific form of (S, ©) is given by

AP, ©) = logfexpd > ABx)+ > OuB)Bx)+ > €(x) puldr), (5

rev (s,1) € E rev

where u(dx) is the probability measure of X.
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The graphical model (4) gives a broad class of models and essentially covers any distributions
2

in the exponential family. For example, if B(x) = Y and Clx) = _2x_2 with known ¢ > 0,
o o

then (4) reduces to (2). If B(x) = xand €(x) = 0 withx € {—1, 1}, then (4) reduces to (3). Fur-

thermore, taking B(x) = —x and €(x) = 0 with x € [0, «) yields the exponential graphical

model

Pﬁ’ ® - CXp( Zﬁ Xs + Z ngtxsxt + m(ﬂ ®)>

provided that 6; > 0 and ;>0 for all s, € V' to ensure a valid model as well as
A(B, ©) < oo (e.g. Yang et al., 2015, Section 2.5). In addition, replacing B(x) and C€(x)
in (4), respectively, by x and —log(x!) gives the Poisson graphical model

Pg o(x) = exp lz {Bxs — log(x,)) i i Osxsx: + (B, O) |,

provided that ;, <0 for all s, ¢ € V' to ensure a valid model and (B, ®) < o, for example,
Yang et al. (2015, Section 2.4).

2.1.4 Mixed Graphical Models

In addition to the development of graphical models based on single distributions, a more general
situation is datasets containing at least two distributions in variables. To explore such phenomenon
and to characterise the dependence structure, mixed graphical models are considered. In such
models, we can explore the homogeneity (dependence structure of the ‘same’ distribution of vari-
ables) and the heterogeneity (dependence structure of variables in any two ‘different’ distributions).

In this subsection, we introduce the setting that is extended from (4). Let X 2 (Y T,z T )",
where Y = (Y, ..., Y py)T is a p, -dimensional random vector in a set ) and Z=

(Z1, ..., 2Z,) T isa p.-dimensional random vector in a set Z. Suppose that Y and Z, follow
exponential family distributions but the distribution of Y is different from that of Z;. Then ex-
ponential family mixed graphical models can be characterised as

Prots) = en{ 5 A0 T BB 5 00800850

D OIS T 0008+, T, 6+ T 6260

(s',7) € E, s,
(6)

where V'y and V7 are the sets of vertices to Y and Z, respectively, such that V' = VyUVz, Ey and E,
are sets of edges to vertices in Vy and V7, respectively, and Ey is the set of heterogeneous edges
to vertices in Vy and V. Under the general setting, we can observe that the Gaussian—Ising

mixed graphical model (e.g. Lee & Hastie, 2015; Cheng et al., 2017) is a special case of (6)
2

by specifying By (y) :X, Cy(y) = yz, B(z) =z, and €z(z) =0 with y€ R and
o

ze€ {—1,1}. Moreover, Yang et al. (2014) also discussed different mixed graphical models

with mixture of different types of domain and relevant restrictions on the parameter space to

ensure (6) is well-defined, such as one finite domain (e.g. Poisson—Ising models) and both

infinite domains (e.g. Gaussian—Poisson models).
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2.2 Estimation Procedures

Based on several graphical models described in Section 2.1, to detect the dependence of var-
iables and estimate the network structure, it is equivalent to study the inference on parameters
O, in O. Specifically, if 6, = 0, it implies that two variables, X and X;, are conditionally inde-
pendent, given other vertices in V'\{s, ¢}; otherwise, X and X, are called conditionally depen-
dent, given other vertices in V'\{s, ¢}. As a result, it suffices to do variable selection on 6, by
retaining informative parameters and shrinking non-informative ones to zero. There are two
commonly used categories in analysing 6, and the detailed descriptions are in the following
two subsections.

2.2.1 Graphical LASSO

The first category is the penalised likelihood function methods that directly estimate the ma-
trix @. A famous method is called graphical LASSO (GLASSO), which mainly focuses on the
Gaussian graphical model. Without loss of generality, we lety = 0 in (2) and denote it by Pg(x).
Then under the sample with size n, the log-likelihood function based on Pg(x) is given by

L(®) = i logPe(X;.) = log{det(®)} — trace(SO®), 7
i1

1 . . . .
where S = —Z;’ZIX ie X\, trace( - ) is the sum of diagonal entries for a square matrix. The
n 2,

estimator of ®, denoted by @, is given by
0= argmax[log{det(®)} — trace(S®) — 1p(@)], 8)
e A

where A is the parametric space that contains positive definite matrices, A is a tuning parameter
and ¢(@) is a penalty function. Specifically, there are several choices of penalty functions, in-
cluding the LASSO (Tibshirani, 1996) and adaptive LASSO (Zou, 2006) methods. In analysis
of the Gaussian graphical model, the LASSO method is frequently implemented (e.g. Friedman
et al., 2008; Yuan & Lin, 2007; Hastie et al., 2015), while Zhou et al. (2009) also examined the
adaptive LASSO method. To solve the optimisation (8), the alternating direction method of
multiplier (ADMM, Boyd et al., 2011) is a useful strategy, whose key idea is to decompose
the objective function into the sum of many simple convex functions. Specifically, following
the idea in Boyd ef al. (2011), the augmented Lagrangian form of (8) is written as

L(0, E, ¢) = trace(SO) — log{det(®)} +1p(E) +trace{g(® — E)}+§||® - g2

with the penalty parameter ¢ > 0 and g is the dual variable or Lagrange multiplier. Then with
two parameters fixed, the remaining one can be updated. That is, at the k-th step with
k=1,2, ...,

©* 1 = argmin {trace(S@) — log{det(©)} + trace{c® (© — E(k))}+§H® - E(k)Hi},
0>0

2%+ 1 — argmin {/1(/)(5)+trace{g(k)(®(k - E)}"‘%"@(k - E”i}a
20

and
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ckH D = +g(®<k+ Dy ogk+ 1)>.

The other strategy to deal with the optimisation problem is to transfer (8) to the simple linear
equation. The pioneering idea was proposed by Friedman et al. (2008). Specifically, taking par-
tial derivative on the function in (8) gives the subgradient equation

O ' - S - Ww=0, )
where WV is the symmetric matrix with diagonal elements being zero. For off-diagonal elements,
s #t, y, = sign(0y) if 6 # 0, and y, € [—1,1] if 6, = 0.

Before continuing to discuss the method, we define the partition of matrix. Without loss of
generality, for any p x p matrix A, we fix the last component and the rule of partitioning a matrix
is given by the following way:

an aip al .. aip

any . azp any .. azp

Aq 3121
b)

ap ax

apl ... ap ap1 ..} ay

where Ajjisa(p — 1) X (p — 1) submatrix, a;; is a (p — 1)-dimensional vector and ay, is a
scalar.

Let W denote the current working version of ®~ ! such that WO = »xp, Where I, , is a
p X p identity matrix. As suggested in Friedman ez al. (2008), the working matrix W is usually
setas W = S + Al,, « ,. According to the partition of matrix, three matrices ®, S and W can be
expressed as

@Z[QlTl 012]’ :[SlTl SIZ]andW:[W-lrl le}. (10)
0, On S S22 Wi W22
Therefore, combining (9) and (10) gives a new equation
Wi — si2+iy;; =0, (11)
/] — —~
where f = — 212 The estimator f can then be obtained by solving (11). Once f is obtained, we
22
~ 7 -~ —1
have 0, = —ﬁ . 022 and 022 = (sz — ng W11W12) .

e T
According to the definition of partition of matrix, we realise that (01; , 922) =

—~ ~ AT
<91,,, e 05 1 ps Qpp> is the estimate of the p-th column of the matrix ®. As a result, repeat-

ing the same procedure by fixing the r-th row and column gives the final estimator 0.

However, as pointed out by Mazumder & Hastie (2012a), the objective function in (8) is not
monotone. In addition, there is a crucial concern in W. Specifically, the relationship WO =
I, « , suggests that @, is entangled in Wy, which is treated as a constant because W1 is a fixed
submatrix of the working matrix W. Moreover, WO = I, . , shows that W changes when 6, is
updated, but the entire GLASSO algorithm only updates wi, and w;;.

To address those issues and remedy shortcomings, Mazumder & Hastie (2012a) proposed a
‘corrected’ version. By (11) and some manipulations, a new estimating equation is derived:
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0,'f — sty =0 (12)
» 1
with f = @1,wy,. To deal with (12), we first specify @1’11 = W;; — —Ww,W>,. After that, the
%))

estimator ﬁ can be obtained by solving (12), or equivalently,

-~
o

p=argmax {f 7 O7'f — f7 s+ 24, |- (13)
B

Then @, and 6, can be updated as 512 = WL/? and 522 = WL + 9210f11§12, respectively.
22 22
Finally, by WO =1, .. ,, W can be expressed as ® " and, thus, can be updated by known
@1_11 and two updated values 512 and 922. This ‘corrected’ approach is called P-GLASSO.
The second approach discussed in Mazumder & Hastie (2012a) is called DP-GLASSO, whose
idea is first to specify f* = @1_11 ,[;’ — 812 and then transfer the estimating equation (12) to the
box-constrained quadratic programming (QP) that is given by (e.g. De Angelis ef al., 1997)

1

min {1(512 + /) ' 0,1 (s12 +ﬂ*)}

per -1 (2
st |IBY].. <A

When the estimator of A*, denoted as ,E*, is obtained, #;, can be updated as 512 =
1 ~ —~
——@11(512 —i—ﬂ*) with wy =s8» +A4 , and 0 is updated as 0 =

W2

Wizz{l — (si2+ /%) ! 6712}-

In addition to P-GLASSO and DP-GLASSO, the other strategies were proposed to improve
the computation. For example, Witten et al. (2011) and Mazumder & Hastie (2012b) coinciden-
tally proposed the exact thresholding of the covariance graph. The idea is outlined as follows:
suppose that the precision matrix ® can be expressed as block diagonal with blocks
Ci, ..., Cx ifand only if |s;| < Aforalli € Crand j € Cp and k # k', where Cy, ..., Cg rep-
resent a partition of p vertices with CyNCp = ¢ for k # k" and C,U...UCx = {1, ..., p}, s;; de-
notes the entry (i, j) in S. Under this representation, we have ® = diag(®;, ..., O), and (8) can
be employed to deal with each block matrix ®; for k =1, ..., K.

On the other hand, there is a scenario that the i-th vertex can be fully unconnected from all
other vertices if s;; < A for all j # i. Suppose that there are ¢ fully unconnected vertices and (p —
q) vertices are possibly connected, then © is expressed as

1 ]
® = dia s e , © ,
g<s11+/1 Sgq + 4 q“)

where®, ; jisa(p — ¢) x (p — ¢) matrix containing variables that are not fully unconnected,

and it can be estimated by (8); while the first ¢ scalars, forj =1, ..., q, are determined

U
by (8) with S replaced by s;; and © treated as ‘scalar’ parameters.
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While the GLASSO method can be viewed as the pioneer work in estimating graphical struc-
tures and dealing with (8), some methods have also been developed to improve the accuracy of
the estimator as well as the convergence rate. For example, Guillot et al. (2012) proposed the
graphical iterative shrinkage thresholding algorithm (G-ISTA) and a closed form linear conver-
gence rate was established. Hsieh et al. (2014) proposed a second-order proximal point algo-
rithm (QUIC), which is shown to converge superlinearly (or quadratically) around the optimum.
Dalal & Rajaratnam (2017) proposed the G-AMA method, which aims to transfer (8) to its dual
problem and adopts a proximal gradient algorithm to derive the estimator of ®. Compared those
three methods with the GLASSO method, G-ISTA exists bounds on the optimal solution to
yield global convergence and G-AMA is shown to have linear convergence, while no overall
complexity bounds have been established for QUIC and convergence rates seem not to be well
established for the GLASSO. Furthermore, instead of imposing the L;-norm in the
regularisation methods (GLASSO, G-ISTA and QUIC), Won et al. (2013) considered to max-
imise (7) by imposing condition number of the precision matrix as the constraint. In addition to
estimating the precision matrix, this approach is able to interpret the regularisation path based
on the geometric perspective and then obtain the optimal value for the regularisation parameter
as well as investigate the behaviour of the selected regularisation parameter.

In principal, the estimation of graphical models based on the Gaussian distribution is essen-
tially regarded as the estimation of the precision matrix. In addition to the graphical LASSO
method, several advanced methods have also been proposed to estimate the precision matrix.
To name a few, Cai ef al. (2011) proposed the constrained £;-minimisation for inverse matrix
estimation (CLIME) to estimate the precision matrix, which could be sparse or non-sparse,
and improve the GLASSO method. Their approach provides the rate of convergence between
the estimator and the true sparse precision matrix. Ravikumar ef al. (2011) considered the gen-
eral setting that the number of vertices in the graph, the number of edges and the maximum ver-
tex degree are allowed to grow as a function of the sample size, and proposed the £;-regularised
log-determined method to estimate the precision matrix. Moreover, the analysis of controlling
convergent rate was also examined. Avella-Medina et al. (2018) proposed robust matrix estima-
tors, whose performance is guaranteed for a much richer class of distributions, and these estima-
tors achieve the same minimax convergence rates as do existing methods under a
sub-Gaussianity assumption. Chun et al. (2018) developed the estimation of a sparse scaled
precision matrix via weighted median regression with regularisation. Their approach provides
robust estimate in the presence of outliers and is consistent under various distributional assump-
tions including multivariate #- or contaminated Gaussian distributions.

2.2.2 Conditional Inference

Even though the GLASSO method is useful and has efficient computation, it is restricted in
the Gaussian graphical model and is not flexible to deal with other models based on different
distributions. Alternatively, the other method, called the conditional inference (C.1.), is able to
handle graphical models based on different distributions.

The conditional inference was first proposed by Meinshausen & Biihlmann (2006), and this
method is widely used in the Ising model (Ravikumar et al., 2010), the Gaussian graphical
model (Hastie et al., 2015, Section 9.4), and exponential family graphical models (Yang
et al., 2015). The key idea of the conditional inference is to build up the penalised likelihood
function derived by the conditional distributions of a fixed vertex, given others, because such
conditional distributions also belong to the exponential family and have the same distribution
as their graphical models (e.g. Yang et al., 2015, p. 3818). Consequently, different from the
methods in Section 2.2.1 that estimate p?> unknown parameters in the precision matrix, the
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Figure 2. Diagram for the idea of conditional inference (Hastie et al., 2015, p. 254)

conditional inference only needs to deal withp — 1 unknown parameters for each fixed vertex.
To see this strategy explicitly, we only take the Gaussian graphical model as an example be-
cause the estimation method based on different models is similar.

Without loss of generality, we fix a vertex s € V. As shown in Figure 2, the key strategy is
first to derive the conditional distribution of X given other variables. After that, the technique
of variable selection is implemented to detect non-zero parameters, so that associated variables
that are dependent on X can be identified.

Based on the Gaussian distribution, the conditional distribution of X given X\ =

(Xl, ey X 1, Xy 1y eeny Xp) " s still the Gaussian distribution, and the exact form can
be expressed as

_ T
X —X\{S}ﬁs + €.

-
where f° = (ﬁ“l, v By By s ﬁ;) isa (p — 1)-dimensional vector of parameters

associated with vertex s and €; is a scalar of noise term. By the penalised least squares estima-
tion, the estimator of #° is determined by

. (1 &
B = argmin {—Z (Xis — Xivh)’ +/1||ﬁ’s||1}7 (14)

per 4T
where X; \(y) 1s a vector X\ (4 for subject i.

Let N'(s) = {t € V\{s}: (s, t) € E} denote the neighbourhood set of s € V, which collects
variables that are dependent on X. Because /Ais is determined, then a natural estimator of A/ (s) is
given by ﬁ(s) = {t € V\{s}:,@? # 0}.

In practice, if two variables X ; and X, with s # ¢ are dependent, then 8 should be equal to /8.
However, in the optimisation (14),,3’\? is not necessarily equal toﬁg. To correct it, Meinshausen &
Biihlmann (2006) suggested the ‘AND/OR rule’ in the sense that the final estimators ﬁi and ﬁf

are set to be either max{Ag, ,Ef } or min{Ai,, ﬁf } and the estimated edge set is taken as
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E= {(s, t):seﬁ(z)OR/ANDreﬁ(s)}. (15)

While (14) makes variable selection, the LASSO method usually retains too many compo-
nents with small non-zero estimated regression coefficient. To make a remedy, Zhou
et al. (2011) suggested the thresholding rule:

Bit o) =B < 1(B)| > <),
wherez > 0 is a thresholding parameter and ,EJS is the j-th component of (14). Therefore, with A

and 7 being determined by cross-validation, the estimated thresholding edge, denoted as E (4, 1),
is obtained from (15) with £ and " replaced by f%(4, 7) and £ (4, 7).

Moreover, instead of using the AND/OR rule, Zhou et al. (2011) adopted (8) to estimate G,
and the estimator is given by

® 206{E(1 1)}
= argmin [trace(©S) — log{det(®)}],
®eM
where  §2 {diag(S)} '/*S{diag(S)} /> is the sample correlation matrix and M =

{@ € R?*7:0>0 and 6, = 0 with s # 1¥(s, 1) € E(2, f)}.

While the conditional inference is the famous approach to estimate graphical structures, it has
been also extended or modified. For example, Peng et al. (2009) proposed the Sparse PArtial
Correlation Estimation (SPACE) by adopting the correlation coefficient from the precision ma-
trix to replace f° in (14). According to the findings in Peng et al. (2009), the advantages of the
SPACE method include the reduction of the number of unknown parameters in the model and
faster computation to deal with the case of p > n. Khare et al. (2015) developed the convex
correlation selection method and algorithm (CONCORD), which is formulated as the SPACE
method with its correlation coefficient term replaced by the square of correlation coefficient.
In particular, the CONCORD method ensures the existence of a global minimum and the con-
vergence of the algorithm with a fixed and finite sample size n, while those properties are not
guaranteed for the SPACE method. Finally, while several advanced pseudolikelihood methods
(e.g. SPACE and CONCORD) have been established, it is unknown whether those methods are
able to deal with arbitrary distributions in the exponential family because only Gaussian distri-
butions were examined in the literature. On the contrary, the conditional inference enables us to
detect graphical structure for arbitrarily distributed data in exponential family, as established by
Yang et al. (2015).

2.2.3  Estimation of mixed graphical models

In the literature, Gaussian—Ising graphical models are most widely used settings in the mixed
graphical model, and several estimation procedures have been proposed. For example, Lee &
Hastie (2015) adopted conditional inference to develop the penalised pseudo-likelihood func-
tion. Cheng et al. (2017) adopted the group LASSO method to address the pseudo-likelihood
function and proposed stable edge-specific penalty selection to choose sparsity parameters.

In this subsection, we focus on the general setting (6) and summarise detailed discussions of

the estimation procedure. Similar to other models, the goal is to estimate ﬂry B0, 6%, and 077

o Vst Vst st
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in (6), and it can be addressed by adopting the conditional inference in Section 2.2.2. Specifi-
cally, the conditional probability of Y, given Yy, and Z based on (6) is formulated as

Pyr (v gy, 2)  =exp [%Y(yr)n(y\{r}v z; 93) +C&y ()

_Dr{n<y\{r}7 z; 9;) H ;

n(npz00) =B+ 2 0Byp)+ X 01Bs(z),
{r} ,
ey

t € Vy\{r}

(16)

where

. - T
D,( - ) is the normalising constant, 6" = (B, Yoot g4t ) ,and 07" and 674 are two vectors

with components 6", and 6?,,, fort € Vy\{r}and¢ € V, respectively. Then given samples with
size n, the estlmator of 07 is given by

0 = argmin {¢(6)) + AyllO2 " 1l, + ZyzIl0V%1), ), (17)
o)
where £ (03/ ) is the log-likelihood function determined by (16) and Ay and Ay are tuning param-
eters that could be different values.

Similarly, let 02 (ﬁz erzz T 9Y zT ) where HZZ and 652 are two vectors with compo-

nents 6%, and 0.7 for ' € V,\{r } and t € Vy, respectively. The parameter 6% can be estimated
by the same strategy as (17), and the estimator is given by

Hr, = argmm {5( ) +iZ||GZZ||1 +/12Y||9YZ|| } (18)

r’

where ¢ (95) is the log-likelihood function based on the conditional probability

]P)(J,Z, (Zr’|Z\{r’}7 y) = eXp [%Z(Zr’>7l(z\{r’}a 2 9’%) + @Z(Z,,/> —Dr/{n(z\{r/}, ¥, H}%) }],
where

’7(2\{}"}7 y? 05) = ﬁg = sz\{r’} erzt’%z(zl/) ¢ GZV tr’ EBZ(ZZ/)

and D, (- ) being the normalising constant, and 1, and /1y are tuning parameters.
When (17) is obtained, we are further able to recover the homogeneous neighbourhood

Ny(r {t e Vy\{r}: 9 # 0} that contains pairwise connection of Y, and the heterogeneous
nelghbourhood Nyz(r) = {t eVy:0'7 £ 0} that includes interactions with vertices Zy. Sim-

rt
ilarly, the analogous strategy can be employed to derive homogeneous and heterogeneous
neighbourhood of Z,» based on the result (18).

In parallel efforts, Chen et al. (2015) considered the similar setting, but their approach allows
the graph to contain more than two types of vertices, which is different from Yang et al. (2014)
that the graph contains only two types of vertices. Finally, Fan et al. (2017) also explored mixed
graphical models with latent variables incorporated; detailed discussions are deferred to

Section 3.6.
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2.3 Some Available R Packages

There are many statistical packages in R software for estimations of graphical models in this
section. For the estimation methods in Section 2.2.1, one can adopt the R package glasso to
implement the GLASSO method. In addition, the R packages QUIC,'dpglasso® and clime
can be used to estimate the precision matrix by implementing the QUIC (Hsieh et al., 2014),
DP-GLASSO (Mazumder & Hastie, 2012a) and CLIME (Cai et al., 2011) methods, respec-
tively. Regarding the strategies in Section 2.2.2, one can adopt the R package XMRF® (Wan
et al., 2016) to implement the conditional inference. In addition, two R packages space®
and gconcord’ can be used to demonstrate the SPACE and CONCORD methods, respec-
tively. Moreover, the R packages gRim and mgm that are respectively discussed by Hejsgaard
et al. (2012, Section 5.8) and Haslbeck & Waldorp (2020) can deal with mixed graphical
models.

For numerical performance among those existing methods in R packages, some comparisons
have been discussed in the literature. First, Peng er al. (2009) compared the SPACE method
with the GLASSO method and found that the SPACE method outperforms the GLASSO
method because of the improvement of the power of edge detection when false discovery rate
(FDR) is controlled at 0.05. Khare et al. (2015) compared the CONCORD method with the
GLASSO and SPACE methods, and it is found that the CONCORD method has faster compu-
tation than the GLASSO and SPACE methods, especially in the ultrahigh-dimensional setting
(p > n). In addition, numerical experiments show that the CONCORD method has a much
better model selection performance, including accurate recovery of the sparsity structure and
less variation, compared with the GLASSO method. Finally, while the GLASSO and QUIC
methods compute the same estimator, Hsieh et al. (2014) numerically showed that the QUIC
method outperforms the GLASSO method with more accurate edge detection as well as better
true positive and false positive rates.

3 Advanced and Complex Network Structures

In this section, we discuss the estimation methods for several advanced and complex network
structures that are outlined in Section 1. Two directions are mainly focused: one is different
types of structures in models, and the other is complex and noisy data. The features and the cor-
responding strategies are summarised in Table 2, and the detailed introduction is in the follow-
ing subsections.

3.1 Quantile Graphical Models

In this subsection, we describe quantile graphical models associated with a p-dimensional
random vector X, which is basically characterised by the conditional distribution of a fixed ver-
tex, given others. Specifically, following the formulation in Ali et al. (2016), the a-conditional
quantile of the vertex s given other vertices is given by

QXX|X\(S} (OC) :ﬁa,s + tgsfa,st(Xt)a (19)

where Oy 1y (@) = inf{x:P(X; <x|X\(;)) > o} foralla € 0,1}, 8, ; € Rand f, () canbe
a non-parametric function.

In the spirit of estimation methods of quantile regression, the estimators of 8, ;andf, , with
a fixed vertex s = 1, ..., p can be obtained by
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Table 2. Summary of complex network structures and their estimations. Topics represent subtitles in Section 3. Key features
show the main difference or extension from the setting in Section 2.1, including complex model structures or noisy data.

Methods summarise key strategies to handle those features. References reflect the citations of methods.

Topics

Key features

Methods

References

Quantile graphical
models

Non-parametric
graphical models

Multiple graphical
models

Multi-dimensional
graphical models

Error-prone

graphical models

Latent variable
graphical models

Time series
graphical models

Model the conditional quantile of
the vertex X given other vertices

Consideration of transformed data
(20) with unknown function /(- )

Heterogeneous data: K different
categories share the same variables
and have K different precision

Unlike p-dimensional vector,
multi-dimensionality reflects
matrix-variate data

The random variables are collected
with measurement error

Some variables are latent in the
sense that they are unobserved or
not accessible

Dynamic models, the random
variables are dependent on the time

International Statistical Review (2024), 92, 2, 194-245
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(1) CIQGM and PQGM
(2) Bayesian approach with a spike and
slab prior

(1) Estimate /(- ) by the Winsorised
estimator and adopt the GLASSO
for £ (X)

(2) Spearman’s p

(3) Kendall’s ¢

(4) Bayesian methods for Poisson
graphical models

(5) Conditional inference for
exponential family graphical models

(1) Optimise (25) by the local linear
approximation

(2) Optimise (25) by the fused graphical
LASSO and the group graphical
LASSO

(3) Multi-task learning for a constrained
minimisation problem

(4) Decompose the random vectors into
heterogeneous parts and shared
systemic random effect, then derive
the estimator (26)

(5) Conditional inference and
examination of structural similarity

(6) FDR and estimations of structural
similarity and difference

(7) Layered network structures

(1) Penalised log-likelihood method
based on (35) estimates two
precision matrices separately

(2) Directly estimate X&'\ and its inverse

(3) K-way tensor with K > 2

(4) Canonical correlation for
multi-attribute data

(5) Partial canonical correlation for
multi-attribute data

(1) Bias analysis and corrected GLASSO
for Gaussian graphical models

(2) Bias analysis and the SIMEX
method for exponentially distributed
graphical models

(1) Derive (53) under the normality
assumption and solve it by Newton-
CG-based proximal point algorithm

(2) Solve (53) by ADMM

(3) Solve (53) by the decomposable
regularisation method

(1) Pioneering study and partial spectral
coherence

(2) The VAR process (54)

(3) A single time-lag of (54) and the
constrained convex optimisation
method

Belloni et al. (2019)

Guha et al. (2020)
Liu et al. (2009)

Liu et al. (2012)
Xue & Zou (2012)
Roy &

Dunson (2020)
Yang et al. (2018)

Guo et al. (2011)

Danaher
et al. (2014)

Lee & Liu (2015)

Xie et al. (2016)

Ma &
Michailidis (2016)
Liu (2017)

Lin et al. (2016)
Leng & Tang (2012)

Zhou (2014)

He et al. (2014)
Katenka &
Kolaczyk (2012)
Kolar et al. (2014)

Wainwright (2019)

Chen & Yi (2022)

Chandrasekaran
et al. (2012)

Ma et al. (2013)
Meng et al. (2014)

Dahlhaus (2000)

Dahlhaus (2000)
Han & Liu (2013)

(Continues)
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Table 2 (Continued)
Topics Key features Methods References
(4) Estimation of (54) based on Basu et al. (2019)
decomposed structured sparse
matrix
(5) Heterogeneous VAR models Skripnikov &

Michailidis (2019)

Ba, s
) 8 t#s
fa,st € Fa,st

argmin {i(ba (XZ}S - /Ba,s - Zfa,st(Xt)>
i=1

+l ;S {’11(01 (foz7 .vt)+j'2¢2 (fa, Sl) }w}7

where ¢, (x) = max{ax, (o — 1)x} is the quantile loss, F,  is the space of univariate func-
tions, w > 0 is a fixed exponent, 4; and /1, are tuning parameters, and ¢, and ¢, are sparsity
and smoothness penalty functions, respectively. With f, () expressed by basis expansion
model and structural constraints imposed, the alternating direction method of multipliers
(ADMM) is adopted to solve the optimisation problem.

In contrast, Belloni et al. (2019) and Guha et al. (2020) also considered (19) but specified
fo o(X:)as 0, o X,. It reflects that X ; and X, are conditionally independent if and only if 6, , =
0 at the a-th quantile. To estimate the network strucutre as well as 6, i, Belloni et al. (2019)
proposed the conditional inference quantile graphical model (CIQGM) and the prediction
quantile graphical models (PQGM), where the former method aims to minimise the moment
equation based on quantile regression with constraints that ensure sparsity of the parameters,
and the latter method aims to estimate 0,  that enables to predict X by using a linear combi-
nation of Xy}, that is, with certain constraints for the parameters, PQGM suggests

/H\m s = argmin E{(b; (XS — X\L}Ha., s,) },

aa, st

where ¢, () is a given loss function. On the contrary, Guha et al. (2020) adopted a Bayesian
variable selection technique by imposing a spike and slab prior to 6, . After that, the varia-
tional Bayes methodology is used to approximate the posterior distribution and the MCMC
method is employed to construct the final graphs.

3.2 Non-Parametric Graphical Models

Unlike the estimation methods in Section 2 that detect network structures for random vector
X, in this subsection, we explore non-parametric graphical models by considering unknown and
non-linear functions in random vector X (e.g. Lafferty et al., 2012).

Parallel with the ideas behind sparse additive models for regression, we replace the random

vector X=X, ., X)) by the transformed random vector f(X) =

:
<f 1(X1), - (X p)> , wheref'|, ..., f, are unknown, monotone and differentiable functions.
Based on this transformation, it is assumed that f(X) follows multivariate Gaussian
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distributions, that is, f(X) ~ N(u, X), then X is said to follow ‘non-paranormal’ distributions,
and is denoted as X ~ NPN(u, X, f).

Similar to the GLASSO method, the main purpose is to estimate ® = X~ ! because the entry
0 = 0if and only if Xy and X; are conditionally independent given other vertices. In addition, a
challenge is to deal with unknown function f( - ).

An intuitive idea is to directly estimate f;( - ) and ©. According to Liu ez al. (2009), f;( - ) can
be expressed as

[1x) = w; + 0,07 (Fy(x)), (20)

where y; is the j-th component of u, F;(x) = P(X; <x) is the cumulative distribution function
(CDF) of X}, o; is the j-th diagonal entry of X, @( - ) is the univariate standard Gaussian CDF. In
addition, (20) can be empirically estimated by

T =i+ 3,07 (F), e
where F 7(x) is the Winsorised estimator based on the empirical distribution of X}, ii; and 5; are
empirical estimates of x; and oy, respectively. After that, (21) can be adopted to define the em-
pirical estimate of the covariance matrix of f/(X)

5,00 =15 ) - up i) - wd) @2)

i=1
with y(f Z f(X;..). Finally, following the idea of GLASSO, © can be estimated by (8)

with S replaced by (22).
Alternatively, instead of a two-stage procedure that estimates f; and © separately, Liu

et al. (2012) and Xue & Zou (2012) proposed to use Spearman’s p and Kendall’s 7 to
non-parametrically calculate correlation between random variables X and X,. Specifically,
the estimated Spearman’s p is defined as

> (- ) - )

P =—F— : (23)
n X _\2 n . \2
\/Zl (h =7y (= 7)
where 7/ represents the rank of X; ; among n samples X g, ..., X, ; of the s-th random variable
Xyand 7 = —Zl |- In addition, the estimated Kendall’s 7 is given by
~ 2 .
Tst = m Z Slgn{ (Xi,s - Xj.s) (Xi,t - X, t)} (24)

1<i<j<n
Let S™ denote the resulting matrix whose entry (s, ¢) with s # ¢ is based on the transformation

of (23) and (24), say 2sin (gﬁst) and 2sin (2rs,> and the diagonal entries in S” are specified as

one. Finally, one can adopt the GLASSO method with S replaced by S* to estimate the precision
matrix ®. The R package huge developed by Zhao ef al. (2012) is implemented to handle
non-parametric graphical models.

In addition to Gaussian distributions, another type of data considered by Roy &
Dunson (2020) is count data, whose network structure can be characterised by the Poisson
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graphical model in Section 2.1.3. Under the non-parametric setting, Roy & Dunson (2020) ex-
plored the following model:

P p_p
Pg,e(x) o exp Z{ﬁs'xS — log(x,/)} + Z Ze‘vzf(xs)f(xt) .
s=1 s=1 t=1

By specifying f(x) = {tan_l(x)}a for some a € R, Roy & Dunson (2020) proposed the
Bayesian method by imposing prior distributions to S, and 6, and implemented the Markov
chain Monte Carlo (MCMC) sampling scheme to estimate the network structure.

Finally, to explore a general setting, Yang ef al. (2018) extended exponential family graphical
models by imposing unknown base measure function f'; to the conditional distribution function
for s € V, yielding

PQ(x5|x\S) = exp{xSns(x\S)_*_fs(xS) - bS(nsvfs)}v
where 7,(x\s) = 2 Oux; and by(n,, f,) is the log-partition function. To eliminate nuisance
t#s

function /', Yang et al. (2018) applied the pairwise pseudo likelihood function

2
_ log|1 —(Xis — X;i)0.T (X: 0 — X us) ],
ot = 1)1<i§<;<n0g[ +exp{—( )05 Xy = X}

where 0; = (91‘9, ooy 005 — 1155 O 4 155 oo Hps) Tisa (p — 1)-dimensional vector of param-
eters. Then 6, can be estimated by the penalised likelihood function

Ls(es) =

53 = argmin {Ls(é’s)—i- > ¢g(\¢9zs|)},
05 t#s

where ¢,( - ) can be convex penalty functions (e.g. LASSO) or non-convex penalty functions
(e.g. SCAD).

3.3 Multiple Graphical Models

In applications, it is possible to collect ‘heterogeneous’ data, which reflect the same variables
in several different categories. The key feature of this type of data is possibly different depen-
dence structures among different categories. That is, some edges are common across all catego-
ries and other edges are unique to each category. A typical example is gene
expression/microarray data, where subjects are classified into subgroups, and every group
shares the same gene expressions. The goal is to identify graphical structures for different sub-
groups (e.g. Danaher et al., 2014; Lee & Liu, 2015).

Suppose that a heterogeneous dataset contains p variables and K categories. For the &-th cat-

egory with k=1, ..., K, let X ,(k> denote a p-dimensional random vector for subject i =
1, ..., ny with sample size ng, and it follows the multivariate normal distribution with the covari-
ance matrix 2*). Let ®¥) denote the k-th precision matrix in the k-th category, and define the
corresponding (s, 7) entry as ng). The main interest is to estimate ®%) for all k =1, ..., K.

To simultaneously estimate ®%) for all k =1, ..., K, the joint estimation method based on
the Gaussian graphical model was developed. Specifically, motivated by (8), the penalised like-
lihood function based on K categories is defined as

c(e, .. o®) = > log{det(@®)} — trace(sWOM) — p(@")],  25)
k=1

International Statistical Review (2024), 92, 2, 194-245
© 2023 International Statistical Institute.

52017 SUOWLLIOD SAIER1D) 3|ced dde 3 A peuanob a1 Sap 1. YO 88N JO I 10} ARRIGIT UIIUO 481 UO (SUORIPUOD-PLE-SULIBILIOY AB| 1M AR U1 UO//StNY) SUOIPUOD PUE SWLB L 8L} 385 *[5202/20/20] U0 ARq11 8UIIUO /B]IM ‘UBWRIE LO!IG IGSIISIOAIUN Pun SIeIS AQ ZGGZT SUITTTT OT/I0p/W00" A 1M ARIqjoul uo//Sdny W1y papeojumoq ‘Z *vZ0z '€28STSLT



212 CHEN

where ¢(®%)) is the penalty function and S®) is the empirical estimate of the covariance matrix
in the k-th category. Different choices of ¢(® k)) and computation of (25) were considered by
different literature. For example, Guo ef al. (2011) re-parameterised the entry (s, 1) in @%) by

H_E,f) = ﬂs,éﬁf) and ¢(®W) is specified as

K
W)=Y utiny >

st
s#t k=1 S#t
with 4; and 4, being two tuning parameters. To compute (25), Guo et al. (2011) suggested an
iterative approach based on local linear approximation. The other choices considered by
Danaher et al. (2014) are the fused graphical LASSO

0% 13- S|+ Y0 Sl

S#t k<k' s#t

st - est

and the group graphical LASSO

© 1/2
(0" _zlzz ¢ sz(zas;ff) |
k=1

=1 S#t S#t

An alternative direction method of multiple algorithm (ADMM) was implemented to solve (25),

and the R package JGL developed by Danaher ef al. (2014) is used to the implementation.
Another strategy for the joint estimation method is based on the multi-task learning perspec-

tive. Specifically, Lee & Liu (2015) proposed to decompose parameters into common structures

M==)» 0
K=
and the unique structure

RPM =W — MVk=1, .. K.

Then the remaining task is to estimate M and R™ for all k = 1, ..., K. A valid strategy is to
solve the following constrained minimisation problem:

K
min{||M||1 thZ HR(k)Hl}

k=1

Ii{f: {s<k> (M + R<k>) — 1, ,,}

k=1
}S(k) (M—i—R(k)) -1, Xp’ <#,, and

E R -
k=1

where 4, is a tuning parameter and #, and 7, are thresholding values. Let M and R™ denote the

s.t. S’/]la

resulting solutions, and thus, we have 0% = M + R™ with the entry (s, £) being 5§§‘> To ensure
0" asa symmetry matrix, Lee & Liu (2015) suggested ‘redefining’ the entry (s, ¢) as
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K N K =N
Dwm ( 0| > 95@)
k=1 k=1

>

g — gy (Z‘e )

forallk =1, ..., K.

Inspired by the common and unique structures, Xie et al. (2016) proposed to decompose X l(k)
beEf) = Ygf) +Z. fori=1,...,mpandk =1, ..., K, where Yl(»ff) is the random vector cor-
responding to the k-th category and Z;. is the random vector corresponding to the shared sys-
temic random effect. Assume that ¥’ fk) is independent of Z;. and they follow multivariate normal
distributions with mean zero and covariance matrix X; and X, respectively. To explore the net-
work structures among different categories, it is sufficient to estimate Q; = X, ! based on the ob-
served data X fork=1, ..., K.

An intuitive approach to estimate Qi = {Qk} 1 1s the penalised likelihood estimation. The
estimator of Q; is given by

K
Qpuii = arg max (ﬁ(QMulti) — A Z 1l — /12||Qo||1>, (26)
QMulti =
where Qp = X!,
K
L(Qnyri) € Z log{det(€)} — trace(Sx, kak)] + log{det(Qo)}
=1

K
— log{det(D)} + Z trace(Q Sy, w QD™
ke, K =1

with D = zgk and Sy v =~ ZX,. x0T

i=
The other 51mp1er approach is referred to the one-step method. Its idea is first to estimate X

and X, respectively, by
S0 = K( T Z Sx,
k £k
and
S = Sx, kk — 2.

After that, Q; for k = 0, ..., K can be estimated by adopting (8) with ® and S replaced, respec-
tively, by Q; and X for k =0, ..., K.

Unlike the likelihood-based approaches that directly estimate K precision matrices, Ma &

Michailidis (2016) developed the joint structural estimation method, which basically extends

the conditional inference introduced in Section 2.2.2 and examines structural similarity among
K graphs. Specifically, fork =1, ..., Kandi =1, ..., ng, letX . denote the s-th component in
X l( and let X; *) s} denote a (p — 1) -dimensional vector of X ,(.> with the s-th component re-

moved. Then for the s-th vertex in the k-th category, we have

X = X0 + e, @

, 8
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here g% — (% (k) (k) w\ D-di nal vector of
where " = (£, ..., ﬁ(s ) ﬂ(s+ D> -0 Bys isa (p — 1)-dimensional vector of pa-

rameters associated with X l(ki (s} and egk) is a scalar of noise term. For a given vertex s, the joint

least squares function based on K categories is given by

Al RN (b 0 T )2
£<BS)_Z; Z;(Xi’s - Xi,\{s}ﬁs ) s

where B, = [ﬂf,l) .. .ﬂAE,K)} isa (p — 1) x K matrix with columns indicating the regression coef-

ficients from (27) and rows reflecting the coefficients at pairs (s,j) for j=1,...,s —
1,s+1, ..., p. Noting that, for arbitrary two columns in By, it is possible to have the same
(non)zero values for some rows. This basically says that the corresponding two categories have
the same edges connecting the same vertices. Let P,; denote a set containing categories that have

the same edges between vertices s and j. For 1 <s, j <p with s # j and a group g € Py, let
T
Ib’%f]é(ﬁg‘):k S g> denote a vector containing all coefficients from graphs in g, where ,ngk)

represents the j-th component in ,B‘E,“. To estimate parameters B, with the structural similarity
accommodated, Ma & Michailidis (2016) suggested the following group LASSO estimator:

B2 ]

(28)
= mi > 2 s2lpe ‘ }
= min {E(BS)+2JIJ¢S gePV‘ASJ BE ,
fors =1, ..., p, where i{; is the associated tuning parameter. By estimates Egjk) and B ](f ) derived

in (28), the resulting edge set for the k-th category is given by

E<k>é{(s,j):1 <s,j<p. s#j, By #0 OR/AND Bi¥) = 0}

fork=1, ..., K.
Motivated by the structural similarity, the other attractive issue is the test of structural simi-
larity and difference. Specifically, Liu (2017) aims to examine a multiple testing problem

Hos: Dy (%) = 0 versus Hyg:Dg (%) # 0 29)

for 1 <s, t <p with s # ¢, where
2
D= | X () - )
1<k<I<K
k
) _ o

with »;;’ = ———=—— being the partial correlation coefficient of vertices s and ¢ given other
oWa;f
vertices. By (29), rejecting H , refers to the differential substructure

Bp é{(s, t):Dy(%) #0,1 <s, t<p},

and the set of vertex pairs with non-zero partial correlation coefficients in the complement of 3,
denoted Bj,, is called similar substructure:

Bgé{(s, 1) € BY: (xﬁ}), . ng)) # O}.

International Statistical Review (2024), 92, 2, 194-245
© 2023 International Statistical Institute.

52017 SUOWLLIOD SAIER1D) 3|ced dde 3 A peuanob a1 Sap 1. YO 88N JO I 10} ARRIGIT UIIUO 481 UO (SUORIPUOD-PLE-SULIBILIOY AB| 1M AR U1 UO//StNY) SUOIPUOD PUE SWLB L 8L} 385 *[5202/20/20] U0 ARq11 8UIIUO /B]IM ‘UBWRIE LO!IG IGSIISIOAIUN Pun SIeIS AQ ZGGZT SUITTTT OT/I0p/W00" A 1M ARIqjoul uo//Sdny W1y papeojumoq ‘Z *vZ0z '€28STSLT



Overview of Graphical Models 215

To estimate Bp, Liu (2017) proposed the false discovery rate (FDR) procedure for the multiple
testing (29). Under Hyy, in (29), the test statistic under the k-th category is defined as

w_ L -m
Tst - A(k)A(k)TSf, 0 (30)
ss gt
where ?ﬁi‘) and T gi)o are formulated by the residual deriving from (27); detailed formulas can be

found in equation (2.3) in Liu (2017). Based on (30), the two-sample test statistic for two cat-
egories k, [ =1, ..., K is given by

(k) 0
T, — T
7 = 1 L _ (31)
ot = 20) (1 - 20)
Ny ny
1
where Qﬁf) =T §f>}1{ T §ﬁ‘> 22 ﬂ} is the estimator of ng) andT( - ) is an indicator function.
ny

To perform the FDR control procedure, Liu (2017) suggests translating (31) into a z-value
Tst, Déq)i1 (T(Tst, *)) )

i
where Ty, = ||Ty|l, with T, = (Tg"”, 1<k < lSK) , ®(-) is the CDF of the standard

normal distribution, and 7°(t) = P

M
Z 2.Z% <t | with Z; being independent and identically
i—1

distributed (i.i.d.) N(0, 1) random variable and 1;, ..., 1), are eigenvalues of the asymptotic co-
variance matrix of Ty,. As a result, with a suitable critical value 7, defined in equation (2.7) of
Liu (2017), Hos in (29) is rejected if Ty, p > Tp, and thus, the estimated differential substructure
is given by

Bp ={(s, ):Tg p=>1p, s # t}.
Next, the estimation of the similar substructure By can be transformed to the following multiple
testing problem:

H, ‘(%ﬁ,”, e xg()) = Oversus H',: (%E,l), e xg()) #0 (32)

Ost *

with (s, t) € B’B To address the hypothesis test (32), the partial sum type test statistic is
proposed:

- k
anngt)
k=1 »

Ty . = for (s, 1) € By,
K 2
~(k)\2
ngyl — (%st )
> J

and the corresponding transformed z-value is defined as

Tsr,Séq)_l(zq)(lTst-, *D - 1)'
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With the suitable critical value 7s defined in equation (2.11) of Liu (2017), for (s, #) € Bg, Ost
in (32) is rejected if Ty, s > 7s. Therefore, the resulting estimated similar substructure is given by

5 ~ ~C
Bs = {(S7 t):Tst,S 2> ts, (57 t) c BD7 NS Z}.

Finally, we introduce layered network structures. Unlike multiple graphical models described
earlier, the main difference is that layered network structures not only possess undirected edges
among vertices in each layer but also exhibit a directed acyclic graph structure between the
layers. In addition, the number of vertices in each layer can be different from each other. Spe-

T
cifically, fork = 1, ..., K, letX") = (X gk), ey Xé’f)) denote the p,-dimensional random vec-

tor in the k-th layer. Following the discussion in Lin ef al. (2016), the first layer X!) follows a
multivariate normal distribution with the covariance matrix =(!); for the k-th layer with &k =

2, ..., K, the j-th component can be characterised by preceding layers, that is,

2 { le } + E( )
forj=1, ..., p;, where 2 (egk), e effz)) follows a multivariate normal distribution with
the covariance matrix %), and D”‘ RPx for I =1, ..., k — 1 represents directed edges that

encode the dependencies across layers The interest of layered network study is to simulta-
neously estlmate directed edges Dg‘; for 1 </ < k<K among all layers as well as precision

matrices ®%) for all layers k =1, ..., K. Let L(x™®; Dk, oM 1< < k <K) denote the
log-likelihood function with D’k [le Dg; | . By the Markov factorisation, it can be
decomposed as

((x®; pk oW 1< < k<K)

1 - k 1 k—1 1k k— 1Dk k (33)
<))+Z£<X<)|XU, L XS, plk o plk= Dk gl >>,

which suggests that parameters in each layer can be estimated by maximising the individual
likelihood function separately.

Motivated by this, Lin e al. (2016) particularly considered K = 2 with normal distributed
random vector, which yields (33) to be

K(Xm, xX®. pi2 @), @<2>> _ g(X(l); @(1>> +5(X(2)|X<1>; D, @<2))7

where £(X(1); @1 ) has the same formulation as (7) and ®)) can be estimated by the GLASSO
method, and é’( ); D, 0%) is

g(X(Z)‘X(U’-DlZ @(2))
Py P

chlogdet(a(z ZZ o' ( ( ()D12> (ngz) _ X(l)Dj;z>,

where 0'( Vi the entry (i, j) in ©2). To simultaneous estimate sparse parameters D}z and @), a
penahsed optimisation with two penalty functions is proposed:
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min ¢ —¢(X@1x; D2 @)1y Z ||D12||1 + /e Z (34)

2 o)
D+, 6 i#J

U ‘

with two tuning parameters Ap and Ae. The computatlon of minimisation (34) can be achieved by
the alternating search approach, as outlined in Algorithm 1 of Lin ef al. (2016).

3.4 Multi-Dimensional Graphical Models

In usual datasets, each individual has only p-dimensional vector of variables. However, in
some applications, such as options contingent in financial studies or electroencephalography
(EEG) in brain imaging studies, a matrix-variate data may be collected for individuals.

Specifically, we denote X € R” * ¢ as matrix-variate data. Familiar with multivariate Gaussian
distributions, the probability density function (pdf) of the matrix-variate normal distribution is

Py 27\11(?6) _ (27[)7% (2—1)9/2(\P—1)P/2
X etr{—%(x — MY 'x - M) T 2_1}, (35)

where M € R? * 9 is the mean matrix, ¥ € R” *? and ¥ € R? * 7 are row and column variance
matrics, etr(4)= exp{trace(4)} for a matrix 4. We denote (35) as X ~ MN,, . ,(M, X, ¥), or
equivalently, vec(X) ~ N, (vec(M), Z&Y), where ® is the Kronecker product and vec(M ) rep-
resents the vectorisation of M.

While there are abundant literature in Section 2.2 to estimate graphical structure for vec(X),
they cannot be trivially adopted due to the difficulty of estimating a p? x ¢> precision matrix
directly and ignorance of all row and column structural information. To remedy these shortcom-
ings and estimate two matrices ® = X! and I' £ ¥~!, under the i.i.d. sample X; with i =
1, ..., n, Leng and Tang (2012) proposed the penalised log-likelihood function

(6,T) = argn;in{—f(& [)+9,,(0)+¢,(T)},
where

l n
00, T) = _nz—qlog{det((@)} - %log{det(l")} +§Ztrace(XiFXiT 0),
P

go;y_( -) with j = 1,2 is the penalty function based on the LASSO or SCAD methods and /; for

Jj = 1,2 is a tuning parameter. Alternatively, another interest is Z®Y and its inverse, which was
considered by Zhou (2014). The key idea is to estimate correlation matrices of ¥ and ¥ by
adopting a pair of penalised functions, and then combine the estimators of X and ¥ to yield
the desired estimator of Z&WY. Specifically, X®W is first expressed as

QY = {J,0(X)J1}®{J,0(¥)J, }{trace(X)trace(V)} ,

. . . Oy,
where o(Z) and o('P) are correlation matrices with components ——— and Vst , respectively,
V OssOtt vV VssWi

oy and y, are the entry (s, ¢) of ¥ and W separately, and J, and J, are two matrices satisfying

J1/+/trace(¥ dlag(\/_”, ey \/_pp) and J,//trace(X dlag( N qu). Under

sparsity assumptions, 0(X) and o(¥) can be estimated separately by

International Statistical Review (2024), 92, 2, 194-245
© 2023 International Statistical Institute.

52017 SUOWLLIOD SAIER1D) 3|ced dde 3 A peuanob a1 Sap 1. YO 88N JO I 10} ARRIGIT UIIUO 481 UO (SUORIPUOD-PLE-SULIBILIOY AB| 1M AR U1 UO//StNY) SUOIPUOD PUE SWLB L 8L} 385 *[5202/20/20] U0 ARq11 8UIIUO /B]IM ‘UBWRIE LO!IG IGSIISIOAIUN Pun SIeIS AQ ZGGZT SUITTTT OT/I0p/W00" A 1M ARIqjoul uo//Sdny W1y papeojumoq ‘Z *vZ0z '€28STSLT



218 CHEN

—

0(F) = argmin|race(Z,{0(£)} ") +log{det(0(£))} + All{o(=)} Il

0(2)>0
and
T . -1 -1
o) = argmin race(¥ {o(¥)} ") +og{dex(o(¥))} + Zll{e()} Il |
o
where X, and ¥, are two sample correlation matrices with the entry (s, f) being, respectively,
- N t . s
Z <Xz( Zol7 Xz( >col> Z <Xt(, zow? Xt(,t)row>
=1 =1
\/ Z 1X2) 1B Z X113 \/ Z X3 % Z 1X o3
i,colll2 i, colll2 i, rowll2 i, rowll2
i=1 i=1 i=1 i=1
X ,( 3:01 is the s-th column vector in X for subject, and x\*) i row 18 the s-th row vector in X for subject i.

In addition, J; and J, can be estimated, respectively, by

Ji= diag(, IS B =1, ..., q> andJ, = diag<1 IS I B =1, p>.
i=1 i=1

Consequently, we have the estimator of ZQW¥
2 )
i° H 9
F

— Y — " — 1<
IQY = {JIQ(E)JI }® {JzQ(‘P)Jz} (n;
and thus, Z®¥ ' is the corresponding estimator of the inverse of ZQW.

Finally, there are some extensions of matrix-variate data. The first setting explored by He
et al. (2014) is K-way tensor with K > 2, which treats the matrix-variate data (K = 2) as a
special case. Here, we denote X as a K-way tensor with dimension {p, ..., px }, and its elements
are denoted by {X(;,  ;:ixk =1, ..., py, k=1, ..., K}. Then the tensor normal distribution
of X is denoted as X ~ anorm(0, Xjo...0Xx) with the symbol ‘o’ being the outer product,
and the pdf is given by

i 2>

Py s () = (20) 7" 11 {det(S)} % exp <—;Hx x T
k=1

1 _1
wherep =p, + ... +pg, X2 {21 S ZKZ} with covariance matrix X for the k-th array and
IXIP = Z X o)

Slmllar to other cases, the interest is to estimate @ = Zk ' for k =1, ..., K. The penalised
likelihood function is employed, and the estimator of ® £ {0y, ..., ®K} given by

K

K
O = arg@r)nin l_ flog{det((ak)} + trace{S(Ox®...Q0,)} — Z/lk Z o (0, S,)] ,
k=15k k=1 s#t

(36)
1 n
where S = — E vec(X;.)vec(X ,;.)T and ® represents the Tucker product. To solve (36), the
né= ’

block coordinz;te descent algorithm can be adopted to iteratively minimise (36) with respect
to ®; while keeping the other matrices ®; with j # k fixed at current values.
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The second important structure in multi-dimensional graphical model is multi-attribute data,
whose main feature is that the vertices reflect vectors instead of ‘scalar’ in conventional graph-
ical models. Mathematically, forj = 1, ..., p, let a random vector X; € R% follow a multivariate
Gaussian distribution with mean y; and covariance matrix ;. Then the multi-attribute data is

definedas X = (X, , ..., X pT )\ with mean u = (4, , ..., ,upT ) and covariance matrix
2 22 Elp
= :
S o . 5,

where X, = cov(X;, X;). Because X is a vector, to measure total association strength between
multiple vertex attributes Xy and X, canonical correlation (e.g. Katenka & Kolaczyk, 2012) and
partial canonical correlation (e.g. Kolar ef al., 2014) can be employed, and their formulations
are given, respectively, by
p(Xs, X,) = Max corr(u’ X, v' X,) (37)
u 'S

v e R
and

PXs, Xi; X\(s,y) = X COIT{MT Xy — AX\(5.), v (X, — EX\{SJ})} (38)
v e R%

with  X\(n = (X;:j #s,¢) is based on X with Xy and X, removed, A=
argminE{|[X; — AX\ 4|3} and B = argminE{||X, — BX\(, 4|3 }. Different from (37), (38)
4 B

enables to measure X; and X, with the effect of X ( ,j removed, and (38) equals zero if and only
if vectors X and X, are conditionally independent. Moreover, it can be further shown that
p(Xs, X1 X\, 1) # 0if and only if max u' Oy #0, (39)

u € RYs
v e Rt

where Oy, is the block entry (s, ) in @ = 7!, It essentially says that (non)zero partial canonical
correlation can be reflected by the estimated (non)zero block precision matrix.

Motivated by (39), the first strategy, which is analogue of the work proposed by Katenka &
Kolaczyk (2012), is to regress X to other components X\{S}é(Xk:k #5). That is,

EXX () = Zo g Evish (1 X (s (40)
where X \( is the s-th row of ¥ with the s-th component removed, Z\( \(} 1S a

submatrix of X  with the s-th row and column deleted. Because O \(y =
—(ZSS — 57\{S}Z\’{1,}7 \{X}Z\{S}J)i Esy\{s}Z\’{i,}? (s} > it indicates that a zero block matrix
O, can be identified from the regression coefficient in (40).
The other approach proposed by Kolar et al. (2014) is to adopt the penalised log-likelihood
function
© = argmin [trace(SG)) - 1og{det(®)+/1 Zt |®S,||F}] (41)
>0 s,

1 <& ~
with S = — ZX e X iT. . By tedious derivations, the closed form of @, in (41) as well as the
i3 ’
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estimator of X, in X can be obtained. Applying an inexact block coordinate descent procedure
with iteration until convergence yields the final results.

3.5 Error-Prone Graphical Models

Sometimes, we are unable to collect data precisely due to the measurement based on inaccu-
rate devices. As a result, measurement error usually exists in the datasets, which reflects that the
observed data are not necessarily equal to the underlying unobserved data. In applications, mea-
surement error frequently appears in the datasets, such as cell signalling data (e.g. Bandara
et al., 2009; Yorik et al., 2011) and gene expression data (e.g. Rocke & Durbin, 2001). In
the early developments, measurement errors have been considered and established in the devel-
opments of regression models, where detailed descriptions can be found in some monographs,
such as Carroll et al. (2006) and Yi (2017). In this section, we primarily discuss measurement
error in graphical models, which is rarely explored in the literature.

Let X be the truly unobserved random vector defined in Section 2.1 and denote X™ as the ob-
served random vector that can be regarded as the surrogate version of X. In the frameworks of
measurement error, if both X and X are continuous, then the classical measurement error model
is usually adopted to characterise X and X™:

X* =X +e, (42)

where € is the noise term with mean zero and positive definite covariance matrix Z; if both X and
X* are discrete and contain binary components, then the misclassification model is adopted,
which is formulated by

P(X" =xq)) PX =xq)
: =P : , (43)
P(X* = X(u)) P(X = x(m)
where x(1), X(2), ..., X() are vectors of m possible combinations of binary variables and P is the

m X m (mis)classification matrix with the component (k, /) being the (mis)classification prob-
ability, denoted as p;; = P(X* = X(t) |X = x(,)) for k, I =1, ..., m. To ease notation, we let
MC[P](X) denote the misclassification operator indicated by (43) and notationally write (43)
as X* = MC[P](X). Furthermore, P is assumed to have the spectral decomposition P =
ADA™!, where D is the diagonal matrix with diagonal elements being the eigenvalues of P
and A is the corresponding matrix of eigenvectors.

In the presence of measurement error, under the Gaussian graphical
model, Wainwright (2019, Section 11.4.1) showed that the estimator determined by (8) with

. S . .
S replaced by the error-prone covariance matrix — g XX .| is inconsistent to the true ©,
n 4 S
i=1
suggesting that measurement error would incur wrong conclusion. To address this concern
i

e . . 1<
and eliminate measurement error effects, a natural estimate of ¥ is S* = — E XX f.T
n“ ’
i=1

/1
X, which can be further shown that ||S* — || .« < 8P yith high probability. Thus, solv-
n

ing (8) with S replaced by S* gives the ‘corrected” GLASSO estimator.
Similar idea can be applied to (14) when measurement error exists. Started by the least
squares function in (14), its population-level objective function is
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LB) =T Sgh — BT Zo (44)
where X\, = var(X\ () and X \ 3 = cov(Xy, X\ ). Inspired by S%, X\ (,y and X ) can be
estimated by

n

S 1 * * T
T\ = Y XX — T (43)

i=1

and

S 1 ® ok
Zs, \{s} — ; Z Xi_’ SXI'7 \{s} T 26;&7 (46)
i=1

where .\, isthe (p — 1) x (p — 1) submatrix with the s-th row/column deleted and X, ; is
the s-th column of Z.. Therefore, the ‘corrected’ LASSO estimator is given by

B = argmin {L(8)+ 281},
B

where L(8°) is (44) with Z\(s} and X \ () replaced by (45) and (46), respectively.

To explore a general setting and provide a flexible strategy to deal with measurement error
effects, Chen & Yi (2022) considered mixed graphical models (6) with ¥ and Z replaced by p-
-dimensional vector of continuous variables X¢ and pp-dimensional vector of discrete vari-
ables Xp, respectively. In the presence of measurement error in continuous and discrete ran-
dom vector, two measurement error models (42) and (43) can be accommodated to character-
ise X¢ and Xp as well as their surrogate versions, respectively. To correct for measurement
error effects and recover the underlying true graph, the simulation-based neighbourhood-set
likelihood method was proposed, whose key idea is to employ the working data generated
based on (42) and (43) to eliminate measurement error effects. The estimation procedure is
outlined below:

Stage 1:  Simulation

Suppose that X can be decomposed asX = (X, Xy ) T LetX, ¢ and X7, denote
the surrogate version of X ¢ and X p, respectively. Let R be a given positive integer and
let Z={{y, {1, ..., (i} be a sequence of pre-specified values with 0 = ¢, <
{1 < ... < {y, where M is a positive integer and ', is a pre-specified positive
number. In applications, R is set as a value between 100 and 500 and Z is taken
as a collection of M points that equally cut the interval [0, {,,] with M set as 5 or
10and {y; setas lor2. Fori=1,...,nandr =1, ..., R, we generate €; , from
N(0, %) and then define

VVC7 ,'(V, C) = Xaj + Cei, r (47)
for € Z. For the discrete random vector X7}), we generate
Woilr, &) = MC[P] (X3, (48)

for { € Z, where P* = AD“A~! with D representing a diagonal matrix whose di-
agonal entries are determined by corresponding entries in D with power . Let

L
Wie (r, () = <WCTi(r, 0), WDTi(r, C)) , and we call W;. (r, {) the working data
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Stage 2:

Stage 3:

CHEN

forr=1,...,R{€ Zandi=1, ..., n. We explain the purpose of adopting the
working data. Noting that for a given r,

We,ilr, Ol Xc,i ~N(Xc, i, (14 )Z) and Wp i(r, {) = MC[P' * <] (Xp,:)

for{ € Z, where the value of { reflects the degree of mismeasurement in the working
data. With{ = 0, W (r, {)and Wp_;(r, {) recover our actually collected surrogates
X¢ ;and XI*D, - With a positive and increasing {, W¢ (r, {) and Wp (7, {) incur an
increasing amount of mismeasurement. When { = —1, W¢ ;(r, {) and Wp (r, {)
reduce to X¢ ; and Xp_;, respectively, the ideal situation without mismeasurement.
Estimation

Let V¢ and Vp denote vertex sets of continuous and discrete random variables,
respectively. With two vertices s € V¢ and s’ € Vp fixed, replacing the unobserved
variable X;. in (17) and (18) by the working data W;. (r, {) yields two optimisers,

denoted as 5C(s; £, r) and ED(S/; {, r), respectively, for (€ Z, r=1, ..., R, s =
l,....,pcands’ =1, ..., pp. Next, for fixed s, s’ and { € Z, we calculate

~ LN ~ 1
Oc(s; {) = Z Oc(s; ¢, r)and Op(s’; ) =

= |

R
SOl ). (49)
r=1

Extrapolation

Motivated by the explanation in Stage 1, the goal is to obtain estimators corre-
sponding to the error-free scenario (i.e. { = —1). The key strategy in this stage is
to employ a regression model based on the patterns obtained from Stage 2 for differ-
ent degrees of mismeasurement and then obtain the desired estimator by taking { =
— 1 as the predicted value. Specifically, grouping the estimators obtained from (49),

we obtain two sequences Sc.; = {(C, 5c(s; C)) e Z} and Sp.y =
{(C, /H\D(s’; C)):C € Z} for s € V¢ and s’ € Vp. Then we regress gc(s; {) or
Op(s'; ¢) on ¢ by fitting models

Oc(s; {) = Ge(L, Te) + dcand Op(s’; {) = Go (¢, I'p) + dp (50)
to the sequences Sc,; and Sp.y, where Ge( -, - ) and Gp( -, -) are user-specified
regression functions (such as linear or quadratic functions), I'c and I'p are the associ-
ated parameter vectors, and d¢c and Jp represent the noise terms.  Parameters I'c and
I'p can be estimated by applying the least squares method to the sequences Sc;, and

Sp, ¢; let fc and fD denote the resulting estimates of I'c and I'p, respectively. Next, we
extrapolate models (50) by letting { = —1 and calculate the predicted vectors

c(s) = Ge(—1, Te)and fp(s') = Gp(—1, T'p). (51)

Furthermore, following the discussion in Section 2.2.3, we can adopt (51) to re-

cover homogeneous and heterogeneous neighbourhood sets of continuous and bi-
nary variables.

3.6 Latent Variables in Graphical Models

The latent variable is the case that variables are unobserved or not accessible. In the standard
setup, suppose X € RPo P4 is a Gaussian random vector, which can be decomposed as
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X= (X OT , X HT ) T , where X is the observed variable, X is the hidden/latent variable, and O
and H are disjoint subset of indices in {1,2, ..., py + py} with |O| = p, and |H| = py.

Let X denote the covariance matrix of X, which can be further decomposed to sub-block
covariacne matrices of X o, X 7, and (X, X ), denoted as X, Xy, Xoy and Typ = EOTH, respec-
tively. The main interest is to estimate the observed concentration matrix

0523, =00 — Oou®;,' @0, (52)

where ©p, Oy, oy and O are sub-block matrices of 1.
Motivated by (52), rewrite ® = @ and define

P20 — L

with [L being assumed as low-ranked matrix. Inspired by the GLASSO method in Section 2.2.1,
Chandrasekaran et al. (2012) proposed to estimate ® and IL by the following optimisation:

min, [trace{S(® — L)} — log{det(® — L)}+1,w(®)+Atrace(L)], (53)
L>0

and the Newton-CG-based proximal point algorithm can be employed to solve (53). To effi-
ciently solve the optimisation problem, Ma ef al. (2013) proposed the first-order ADMM and
proximal gradient-based alternating direction methods by re-expressing (53) to a convex
minimisation problem with two blocks of variables and two separable functions. Moreover,
Meng et al. (2014) adopted the decomposable regularisation method to derive error bound for
the precision matrix and its estimate.

To relax the normality assumption and parametric setting, Fan et al. (2017) further extended

latent variables to mixed graphical models. Specifically, X is defined as X = (X o Xp )T ,

where X¢ is a po-dimensional continuous vector and Xp is a pp-dimensional discrete vector
whose components are defined as Xp ; =1(Z; > C;) for all j=1, ..., pp, where C =

(Ci, ..., Cp, )" is a vector of constant and Z = (Z;...., Zy, )" is a pp-dimensional vector satis-
fying (Z, X¢) ~ NPN(0, Z, f) that has been defined in Section 3.2 with 4 = 0. Thus, based on
this structure, we refer X to follow a latent Gaussian copula model, denoted as
X ~LNPN(0, %, f, C) with £ being the latent correlation matrix, because the observed binary
variables are obtained by dichotomising latent variables Z. Because of unavailability of Z, to
estimate X based on observed data X and Xp, the Kendall’s 7 (24) is employed, and a suitable
transformation gives the estimator of X. To further estimate ® 2 X!, the GLASSO or CLIME
methods are applied with X replaced by its estimator.

Here, we give a remark to clarify the differences between measurement error in Section 3.5
and latent variables in this section. First, in measurement error models, X may not be precisely
measured, but its observed version X* can be collected; our inferences would be based on using
measurement X with suitable adjustment to facilitate the possible differences between X and X*.
The key difficulties in the framework of measurement error are to develop a proper adjustment to
fit each specific model for the response process and the measurement error process, and the
likelihood-based methods are not the only approach.

A second noticeable difference lies in the interpretation and nature of the variables. Latent
variables are random variables which can never be observed; their behaviour is mainly featured
by an assumed distribution which cannot be testified. On the other hand, for the problems with
measurement error, although the true variable X may not be observed for every subject in the
study, it is possible to obtain the true value of X in situations where validation data are available.
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In addition, X does not have to be always taken as a random variable, and its distribution does
not have to be specified when conducting inferences (Chen & Yi, 2021b).

3.7 Time Series Graphical Models

In the preceding sections, we have discussed graphical models under complex settings or
noisy data, but their common feature is time-independent. An attractive setting is dynamic
graphical models, which incorporate the time series structure in high-dimensional data.

Let X(v) = (X1(v), ..., Xp(v))T with v € Z be a multiple time series, where X(v) for s =
1, ..., p are univariate real components.

We start the discussion by introducing the pioneering work of Dahlhaus (2000). Similar to
preceding sections, an edge (s, ¢) reflects conditional dependence of X(v) and X, (v) given other
components. Rigorously, define Y (v) = (X;(v):j # s, t) as a vector with X(v) and X,(v) re-
moved. We first remove the linear effect of Y, (v) from X (v) and X,(v) by minimising

o 2 - 2
ZE{XS(v) -y — st(v -~ u)yﬁ(u)} andZE{Xt(v) —p = Y di(v - u)YS,(u)}

with respect to u, u,, and filters d,(u) and d,(u). Let zi, and i, denote the resulting optimisers,
and the ‘residuals’ are denoted as

o

&s (V) £ gs\{s., t}"(v> 2 XS(V) - ﬁs - Z z71\3("’ - u)Yst(u)

U=—oo

and

©

E(v) = gt\{s,t}"(") 2X(v) - H, — Z di(v — u)Y(u).
Let X, 2(X,(v):v € Z) and YV, =(Y(v):v € Z). Then X is independent of X, given ), if and
only if cov{&(v), &(v+u)} =0 for all u € Z. This approach is called partial correlation
graph.
Another characterisation of the edges in the graph can be obtained from the partial spectral
coherence. Let the cross-spectrum of X (v) and X,(v) be defined as

Frn @) =53 Caluexp(~izu)

U=—o0

where i is the imaginary unit with i = —1 and Cy;(u) = cov{X,(v + u), X;(v)} is the covari-

ance function of the process with Z |Cs(u)] < e Under those definitions, a measure of the

dependence between X (v) and X, (v) given Y (v) is given by fy v,y (2) = f¢.¢ (2). Rescaling it
leads to the partial spectral coherence:

S XX/ Yy (2)

{f X X[ Yy @)f X X,|Yy (z) }
We have that Ry y,y,( ) # 0 if and only if (s, ¢) € E.
A general class of multivariate autoregressive processes is also explored in graphical models.
Following the concept in time series analysis, the vector autoregressive (VAR) process is

RX.sXAsz (Z)é 1/2°

X() =Y TiX(v — )+U(), (54)

J=1
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where I'; is the p x pmatrix forj =1, ..., gand U(v) ~ N(0, Z). LetI'(z) =1, » , ZFZJ

If det{I'(z)} # 0 for all z € C with |z| < 1, then the recursion I'(z) has a stationary solutlon (e.g.
Dahlhaus, 2000; Wilson et al., 2016, p. 31). Moreover, when component (k, /) in T';, denoted
Ii(k, 1), for j =1, ..., q is significantly larger than 0, then we say X is Granger—causal for
X, which indicates that X; can be predicted efficiently if the information in the X process is
taken into account (e.g. Liitkepohl, 2005, pp. 42 and 44).

The main interest is to examine the component inI';, denoted asT’; ; fors # ¢, as it is regarded
as the ‘influence’ from X,(v — j) on X(v). In other words, there is no influence from compo-
nent ¢ on s if the entry (s, ¢) in T'(+) is equal to zero, that is, I'y(-)=0. A more detailed
justification to explain this phenomenon can be referred to Dahlhaus (2000, Section 4).

To deal with this problem, some methods have been developed. To name a few, Han &
Liu (2013) and Basu et al. (2019) considered a single time-lag

X(v)=TX(v — 1)+U(v)

that is a special case of (54) with ¢ = 1. Regarding the methodologies, Han & Liu (2013) pro-
posed the constrained convex optimisation problem

min > Ty
FeR>P st
s.t. ||SF -5 ||max =70,
where 4, > 0 1s a tuning parameter, s = - ZX M7, and 5, = —— ; ZX x(v+1)". The other ap-

proach proposed by Dahlhaus (2000) is to decomposeI" as F I'y —I— Ik, whereI'; is a low-rank
matrix and 'y is a structured sparse matrix. To estimate I, it suffices to solve the following
minimisation problem:

~ o~ (1
(1, o) = argmin { ¥ = (T + Ta)l} + Al +dalCal .

where v = (x(7), ... x(1))", X = (X(T — 1), ..., x(0)7, 8 = {FL € R * P |1 || ax < E} with x being
p

the parameter to control the degree of non-identifiability of the matrices allowed in the model
class, || - ||, is the nuclear norm that is the sum of the singular values of a matrix, and 4, and
Ag are tuning parameters.

Furthermore, Skripnikov & Michailidis (2019) explored (54) with consideration of various
groups of subjects. A new VAR model is formulated by

q
Ny
= "rx O — HruB ),
Jj=1
fork =1, ..., K, where U (v) ~ N(0, a( 1lp ») With a variance o< 1)- To characterise shared
structure across all K subjects and account for the presence of heterogeneity from

subject-specific effects, we decompose F;k) as Fj(»k) = Fj(ké + F( 2, where 1"( )c is the common

component of order p temporal effects for the £-th subject and Fjg

nent. To estimate F(k)c and F](.kz, an intuitive approach is to separately estimate each row of F(k)

1 1s the idiosyncratic compo-

and Fj . Specifically, for a fixed k, the ith component in X ®) (v) for all v can be expressed in the
following form:
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~ T T
where X®) = (Xf.")(O), ...,X,@(T)) oW = (U@(o), U(k>(T)) , W® s a matrix

with components X,(k)(v —u) for u=1,...,v and v=gq, .., T, F(Ck>[i, 1=

.
(FEIT)CT i, -1, ..., F[(,/f)cT [i, ]) and Fj(.,k)c[i, -] is a vector with component F}f‘)c[i, /] that is

the entry (i, /) in F](k)c for/=1,...,pand j=1, ..., p, and similar definition to F§k> i, -]
Furthermore, let W denote a block diagonal matrix with the k-th block being W), and define

~ ~ ~ T ~
0 = (Xﬁ” T xm T) o D =diag(eh), cons Oy ees Oy s Oy)s Tl ] =

T T
(COT 0 2t T 1) Tl )= (T L T T ) Therefore,
to estimate Fgc) [i, -]and Fik) [i, ]fork =1, ..., K, we can adopt the penalised weighted least
squares method

_min _ _ _ ) _
Teli, 1. Tl ‘1[|!D*1/2{x,-fw(rc[i, STl DY [Tl 10

ey (r0G 1, ... T 1) !
=1 2

V4 K
* k). k).
+23°3 ;]rgm, 1% 0, 1]|} ,
I=1 k=1

where 4; 1, A; ¢, and 1* are tuning parameters. Here, the first penalty is the well-known sparse

LASSO penalty that aims to detect non-zero elements for each F<Lk) [f, -] withk=1,..,K
and i =1, ..., p. The second penalty function is referred to the group LASSO penalty that ei-
ther shrinks the /-th element to zero for all K vectors or estimates it to be non-zero for all K
vectors. Finally, in the last penalty function, a tuning parameter value A* is set high enough, so
that the intersection of the supports for F<Ck) [i, -]and F(Lk) [i, -]isempty. To solve this optimisation
problem, a two-stage algorithm performing an alternate convex search method is adopted.

4 Network Structures With Regression Models

In Sections 2 and 3, we introduce the estimation methods for graphical models that focus on
characterising the (pairwise) dependence structure of variables. When we build regression
models, it is crucial to incorporate the network structures since the multivariate covariates
and/or responses may not be independent in most situations. Therefore, in this section, we in-
troduce regression models with network structures accommodated. A brief summary is avail-
able in Table 3.

4.1 Linear Models

In this subsection, we discuss the multivariate linear model with the network structure accom-
modated in the response. The motivated example of this study comes from the glioblastoma
multiforme (GBM) cancer dataset (Lee & Liu, 2012; Wang, 2015). This dataset contains 534
microRNA expression values and 11861 gene expression values. The sample size in this dataset
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is 202. The main interest in this dataset is to regress the microRNA expressions on the gene ex-
pressions by linear models and explore (a) the relationship between the responses (microRNA)
and covariates (gene expression) and (b) the network structure of microRNA based on fitted re-
gression models.

Let n, m and p denote the numbers of subjects, responses and covariates/parameters, respec-
tively. A multivariate linear model is formulated by

Y =XB+e, (55)
where Y=1y,, ...,y,]" is a n x m response matrix with m-dimensional vectors of responses
Y. = i1 oous Vi) fori=1, ..., mX=I[x, ... x| isan x pdesign matrix with p-dimensional
vectors of covariates x; = (xil, - x,-p)T fori=1,..,ne=le, ..., en]T is a n X m error
matrix with m-dimensional vectors of errors €; = (€1, ..., €m) T for i= l,...,n, and B =
Bi, ..., B,]7 is a pxm parameter matrix with p -dimensional vectors of parameters

T
= (o) i,

We further assume that X is fixed effect and ¢; is 1.1.d. and follows the Gaussian distribution
N(0, £), where £ = [oy]",_, is assumed to be positive definite. Let © = [0,]",_, £~ '. The
main target is to estimate B and ®, where the estimator of B gives the similar interpretation
in conventional regression models and the estimator of ® reflects the network structure of the
response Y.

We primarily introduce two methods to deal with this problem. The first method is proposed
by Lee & Liu (2012). The key idea of this method is based on the graphical LASSO method.
Specifically, based on (55), we have Y|X ~ N(XB, X). Similar to the optimisation in (8), esti-
mators of B and O is given by

~

(B, ®) = argmin [ — nlog det(@)—l—trace{(Y — XB)O(Y — XB) " }
B,©

e ijkwjkw2 > a6l }

s #t

where 4; and 1, are two tuning parameters and Wk 2 and vy, are weights for the adaptive LASSO. In

the computational perspective, to derive B and © in numerics, Lee & Liu (2012) provide the
following computational algorithm:

Step 1:  Set the separate LASSO solutions ﬁ;,fld) withj=1,...,pand k=1, ..., m, and O,

Table 3. Summary of supervised learning methods with network structures accommodated. Topics summarise the commonly
used models or data structures in Section 4. Estimation methods show the strategies for constructing models. References
reflect the citations of methods.

Topics Estimation methods References
Multivariate linear models (1) The graphical LASSO Lee & Liu (2012)

(2) Conditional inference Wang (2015)
Multi-class classification (1) Logistic regression with homogeneous or class-dependent Chen et al. (2019)

graphically structured covariates accommodated

(2) SVM with network based surrogate covariate He et al. (2019)

(3) Network based linear/quadratic discriminant analysis Chen (2022a, 2022c¢)
Survival analysis (1) Variable selection and SIMEX methods for modelling the Cox PH ~ Chen & Yi (2021a)

model with network based and error-prone covariates
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Step 2:  Given ©°), the updated value B"*") is given by

B"") = argmin [trace{(Y — BX)0“(y — BX)' }—l—llz;wjkwjkﬂ.
B Js

Step 3:  Given B""), the updated value ®"") is given by
-
©"") = argmin [trace{ (Y — B(”ew>X) (Y — BWW)X)@}
0

A
— log det(®)+;2 Zvﬂwﬂﬂ .

sEL
Step 4:  Continue Steps 2 and 3 until convergence.

The second method, proposed by Wang (2015), borrows the idea of the conditional inference
and extends it to the multivariate linear model. To see this, we fix & without loss of generality.
Lety* = (V15s vy Vi) T be the k-th response and let Y ¥ denote the response matrix of Y with-
out y*. Define B_; as the parameter matrix of B with 8, removed. For any matrix A, let A_; ; be
the k-th column of A with k-th component deleted, and let A_; _ denote a sub-matrix of A with
k-th row and column deleted.

By some derivations, the conditional distribution of y*|(X, Y~*) is given by

YI(X, Y 5) ~ N(XB + (Y F = XB_y) v, iiln), (56)
O_k k

kk
tion of ®, it implies that y, can reflect the dependence between k-th variable and others. There-

fore, the estimators of 5, and y, can be determined by

(ﬁk? ) = argmin{Hyk — XB, — (Y—k _ m(j)}){)yk”z

where 61 = ok — Z_T,Q kZ:}ﬁ Zprandy, =37) T = . Note that y, is a func-

/Bkﬁyk
P
+ ¢ Z”jk‘ﬂjk’ +& szk|7sk|}»
j=1 s #k

- (0) . o . . .
where BE,)C is an initial consistent estimate of B_g, {; and {, are two tuning parameters, and u;;

and vy are weights for the adaptive LASSO.

Since O is a symmetric matrix, it implies that sign(6y) = sign(6,) and sign(y,;,) = sign(yy,)-
Similar to the crucial issue in Section 2.2.2, two estimators 7, and y,, may not be equal. There-
fore, Wang (2015) suggested setting the final estimators to be zero by the ‘AND rule’ 7, =
Oandy,, = 0 or the ‘OR rule’ 7, = Oory,, = 0.

Regarding comparisons of numerical results, Wang (2015) examined his proposed method
and compared the performance with Lee & Liu (2012). Numerical results showed that the
method proposed by Wang (2015) outperforms that developed by Lee & Liu (2012) with
smaller biases of estimators of B and ©.

In addition to two methods that are based on the GLASSO method and the conditional infer-
ence, respectively, some approaches were also proposed to deal with estimations of the precision
matrix in the presence of the multivariate responses. For example, as motivated by analysis of ge-
netical genomics data, Cai ef al. (2013) and Yin & Li (2013) proposed a two-stage estimation
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procedure to first identify the relevant covariates that affect the means by a£; penalisation and then
estimate the precision matrix using the estimated regression coefficients in the first stage.
Rothman ef al. (2010) focused on improving estimation of regression coefficients by incorpo-
rating the covariance information. Li ef al. (2012) developed a method that is based on a com-
bination of a kernel-based estimate of the means and a regularised estimate of the precision
matrix.

4.2 Classification

While several methods have been developed to estimate graphical structures based on multi-
variate linear models as presented in Section 4.1, little work has been available to address graph-
ical structure in classification, especially for multi-label classes, which is an important problem
in supervised learning. The goal of classification is to use the information of covariates to clas-
sify subjects to Z different classes, where 7 >2 is the number of labels. As discussed in
Chen (2018), it is expected that there exists the (pairwise) dependence structure within covari-
ates and that network structures in each class may be different from each other.

In the existing literature, some machine learning methods with network structures accommo-
dated have been discussed. To name a few, Cai et al. (2018) proposed the network linear dis-
criminant analysis that takes network information in predictive variables into consideration.
Zhu et al. (2009) considered penalised support vector machine (SVM) whose penalty function
is based on the set of all pairs of connected covariates. However, those approaches focused on
the binary outcome, that is, Z= 2, which is a special case of multiclassification with Z > 2.

In this section, we introduce some recent works that can handle classification for
multi-classes (Z > 2). The first method proposed by Chen et al. (2019) is the logistic regression
with graphically structured covariates accommodated. Specifically, to describe the covariate X
as well as the network structure, the exponential family graphical model (4) is employed, and
the corresponding conditional distribution of x; given x\() for s = 1, ..., p is given by

Py, (xglx\(51) = exp | x; Z Ouxr p +C€(x;) — D Z Osxs p |,
t € V\{s} t € V\{s}

where 6, = (Hsl, clsts — )5 Oss + 1)y -1 Oyp) i ,X\[5) is the (p — 1)-dimensional vector as de-
fined in (14), and D( - ) is the normalising constant. Based on sample with size n, the conditional

inference in Section 2.2.2 can be employed, and the estimator of 6, fors = 1, ..., p is given by
—~ . 1 <&

0, = argmin {—; S logPs, (sl 1)+, } (57)
s ]:]

where 1 is a tuning parameter. Thus, the estimated edge set and the estimated graph can be ob-
tained by AND rule.

There are two methods to do classification. The first approach is called logistic regression
with homogeneous graphically structured predictors (LR-HomoGraph), which considers the
case where the subjects in different classes share a common network structure in the predictors.
Specifically, let E denote the resulting edge set based on whole data. Then the network based
nominal logistic regression is given by
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exp | ap + E 0, stXjsXjt

(s, 1) € E
pyl) = (58)
T-1
1+ Z exp | an + Z O, stXjsXjt
=1 (s, 1) € E
fori=1,2, ..., 7 — 1, where (a0, (0, 5: (s, t) € E)")" is the vector of parameters associated
I
with class i and the constraint py(x) =1 is imposed for every j=1, ..., n. When

=1
(aio, (a2 (s, £) € E)T)T for i=1, ..., T is estimated by the likelihood function of (58)
(e.g. Agresti, 2012, p. 273), (58) can be estimated accordingly, and denote the estimator as
P;(x;). The predicted class of a subject j, denoted as i*, is then determined by the largest value

of {ﬁlj(xj), s ﬁIj(xj)}, that is, i* :.arlgmagﬁij(xj).
=1, ...,

The second method, called the logistic regression with class-dependent graphically struc-
tured covariates (LR-ClassGraph), stratifies the covariate information by class when
characterising the covariate network structures and uses network structures in different classes
to classify subjects. Specifically, for every i and j withi =1, ..., Z andj =1, ..., n, define a
binary and surrogate response variable

1, thej-th subject is in class i,

Y. =
! 0, otherwise
and let £ denote an estimated set of edges for predictors in class i. After that, define 7/(x;) =

P(Y} =1X;= xj) and consider the class-dependent logistic regression

logit{z'(x;)} =%+ > v (59)
(s,1) € E"
~ T
where (y?, (7(s, 1) € E’)T) is the vector of parameters associated with class i. Applying the

maximum likelihood estimation method based on (59) yields the estimator of
~ T .
(y?, (7 (s, 1) € E’)T) , and thus, the estimator 7' (x;) can be obtained from (59). Therefore,
the predicted class label for a subject j is determined by i* = argmax7@' (x;).
i=1,....T

Regarding machine learning methods, network structures are also accommodated to support
vector machine (SVM). For the multi-class response, He et al. (2019) considered the exponen-
tial family graphical model and employed (57) to estimate the network structure. Different from
the approach in Chen et al. (2019) that adopt pairwise interactions to reflect network structures,
He et al. (2019) proposed the network based surrogate covariates to replace the ‘original’ covar-
iates in SVM.

Suppose that G = v, E ) is the estimated graph obtained by (57) based on whole data. To
reflect different association structures among the covariates, we divide the estimated graph G

as a sequence of non-overlapped and interconnected subgraphs {ak:k =1,..,K }, where
1 <K < p is the number of subgraphs in G, and G* = (V k E k) represents the k-th subgraph
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with V¥ and E* being the corresponding vertex and edge subsets, respectively. Moreover,

K ~
U V* = 7 and two subsets V¥ and V'* are disjoint for k; # k,. When the edge subset E* is

empty, the corresponding vertex subset ' contains a single element.
We now adopt G* with k = 1, ..., K to define surrogate covariates, and each subgraph re-
flects a new covariate, yielding a K-dimensional vector of predictors, denoted as

s
X ;é<X e X K) . The first formulation summarises the predictor measurements using

-
the vertex information in the subgraphs and deﬁnes X[ as X V= (X T X }7/ 1() with

Xk = ‘Vk’ Z Xj.s (60)
se vk

fork=1, ..., K, where |Vk | is the cardinality of the vertex subset V*. If there exists the k-th

vertex that is fully unconnected other vertices, that is, 'y = {k}, then the k-th surrogate variable

is defined as X7, = X; 1.
The second formulation uses the edge information in the subgraphs and defines X as X jE =

.
(Xfl, ...,XfK) with

> ox (61)

s, 1) EEk

IE"

fork =1, ..., K, where ‘/E\ k’ is the cardinality of the edge subset E*. Moreover, noting that when

EX s empty, X jE « 18 defined as the predictor X; ; whose index falls in the corresponding vertex

subset V'*. Finally, when the vector of surrogate covariates is derived, replacing the original covar-
iate X by the surrogate covariate X~ in the SVM algorithm enables us to do classification.

The last strategy based on supervised learning is based on discriminant analysis. Let j‘i(X ie)
denote the conditional probability density function of the predictor X;. given that subject j

comes from the i-th class fori =1, ..., Zandj =1, ..., n. Letm; = P(Yj = i) denote the prob-
I

ability that the j-th subject is randomly selected from class i. It is immediate that Z w; = 1. By
=1

some algebra (Hastie et al, 2008, p. 108) and the Bayes theorem, we obtain the posterior

probability

. f‘\i(Xj,')”i
P(Yj — 1|Xj7.> = AT (62)
l;fju(Xj:)ﬂz
fori=1,...,Zandj =1, ..., n. For arbitrary two classes i and / with i # /, the log-ratio of (62)
is defined as

P(Y- = ilX;. ) (X _
log AL G log ‘Ll( i) + log (E) (63)

P(yj = I1X;. ) Sii(Xje) m

If we particularly specify f;;( - ) as the normal distribution N (y;, ¥;) for class i and define
0, =X ! as in Section 2.1.1, then (63) will become
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7 |®1|71/2
log<—> —|—10g< —7
& & (64)

{0 —w)T O ) e — ) O — )}

2
Moreover, if ¥; is equal to a common matrix X foralli = 1, ..., Z, then we can define @ £ X!,
and (64) will reduce to
T; 1
log <E> = 5l 1) O + wy) + X1 O(u; + ). (65)

Following the discussion in Hastie et al. (2008), (64) and (65) separately give a quadratic
function with respect to x based on the class i

1 1
0,(x) = log(m;) + 5logler] — 3(x — u)T Oilx — x) (66)
and a linear function with respect to x based on the class i
1
0i(x) = log(m;) — E,u,-T Ou; +x T Ou,. (67)

If ®; in (66) and O in (67) are sparse, then one can adopt the GLASSO method in Section
2.2.1 to estimate them, yielding NetQDA and NetLDA for estimated (66) and (67), respectively
(e.g. Chen, 2022c). The implementation can be found by the R package NetDA discussed by
Chen (2022a). In fact, if X; and X are empirically estimated and are directly implemented
to (66) and (67), then they are referred to conventional linear/quadratic discriminant analysis
(LDA/QDA) (e.g. Hastie et al., 2008). For the comparisons among NetLDA/NetQDA and
LDA/QDA, the former methods are able to deal with estimation of sparse ® or ®;, while the
latter ones fail to address conditional independence of two predictors. Hence, in the presence
of dependence structure of predictors, it is expected that the NetLDA and NetQDA methods
outperform the conventional LDA and QDA methods.

4.3 Joint Modelling for Survival Data

Survival analysis is an important topic in statistical analysis and it has been widely applied in
biostatistics, actuarial science and so on. In the framework of survival analysis, the failure time
is set as the outcome of main interest. Different from generic linear models where the response
is complete, the main challenge is that the survival outcome is usually incomplete due to right-
censoring, which is mainly caused by the loss of follow-up of individuals.

A motivated example of this study is the breast cancer data collected by the Netherlands Cancer
Institute (NKI) (van de Vijver et al., 2002). Tumours from 295 women with breast cancer were
collected from the fresh-frozen-tissue bank of the Netherlands Cancer Institute. Of all those
patients, 79 patients died before the study ended, yielding approximately the 73.2% censoring rate.
In addition, the dataset also contains 70 genes that are useful for tumour diagnosis. In this study, the
main interest is to construct a survival model by treating gene expressions as predictors.

Let 7 and C be the failure time and the censoring time, respectively, and let A = ]I(T <C )

be the censoring indicator. Let 7 = min{f , E‘} denote the ‘observed’ survival time and let

X=Xy )T be a p-dimensional random vector of covariates with X¢ and Xp being
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continuous and discrete variables, respectively. As commented by Chen (2018), we allow X to
have network structure that can be characterised by mixed graphical models (6).

In standard survival analysis, the Cox proportional hazards (PH) model is often employed
with the hazard function specified as

H(11X) = Ho(t)exp{g(X; )},
where Hy( - ) is the unspecified baseline hazard function, and g(X; a) is the link function of the
linear predictor with the covariate vector X and the unknown parameter a. To incorporate the PH
model with network structure in covariates, Chen & Yi (2021a) suggested specifying g(X; a) =
log{Ps,6(X)}, where Py o(X) is given by

Pso(X) =expqy > BB )+ > 6.,B(X )+ > €X,) - AP, ©)

rev (s,v) € E rev
It yields the generalised Cox proportional hazards model:

H(X) =Ho(t)expq Y BB+ D> 0.B(X )+ > CX,) — AR, @)},
rev (s,v) € E rev
(68)

where 8, for» € V' is the parameter that reflects the main effect associated with the covariate X,
and for (s, v) € E, the parameter 6y, facilitates the association of X and X, in the sense that
05, # 0 shows the conditional dependence of X and X, given other covariates.

To estimate unknown parameters in (68), the partial likelihood function is frequently em-
ployed (e.g. Lawless, 2003). Based on the observed sample {(7;, X;, A;):i=1, ..., n} with
B(x) = x, the likelihood function is given by

f(ﬁ? ®) = En:j. ZXi,rﬁr + Z Xi,in,v‘gsv
i=1

rev (s,v) € E

log Zexp ZXI rﬁr Z Xi,in,vesv Yj(t) dNi(O? (69)

rev (s,v) €E

where N,'(l‘) = H(Tl < f, Ai = l) and Y,‘(l‘) = ]I(Tl > I).

Ideally, the estimators of 5 and @ can be obtained by maximising (69). However, this approach
would fail when § and ® are assumed to be sparse and the covariate is contaminated with mea-
surement error. To simultaneously deal with measurement error, variable selection for f and net-
work detection for ®, Chen & Yi (2021a) proposed a simulation-based three-stage procedure.
Specifically, following the strategy in Section 3.5, (47) and (48) are employed to generate the
working data W; . (r, {) in the first stage. After that, for» =1, ..., R and { € Z as described

in Section 3.5, we define the surrogate likelihood function ¢, (8, ®) that is determined by (69)
with X;. replaced by the working data ;. (r, {). Then the optimisation problem of the

penalised likelihood function with double penalty functions is proposed:
(5:(©): 8,(0)) = argmin {4, (8, ©) + 101(6) + haps(©)
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which can be solved by the block-coordinate-descent algorithm. In the last stage, we fit regres-
sion models to each of the two sequences { ((, ,/B\(C)) [l e Z} and {(C, @(C)) [l e Z} with

- 1 & A I s . . :
B() = % ;ﬂr(f) and O ({) = 7 ; 0,({). Finally, the estimators of £ and © are obtained by

specifying as the predicted values of fitted models at {=-1

5 Real Data Applications
5.1 Example 1: Analysis of the Cell-Signalling Data

In the first data application, we study the cell-signalling dataset (e.g. Sachs et al., 2005),
which contains p = 11 proteins and n = 7466 cells. In this study, our primary interest is to un-
derstand the relationship among various signalling proteins by investigating signalling pathways
and the dependence structure of proteins. As a result, the goal is to adopt estimation methods in
Sections 2 and 3 to characterise the network structure of 11 proteins.

In our analysis, we start by considering the parametric estimation in Section 2.2 and primarily
implement some existing packages summarised in Section 2.3. Specifically, for the GLASSO
based approaches, we examine the R packages glasso, QUIC, dpglasso and clime;
the resulting graphs are displayed in Figure 3. For the C.I. approach, we employ the estimation
methods in Section 2.2.2, which can be implemented by the R packages XMRF, space and
gconcord, respectively. The resulting graphs are displayed in Figure 4. In Figure 3, we ob-
serve that two packages glasso and dpglasso produce graphs with complex edges, while
graphs determined by QUIC and clime contain less edges. Similarly, in Figure 4, the XMRF
method has the most complex network structure and a graph derived by gconcord is most
sparse. From the first glance in Figures 3 and 4, it is interesting to see that no pair of variables
with/without edge is commonly detected by those seven methods. For example, a pair
(praf, pakts.473) can not be detected by the space method only; a pair (PKC, PKA) can only
be detected by the glasso method. It shows that the estimation results in this real dataset are
sensitive under various estimation strategies.

Next, we relax assumptions under Section 2.1. The first extension is the non-parametric set-
ting in (20). We primarily adopt the R package huge to identify the network structure, which is
displayed in Figure 5. It is clear to see that a graph determined by huge is more complex than
other graphs in Figures 3 and 4 as most variables are linked with edges, except for some pairs,
such as (plcg, PIP2) and (PIP2, PIP3).

The second extension is the consideration of measurement error. We primarily examine the
SIMEX approach proposed by Chen & Yi (2022). In the presence of measurement error, to imple-
ment estimation method to address measurement error effects, we employ sensitivity analyses and

specify the covariance matrix £, = (0! — l)i x+ with Q = 0.65,0.75 and 0.85 reflecting differ-

ent magnitudes of measurement error effects, where by x* 1S the empirical estimate of the covariance
matrix based on the data. Here, we display the same result derived by Chen & Yi (2022) in Figure 6.

We observe that more edges are detected when Q is increasing, such as two additionally iden-
tified pairs (PIP3, praf) and (pjnk, praf) between Q = 0.75 and Q = 0.65, and another two pairs
(pakts473, pjnk) and (pakts473, praf) when Q is increasing from 0.75 to 0.85. On the other
hand, network structures in Figures 3 and 4, which can be regarded as the naive analysis by
using error-prone variables, have different results from the SIMEX method which accounts
for measurement error effects. For example, glasso, dpglasso, XMRF and space produce
more complex network structures. While QUIC, c1lime, gconcord and the SIMEX method
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praf praf
pink pmek pink pmek
P38 pleg P38 pleg
PKC PIP2 PKC PIP2
PKA PIP3 PKA PIP3
pakts473 p44.42 pakts473 p44.42
glasso QUIC
praf praf
pink pmek pink pmek
P38 plcg P38 pleg
PKC PIP2 PKC PIP2
PKA PIP3 PKA PIP3
pakts473 p44.42 pakts473 p44.42
dpglasso clime

Figure 3. Data application in Section 5.1: network structures determined four different methods in Section 2.2.1

with different values of R provide sparse network structures, it is interesting to see that some
edges are detected by the SIMEX method only, such as (PIP3, pjnk), (PIP3, plcg) and
(praf, pmek). On the contrary, a pair (pakts473, P38) can be identified by QUIC, clime
and gconcord only, but is not available in Figure 6. The examination of measurement error
simply demonstrates that in the presence of measurement error in the variables, ignoring the fea-
ture of mismeasurement may produce spurious correlation structures among the variables.

5.2 Example 2: Classification With Gene Expression Data

In this section, we analyse the gene expression data collected by Golub ef al. (1999) and com-
pare the performance of network-based classification methods in Section 4.2.

The dataset contains 7128 genes that were measured using Affymetrix oligonucleotide arrays
and the binary outcome including acute myeloid leukaemia (AML, labelled as ‘“+1’) and acute
lymphoblastic leukaemia (ALL, labelled as ‘—1’). According to the description of Golub
et al. (1999), the purpose of this study is to identify gene signature for the distinction between
AML and ALL. The sample size in the data is 72, coming from the two classes, with 47 specimens
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praf praf praf

P38 pleg P38 pleg P38 pleg

PKC PIP2 PKC PIP2 PKC PIP2

PKA PIP3 PKA PIP3 PKA PIP3

pakis473 p44.42 pakisd73 pd4.42 pakis473 pd4.42

XMRF space gconcord

Figure 4. Data application in Section 5.1: network structures determined three different methods in Section 2.2.2

pakts

Figure 5. Data application in Section 5.1: a network structure determined by the package huge

in class ALL and 25 specimens in class AML. In particular, according to the study design, those
72 samples are composed of the training data of 38 specimens (27 in class ALL and 11 in class
AML) and the testing data of 34 specimens (20 in class ALL and 14 in class AML).

As commented by Chen (2018) and Grimes et al. (2019), network structure is ubiquitous in
biological data, it motivates us to construct classification models with network structures of
gene expressions incorporated. We mainly adopt the network-based classification methods in
Section 4.2, including the logistic regression (Chen et al., 2019), discriminant analysis
(Chen, 2022c) and SVM (He et al., 2019) methods, to examine the gene expression analysis
and make comparisons among those methods.

Noting that the number of genes is extremely larger than the sample size, to make analysis
more stable and reasonable, it is necessary to remove non-informative features before applying
learning algorithms. To detect important genes, we adopt the distribution-free feature screening
method proposed by Chen (2023), which is a powerful approach to address
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prat praf prat

pink pmek pink pmek pink pmek

P38 plcg P38 pleg P38 pleg

PKC PIP2 PKC PIP2 PKC PIP2

PKA PIP3 PKA PIP3 PKA PIP3

pakis473 pada2 pakisa73 pad.a2 pakis473 pada2

0=0.65 0=0.75 0=0.85

Figure 6. Data application in Section 5.1: network structures determined by the SIMEX method proposed by Chen and Yi
(2022) with different values of Q

ultrahigh-dimensional data and is valid to detect informative gene expression values for
binary/categorical responses (e.g. Chen, 2022b). It turns out that 14 genes are selected from
the 38 training sample data, which are strongly correlated to the response of different leukaemia
types, and those selected genes are labelled by their own ID numbers.

We now adopt classification models in Section 4.2 to fit the training data. Specifically, we
first use the package XMRF to identify network structures with (or without) involvement of
the binary response, and the results are displayed in Figures 7 and 8, respectively. In addition,
we adopt the R package NetDA to determine class-dependent and pooled-sample network
structures, and display them in Figures 9 and 10, respectively. Based on two classes, Figures 7
and 9 show that network structures of gene expressions are different from each other, and it sug-
gests that specific network structure may reflect the associated class. For the comparison among
Figures 7—10, we can observe that network structures displayed in Figures 9 and 10 look more
complex than those summarised in Figures 7 and 8.

After that, we construct three models LR-ClassGraph, SVM-ClassVertex and
SVM-ClassEdge based on graphs in Figure 7, where SVM-ClassVertex and SVM-ClassEdge
denote the SVM method with the predictors being replaced by surrogate predictors (60) and
(61) based on the subgraphs in Figure 7, respectively. In addition, based on the network struc-
ture in Figure 8, we derive LR-HomoGraph, SVM-HomoVertex and SVM-HomoEdge, where
SVM-HomoVertex and SVM-HomoEdge approaches follow the similar definitions of
SVM-ClassVertex and SVM-ClassEdge but are derived based on the network structure in
Figure 8. Moreover, to implement the NetQDA and NetLDA methods, we adopt network struc-
tures in Figures 9 and 10 and derive estimates (66) and (67), respectively.

Finally, when the fitted models based on the training data are constructed, we further use the
gene expressions in the testing data to do the prediction. To assess the performance of predic-
tion, we primarily examine the F-score. Specifically, for subject j in the testing data with j =
1, ..., 34, let)7j denote the predicted class label and let y; denote the true class label. For class
i € {—1,1}, we calculate the number of the true positives (TP), the number of the false posi-
tives (FP), and the number of the false negatives (FN) as follows:

34 34

TP =Y 0(y = +1,5, = +1), FP= > _1(y, =~ 1,57 = +1),

J=1 J=1

and
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235

ALL class AML class

Figure 7. Data application in Section 5.2: network structures based on two different classes for the LR-ClassGraph,
SVM-ClassVertex and SVM-ClassEdge methods.

453! 926

4211 2020

3320 288
2354

Figure 8. Data application in Section 5.2: a network structure determined for the LR-HomoGraph, SVM-HomoVertex and
SVM-HomoEdge methods.

34
PN =Y 1(y = +1,3, = -1).
=1

Then precision, recall and F-score are respectively given by
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o354

ALL class

2354
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Figure 9. Data application in Section 5.2: network structures based on two different classes for the NetQDA method.
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Figure 10. Data application in Section 5.2: a network structure determined for the NetLDA method.
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Table 4. Data application in Section 5.2: overall performance of classification methods applied to gene expression data.

Methods PRE REC F-score
LR-HomoGraph 1.000 0.928 0.965
LR-ClassGraph 1.000 0.928 0.965
SVM-HomoVertex 0911 1.000 0.953
SVM-HomoEdge 1.000 0911 0.953
SVM-ClassVertex 0.933 1.000 0.965
SVM-ClassEdge 1.000 0.928 0.965
NetLDA 0911 0911 0911
NetQDA 1.000 1.000 1.000
TP TP PRE x RE
PRE = —— REC = ——, andF-score = 2 x 7C
TP + FP TP +FN PRE + REC

In principle, PRE, REC and F-score are between zero to one. Higher values of PRE, REC and
F-score reflect better prediction.

Numerical results for the prediction results, including PRE, REC and F-scores, are
summarised in Table 4. We observe that the LR-HomoGraph and LR-ClassGraph methods have
the same result. With class-dependent network structures accommodated, SVM-ClassVertex
and SVM-ClassEdge outperform SVM-HomoVertex and SVM-HomoEdge, and NetQDA is
more accurate than NetLDA. This phenomenon indicates that the class can be reflected by
the corresponding network structure. For the comparisons among methods, we find that
NetLDA is slightly worse than LR-HomoGraph, SVM-HomoVertex and SVM-HomoEdge
when the network structure is estimated by the pooled sample. On the contrary, with the infor-
mation of classes accommodated, it is interesting to see that NetQDA has the most accurate pre-
diction and outperforms LR-ClassGraph, SVM-ClassVertex and SVM-ClassEdge.

6 Summary

Graphical models are useful tools to analyse the dependence structure among
high-dimensional variables and are widely used in many research areas. In this paper, we over-
view important topics in the developments of graphical models. We focus the discussion on the
estimation procedures and computations. We also summarise fruitful research results for regres-
sion models and classification with network structures accommodated. In addition, some infor-
mation related to existing R packages is also provided in this paper.

Even though estimation methods of graphical models have been explored, some research gaps
still remain. For example, in addition to regression models mentioned in Section 4, network struc-
tures frequently appear in other types of models as well as data structures. It is expected to extend
the graphical structures to deal with other types of data or complex settings, such as non-parametric
or semiparametric models. Regarding the machine learning frameworks, it is interesting and chal-
lenging to explore other settings and approaches, such as boosting or neural network methods with
graphical structures accommodated. Finally, while several methods have been established, the rel-
evant computational packages have not been available to public users. It is also important to de-
velop R packages for public to implement the estimation methods and further data analysis. Those
topics are also the potential research projects in the future.

In this paper, we pay our attention on discussing the framework of graphical models. In statis-
tical analysis, network data analysis is the other relevant topic and typically includes technological,
biological and information network (e.g. Kolaczyk, 2009; Newman, 2018). Here, we briefly com-
ment the difference between graphical models and network data. In graphical models, known as
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probabilistic modellings and referred to the basic setup in Section 2.1, vertices are formulated by
random variables with a specific distribution, and edges connecting to pairs of random variables
are deterministic and reflect conditional dependence among random variables. On the contrary,
in the network data, vertices can be subjects, such as people, and the interest of network data is
to explore the connections among subjects, where edges can be regarded as relationship, such as
friendship. As a result, randomness would be defined in edges. For example, let 4y; = A, denote
a binary random variable reflecting the presence or absence of an edge between two vertices k and /
in V. The matrix A = [4y,] is thus the (random) adjacency matrix for a graph.

The second and key difference is the model structure and estimation. As introduced in preceding
sections, the developments of graphical models aim to estimate parameters, such as precision ma-
trices, associated with edges of random variables. For the network data, random graphs, referred to
a model specifying a collection of possible graphs, are perhaps primary tools to characterise net-
work structures. In the development of random graphs, the exponential random graph model
(ERGM, Kolaczyk, 2009, Section 6.5) is one of popular approaches, which is defined as

P, (X) = eXp{ZGiTj(X) - (P(a)},

where a 2 (a1, ..., ay)" is a vector of unknown parameters, ¢(a) is the normalising constant,
and T1(X), ..., T,;(X) are functions of a random vector X on the space of graphs that could be
the number of edges, triangles or stars. There are several approaches for the estimation of , in-
cluding the stochastic approximation under the Robbins—Monro algorithm (e.g. Snijders, 2002)
and the importance sampling based on the Geyer—Thompson algorithm (e.g. Handcock, 2003;
Hunter & Handcock, 2006). More detailed discussions or relevant developments of network
data analysis can be found in some research papers (e.g. Chatterjee et al., 2011; Chatterjee &
Diaconis, 2013; Yan & Xu, 2013; Yan et al., 2015, 2016) and monographs (e.g. Crane, 2018;
Kolaczyk, 2009, 2017; Newman, 2018); and fundamental computation implementations are
summarised by Kolaczyk & Csardi (2014).

Endnotes

'This package has been archived on https://cran.r-project.org/src/contrib/Archive/QUIC/.
*This package has been archived on https://cran.r-project.org/src/contrib/Archive/dpglasso/.
*This package has been archived on https://cran.r-project.org/src/contrib/Archive/XMRF/.
“This package has been archived on https://cran.r-project.org/src/contrib/Archive/space/.
>This package has been archived on https://cran.r-project.org/src/contrib/Archive/gconcord/.
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