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Summary

Graphical modelling is an important branch of statistics that has been successfully applied in bi-
ology, social science, causal inference and so on. Graphical models illuminate connections between
many variables and can even describe complex data structures or noisy data. Graphical models
have been combined with supervised learning techniques such as regression modelling and classifi-
cation analysis with multi-class responses. This paper first reviews some fundamental graphical
modelling concepts, focusing on estimation methods and computational algorithms. Several ad-
vanced topics are then considered, delving into complex graphical structures and noisy data. Appli-
cations in regression and classification are considered throughout.

Key words: computational algorithm; complex and noisy data; conditional inference; graphical LASSO;
graphical models; multivariate linear models; network structure; optimisation; pairwise dependence;
supervised learning.

1 Introduction

In the era of Big Data, high-dimensional data become available and make data structures
complicated. One of the important features induced by high-dimensional data is dependence
among variables, which frequently appears in many research topics such as genetic data (e.g.
He et al., 2019; Kumar et al., 2020), social science (e.g. Gough et al., 2018), spatial analysis
(e.g. Besag, 1974; Okabe, 2017) and so on. To explore the complex dependence structure of
high-dimensional variables, graphical models have proven to be useful tools.

Mathematically, let V be the set of vertices and let E ⊂ V � V denote the set of
edges. A graph is usually expressed as G ¼ ðV ; EÞ . Figure 1 illustrates the concept of a
graph, which is constructed by vertices V ¼ f1; 2; 3; 4; 5g and edges E ¼
fð1; 2Þ; ð1; 5Þ; ð2; 3Þ; ð2; 4Þ; ð3; 4Þ; ð4; 5Þg. In the framework of graphical models, undirected
graphs and directed graphs are two important branches. The main difference between the two
types of graph is that the undirected graph only considers the relationship/pairwise dependence
between any two vertices by using edges, while an arrow is added to edges in the directed graph.
Unlike the undirected graph, as displayed in Figure 1, the directed graph emphasises that the
ordering of the variables is taken into account and the relationship between any two vertices
is not reversible (e.g. i→j does not imply j→i). For practical applications, the undirected graph
is usually applied to the study of network structure in the biological data, while the directed graph
is frequently applied in causal inference (Edwards, 2000, chapter 8; Maathuis et al., 2019, part
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IV). In this article, our discussion focuses on the undirected graph; the detailed descriptions of the
directed graph can be found in Edwards (2000, chapter 7) and Scutari & Denis (2014).
In statistical perspectives, based on the undirected graph, vertices represent random vari-

ables and edges reflect the dependence structure of random variables. As a result, a crucial
problem is to identify the dependence structure of high-dimensional random variables. In
the framework of graphical model analysis, a big picture of fundamental concepts has been
available in many monographs, such as Hastie et al. (2015, chapter 9), Hastie et al. (2008,
chapter 17), Wainwright (2019, chapter 11), and Maathuis et al. (2019, chapters 9 and 12).
In addition, some early references also comprehensively summarised developments of many
types of graphical models and their applications. For example, Koller & Friedman (2009) primar-
ily discussed some probabilistic graphical models as well as their inferential methods and optimi-
sation strategies, including Bayesian network, Gaussian network models and temporal models.
Jordan (2004) summarised some algorithmic ideas to deal with large-scale data analysis and pre-
sented some applications to error-control coding and language processing. A textbook edited by
Jordan (1999) collected several research results for Bayesian network and other structures, such as
directed network with hidden variables or latent variable models. For applications of graphical
models in bioinformatics, Sinoquet & Mourad (2014) summarised several topics of graphical
model analysis to gene expression, genetic association studies and causality.
In recent years, complex structures and noisy data have been frequently explored in the esti-

mation of graphical models, which are regarded as extensions of early settings with restricting
assumptions removed. Several interesting topics have been included in the handbook edited by
Maathuis et al. (2019); however, some important materials are still not well summarised. Due to
the limited scope in a paper-length treatment, we focus on some important topics in the devel-
opments of graphical models, including

1 quantile graphical models;
2 non-parametric graphical models;
3 multiple graphical models;
4 multi-dimensional graphical models;
5 error-prone graphical models;
6 latent variable graphical models;
7 time series graphical models.

Specifically, the first 4 topics belong to complex model structures, and the last 3 topics con-
tain challenges to noisy data.

Figure 1. The graphical structures. The left graph is undirected; the right graph is directed.
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In addition to detecting network structures of high-dimensional data that are regarded as ‘un-
supervised learning’, graphical models have also been applied to supervised learning in recent
years, such as high-dimensional regression models, classification and prediction, and lifetime
data analysis. There are some impressive results, but to the best of knowledge, they have not
been comprehensively summarised yet.

While many methods have been developed to deal with estimation of graphical models as well
as their various extensions, a few of articles systematically summarise the existing approaches and
the estimation of complex settings, especially for those published in recent years. Hence, in this
paper, we aim to present some contemporary and important frameworks of graphical models that
have not been comprehensively summarised in existing references (e.g. Jordan, 1999, 2004;
Koller & Friedman, 2009; Maathuis et al., 2019; Sinoquet & Mourad, 2014), including some
commonly used models and estimation procedures. We first review probabilistic models based
on different types of distributions to high-dimensional data, including exponential family distrib-
uted graphical models and mixed graphical models. In addition, we summarise and compare
some famous strategies for the estimation of network structures, such as the graphical LASSO
and conditional inference methods as well as their variants. Those comprehensive discussions
were not fully explored in the past monograph (e.g. Koller & Friedman, 2009). After that, we se-
lect several important topics and introduce advanced approaches whose ideas are extended from
existing estimation methods. Furthermore, we discuss applications of network structures to re-
gression models and classification problems. Different from existing monographs, this paper
provides methodological perspectives based on computational algorithms and optimisation
approaches. In addition, we also add more research results that have not been included in existing
monographs, so that the discussion becomes more comprehensive.

The remainder is organised as follows. In Section 2, we introduce some well-known graphical
models and review some popular estimation methods in graphical model theory. In Section 3,
we further introduce some selected topics of complex structures and noisy data and outline
key strategies in existing methods to address those problems. In Section 4, we present some ap-
plications of graphical models in building regression models and classification. To demonstrate
applications, we adopt several estimation methods to analyse two real datasets and compare the
performance of existing methods in Section 5. Finally, we give a summary of this paper and dis-
cuss some future research directions in Section 6.

2 Basic Theory of Graphical Models

In this section, we introduce some well-known graphical models and review some fundamen-
tal estimation methods to derive graphical structures. In addition, we also briefly outline rele-
vant developments and advanced approaches to estimate the associated parameters in graphical
models. To easily understand estimations methods and strategies, we also summarise methods
discussed in this section in Table 1.

Before presenting the main discussion, we first define some unified notation that will be used
in the remaining of this paper. For a p� p matrix A ¼ ½ast� for s; t ¼ 1; …; p , define

‖A‖F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
s¼1

Xp
t¼1

a2st

s
and ‖A‖max ¼ max

s; t¼1;…; p
jastj as the Frobenius norm and the maximum norm,

respectively. A≻0 indicates that A is a positive definite matrix. For a p-dimensional vector

a ¼ ða1; …; apÞ⊤, let ‖a‖1 ¼
X

p
s¼1jasj and ‖a‖2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXp
s¼1

a2s

s
represent L1 and L2-norms, re-

spectively. Let ‖a‖∞ ¼ max
s¼1;…; p

jasj denote the infinity norm. Moreover, let ha; bi denote the
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inner product of two vectors a and b . Given a p -dimensional vector a , let a∖fsg ¼
ða1; …; as � 1; as þ 1; …; apÞ⊤ denote a ðp � 1Þ-dimensional vector of a with the s-th compo-
nent removed. Finally, let ð · Þ denote the expectation.

2.1 Some Well-Known Graphical Models

LetX ¼ X 1; …; Xp

� �⊤
denote ap-dimensional random vector with each componentX j being

a random variable with a distribution for j ¼ 1; …; p. Let x ¼ ðx1; …; xpÞ⊤ denote the realisa-
tion values of X . In graphical models, we let X j denote a vertex, and an edge is used to link two
vertices X j and Xk for j ≠ k. Let n denote the sample size in datasets. For i ¼ 1; …; n, let X i; s

denote the s-th random variable for the i-th subject. Let X i;· denote the p-dimensional vector for
a subject i, i ¼ 1; …; n. In the following subsections, we introduce some specific distributions of
X and the corresponding graphical models.

2.1.1 The Gaussian Graphical Model

Suppose that the random vector X follows the Gaussian distribution with mean μ and positive
definite covariance matrix Σ, that is, X ∼ Nðμ; ΣÞ, then its density function can be written as

ℙμ; ΣðxÞ ¼ 1

ð2πÞp=2detðΣÞ1=2
exp �1

2
ðx � μÞ ⊤ Σ�1ðx � μÞ

� �
: (1)

Let γ ¼ Σ�1μ andΘ ¼ Σ�1, then (1) can be re-parameterised as (e.g. Hastie et al., 2015, p. 246)

Table 1. Summary of estimation methods for graphical models in Section 2. Models summarise the commonly used models in
Section 2.1. Estimation methods show the strategies for estimating graphical models. References reflect the citations of
methods.

Models Estimation methods References

Gaussian graphical models and related
precision matrices

(1) GLASSO Friedman et al. (2008), Yuan & Lin (2007)
(2) Adaptive GLASSO Zhou et al. (2009)
(3) P-GLASSO and DP-

GLASSO
Mazumder & Hastie (2012a)

(4) G-ISTA Guillot et al. (2012)
(5) QUIC Hsieh et al. (2014)
(6) G-AMA Dalal & Rajaratnam (2017)
(7) CLIME Cai et al. (2011)
(8) Robust estimation for

precision matrices
Chun et al. (2018), Avella-Medina
et al. (2018)

Exponential family distributed graphical
models

(1) Conditional inference Ravikumar et al. (2010), Hastie et al. (2015),
Yang et al. (2015)(2) SPACE
Peng et al. (2009)(3) CONCORD
Khare et al. (2015)

Mixture graphical models (1) Conditional inference Lee & Hastie (2015)
(2) Group LASSO Cheng et al. (2017)
(3) Stable edge-specific

penalty selection
Sedgewick et al. (2016)

(4) Exponentially distributed
vertices

Chen et al. (2015),
Yang et al. (2014)

(5) Involvement of latent
variables

Fan et al. (2017)
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ℙγ; ΘðxÞ ¼ exp
X
s ∈ V

γsxs � 1

2

X
ðs; tÞ ∈ E

θstxsxt þ 1

2
log det

Θ
2π

� �8<:
9=;; (2)

where γs is the s-th component in the vector γ and a p� p matrix Θ ¼ ½θst� is often called the
precision matrix. The model (2) is called the Gaussian graphical model (GGM).

2.1.2 The Ising Model

When the random variable is binary, that is, X s ∈ f�1; 1g for every s ¼ 1; …; p, then such
graphical model is called the Ising model that is formulated as

ℙθ; Θ xð Þ ¼ exp
X
r ∈ V

θrxr þ
X

ðs; tÞ ∈ E

θstxsxt � A Θð Þ
0@ 1A (3)

with θ ¼ ðθ1; …; θpÞ ⊤ , where θr and θst are parameters associated with X r and XsX t, respec-
tively, andAðΘÞ is called normalising constant, which makes (3) be integrated as one. The Ising
model was first proposed in Ising’s PhD thesis (Ising, 1925) and was applied in statistical me-
chanics (e.g. Huang, 1987, chapter 14). The other typical application of the Ising model is
the social network study. According to the descriptions in Hastie et al. (2015), an example is
the voting behaviour of politicians. By assuming that politician r provides either a ‘yes’ vote
(X r ¼ þ1) or a ‘no’ vote (Xr ¼ �1), θr > 0 (or θr < 0) in the model (3) indicates that pol-
itician r is likely to vote ‘yes’ (or ‘no’), and θst > 0 can be interpreted as two politician s and t
are more likely to share the same vote (i.e. both yes or both no) than to disagree while θst < 0
gives the opposite interpretation.

2.1.3 Exponential Family Type Graphical Models

In biological studies, RNA sequencing (RNA-seq) is known as count data and the existence
of network structure is ubiquitous (e.g. Grimes et al., 2019). Because the RNA-seq data are usu-
ally non-normal, using Gaussian graphical models is not suitable to detect network structure of
the RNA-seq data. Due to this concern, instead of specifying binary or Gaussian distributions, it
is natural to consider the exponential family distribution. To see this, we follow the framework
in Yang et al. (2015) and consider

ℙβ; ΘðxÞ ¼ exp
X
r ∈ V

βrBðxrÞþ
X

ðs; tÞ ∈ E

θstBðxsÞBðxtÞþ
X
r ∈ V

CðxrÞ � Aðβ; ΘÞ
8<:

9=;; (4)

where β ¼ β1; …βp
	 
 ⊤

is the p-dimensional parameter vector and Bð · Þ and Cð · Þ are given
functions. The function Aðβ; ΘÞ is normalising constant, or called the log-partition function,
which makes (4) be integrated as 1. The specific form of Aðβ; ΘÞ is given by

Aðβ; ΘÞ ¼ log∫exp
X
r ∈ V

βrBðxrÞþ
X

ðs; tÞ ∈ E

θstBðxsÞBðxtÞþ
X
r ∈ V

CðxrÞ
8<:

9=;μðdxÞ; (5)

where μðdxÞ is the probability measure of X .
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The graphical model (4) gives a broad class of models and essentially covers any distributions

in the exponential family. For example, if BðxÞ ¼ x

σ
and CðxÞ ¼ � x2

2σ2
with known σ > 0,

then (4) reduces to (2). IfBðxÞ ¼ x andCðxÞ ¼ 0with x ∈ f�1; 1g, then (4) reduces to (3). Fur-
thermore, taking BðxÞ ¼ �x and CðxÞ ¼ 0 with x ∈ ½0; ∞Þ yields the exponential graphical
model

ℙβ; ΘðxÞ ¼ exp �
Xp
s¼1

βsxs þ
Xp
s¼1

Xp
t¼1

θstxsxt þAðβ; ΘÞ
 !

;

provided that θs > 0 and θst ≥ 0 for all s; t ∈ V to ensure a valid model as well as
Aðβ; ΘÞ < ∞ (e.g. Yang et al., 2015, Section 2.5). In addition, replacing BðxÞ and CðxÞ
in (4), respectively, by x and �logðx!Þ gives the Poisson graphical model

ℙβ; ΘðxÞ ¼ exp
Xp
s¼1

βsxs � logðxs!Þf g þ
Xp
s¼1

Xp
t¼1

θstxsxt þAðβ; ΘÞ
" #

;

provided that θst ≤ 0 for all s; t ∈ V to ensure a valid model and Aðβ; ΘÞ < ∞, for example,
Yang et al. (2015, Section 2.4).

2.1.4 Mixed Graphical Models

In addition to the development of graphical models based on single distributions, a more general
situation is datasets containing at least two distributions in variables. To explore such phenomenon
and to characterise the dependence structure, mixed graphical models are considered. In such
models, we can explore the homogeneity (dependence structure of the ‘same’distribution of vari-
ables) and the heterogeneity (dependence structure of variables in any two ‘different’distributions).
In this subsection, we introduce the setting that is extended from (4). Let X ≜ ðY ⊤ ; Z ⊤ Þ⊤ ,

where Y ¼ ðY 1; …; YpyÞ⊤ is a py -dimensional random vector in a set Y and Z ¼
ðZ1; …; ZpzÞ ⊤ is a pz-dimensional random vector in a set Z. Suppose that Y s and Zt follow
exponential family distributions but the distribution of Ys is different from that of Zt. Then ex-
ponential family mixed graphical models can be characterised as

ℙβ; Θðy; zÞ ∝ exp
P

r ∈ VY

βYr BY ðyrÞþ
P

r0 ∈ VZ

βZr0BZðzr0 Þþ
P

ðs; tÞ ∈ EY

θYYst BY ðysÞBY ðytÞ
�

þ
P

ðs0; t0Þ ∈ EZ

θZZs0t0BZðys0 ÞBZðyt0 Þþ
P

ðs; t0Þ ∈ EYZ

θYZst0 BY ðysÞBZðyt0 Þ þ
P

r ∈ VY

CY ðyrÞþ
P

r0 ∈ VZ

CZðzr0 Þ
�
;

(6)

whereVY andVZ are the sets of vertices toY andZ, respectively, such thatV ¼ VY∪VZ,EY andEZ

are sets of edges to vertices in VY and VZ, respectively, and EYZ is the set of heterogeneous edges
to vertices in VY and VZ . Under the general setting, we can observe that the Gaussian–Ising
mixed graphical model (e.g. Lee & Hastie, 2015; Cheng et al., 2017) is a special case of (6)

by specifying BY ðyÞ ¼ y

σ
, CY ðyÞ ¼ � y2

2σ2
, BZðzÞ ¼ z , and CZðzÞ ¼ 0 with y ∈ ℝ and

z ∈ f�1; 1g . Moreover, Yang et al. (2014) also discussed different mixed graphical models
with mixture of different types of domain and relevant restrictions on the parameter space to
ensure (6) is well-defined, such as one finite domain (e.g. Poisson–Ising models) and both
infinite domains (e.g. Gaussian–Poisson models).
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2.2 Estimation Procedures

Based on several graphical models described in Section 2.1, to detect the dependence of var-
iables and estimate the network structure, it is equivalent to study the inference on parameters
θst in Θ. Specifically, if θst ¼ 0, it implies that two variables, X s and X t, are conditionally inde-
pendent, given other vertices in V∖fs; tg; otherwise, Xs and X t are called conditionally depen-
dent, given other vertices in V∖fs; tg. As a result, it suffices to do variable selection on θst by
retaining informative parameters and shrinking non-informative ones to zero. There are two
commonly used categories in analysing θst , and the detailed descriptions are in the following
two subsections.

2.2.1 Graphical LASSO

The first category is the penalised likelihood function methods that directly estimate the ma-
trix Θ. A famous method is called graphical LASSO (GLASSO), which mainly focuses on the
Gaussian graphical model. Without loss of generality, we let γ ¼ 0 in (2) and denote it byℙΘðxÞ.
Then under the sample with size n, the log-likelihood function based on ℙΘðxÞ is given by

LðΘÞ ¼
Xn
i¼1

logℙΘðX i;·Þ ¼ log detðΘÞf g � traceðSΘÞ; (7)

where S ¼ 1

n

X
n
i¼1X i;· X ⊤

i;· , traceð · Þ is the sum of diagonal entries for a square matrix. The

estimator of Θ, denoted by bΘ, is given by

bΘ ¼ argmax
Θ ∈ A

log detðΘÞf g � traceðSΘÞ � λφðΘÞ½ �; (8)

whereA is the parametric space that contains positive definite matrices, λ is a tuning parameter
and φðΘÞ is a penalty function. Specifically, there are several choices of penalty functions, in-
cluding the LASSO (Tibshirani, 1996) and adaptive LASSO (Zou, 2006) methods. In analysis
of the Gaussian graphical model, the LASSO method is frequently implemented (e.g. Friedman
et al., 2008; Yuan & Lin, 2007; Hastie et al., 2015), while Zhou et al. (2009) also examined the
adaptive LASSO method. To solve the optimisation (8), the alternating direction method of
multiplier (ADMM, Boyd et al., 2011) is a useful strategy, whose key idea is to decompose
the objective function into the sum of many simple convex functions. Specifically, following
the idea in Boyd et al. (2011), the augmented Lagrangian form of (8) is written as

L ðΘ; Ξ; ςÞ ¼ traceðSΘÞ � log detðΘÞf g þλφðΞÞ þtracefςðΘ � ΞÞgþε
2
Θ � Ξk k2F

with the penalty parameter ε > 0 and ς is the dual variable or Lagrange multiplier. Then with
two parameters fixed, the remaining one can be updated. That is, at the k-th step with
k ¼ 1; 2; …;

Θðk þ 1Þ ¼ argmin
Θ≻0

traceðSΘÞ � log detðΘÞf g þ tracefςðkÞðΘ � ΞðkÞÞgþε
2

Θ � ΞðkÞ�� ��2
F

n o
;

Ξðk þ 1Þ ¼ argmin
Ξ≻0

λφðΞÞþtracefςðkÞðΘðk þ 1Þ � ΞÞgþε
2

Θðk þ 1Þ � Ξ
�� ��2

F

n o
;

and
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ςðk þ 1Þ ¼ ςðkÞ þ ε Θðk þ 1Þ þ Ξðk þ 1Þ
	 


:

The other strategy to deal with the optimisation problem is to transfer (8) to the simple linear
equation. The pioneering idea was proposed by Friedman et al. (2008). Specifically, taking par-
tial derivative on the function in (8) gives the subgradient equation

Θ�1 � S � λΨ ¼ 0; (9)

whereΨ is the symmetric matrix with diagonal elements being zero. For off-diagonal elements,
s ≠ t, ψst ¼ signðθstÞ if θst ≠ 0, and ψst ∈ ½�1; 1� if θst ¼ 0.
Before continuing to discuss the method, we define the partition of matrix. Without loss of

generality, for anyp� pmatrixA, we fix the last component and the rule of partitioning a matrix
is given by the following way:

A ¼

a11 … a1p

a21 … a2p

⋮ ⋱ ⋮

ap1 … app

2666664

3777775→
a11 … a1p

a21 … a2p

⋮ ⋱ ⋮

ap1 … app

2666664

3777775→
A11 a12

a ⊤
12 a22

" #
;

where A11 is a ðp � 1Þ � ðp � 1Þ submatrix, a12 is a ðp � 1Þ-dimensional vector and a22 is a
scalar.
Let W denote the current working version of Θ�1 such that WΘ ¼ Ip � p, where Ip � p is a

p� p identity matrix. As suggested in Friedman et al. (2008), the working matrixW is usually
set asW ¼ Sþ λIp � p. According to the partition of matrix, three matrices Θ, S andW can be
expressed as

Θ ¼ Θ11 θ12
θ ⊤
12 θ22

� 

; S ¼ S11 s12

s ⊤
12 s22

� 

andW ¼ W11 w12

w ⊤
12 w22

� 

: (10)

Therefore, combining (9) and (10) gives a new equation

W11β � s12 þ λψ12 ¼ 0; (11)

where β ¼ �θ12
θ22

. The estimator bβ can then be obtained by solving (11). Once bβ is obtained, we

have bθ12 ¼ �bβ · bθ22 and bθ22 ¼ w22 � w ⊤
12 W11w12

� ��1
.

According to the definition of partition of matrix, we realise that bθ ⊤
12 ; bθ22	 
⊤

¼
bθ1p; …; bθp � 1; p; bθpp	 
⊤

is the estimate of the p-th column of the matrixΘ. As a result, repeat-

ing the same procedure by fixing the r-th row and column gives the final estimator bΘ.
However, as pointed out by Mazumder & Hastie (2012a), the objective function in (8) is not

monotone. In addition, there is a crucial concern in W. Specifically, the relationship WΘ ¼
Ip � p suggests that θ12 is entangled inW11, which is treated as a constant becauseW11 is a fixed
submatrix of the working matrixW. Moreover,WΘ ¼ Ip � p shows thatW changes when θ12 is
updated, but the entire GLASSO algorithm only updates w12 and w21.
To address those issues and remedy shortcomings, Mazumder & Hastie (2012a) proposed a

‘corrected’ version. By (11) and some manipulations, a new estimating equation is derived:
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Θ�1
11

�β � s12 þ λψ12 ¼ 0 (12)

with �β ¼ θ12w22. To deal with (12), we first specify Θ�1
11 ¼ W11 � 1

w22
w12w21. After that, the

estimator b�β can be obtained by solving (12), or equivalently,

b�β ¼ argmax
�β

�β ⊤ Θ�1
11

�β � �β ⊤ s12 þ λ‖ �β‖1
n o

: (13)

Then θ12 and θ22 can be updated as bθ12 ¼ 1

w22

b�β and bθ22 ¼ 1

w22
þ bθ21Θ�1

11
bθ12 , respectively.

Finally, by WΘ ¼ Ip � p, W can be expressed as Θ�1 and, thus, can be updated by known

Θ�1
11 and two updated values bθ12 and bθ22. This ‘corrected’ approach is called P-GLASSO.
The second approach discussed in Mazumder & Hastie (2012a) is called DP-GLASSO, whose

idea is first to specify β∗ ≜Θ�1
11 β̆ � s12 and then transfer the estimating equation (12) to the

box-constrained quadratic programming (QP) that is given by (e.g. De Angelis et al., 1997)

min
β∗ ∈ ℝp � 1

1

2
ðs12 þ β∗Þ ⊤ Θ11ðs12 þ β∗Þ

� �
s:t: ‖β∗‖∞ ≤ λ:

When the estimator of β∗ , denoted as bβ∗ , is obtained, θ12 can be updated as bθ12 ¼

� 1

w22
Θ11ðs12 þ bβ∗Þ with w22 ¼ s22 þ λ , and θ22 is updated as bθ22 ¼

1

w22
1 � ðs12 þ bβ∗Þ ⊤ bθ12

n o
.

In addition to P-GLASSO and DP-GLASSO, the other strategies were proposed to improve
the computation. For example, Witten et al. (2011) and Mazumder & Hastie (2012b) coinciden-
tally proposed the exact thresholding of the covariance graph. The idea is outlined as follows:
suppose that the precision matrix Θ can be expressed as block diagonal with blocks
C1; …; CK if and only if jsijj < λ for all i ∈ Ck and j ∈ Ck 0 and k ≠ k 0, where C1; …; CK rep-
resent a partition of p vertices with Ck∩Ck 0 ¼ ϕ for k ≠ k 0 and C1∪…∪CK ¼ f1; …; pg, sij de-
notes the entry ði; jÞ inS. Under this representation, we haveΘ ¼ diagðΘ1; …; ΘKÞ, and (8) can
be employed to deal with each block matrix Θk for k ¼ 1; …; K.

On the other hand, there is a scenario that the i-th vertex can be fully unconnected from all
other vertices if sij ≤ λ for all j ≠ i. Suppose that there are q fully unconnected vertices and ðp �
qÞ vertices are possibly connected, then Θ is expressed as

Θ ¼ diag
1

s11 þ λ
; …;

1

sqq þ λ
; Θq þ 1

� �
;

whereΘq þ 1 is a ðp � qÞ � ðp � qÞmatrix containing variables that are not fully unconnected,

and it can be estimated by (8); while the first q scalars,
1

sjj þ λ
for j ¼ 1; …; q, are determined

by (8) with S replaced by sjj and Θ treated as ‘scalar’ parameters.
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While the GLASSO method can be viewed as the pioneer work in estimating graphical struc-
tures and dealing with (8), some methods have also been developed to improve the accuracy of
the estimator as well as the convergence rate. For example, Guillot et al. (2012) proposed the
graphical iterative shrinkage thresholding algorithm (G-ISTA) and a closed form linear conver-
gence rate was established. Hsieh et al. (2014) proposed a second-order proximal point algo-
rithm (QUIC), which is shown to converge superlinearly (or quadratically) around the optimum.
Dalal & Rajaratnam (2017) proposed the G-AMA method, which aims to transfer (8) to its dual
problem and adopts a proximal gradient algorithm to derive the estimator ofΘ. Compared those
three methods with the GLASSO method, G-ISTA exists bounds on the optimal solution to
yield global convergence and G-AMA is shown to have linear convergence, while no overall
complexity bounds have been established for QUIC and convergence rates seem not to be well
established for the GLASSO. Furthermore, instead of imposing the L1-norm in the
regularisation methods (GLASSO, G-ISTA and QUIC), Won et al. (2013) considered to max-
imise (7) by imposing condition number of the precision matrix as the constraint. In addition to
estimating the precision matrix, this approach is able to interpret the regularisation path based
on the geometric perspective and then obtain the optimal value for the regularisation parameter
as well as investigate the behaviour of the selected regularisation parameter.
In principal, the estimation of graphical models based on the Gaussian distribution is essen-

tially regarded as the estimation of the precision matrix. In addition to the graphical LASSO
method, several advanced methods have also been proposed to estimate the precision matrix.
To name a few, Cai et al. (2011) proposed the constrained ℓ1-minimisation for inverse matrix
estimation (CLIME) to estimate the precision matrix, which could be sparse or non-sparse,
and improve the GLASSO method. Their approach provides the rate of convergence between
the estimator and the true sparse precision matrix. Ravikumar et al. (2011) considered the gen-
eral setting that the number of vertices in the graph, the number of edges and the maximum ver-
tex degree are allowed to grow as a function of the sample size, and proposed the ℓ1-regularised
log-determined method to estimate the precision matrix. Moreover, the analysis of controlling
convergent rate was also examined. Avella-Medina et al. (2018) proposed robust matrix estima-
tors, whose performance is guaranteed for a much richer class of distributions, and these estima-
tors achieve the same minimax convergence rates as do existing methods under a
sub-Gaussianity assumption. Chun et al. (2018) developed the estimation of a sparse scaled
precision matrix via weighted median regression with regularisation. Their approach provides
robust estimate in the presence of outliers and is consistent under various distributional assump-
tions including multivariate t- or contaminated Gaussian distributions.

2.2.2 Conditional Inference

Even though the GLASSO method is useful and has efficient computation, it is restricted in
the Gaussian graphical model and is not flexible to deal with other models based on different
distributions. Alternatively, the other method, called the conditional inference (C.I.), is able to
handle graphical models based on different distributions.
The conditional inference was first proposed by Meinshausen & Bühlmann (2006), and this

method is widely used in the Ising model (Ravikumar et al., 2010), the Gaussian graphical
model (Hastie et al., 2015, Section 9.4), and exponential family graphical models (Yang
et al., 2015). The key idea of the conditional inference is to build up the penalised likelihood
function derived by the conditional distributions of a fixed vertex, given others, because such
conditional distributions also belong to the exponential family and have the same distribution
as their graphical models (e.g. Yang et al., 2015, p. 3818). Consequently, different from the
methods in Section 2.2.1 that estimate p2 unknown parameters in the precision matrix, the
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conditional inference only needs to deal with p � 1 unknown parameters for each fixed vertex.
To see this strategy explicitly, we only take the Gaussian graphical model as an example be-
cause the estimation method based on different models is similar.

Without loss of generality, we fix a vertex s ∈ V . As shown in Figure 2, the key strategy is
first to derive the conditional distribution of X s given other variables. After that, the technique
of variable selection is implemented to detect non-zero parameters, so that associated variables
that are dependent on Xs can be identified.

Based on the Gaussian distribution, the conditional distribution of Xs given X ∖fsg ¼
X 1; …; Xs � 1; Xs þ 1; …; Xp

� � ⊤
is still the Gaussian distribution, and the exact form can

be expressed as

X s ¼ X ⊤
∖fsgβ

s þ ϵs:

where βs ¼ βs1; …; βss � 1; β
s
s þ 1; …; βsp

	 
 ⊤
is a ðp � 1Þ-dimensional vector of parameters

associated with vertex s and ϵs is a scalar of noise term. By the penalised least squares estima-
tion, the estimator of βs is determined by

bβs ¼ argmin
βs ∈ ℝp � 1

1

2n

Xn
i¼1

X is � X i; ∖fsgβs
� �2 þ λ βsk k1

( )
; (14)

where X i; ∖fsg is a vector X ∖fsg for subject i.
Let NðsÞ ¼ ft ∈ V∖fsg:ðs; tÞ ∈ Eg denote the neighbourhood set of s ∈ V , which collects

variables that are dependent onXs. Because bβs is determined, then a natural estimator ofNðsÞ is
given by cN ðsÞ ¼ t ∈ V∖fsg:bβst ≠ 0

n o
.

In practice, if two variables X s and X t with s ≠ t are dependent, then βst should be equal to βts.
However, in the optimisation (14),bβst is not necessarily equal tobβ ts. To correct it, Meinshausen &

Bühlmann (2006) suggested the ‘AND/OR rule’ in the sense that the final estimators bβ ts and bβst
are set to be either max bβ ts; bβstn o

or min bβ ts; bβstn o
and the estimated edge set is taken as

Figure 2. Diagram for the idea of conditional inference (Hastie et al., 2015, p. 254)
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bE ¼ ðs; tÞ:s ∈cN ðtÞOR=AND t ∈cN ðsÞ
n o

: (15)

While (14) makes variable selection, the LASSO method usually retains too many compo-
nents with small non-zero estimated regression coefficient. To make a remedy, Zhou
et al. (2011) suggested the thresholding rule:

eβsj ðλ; τÞ ¼ bβsj �  jbβsj j > τ
	 


;

where τ > 0 is a thresholding parameter and bβsj is the j-th component of (14). Therefore, with λ

and τ being determined by cross-validation, the estimated thresholding edge, denoted as bEðλ; τÞ,
is obtained from (15) with bβst and bβ ts replaced by eβst ðλ; τÞ and eβ tsðλ; τÞ.
Moreover, instead of using the AND/OR rule, Zhou et al. (2011) adopted (8) to estimate Θ,

and the estimator is given by

bΘ ≜ bΘfbEðλ; τÞg
¼ argmin

Θ ∈ M
traceðΘS̆Þ � log detðΘÞf g� �

;

where �S ≜ diagðSÞf g�1=2S diagðSÞf g�1=2 is the sample correlation matrix and M ¼
Θ ∈ ℝp � p :Θ≻0 and θst ¼ 0 with s ≠ t∀ðs; tÞ ∉ bEðλ; τÞn o

.

While the conditional inference is the famous approach to estimate graphical structures, it has
been also extended or modified. For example, Peng et al. (2009) proposed the Sparse PArtial
Correlation Estimation (SPACE) by adopting the correlation coefficient from the precision ma-
trix to replace βs in (14). According to the findings in Peng et al. (2009), the advantages of the
SPACE method include the reduction of the number of unknown parameters in the model and
faster computation to deal with the case of p > n. Khare et al. (2015) developed the convex
correlation selection method and algorithm (CONCORD), which is formulated as the SPACE
method with its correlation coefficient term replaced by the square of correlation coefficient.
In particular, the CONCORD method ensures the existence of a global minimum and the con-
vergence of the algorithm with a fixed and finite sample size n, while those properties are not
guaranteed for the SPACE method. Finally, while several advanced pseudolikelihood methods
(e.g. SPACE and CONCORD) have been established, it is unknown whether those methods are
able to deal with arbitrary distributions in the exponential family because only Gaussian distri-
butions were examined in the literature. On the contrary, the conditional inference enables us to
detect graphical structure for arbitrarily distributed data in exponential family, as established by
Yang et al. (2015).

2.2.3 Estimation of mixed graphical models

In the literature, Gaussian–Ising graphical models are most widely used settings in the mixed
graphical model, and several estimation procedures have been proposed. For example, Lee &
Hastie (2015) adopted conditional inference to develop the penalised pseudo-likelihood func-
tion. Cheng et al. (2017) adopted the group LASSO method to address the pseudo-likelihood
function and proposed stable edge-specific penalty selection to choose sparsity parameters.
In this subsection, we focus on the general setting (6) and summarise detailed discussions of

the estimation procedure. Similar to other models, the goal is to estimate βYr , β
Z
r0, θ

Y
st, θ

Z
s0t0, and θ

YZ
st0
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in (6), and it can be addressed by adopting the conditional inference in Section 2.2.2. Specifi-
cally, the conditional probability of Y r given Y ∖frg and Z based on (6) is formulated as

ℙθYr
ðyrjy∖frg; zÞ ¼ exp BY ðyrÞη y∖frg; z; θ

Y
r

	 

þ CY ðyrÞ

h
�Dr η y∖frg; z; θ

Y
r

	 
n oi
;

(16)

where

η y∖frg; z; θ
Y
r

	 

¼ βYr þ

P
t ∈ VY ∖frg

θYYrt BY ðytÞþ
P

t0 ∈ VZ

θYZrt0 BZðzt0 Þ;

Drð · Þ is the normalising constant, θYr ¼ βYr ; θ
YY ⊤
r ; θYZ ⊤

r

� �⊤
, and θYYr and θYZr are two vectors

with components θYrt and θ
YZ
rt0 for t ∈ VY∖frg and t0 ∈ VZ, respectively. Then given samples with

size n, the estimator of θYr is given by

bθYr ¼ argmin
θYr

ℓ θYr
� �þ λY‖θYYr ‖1 þ λYZ‖θYZr ‖1

� �
; (17)

where ℓ θYr
� �

is the log-likelihood function determined by (16) and λY and λYZ are tuning param-
eters that could be different values.

Similarly, let θZr0 ¼ βZr0 ; θ
ZZ ⊤
r0 ; θYZ ⊤

r0
� �⊤

, where θZZr0 and θYZr0 are two vectors with compo-

nents θZr0t0 and θ
YZ
tr0 for t

0 ∈ VZ∖fr0g and t ∈ VY , respectively. The parameter θZr0 can be estimated
by the same strategy as (17), and the estimator is given by

bθZr0 ¼ argmin
θZ
r0

ℓ θZr0
� �þ λZ‖θZZr0 ‖1 þ λZY‖θYZr0 ‖1

� �
; (18)

where ℓ θZr0
� �

is the log-likelihood function based on the conditional probability

ℙθZ
r0
ðzr0 jz∖fr0g; yÞ ¼ exp BZðzr0 Þη z∖fr0g; y; θZr0

� �þ CZðzr0 Þ
�

�Dr0 η z∖fr0g; y; θZr0
� �� ��;

where

η z∖fr0g; y; θZr0
� � ¼ βZr0 þ

P
t0 ∈ VZ∖fr0g θ

ZZ
r0t0BZðzt0 Þþ

P
t ∈ VY

θYZtr0 BZðzt0 Þ;
and Dr0 ð · Þ being the normalising constant, and λZ and λZY are tuning parameters.

When (17) is obtained, we are further able to recover the homogeneous neighbourhood
N Y ðrÞ ¼ t ∈ VY∖frg:θYrt ≠ 0

� �
that contains pairwise connection of Y t and the heterogeneous

neighbourhood N YZðrÞ ¼ t0 ∈ VZ :θYZrt0 ≠ 0
� �

that includes interactions with vertices Zt0 . Sim-
ilarly, the analogous strategy can be employed to derive homogeneous and heterogeneous
neighbourhood of Zr0 based on the result (18).

In parallel efforts, Chen et al. (2015) considered the similar setting, but their approach allows
the graph to contain more than two types of vertices, which is different from Yang et al. (2014)
that the graph contains only two types of vertices. Finally, Fan et al. (2017) also explored mixed
graphical models with latent variables incorporated; detailed discussions are deferred to
Section 3.6.
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2.3 Some Available R Packages

There are many statistical packages in R software for estimations of graphical models in this
section. For the estimation methods in Section 2.2.1, one can adopt the R package glasso to
implement the GLASSO method. In addition, the R packages QUIC,1dpglasso2 and clime
can be used to estimate the precision matrix by implementing the QUIC (Hsieh et al., 2014),
DP-GLASSO (Mazumder & Hastie, 2012a) and CLIME (Cai et al., 2011) methods, respec-
tively. Regarding the strategies in Section 2.2.2, one can adopt the R package XMRF3 (Wan
et al., 2016) to implement the conditional inference. In addition, two R packages space4

and gconcord5 can be used to demonstrate the SPACE and CONCORD methods, respec-
tively. Moreover, the R packages gRim and mgm that are respectively discussed by Højsgaard
et al. (2012, Section 5.8) and Haslbeck & Waldorp (2020) can deal with mixed graphical
models.
For numerical performance among those existing methods in R packages, some comparisons

have been discussed in the literature. First, Peng et al. (2009) compared the SPACE method
with the GLASSO method and found that the SPACE method outperforms the GLASSO
method because of the improvement of the power of edge detection when false discovery rate
(FDR) is controlled at 0.05. Khare et al. (2015) compared the CONCORD method with the
GLASSO and SPACE methods, and it is found that the CONCORD method has faster compu-
tation than the GLASSO and SPACE methods, especially in the ultrahigh-dimensional setting
ðp > nÞ. In addition, numerical experiments show that the CONCORD method has a much
better model selection performance, including accurate recovery of the sparsity structure and
less variation, compared with the GLASSO method. Finally, while the GLASSO and QUIC
methods compute the same estimator, Hsieh et al. (2014) numerically showed that the QUIC
method outperforms the GLASSO method with more accurate edge detection as well as better
true positive and false positive rates.

3 Advanced and Complex Network Structures

In this section, we discuss the estimation methods for several advanced and complex network
structures that are outlined in Section 1. Two directions are mainly focused: one is different
types of structures in models, and the other is complex and noisy data. The features and the cor-
responding strategies are summarised in Table 2, and the detailed introduction is in the follow-
ing subsections.

3.1 Quantile Graphical Models

In this subsection, we describe quantile graphical models associated with a p-dimensional
random vector X, which is basically characterised by the conditional distribution of a fixed ver-
tex, given others. Specifically, following the formulation in Ali et al. (2016), the α-conditional
quantile of the vertex s given other vertices is given by

QXsjX ∖fsg ðαÞ ¼ βα; s þ
P
t ≠ s

f α; stðX tÞ; (19)

whereQXsjX ∖fsg ðαÞ ≜ inf x:P Xs ≤ xjX ∖fsg
� �

≥ α
� �

for all α ∈ ½0; 1�, βα; s ∈ ℝ and f α; stð · Þ can be
a non-parametric function.
In the spirit of estimation methods of quantile regression, the estimators of βα; s and f α; st with

a fixed vertex s ¼ 1; …; p can be obtained by
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Table 2. Summary of complex network structures and their estimations. Topics represent subtitles in Section 3. Key features
show the main difference or extension from the setting in Section 2.1, including complex model structures or noisy data.
Methods summarise key strategies to handle those features. References reflect the citations of methods.

Topics Key features Methods References

Quantile graphical
models

Model the conditional quantile of
the vertex X s given other vertices

(1) CIQGM and PQGM Belloni et al. (2019)
(2) Bayesian approach with a spike and

slab prior Guha et al. (2020)

Non-parametric
graphical models

Consideration of transformed data
(20) with unknown function f ð · Þ

(1) Estimate f ð · Þ by the Winsorised
estimator and adopt the GLASSO
for f̂ ðX Þ

Liu et al. (2009)

(2) Spearman’s ρ Liu et al. (2012)
(3) Kendall’s τ Xue & Zou (2012)
(4) Bayesian methods for Poisson

graphical models
Roy &
Dunson (2020)

(5) Conditional inference for
exponential family graphical models

Yang et al. (2018)

Multiple graphical
models

Heterogeneous data: K different
categories share the same variables
and have K different precision

(1) Optimise (25) by the local linear
approximation

Guo et al. (2011)

(2) Optimise (25) by the fused graphical
LASSO and the group graphical
LASSO

Danaher
et al. (2014)

(3) Multi-task learning for a constrained
minimisation problem

Lee & Liu (2015)

(4) Decompose the random vectors into
heterogeneous parts and shared
systemic random effect, then derive
the estimator (26)

Xie et al. (2016)

(5) Conditional inference and
examination of structural similarity

Ma &
Michailidis (2016)

(6) FDR and estimations of structural
similarity and difference

Liu (2017)

(7) Layered network structures Lin et al. (2016)

Multi-dimensional
graphical models

Unlike p-dimensional vector,
multi-dimensionality reflects
matrix-variate data

(1) Penalised log-likelihood method
based on (35) estimates two
precision matrices separately

Leng & Tang (2012)

(2) Directly estimate Σ⊗Ψ and its inverse Zhou (2014)
(3) K-way tensor with K > 2 He et al. (2014)
(4) Canonical correlation for

multi-attribute data
Katenka &
Kolaczyk (2012)

(5) Partial canonical correlation for
multi-attribute data

Kolar et al. (2014)

Error-prone
graphical models

The random variables are collected
with measurement error

(1) Bias analysis and corrected GLASSO
for Gaussian graphical models

Wainwright (2019)

(2) Bias analysis and the SIMEX
method for exponentially distributed
graphical models

Chen & Yi (2022)

Latent variable
graphical models

Some variables are latent in the
sense that they are unobserved or
not accessible

(1) Derive (53) under the normality
assumption and solve it by Newton-
CG-based proximal point algorithm

Chandrasekaran
et al. (2012)

(2) Solve (53) by ADMM Ma et al. (2013)
(3) Solve (53) by the decomposable

regularisation method
Meng et al. (2014)

Time series
graphical models

Dynamic models, the random
variables are dependent on the time

(1) Pioneering study and partial spectral
coherence

Dahlhaus (2000)

(2) The VAR process (54) Dahlhaus (2000)
(3) A single time-lag of (54) and the

constrained convex optimisation
method

Han & Liu (2013)

(Continues)

208 CHEN

International Statistical Review (2024), 92, 2, 194–245
© 2023 International Statistical Institute.

 17515823, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12552 by Staats- und U

niversitätsbibliothek B
rem

en, W
iley O

nline L
ibrary on [02/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



argmin
βα; s

f α; st ∈ Fα; st

Xn
i¼1

ϕα X i; s � βα; s �
X
t ≠ s

f α; stðX tÞ
 !(

þ
P
t ≠ s

λ1φ1ðf α; stÞþλ2φ2ðf α; stÞ
� �ϖg;

where ϕαðxÞ ¼ maxfαx; ðα � 1Þxg is the quantile loss, F α; st is the space of univariate func-
tions, ϖ > 0 is a fixed exponent, λ1 and λ2 are tuning parameters, and φ1 and φ2 are sparsity
and smoothness penalty functions, respectively. With f α; stð · Þ expressed by basis expansion
model and structural constraints imposed, the alternating direction method of multipliers
(ADMM) is adopted to solve the optimisation problem.
In contrast, Belloni et al. (2019) and Guha et al. (2020) also considered (19) but specified

f α; stðX tÞ as θα; stX t. It reflects that X s and X t are conditionally independent if and only if θα; st ¼
0 at the α-th quantile. To estimate the network strucutre as well as θα; st , Belloni et al. (2019)
proposed the conditional inference quantile graphical model (CIQGM) and the prediction
quantile graphical models (PQGM), where the former method aims to minimise the moment
equation based on quantile regression with constraints that ensure sparsity of the parameters,
and the latter method aims to estimate θα; st that enables to predict X s by using a linear combi-
nation of X ∖fsg, that is, with certain constraints for the parameters, PQGM suggests

bθα; st ¼ argmin
θα; st

 ϕ⋆
α X s � X ⊤

∖fsgθα; st
	 
n o

;

where ϕ⋆
α ð · Þ is a given loss function. On the contrary, Guha et al. (2020) adopted a Bayesian

variable selection technique by imposing a spike and slab prior to θα; st . After that, the varia-
tional Bayes methodology is used to approximate the posterior distribution and the MCMC
method is employed to construct the final graphs.

3.2 Non-Parametric Graphical Models

Unlike the estimation methods in Section 2 that detect network structures for random vector
X, in this subsection, we explore non-parametric graphical models by considering unknown and
non-linear functions in random vector X (e.g. Lafferty et al., 2012).
Parallel with the ideas behind sparse additive models for regression, we replace the random

vector X ¼ ðX 1; …; XpÞ⊤ by the transformed random vector f ðX Þ ¼
f 1ðX 1Þ; …; f pðXpÞ
	 
⊤

, where f 1; …; f p are unknown, monotone and differentiable functions.

Based on this transformation, it is assumed that f ðX Þ follows multivariate Gaussian

Table 2 (Continued)

Topics Key features Methods References

(4) Estimation of (54) based on
decomposed structured sparse
matrix

Basu et al. (2019)

(5) Heterogeneous VAR models Skripnikov &
Michailidis (2019)
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distributions, that is, f ðX Þ ∼ Nðμ; ΣÞ, then X is said to follow ‘non-paranormal’ distributions,
and is denoted as X ∼ NPNðμ; Σ; f Þ.

Similar to the GLASSO method, the main purpose is to estimate Θ≡ Σ�1 because the entry
θst ¼ 0 if and only ifX s andX t are conditionally independent given other vertices. In addition, a
challenge is to deal with unknown function f ð · Þ.

An intuitive idea is to directly estimate f jð · Þ andΘ. According to Liu et al. (2009), f jð · Þ can
be expressed as

f jðxÞ ¼ μj þ σjΦ�1 FjðxÞ
� �

; (20)

where μj is the j-th component of μ, FjðxÞ ¼ PðX j ≤ xÞ is the cumulative distribution function
(CDF) of X j, σj is the j-th diagonal entry of Σ,Φð · Þ is the univariate standard Gaussian CDF. In
addition, (20) can be empirically estimated by

bf jðxÞ ¼ bμj þ bσ jΦ�1 bFjðxÞ
	 


; (21)

where bF jðxÞ is the Winsorised estimator based on the empirical distribution of X j, bμj and bσ j are
empirical estimates of μj and σj, respectively. After that, (21) can be adopted to define the em-
pirical estimate of the covariance matrix of f ðX Þ

Snðbf Þ ¼ 1

n

Xn
i¼1

bf ðX i;·Þ � μðbf Þn o bf ðX i;·Þ � μðbf Þn o⊤
(22)

with μðbf Þ ¼ 1

n

Xn
i¼1

bf ðX i;·Þ. Finally, following the idea of GLASSO, Θ can be estimated by (8)

with S replaced by (22).
Alternatively, instead of a two-stage procedure that estimates f j and Θ separately, Liu

et al. (2012) and Xue & Zou (2012) proposed to use Spearman’s ρ and Kendall’s τ to
non-parametrically calculate correlation between random variables X s and X t . Specifically,
the estimated Spearman’s ρ is defined as

bρst ¼
Pn
i¼1

ris � rs
� �

rit � rt
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ris � rs
� �2Pn

i¼1
rit � rt
� �2s ; (23)

where ris represents the rank of X i; s among n samples X 1; s; …; Xn; s of the s-th random variable

X s and rs ¼ 1

n
∑ n

i¼1r
i
s. In addition, the estimated Kendall’s τ is given by

bτ st ¼ 2

nðn � 1Þ
X

1 ≤ i < j ≤ n

sign X i; s � X j; s

� �
X i; t � X j; t

� �� �
: (24)

Let S⋆ denote the resulting matrix whose entry ðs; tÞwith s ≠ t is based on the transformation

of (23) and (24), say 2sin
π
6
bρst	 


and 2sin
π
2
bτ st	 


, and the diagonal entries in S⋆ are specified as

one. Finally, one can adopt the GLASSO method with S replaced by S⋆ to estimate the precision
matrix Θ. The R package huge developed by Zhao et al. (2012) is implemented to handle
non-parametric graphical models.

In addition to Gaussian distributions, another type of data considered by Roy &
Dunson (2020) is count data, whose network structure can be characterised by the Poisson
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graphical model in Section 2.1.3. Under the non-parametric setting, Roy & Dunson (2020) ex-
plored the following model:

ℙβ; ΘðxÞ ∝ exp
Xp
s¼1

βsxs � logðxs!Þf g þ
Xp
s¼1

Xp
t¼1

θstf ðxsÞf ðxtÞ
" #

:

By specifying f ðxÞ ¼ tan�1ðxÞ� �α
for some α ∈ ℝþ , Roy & Dunson (2020) proposed the

Bayesian method by imposing prior distributions to βs and θst and implemented the Markov
chain Monte Carlo (MCMC) sampling scheme to estimate the network structure.
Finally, to explore a general setting, Yang et al. (2018) extended exponential family graphical

models by imposing unknown base measure function f s to the conditional distribution function
for s ∈ V , yielding

ℙΘðxsjx∖sÞ ¼ exp xsηsðx∖sÞþf sðxsÞ � bsðηs; f sÞf g;
where ηsðx∖sÞ ¼

P
t ≠ s

θstxt and bsðηs; f sÞ is the log-partition function. To eliminate nuisance

function f s, Yang et al. (2018) applied the pairwise pseudo likelihood function

LsðθsÞ ¼ 2

nðn � 1Þ
X

1 ≤ i < j ≤ n

log 1þ exp �ðX is � X jsÞθ ⊤
s ðX i; ∖fsg � X j; ∖fsgÞ

� �� �
;

where θs ¼ θ1s; …; θðs � 1Þs; θðs þ 1Þs; …; θps
� � ⊤

is a ðp � 1Þ-dimensional vector of param-
eters. Then θs can be estimated by the penalised likelihood function

bθs ¼ argmin
θs

LsðθsÞþ
P
t ≠ s

φλðjθtsjÞ
� �

;

where φλð · Þ can be convex penalty functions (e.g. LASSO) or non-convex penalty functions
(e.g. SCAD).

3.3 Multiple Graphical Models

In applications, it is possible to collect ‘heterogeneous’data, which reflect the same variables
in several different categories. The key feature of this type of data is possibly different depen-
dence structures among different categories. That is, some edges are common across all catego-
ries and other edges are unique to each category. A typical example is gene
expression/microarray data, where subjects are classified into subgroups, and every group
shares the same gene expressions. The goal is to identify graphical structures for different sub-
groups (e.g. Danaher et al., 2014; Lee & Liu, 2015).
Suppose that a heterogeneous dataset contains p variables and K categories. For the k-th cat-

egory with k ¼ 1; …; K , let X ðkÞ
i; · denote a p -dimensional random vector for subject i ¼

1; …; nk with sample size nk, and it follows the multivariate normal distribution with the covari-
ance matrix ΣðkÞ. Let ΘðkÞ denote the k-th precision matrix in the k-th category, and define the

corresponding ðs; tÞ entry as θðkÞst . The main interest is to estimate ΘðkÞ for all k ¼ 1; …; K .
To simultaneously estimate ΘðkÞ for all k ¼ 1; …; K , the joint estimation method based on
the Gaussian graphical model was developed. Specifically, motivated by (8), the penalised like-
lihood function based on K categories is defined as

L Θð1Þ; …; ΘðKÞ
	 


¼
XK
k¼1

log detðΘðkÞÞ
n o

� traceðSðkÞΘðkÞÞ � φðΘðkÞÞ
h i

; (25)
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where φðΘðkÞÞ is the penalty function and SðkÞ is the empirical estimate of the covariance matrix
in the k-th category. Different choices of φðΘðkÞÞ and computation of (25) were considered by
different literature. For example, Guo et al. (2011) re-parameterised the entry ðs; tÞ in ΘðkÞ by
θðkÞst ¼ ϑstξ

ðkÞ
st and φðΘðkÞÞ is specified as

φðΘðkÞÞ ¼ λ1
X
s≠t

ϑst þ λ2
XK
k¼1

X
s≠t

ξðkÞst

��� ���
with λ1 and λ2 being two tuning parameters. To compute (25), Guo et al. (2011) suggested an
iterative approach based on local linear approximation. The other choices considered by
Danaher et al. (2014) are the fused graphical LASSO

φðΘðkÞÞ ¼ λ1
XK
k¼1

X
s≠t

θðkÞst

��� ���þ λ2
X
k<k 0

X
s≠t

θðkÞst � θðk
0Þ

st

��� ���
and the group graphical LASSO

φðΘðkÞÞ ¼ λ1
XK
k¼1

X
s≠t

θðkÞst

��� ���þ λ2
X
s≠t

XK
k¼1

θðkÞ
2

st

 !1=2

:

An alternative direction method of multiple algorithm (ADMM) was implemented to solve (25),
and the R package JGL developed by Danaher et al. (2014) is used to the implementation.

Another strategy for the joint estimation method is based on the multi-task learning perspec-
tive. Specifically, Lee & Liu (2015) proposed to decompose parameters into common structures

M ¼ 1

K

XK
k¼1

ΘðkÞ

and the unique structure

RðkÞ ¼ ΘðkÞ � M ∀k ¼ 1; …; K:

Then the remaining task is to estimate M and RðkÞ for all k ¼ 1; …; K . A valid strategy is to
solve the following constrained minimisation problem:

min Mk k1 þ λ1
XK
k¼1

RðkÞ�� ��
1

( )

s:t:
1

K

XK
k¼1

SðkÞ M þ RðkÞ
	 


� Ip � p

n o�����
����� ≤ η1;

SðkÞ M þ RðkÞ� � � Ip � p

�� �� ≤ η2; andXK
k¼1

RðkÞ ¼ 0;

where λ1 is a tuning parameter and η1 and η2 are thresholding values. Let bM and bRðkÞ denote the
resulting solutions, and thus, we have bΘðkÞ ¼ bM þ bRðkÞwith the entry ðs; tÞbeingbθðkÞst . To ensurebΘðkÞ as a symmetry matrix, Lee & Liu (2015) suggested ‘redefining’ the entry ðs; tÞ as
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eθðkÞst ¼ bθðkÞst 
XK
k¼1

bθðkÞst

��� ��� ≤ XK
k¼1

bθðkÞts

��� ��� !
þ bθðkÞts 

XK
k¼1

bθðkÞst

��� ��� >
XK
k¼1

bθðkÞts

��� ��� !
for all k ¼ 1; …; K.

Inspired by the common and unique structures, Xie et al. (2016) proposed to decompose X ðkÞ
i;·

by X ðkÞ
i;· ¼ Y ðkÞ

i;· þ Zi;· for i ¼ 1; …; nk and k ¼ 1; …; K, where Y ðkÞ
i;· is the random vector cor-

responding to the k-th category and Zi;· is the random vector corresponding to the shared sys-

temic random effect. Assume that Y ðkÞ
i;· is independent of Zi;· and they follow multivariate normal

distributions with mean zero and covariance matrix Σk and Σ0, respectively. To explore the net-
work structures among different categories, it is sufficient to estimate Ωk ≜ Σ�1

k based on the ob-

served data X ðkÞ
i;· for k ¼ 1; …; K.

An intuitive approach to estimateΩMulti ≜ fΩkgKk¼1 is the penalised likelihood estimation. The
estimator of Ωk is given by

bΩMulti ¼ arg max
ΩMulti

LðΩMultiÞ � λ1
XK
k¼1

Ωkk k1 � λ2 Ω0k k1
 !

; (26)

where Ω0 ¼ Σ�1
0 ,

LðΩMultiÞ ∝
XK
k¼1

log detðΩkÞf g � traceðSX ; kkΩkÞ
� �þ log detðΩ0Þf g

� log detðDÞf g þ
XK
k; k 0¼1

traceðΩkSX ; kk0Ωk0D
�1Þ

with D ¼
XK
k¼0

Ωk and SX ; kk0 ¼
1

n

Xn
i¼1

X ðkÞ
i;· X

ðk 0Þ ⊤
i;· .

The other simpler approach is referred to the one-step method. Its idea is first to estimate Σ0

and Σk , respectively, by bΣ0 ¼ 1

KðK � 1Þ
P
k ≠ k 0

SX ; kk0

and bΣk ¼ SX ; kk � bΣ0:

After that,Ωk for k ¼ 0; …; K can be estimated by adopting (8) withΘ and S replaced, respec-

tively, by Ωk and bΣk for k ¼ 0; …; K.
Unlike the likelihood-based approaches that directly estimate K precision matrices, Ma &

Michailidis (2016) developed the joint structural estimation method, which basically extends
the conditional inference introduced in Section 2.2.2 and examines structural similarity among

K graphs. Specifically, for k ¼ 1; …; K and i ¼ 1; …; nk, let X
ðkÞ
i; s denote the s-th component in

X ðkÞ
i;· and let X ðkÞ

i; ∖fsg denote a ðp � 1Þ-dimensional vector of X ðkÞ
i;· with the s-th component re-

moved. Then for the s-th vertex in the k-th category, we have

X ðkÞ
i; s ¼ X ðkÞ ⊤

i; ∖fsgβ
ðkÞ
s þ ϵðkÞs ; (27)
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where βðkÞs ¼ βðkÞ1s ; …; βðkÞðs � 1Þs; β
ðkÞ
ðs þ 1Þs; …; βðkÞps

	 
 ⊤
is a ðp � 1Þ-dimensional vector of pa-

rameters associated with X ðkÞ
i; ∖fsg and ϵ

ðkÞ
s is a scalar of noise term. For a given vertex s, the joint

least squares function based on K categories is given by

L ðBsÞ ≜ 1

n

XK
k¼1

Xnk
i¼1

X ðkÞ
i; s � X ðkÞ ⊤

i; ∖fsgβ
ðkÞ
s

	 
2( )
;

where Bs ≜ βð1Þs …βðKÞs

h i
is a ðp � 1Þ � K matrix with columns indicating the regression coef-

ficients from (27) and rows reflecting the coefficients at pairs ðs; jÞ for j ¼ 1; …; s �
1; sþ 1; …; p. Noting that, for arbitrary two columns in Bs , it is possible to have the same
(non)zero values for some rows. This basically says that the corresponding two categories have
the same edges connecting the same vertices. LetPsj denote a set containing categories that have
the same edges between vertices s and j. For 1 ≤ s; j ≤ p with s ≠ j and a group g ∈ Psj , let

β½g�sj ≜ βðkÞsj :k ∈ g
	 
 ⊤

denote a vector containing all coefficients from graphs in g, where βðkÞsj

represents the j-th component in βðkÞs . To estimate parameters Bs with the structural similarity
accommodated, Ma & Michailidis (2016) suggested the following group LASSO estimator:

bBs≜ bβð1Þs …bβðKÞs

h i
¼ min

Bs
LðBsÞþ2

P
j: j≠s

P
g∈Psj

λgsj β½g�sj

��� ���
2

n o (28)

for s ¼ 1; …; p, where λgsj is the associated tuning parameter. By estimates bβðkÞsj and bβðkÞjs derived
in (28), the resulting edge set for the k-th category is given by

bEðkÞ≜ ðs; jÞ:1 ≤ s; j ≤ p; s ≠ j; bβðkÞsj ≠ 0 OR=AND bβðkÞjs ≠ 0
n o

for k ¼ 1; …; K.
Motivated by the structural similarity, the other attractive issue is the test of structural simi-

larity and difference. Specifically, Liu (2017) aims to examine a multiple testing problem

H0st :DstðϰÞ ¼ 0 versusH1st :DstðϰÞ ≠ 0 (29)

for 1 ≤ s; t ≤ p with s ≠ t, where

DstðϰÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1 ≤ k < l ≤ K

ϰðkÞ
st � ϰðlÞ

st

	 
2s

with ϰðkÞ
st ¼ � θðkÞstffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θðkÞss θ
ðkÞ
tt

q being the partial correlation coefficient of vertices s and t given other

vertices. By (29), rejecting H0st refers to the differential substructure

BD ≜fðs; tÞ:DstðϰÞ ≠ 0; 1 ≤ s; t ≤ pg;
and the set of vertex pairs with non-zero partial correlation coefficients in the complement of BD,
denoted Bc

D, is called similar substructure:

BS ≜ ðs; tÞ ∈ Bc
D : ϰð1Þ

st ; …; ϰðKÞ
st

	 

≠ 0

n o
:
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To estimate BD, Liu (2017) proposed the false discovery rate (FDR) procedure for the multiple
testing (29). Under H0st in (29), the test statistic under the k-th category is defined as

T ðkÞ
st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1brðkÞss brðkÞtt

s
T ðkÞ
st; 0; (30)

where brðkÞss and T ðkÞ
st; 0 are formulated by the residual deriving from (27); detailed formulas can be

found in equation (2.3) in Liu (2017). Based on (30), the two-sample test statistic for two cat-
egories k; l ¼ 1; …; K is given by

T ðk; lÞ
st ¼ T ðkÞ

st � T ðlÞ
stffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nk
1 � bϰðkÞ

st

	 
2
þ 1

nl
1 � bϰðlÞ

st

	 
2r ; (31)

where bϰðkÞ
st ¼ T ðkÞ

st  T ðkÞ
st

��� ��� ≥ 2

ffiffiffiffiffiffiffiffiffiffi
log p

nk

s( )
is the estimator ofϰðkÞ

st and ð · Þ is an indicator function.
To perform the FDR control procedure, Liu (2017) suggests translating (31) into a z-value

Tst; D≜Φ�1 ϒðTst; ∗Þ
� �

;

where Tst; ∗ ¼ ‖Tst‖2 with Tst ¼ T ðk; lÞ
st ; 1 ≤ k < l ≤ K

	 
⊤
, Φð · Þ is the CDF of the standard

normal distribution, andϒðtÞ ¼ P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

λiZ2
i

vuut ≤ t

0@ 1Awith Zi being independent and identically

distributed (i.i.d.) Nð0; 1Þ random variable and λ1; …; λM are eigenvalues of the asymptotic co-
variance matrix of Tst. As a result, with a suitable critical value btD defined in equation (2.7) of
Liu (2017),H0st in (29) is rejected if Tst; D ≥ btD, and thus, the estimated differential substructure
is given by

bBD ¼ fðs; tÞ:Tst; D ≥ btD; s ≠ tg:
Next, the estimation of the similar substructure BS can be transformed to the following multiple
testing problem:

H 0
0st : ϰð1Þ

st ; …; ϰðKÞ
st

	 

¼ 0 versusH 0

1st : ϰð1Þ
st ; …; ϰðKÞ

st

	 

≠ 0 (32)

with ðs; tÞ ∈ bBc
D . To address the hypothesis test (32), the partial sum type test statistic is

proposed:

Tst; ⋆ ¼

XK
k¼1

nkT
ðkÞ
stffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1

nk 1 � ðbϰðkÞ
st Þ2

n o2

vuut for ðs; tÞ ∈ bBc

D;

and the corresponding transformed z-value is defined as

Tst; S≜Φ�1 2ΦðjTst; ⋆jÞ � 1
� �

:
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With the suitable critical valuebtS defined in equation (2.11) of Liu (2017), for ðs; tÞ ∈ bBc
D, H

0
0st

in (32) is rejected ifTst; S ≥ btS. Therefore, the resulting estimated similar substructure is given by

bBS ¼ fðs; tÞ:Tst; S ≥ btS; ðs; tÞ ∈ bBc

D; s ≠ tg:
Finally, we introduce layered network structures. Unlike multiple graphical models described
earlier, the main difference is that layered network structures not only possess undirected edges
among vertices in each layer but also exhibit a directed acyclic graph structure between the
layers. In addition, the number of vertices in each layer can be different from each other. Spe-

cifically, for k ¼ 1; …; K, letX ðkÞ ¼ X ðkÞ
1 ; …; X ðkÞ

pk

	 
⊤
denote the pk-dimensional random vec-

tor in the k-th layer. Following the discussion in Lin et al. (2016), the first layer X ð1Þ follows a
multivariate normal distribution with the covariance matrix Σð1Þ ; for the k -th layer with k ¼
2; …; K, the j-th component can be characterised by preceding layers, that is,

X ðkÞ
j ¼

Xk � 1

l¼1

ðDlk
j Þ⊤ X ðlÞ

n o
þ ϵðkÞj

for j ¼ 1; …; pk, where ϵ
ðkÞ≜ ϵðkÞ1 ; …; ϵðkÞpk

	 
⊤
follows a multivariate normal distribution with

the covariance matrix ΣðkÞ, and Dlk
j ∈ ℝpk for l ¼ 1; …; k � 1 represents directed edges that

encode the dependencies across layers. The interest of layered network study is to simulta-
neously estimate directed edges Dlk

pk
for 1 ≤ l < k ≤ K among all layers as well as precision

matrices ΘðkÞ for all layers k ¼ 1; …; K . Let ℓðX ðkÞ; Dlk ; ΘðkÞ; 1 ≤ l < k ≤ KÞ denote the
log-likelihood function with Dlk ¼ ½Dlk

1 …Dlk
pk
� . By the Markov factorisation, it can be

decomposed as

ℓðX ðkÞ; Dlk ; ΘðkÞ; 1 ≤ l < k ≤ KÞ

¼ ℓðX ð1Þ; Θð1ÞÞþ
XK
k¼2

ℓ X ðkÞjX ð1Þ; …; X ðk � 1Þ; D1k ; …; Dðk � 1Þk ; ΘðkÞ
	 


;
(33)

which suggests that parameters in each layer can be estimated by maximising the individual
likelihood function separately.

Motivated by this, Lin et al. (2016) particularly considered K ¼ 2 with normal distributed
random vector, which yields (33) to be

ℓ X ð1Þ; X ð2Þ; D12; Θð1Þ; Θð2Þ
	 


¼ ℓ X ð1Þ; Θð1Þ
	 


þ ℓ X ð2ÞjX ð1Þ; D12; Θð2Þ
	 


;

where ℓðX ð1Þ; Θð1ÞÞ has the same formulation as (7) and Θð1Þ can be estimated by the GLASSO
method, and ℓðX ð2Þ; D12; Θð2ÞÞ is

ℓðX ð2ÞjX ð1Þ; D12; Θð2ÞÞ

∝
n

2
log detΘð2Þ � 1

2

Xp2
j¼1

Xp2
i¼1

σð2Þij X ð2Þ
i � X ð1ÞD12

i

	 
⊤
X ð2Þ

j � X ð1ÞD12
j

	 

;

where σð2Þij is the entry ði; jÞ in Θð2Þ. To simultaneous estimate sparse parametersD12
j andΘð2Þ, a

penalised optimisation with two penalty functions is proposed:
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min
D12; Θð2Þ

�ℓðX ð2ÞjX ð1Þ; D12; Θð2ÞÞþλD
Xp2
j¼1

‖D12
j ‖1 þ λΘ

P
i ≠ j

σð2Þij

��� ���
8<:

9=; (34)

with two tuning parameters λD and λΘ. The computation of minimisation (34) can be achieved by
the alternating search approach, as outlined in Algorithm 1 of Lin et al. (2016).

3.4 Multi-Dimensional Graphical Models

In usual datasets, each individual has only p-dimensional vector of variables. However, in
some applications, such as options contingent in financial studies or electroencephalography
(EEG) in brain imaging studies, a matrix-variate data may be collected for individuals.
Specifically, we denote X ∈ ℝp � q as matrix-variate data. Familiar with multivariate Gaussian

distributions, the probability density function (pdf) of the matrix-variate normal distribution is

ℙM ; Σ; ΨðxÞ ¼ ð2πÞ�qp
2 ðΣ�1Þq=2ðΨ�1Þp=2

� etr �1

2
ðx � MÞΨ�1ðx � MÞ ⊤ Σ�1

� �
; (35)

whereM ∈ ℝp � q is the mean matrix, Σ ∈ ℝp � p and Ψ ∈ ℝq � q are row and column variance
matrics, etrðAÞ≡ exp traceðAÞf g for a matrix A. We denote (35) as X ∼ MNp � qðM ; Σ; ΨÞ, or
equivalently, vecðX Þ ∼ NpqðvecðMÞ; Σ⊗ΨÞ, where⊗ is the Kronecker product and vecðMÞ rep-
resents the vectorisation of M .
While there are abundant literature in Section 2.2 to estimate graphical structure for vecðX Þ,

they cannot be trivially adopted due to the difficulty of estimating a p2 � q2 precision matrix
directly and ignorance of all row and column structural information. To remedy these shortcom-
ings and estimate two matrices Θ ≜ Σ�1 and Γ ≜ Ψ�1 , under the i.i.d. sample X i with i ¼
1; …; n, Leng and Tang (2012) proposed the penalised log-likelihood function

ðbΘ; bΓÞ ¼ argmin
Θ; Γ

�ℓðΘ; ΓÞþφλ1ðΘÞþφλ2ðΓÞ
� �

;

where

ℓðΘ; ΓÞ ¼ �nq

2
log detðΘÞf g � np

2
log detðΓÞf g þ 1

2

Xn
i¼1

traceðX iΓX ⊤
i ΘÞ;

φλjð · Þ with j ¼ 1; 2 is the penalty function based on the LASSO or SCAD methods and λj for

j ¼ 1; 2 is a tuning parameter. Alternatively, another interest is Σ⊗Ψ and its inverse, which was
considered by Zhou (2014). The key idea is to estimate correlation matrices of Σ and Ψ by
adopting a pair of penalised functions, and then combine the estimators of Σ and Ψ to yield
the desired estimator of Σ⊗Ψ. Specifically, Σ⊗Ψ is first expressed as

Σ⊗Ψ ¼ J 1ϱðΣÞJ 1f g⊗ J 2ϱðΨÞJ 2f g traceðΣÞtraceðΨÞf g ;
whereϱðΣÞ andϱðΨÞ are correlation matrices with components

σstffiffiffiffiffiffiffiffiffiffiffi
σssσtt

p and
ψstffiffiffiffiffiffiffiffiffiffiffiffi
ψssψtt

p , respectively,

σst and ψst are the entry ðs; tÞ of Σ and Ψ separately, and J 1 and J 2 are two matrices satisfying

J 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðΨÞp ¼ diag

ffiffiffi
σ

p
11; …;

ffiffiffi
σ

p
pp

	 

and J 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðΣÞp ¼ diag

ffiffiffiffi
ψ

p
11; …;

ffiffiffiffi
ψ

p
qq

	 

. Under

sparsity assumptions, ϱðΣÞ and ϱðΨÞ can be estimated separately by
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dϱðΣÞ ¼ argmin
ϱðΣÞ≻0

traceðΣϱfϱðΣÞg�1Þþlog detðϱðΣÞÞf g þ λ1‖fϱðΣÞg�1‖1
h i

and dϱðΨÞ ¼ argmin
ϱðΨÞ≻0

traceðΨϱfϱðΨÞg�1Þþlog detðϱðΨÞÞf g þ λ2‖fϱðΨÞg�1‖1
h i

;

where Σϱ and Ψϱ are two sample correlation matrices with the entry ðs; tÞ being, respectively,Xn
i¼1

hX ðsÞ
i; col; X

ðtÞ
i; coliffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

‖X ðsÞ
i; col‖

2
2 �

Xn
i¼1

‖X ðtÞ
i; col‖

2
2

s and

Xn
i¼1

hX ðsÞ
i; row; X

ðtÞ
i; rowiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

‖X ðsÞ
i; row‖22 �

Xn
i¼1

‖X ðtÞ
i; row‖22

s ;

X ðsÞ
i; col is the s-th column vector inX for subject i, andX ðsÞ

i; row is the s-th row vector inX for subject i.

In addition, J 1 and J 2 can be estimated, respectively, by

bJ 1 ¼ diag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

‖X ðsÞ
i; col‖

2
2

s
:s ¼ 1; …; q

 !
and bJ 2 ¼ diag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

‖X ðsÞ
i; row‖22

s
:s ¼ 1; …; p

 !
:

Consequently, we have the estimator of Σ⊗Ψ

dΣ⊗Ψ ¼ bJ 1
dϱðΣÞbJ 1

n o
⊗ bJ 2

dϱðΨÞbJ 2

n o 1

n

Xn
i¼1

X i;·
��� ���2

F

 !
;

and thus, dΣ⊗Ψ�1 is the corresponding estimator of the inverse of Σ⊗Ψ.
Finally, there are some extensions of matrix-variate data. The first setting explored by He

et al. (2014) is K -way tensor with K > 2, which treats the matrix-variate data (K ¼ 2) as a
special case. Here, we denoteX as aK-way tensor with dimensionfp1; …; pKg, and its elements
are denoted by fX ði1;…; iK Þ : ik ¼ 1; …; pk ; k ¼ 1; …; Kg. Then the tensor normal distribution
of X is denoted as X ∼ anormð0; Σ1∘…∘ΣKÞ with the symbol ‘∘’ being the outer product,
and the pdf is given by

ℙΣ1;…; ΣK ðxÞ ¼ ð2πÞ�p=2
∏
K

k¼1
fdetðΣkÞg�

p
2pk exp �1

2
x� Σ�1

2

��� ���2� �
;

where p ¼ p1 þ…þpK, Σ
�1

2 ¼ Σ
�1

2
1 ; …; Σ

�1
2

K

n o
with covariance matrix Σk for the k-th array and

‖X‖2 ¼
X

i1;…; iK

X ði1;…; iK Þ.

Similar to other cases, the interest is to estimate Θk ≜ Σ�1
k for k ¼ 1; …; K. The penalised

likelihood function is employed, and the estimator of Θ ≜ fΘ1; …; ΘKg given by

bΘ ¼ argmin
Θ

�
XK
k¼1

p

pk
log detðΘkÞf g þ trace S ΘK⊗…⊗Θ1ð Þf g

"
�
XK
k¼1

λk
P
s ≠ t

φðθk; stÞ
#
;

(36)

where S ¼ 1

n

Xn
i¼1

vecðX i;·ÞvecðX i;·Þ⊤ and ⊗ represents the Tucker product. To solve (36), the

block coordinate descent algorithm can be adopted to iteratively minimise (36) with respect
to Θk while keeping the other matrices Θj with j ≠ k fixed at current values.
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The second important structure in multi-dimensional graphical model is multi-attribute data,
whose main feature is that the vertices reflect vectors instead of ‘scalar’ in conventional graph-
ical models. Mathematically, for j ¼ 1; …; p, let a random vectorX j ∈ ℝqj follow a multivariate
Gaussian distribution with mean μj and covariance matrix Σjj . Then the multi-attribute data is

defined as X ¼ ðX ⊤
1 ; …; X ⊤

p Þ⊤ with mean μ ¼ ðμ ⊤
1 ; …; μ ⊤

p Þ⊤ and covariance matrix

Σ ¼
Σ11 Σ12 … Σ1p

⋮ ⋮ ⋱ ⋮

Σp1 Σp2 … Σpp

0BB@
1CCA;

where Σst ¼ covðX s; X tÞ. Because X j is a vector, to measure total association strength between
multiple vertex attributes X s and X t, canonical correlation (e.g. Katenka & Kolaczyk, 2012) and
partial canonical correlation (e.g. Kolar et al., 2014) can be employed, and their formulations
are given, respectively, by

ρðXs; X tÞ ¼ max
u ∈ ℝqs

v ∈ ℝqt

corrðu⊤ Xs; v
⊤ X tÞ (37)

and

ρðX s; X t; X ∖fs; tgÞ ¼ max
u ∈ ℝqs

v ∈ ℝqt

corr u⊤ ðX s � bAX ∖fs; tgÞ; v⊤ ðX t � bBX ∖fs; tgÞ
n o

(38)

with X ∖fs; tg ¼ ðX j : j ≠ s; tÞ is based on X with Xs and X t removed, bA ¼
argmin
A

 ‖X s � AX ∖fs; tg‖22
� �

and bB ¼ argmin
B

 ‖X t � BX ∖fs; tg‖22
� �

. Different from (37), (38)

enables to measureX s andX t with the effect ofX ∖fs; tg removed, and (38) equals zero if and only
if vectors X s and X t are conditionally independent. Moreover, it can be further shown that

ρðX s; X t; X ∖fs; tgÞ ≠ 0 if and only if max
u ∈ ℝqs
v ∈ ℝqt

u⊤ Θstv ≠ 0; (39)

whereΘst is the block entry ðs; tÞ inΘ ≜ Σ�1. It essentially says that (non)zero partial canonical
correlation can be reflected by the estimated (non)zero block precision matrix.
Motivated by (39), the first strategy, which is analogue of the work proposed by Katenka &

Kolaczyk (2012), is to regress X s to other components X ∖fsg≜ðXk :k ≠ sÞ. That is,
ðXsjX ∖fsgÞ ¼ Σs; ∖fsgΣ∖fsg; ∖fsgX ∖fsg; (40)

where Σs; ∖fsg is the s -th row of Σ with the s -th component removed, Σ∖fsg; ∖fsg is a

submatrix of Σ with the s-th row and column deleted. Because Θs; ∖fsg ¼
� Σss � Σs; ∖fsgΣ�1

∖fsg; ∖fsgΣ∖fsg; s
	 
�1

Σs; ∖fsgΣ�1
∖fsg; ∖fsg , it indicates that a zero block matrix

Θst can be identified from the regression coefficient in (40).
The other approach proposed by Kolar et al. (2014) is to adopt the penalised log-likelihood

function

bΘ ¼ argmin
Θ≻0

traceðSΘÞ � log detðΘÞþλ
P
s; t

Θstk kFg�� 

(41)

with S ¼ 1

n

Xn
i¼1

X i;· X ⊤
i;· . By tedious derivations, the closed form of bΘst in (41) as well as the
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estimator of Σst in Σ can be obtained. Applying an inexact block coordinate descent procedure
with iteration until convergence yields the final results.

3.5 Error-Prone Graphical Models

Sometimes, we are unable to collect data precisely due to the measurement based on inaccu-
rate devices. As a result, measurement error usually exists in the datasets, which reflects that the
observed data are not necessarily equal to the underlying unobserved data. In applications, mea-
surement error frequently appears in the datasets, such as cell signalling data (e.g. Bandara
et al., 2009; Yörük et al., 2011) and gene expression data (e.g. Rocke & Durbin, 2001). In
the early developments, measurement errors have been considered and established in the devel-
opments of regression models, where detailed descriptions can be found in some monographs,
such as Carroll et al. (2006) and Yi (2017). In this section, we primarily discuss measurement
error in graphical models, which is rarely explored in the literature.

Let X be the truly unobserved random vector defined in Section 2.1 and denote X ∗ as the ob-
served random vector that can be regarded as the surrogate version of X . In the frameworks of
measurement error, if bothX andX ∗ are continuous, then the classical measurement error model
is usually adopted to characterise X and X ∗:

X ∗ ¼ X þ ϵ; (42)

where ϵ is the noise term with mean zero and positive definite covariance matrixΣϵ; if bothX and
X ∗ are discrete and contain binary components, then the misclassification model is adopted,
which is formulated by

P X ∗ ¼ xð1Þ
� �

⋮
P X ∗ ¼ xðmÞ
� �

0B@
1CA ¼ P

P X ¼ xð1Þ
� �

⋮
P X ¼ xðmÞ
� �

0B@
1CA; (43)

where xð1Þ; xð2Þ; …; xðmÞ are vectors ofm possible combinations of binary variables andP is the
m� m (mis)classification matrix with the component ðk; lÞ being the (mis)classification prob-
ability, denoted as pkl ¼ P X ∗ ¼ xðkÞjX ¼ xðlÞ

� �
for k; l ¼ 1; …; m. To ease notation, we let

MC P½ �ðX Þ denote the misclassification operator indicated by (43) and notationally write (43)
as X ∗ ¼ MC P½ �ðX Þ . Furthermore, P is assumed to have the spectral decomposition P ¼
ΛDΛ�1, where D is the diagonal matrix with diagonal elements being the eigenvalues of P
and Λ is the corresponding matrix of eigenvectors.

In the presence of measurement error, under the Gaussian graphical
model, Wainwright (2019, Section 11.4.1) showed that the estimator determined by (8) with

S replaced by the error-prone covariance matrix
1

n

Xn
i¼1

X ∗
i;· X

∗ ⊤
i;· is inconsistent to the true Θ,

suggesting that measurement error would incur wrong conclusion. To address this concern

and eliminate measurement error effects, a natural estimate of Σ is S∗ ¼ 1

n

Xn
i¼1

X ∗
i;· X

∗ ⊤
i;· �

Σϵ, which can be further shown that ‖S∗ � Σ‖max ≤
ffiffiffiffiffiffiffiffiffiffi
log p

n

r
with high probability. Thus, solv-

ing (8) with S replaced by S∗ gives the ‘corrected’ GLASSO estimator.
Similar idea can be applied to (14) when measurement error exists. Started by the least

squares function in (14), its population-level objective function is
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LðβsÞ ¼ βs ⊤ Σ∖fsgβs � βs ⊤ Σs; ∖fsg; (44)

where Σ∖fsg ¼ varðX ∖fsgÞ and Σs; ∖fsg ¼ covðXs; X ∖fsgÞ. Inspired by S∗, Σ∖fsg and Σs; ∖fsg can be
estimated by bΣ∖fsg ¼ 1

n

Xn
i¼1

X ∗
i; ∖fsgX

∗ ⊤
i; ∖fsg � Σϵ; ∖fsg (45)

and bΣs; ∖fsg ¼ 1

n

Xn
i¼1

X ∗
i; sX

∗
i; ∖fsg � Σϵ; s; (46)

where Σϵ; ∖fsg is the ðp � 1Þ � ðp � 1Þ submatrix with the s-th row/column deleted and Σϵ; s is
the s-th column of Σϵ. Therefore, the ‘corrected’ LASSO estimator is given by

bβs ¼ argmin
βs

bLðβsÞþλ‖βs‖1
n o

;

where bLðβsÞ is (44) with Σ∖fsg and Σs; ∖fsg replaced by (45) and (46), respectively.
To explore a general setting and provide a flexible strategy to deal with measurement error

effects, Chen & Yi (2022) considered mixed graphical models (6) with Y and Z replaced by pC
-dimensional vector of continuous variables XC and pD-dimensional vector of discrete vari-
ables XD, respectively. In the presence of measurement error in continuous and discrete ran-
dom vector, two measurement error models (42) and (43) can be accommodated to character-
ise XC and XD as well as their surrogate versions, respectively. To correct for measurement
error effects and recover the underlying true graph, the simulation-based neighbourhood-set
likelihood method was proposed, whose key idea is to employ the working data generated
based on (42) and (43) to eliminate measurement error effects. The estimation procedure is
outlined below:

Stage 1: Simulation

Suppose thatX can be decomposed asX ¼ X ⊤
C ; X ⊤

D

� � ⊤
. LetX ∗

C andX
∗
D denote

the surrogate version ofXC andXD, respectively. LetR be a given positive integer and
let Z ¼ ζ 0; ζ 1; …; ζMf g be a sequence of pre-specified values with 0 ¼ ζ 0 <
ζ 1 < … < ζM , where M is a positive integer and ζM is a pre-specified positive
number. In applications, R is set as a value between 100 and 500 and Z is taken
as a collection of M points that equally cut the interval ½0; ζM � with M set as 5 or
10 and ζM set as 1 or 2. For i ¼ 1; …; n and r ¼ 1; …; R, we generate ϵi; r from
Nð0; ΣϵÞ and then define

WC; iðr; ζ Þ ¼ X ∗
C; i þ

ffiffiffi
ζ

p
ϵi; r (47)

for ζ ∈ Z. For the discrete random vector X ∗
D, we generate

WD; iðr; ζ Þ ¼ MC½Pζ � X ∗
D; i

	 

(48)

for ζ ∈ Z, where Pζ ¼ ΛDζΛ�1 with Dζ representing a diagonal matrix whose di-
agonal entries are determined by corresponding entries in D with power ζ . Let

Wi;· ðr; ζ Þ ¼ W ⊤
C; iðr; ζ Þ; W ⊤

D; iðr; ζ Þ
	 
 ⊤

, and we callWi;· ðr; ζ Þ the working data
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for r ¼ 1; …; R, ζ ∈ Z, and i ¼ 1; …; n. We explain the purpose of adopting the
working data. Noting that for a given r,

WC; iðr; ζ Þ XC; i ∼ N XC; i; ð1þ ζ ÞΣϵ
� ��� andWD; iðr; ζ Þ ¼ MC P1 þ ζ� �

XD; i

� �
for ζ ∈ Z, where the value of ζ reflects the degree of mismeasurement in the working
data. With ζ ¼ 0,WC; iðr; ζ Þ andWD; iðr; ζ Þ recover our actually collected surrogates
X ∗

C; i and X
∗
D; i. With a positive and increasing ζ ,WC; iðr; ζ Þ andWD; iðr; ζ Þ incur an

increasing amount of mismeasurement. When ζ ¼ �1, WC; iðr; ζ Þ and WD; iðr; ζ Þ
reduce to XC; i and XD; i, respectively, the ideal situation without mismeasurement.

Stage 2: Estimation
Let VC and VD denote vertex sets of continuous and discrete random variables,

respectively. With two vertices s ∈ VC and s0 ∈ VD fixed, replacing the unobserved
variable X i;· in (17) and (18) by the working data Wi;· ðr; ζ Þ yields two optimisers,

denoted as bθCðs; ζ ; rÞ and bθDðs0; ζ ; rÞ, respectively, for ζ ∈ Z, r ¼ 1; …; R, s ¼
1; …; pC and s0 ¼ 1; …; pD. Next, for fixed s, s0 and ζ ∈ Z, we calculate

bθCðs; ζ Þ ¼ 1

R

XR
r¼1

bθCðs; ζ ; rÞ and bθDðs0; ζ Þ ¼ 1

R

XR
r¼1

bθDðs0; ζ ; rÞ: (49)

Stage 3: Extrapolation
Motivated by the explanation in Stage 1, the goal is to obtain estimators corre-

sponding to the error-free scenario (i.e. ζ ¼ �1). The key strategy in this stage is
to employ a regression model based on the patterns obtained from Stage 2 for differ-
ent degrees of mismeasurement and then obtain the desired estimator by taking ζ ¼
�1as the predicted value. Specifically, grouping the estimators obtained from (49),

we obtain two sequences C; s ¼ ζ ; bθC s; ζð Þ
	 


:ζ ∈ Z
n o

and D; s0 ¼
ζ ; bθD s0; ζð Þ
	 


:ζ ∈ Z
n o

for s ∈ VC and s0 ∈ VD . Then we regress bθC s; ζð Þ orbθD s0; ζð Þ on ζ by fitting models

bθC s; ζð Þ ¼ GC ζ ; ΓCð Þ þ δC and bθD s0; ζð Þ ¼ GD ζ ; ΓDð Þ þ δD (50)

to the sequences C; s and D; s0 , where GCð · ; · Þ and GDð · ; · Þ are user-specified
regression functions (such as linear or quadratic functions), ΓC and ΓD are the associ-
ated parameter vectors, and δC and δD represent the noise terms. Parameters ΓC and
ΓD can be estimated by applying the least squares method to the sequences C; s and

D; s0; let bΓC and bΓD denote the resulting estimates ofΓC andΓD, respectively. Next, we
extrapolate models (50) by letting ζ ¼ �1 and calculate the predicted vectors

bθCðsÞ ¼ GCð�1; bΓCÞ and bθDðs0Þ ¼ GDð�1; bΓDÞ: (51)

Furthermore, following the discussion in Section 2.2.3, we can adopt (51) to re-
cover homogeneous and heterogeneous neighbourhood sets of continuous and bi-
nary variables.

3.6 Latent Variables in Graphical Models

The latent variable is the case that variables are unobserved or not accessible. In the standard
setup, suppose X ∈ ℝpO þ pH is a Gaussian random vector, which can be decomposed as
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X≡ X ⊤
O ; X ⊤

H

� � ⊤
, where XO is the observed variable, XH is the hidden/latent variable, and O

and H are disjoint subset of indices in f1; 2; …; pO þ pHg with jOj ¼ pO and jH j ¼ pH .
Let Σ denote the covariance matrix of X , which can be further decomposed to sub-block

covariacne matrices of XO, XH, and ðXO; XHÞ, denoted as ΣO, ΣH, ΣOH and ΣHO ¼ Σ ⊤
OH, respec-

tively. The main interest is to estimate the observed concentration matrix

Θ∗
O ≜ Σ�1

O ¼ ΘO � ΘOHΘ�1
H ΘHO; (52)

where ΘO, ΘH , ΘOH and ΘHO are sub-block matrices of Σ�1.
Motivated by (52), rewrite Θ≡ΘO and define

Θ∗ ≜Θ � 

with being assumed as low-ranked matrix. Inspired by the GLASSO method in Section 2.2.1,
Chandrasekaran et al. (2012) proposed to estimate Θ and  by the following optimisation:

min
Θ � ≻0

≥ 0

tracefSðΘ � Þg � logfdetðΘ � Þgþλ1ψðΘÞþλ2traceðÞ½ �; (53)

and the Newton-CG-based proximal point algorithm can be employed to solve (53). To effi-
ciently solve the optimisation problem, Ma et al. (2013) proposed the first-order ADMM and
proximal gradient-based alternating direction methods by re-expressing (53) to a convex
minimisation problem with two blocks of variables and two separable functions. Moreover,
Meng et al. (2014) adopted the decomposable regularisation method to derive error bound for
the precision matrix and its estimate.
To relax the normality assumption and parametric setting, Fan et al. (2017) further extended

latent variables to mixed graphical models. Specifically, X is defined as X ¼ X ⊤
C ; X ⊤

D

� �⊤
,

where XC is a pC-dimensional continuous vector and XD is a pD-dimensional discrete vector
whose components are defined as XD; j ¼ ðZj > CjÞ for all j ¼ 1; …; pD , where C ¼
ðC1; …; CpDÞ⊤ is a vector of constant and Z ¼ ðZ1…; ZpDÞ⊤ is a pD-dimensional vector satis-
fying ðZ; XCÞ ∼ NPNð0; Σ; f Þ that has been defined in Section 3.2 with μ ¼ 0. Thus, based on
this structure, we refer X to follow a latent Gaussian copula model, denoted as
X ∼ LNPNð0; Σ; f ; CÞwith Σ being the latent correlation matrix, because the observed binary
variables are obtained by dichotomising latent variables Z . Because of unavailability of Z , to
estimate Σ based on observed data XC and XD, the Kendall’s τ (24) is employed, and a suitable
transformation gives the estimator of Σ. To further estimate Θ ≜ Σ�1, the GLASSO or CLIME
methods are applied with Σ replaced by its estimator.
Here, we give a remark to clarify the differences between measurement error in Section 3.5

and latent variables in this section. First, in measurement error models, X may not be precisely
measured, but its observed version X ∗ can be collected; our inferences would be based on using
measurementX ∗ with suitable adjustment to facilitate the possible differences betweenX andX ∗.
The key difficulties in the framework of measurement error are to develop a proper adjustment to
fit each specific model for the response process and the measurement error process, and the
likelihood-based methods are not the only approach.
A second noticeable difference lies in the interpretation and nature of the variables. Latent

variables are random variables which can never be observed; their behaviour is mainly featured
by an assumed distribution which cannot be testified. On the other hand, for the problems with
measurement error, although the true variable X may not be observed for every subject in the
study, it is possible to obtain the true value ofX in situations where validation data are available.
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In addition, X does not have to be always taken as a random variable, and its distribution does
not have to be specified when conducting inferences (Chen & Yi, 2021b).

3.7 Time Series Graphical Models

In the preceding sections, we have discussed graphical models under complex settings or
noisy data, but their common feature is time-independent. An attractive setting is dynamic
graphical models, which incorporate the time series structure in high-dimensional data.

Let X ðvÞ ¼ X 1ðvÞ; …; XpðvÞ
� �⊤

with v ∈ ℤ be a multiple time series, where X sðvÞ for s ¼
1; …; p are univariate real components.

We start the discussion by introducing the pioneering work of Dahlhaus (2000). Similar to
preceding sections, an edge ðs; tÞ reflects conditional dependence ofX sðvÞ andX tðvÞ given other
components. Rigorously, define YstðvÞ ¼ X jðvÞ: j ≠ s; t

� �
as a vector with X sðvÞ and X tðvÞ re-

moved. We first remove the linear effect of Y stðvÞ from X sðvÞ and X tðvÞ by minimising

 X sðvÞ � μs �
X∞
u¼�∞

dsðv � uÞYstðuÞ
( )2

and  X tðvÞ � μt �
X∞
u¼�∞

dtðv � uÞYstðuÞ
( )2

with respect to μs, μt, and filters dsðuÞ and dtðuÞ. Let bμs and bμt denote the resulting optimisers,
and the ‘residuals’ are denoted as

Es ðvÞ ≜ Esjfs; tgcðvÞ ≜ XsðvÞ � bμs �
X∞
u¼�∞

bdsðv � uÞYstðuÞ
and

Et ðvÞ ≜ Etjfs; tgcðvÞ ≜ X tðvÞ � bμt �
X∞
u¼�∞

bdtðv � uÞYstðuÞ:

Let X s≜ X sðvÞ:v ∈ ℤð Þ and Yst≜ YstðvÞ:v ∈ ℤð Þ. Then X s is independent of X t given Yst if and
only if cov EsðvÞ; Etðvþ uÞf g ¼ 0 for all u ∈ ℤ . This approach is called partial correlation
graph.

Another characterisation of the edges in the graph can be obtained from the partial spectral
coherence. Let the cross-spectrum of X sðvÞ and X tðvÞ be defined as

f X sX t
ðzÞ ¼ 1

2π

X∞
u¼�∞

CstðuÞexpð�izuÞ;

where i is the imaginary unit with i2 ¼ �1 and CstðuÞ ¼ cov X sðvþ uÞ; X tðvÞf g is the covari-

ance function of the process with
X∞
u¼�∞

CstðuÞj j < ∞. Under those definitions, a measure of the

dependence between X sðvÞ and X tðvÞ given YstðvÞ is given by f X sX t jY st
ðzÞ ≜ f EsEtðzÞ. Rescaling it

leads to the partial spectral coherence:

RX sX t jYst ðzÞ ≜
f X sX t jY st

ðzÞ
f X sX sjY st

ðzÞf X tX t jYst
ðzÞ

n o1=2
:

We have that RX sX t jYst
ð · Þ ≠ 0 if and only if ðs; tÞ ∈ E.

A general class of multivariate autoregressive processes is also explored in graphical models.
Following the concept in time series analysis, the vector autoregressive (VAR) process is

X ðvÞ ¼
Xq
j¼1

ΓjX ðv � jÞþUðvÞ; (54)
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where Γj is the p� pmatrix for j ¼ 1; …; q andUðvÞ ∼ Nð0; ΣÞ. Let ΓðzÞ ¼ Ip � p �
Xq
j¼1

Γjz
j.

If detfΓðzÞg ≠ 0 for all z ∈ with jzj ≤ 1, then the recursion ΓðzÞ has a stationary solution (e.g.
Dahlhaus, 2000; Wilson et al., 2016, p. 31). Moreover, when component ðk; lÞ in Γj, denoted
Γjðk; lÞ, for j ¼ 1; …; q is significantly larger than 0, then we say Xk is Granger-causal for
X l , which indicates that X l can be predicted efficiently if the information in the Xk process is
taken into account (e.g. Lütkepohl, 2005, pp. 42 and 44).
The main interest is to examine the component inΓj, denoted asΓj; st for s ≠ t, as it is regarded

as the ‘influence’ from X tðv � jÞ on X sðvÞ. In other words, there is no influence from compo-
nent t on s if the entry ðs; tÞ in Γð · Þ is equal to zero, that is, Γstð · Þ≡ 0. A more detailed
justification to explain this phenomenon can be referred to Dahlhaus (2000, Section 4).
To deal with this problem, some methods have been developed. To name a few, Han &

Liu (2013) and Basu et al. (2019) considered a single time-lag

X ðvÞ ¼ ΓX ðv � 1ÞþUðvÞ
that is a special case of (54) with q ¼ 1. Regarding the methodologies, Han & Liu (2013) pro-
posed the constrained convex optimisation problem

min
Γ ∈ ℝp � p

P
s; t

Γstj j
s:t: SΓ � S1k kmax ≤ λ0;

where λ0 > 0 is a tuning parameter, S ¼ 1

T

XT
v¼1

X ðvÞX ðvÞ⊤ , and S1 ¼ 1

T � 1

XT � 1

v¼1

X ðvÞX ðvþ 1Þ⊤. The other ap-

proach proposed by Dahlhaus (2000) is to decompose Γ as Γ ¼ ΓL þ ΓR, where ΓL is a low-rank
matrix and ΓR is a structured sparse matrix. To estimate Γ, it suffices to solve the following
minimisation problem:

ðbΓL; bΓRÞ ¼ argmin
ΓL ; ΓR
ΓL ∈ S

1

2
 � ðΓL þ ΓRÞk k2F þ λL ΓLk k∗ þ λR ΓRk k1

� �
;

where  ¼ X ðTÞ; …; X ð1Þð Þ⊤ ,  ¼ X ðT � 1Þ; …; X ð0Þð Þ⊤ , S ¼ ΓL ∈ ℝp � p :‖ΓL‖max ≤
κ
p

� �
with κ being

the parameter to control the degree of non-identifiability of the matrices allowed in the model
class, ‖ · ‖∗ is the nuclear norm that is the sum of the singular values of a matrix, and λL and
λR are tuning parameters.
Furthermore, Skripnikov & Michailidis (2019) explored (54) with consideration of various

groups of subjects. A new VAR model is formulated by

X ðkÞðvÞ ¼
Xq
j¼1

ΓðkÞ
j X ðkÞðt � jÞþU ðkÞðvÞ;

for k ¼ 1; …; K, where U ðkÞðvÞ ∼ Nð0; σ2ðkÞIp � pÞ with a variance σ2ðkÞ. To characterise shared

structure across all K subjects and account for the presence of heterogeneity from

subject-specific effects, we decompose ΓðkÞ
j as ΓðkÞ

j ¼ ΓðkÞ
j; C þ ΓðkÞ

j; L , where ΓðkÞ
j; C is the common

component of order p temporal effects for the k-th subject and ΓðkÞ
j; L is the idiosyncratic compo-

nent. To estimate ΓðkÞ
j; C and ΓðkÞ

j; L, an intuitive approach is to separately estimate each row of ΓðkÞ
j; C

and ΓðkÞ
j; L. Specifically, for a fixed k, the i-th component inX ðkÞðvÞ for all v can be expressed in the

following form:
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eX ðkÞ
i ¼ W ðkÞ ΓðkÞ

C ½i; · �þΓðkÞ
L ½i; · �

	 

þ eU ðkÞ

i ;

where eX ðkÞ
i ¼ X ðkÞ

i ð0Þ; …; X ðkÞ
i ðTÞ

	 
⊤
, eU ðkÞ

i ¼ U ðkÞ
i ð0Þ; …; U ðkÞ

i ðTÞ
	 
⊤

, W ðkÞ is a matrix

with components X ðkÞ
i ðv � uÞ for u ¼ 1; …; v and v ¼ q; …; T , ΓðkÞ

C ½i; · � ¼
ΓðkÞ⊤
1; C ½i; · �; …; ΓðkÞ ⊤

p; C ½i; · �
	 
⊤

and ΓðkÞ
j; C½i; · � is a vector with component ΓðkÞ

j; C½i; l� that is
the entry ði; lÞ in ΓðkÞ

j; C for l ¼ 1; …; p and j ¼ 1; …; p, and similar definition to ΓðkÞ
L ½i; · �.

Furthermore, let  denote a block diagonal matrix with the k-th block being W ðkÞ, and defineeðkÞ
i ¼ eX ð1Þ ⊤

i ; …; eX ðKÞ ⊤
i

	 
⊤
,  ¼ diagðσ2ð1Þ; …; σ2ð1Þ; …; σ2ðKÞ; …; σ2ðKÞÞ, eΓC½i; · � ¼

Γð1Þ ⊤
C ½i; · �; …; ΓðKÞ ⊤

C ½i; · �
	 
⊤

, eΓL½i; · � ¼ Γð1Þ ⊤
L ½i; · �; …; ΓðKÞ ⊤

L ½i; · �
	 
⊤

. Therefore,

to estimate ΓðkÞ
C ½i; · � and ΓðkÞ

L ½i; · � for k ¼ 1; …; K, we can adopt the penalised weighted least
squares method

mineΓC ½i; · �; eΓL½i; · �½ �1=2 e i �  eΓC ½i; · �þeΓL½i; · �Þð gk22 þ λi; L eΓL½i; · �k1k
���

þλi; C
Xp
l¼1

Γð1Þ
C ½i; l�; …; ΓðKÞ

C ½i; l�
	 
 ⊤
���� ����

2

þλ∗
Xp
l¼1

XK
k¼1

ΓðkÞ
C ½i; l� � ΓðkÞ

L ½i; l�j
��� i

;

where λi; L, λi; C , and λ∗ are tuning parameters. Here, the first penalty is the well-known sparse

LASSO penalty that aims to detect non-zero elements for each ΓðkÞ
L ½i; · � with k ¼ 1; …; K

and i ¼ 1; …; p. The second penalty function is referred to the group LASSO penalty that ei-
ther shrinks the l-th element to zero for all K vectors or estimates it to be non-zero for all K
vectors. Finally, in the last penalty function, a tuning parameter value λ∗ is set high enough, so

that the intersection of the supports forΓðkÞ
C ½i; · � andΓðkÞ

L ½i; · � is empty. To solve this optimisation
problem, a two-stage algorithm performing an alternate convex search method is adopted.

4 Network Structures With Regression Models

In Sections 2 and 3, we introduce the estimation methods for graphical models that focus on
characterising the (pairwise) dependence structure of variables. When we build regression
models, it is crucial to incorporate the network structures since the multivariate covariates
and/or responses may not be independent in most situations. Therefore, in this section, we in-
troduce regression models with network structures accommodated. A brief summary is avail-
able in Table 3.

4.1 Linear Models

In this subsection, we discuss the multivariate linear model with the network structure accom-
modated in the response. The motivated example of this study comes from the glioblastoma
multiforme (GBM) cancer dataset (Lee & Liu, 2012; Wang, 2015). This dataset contains 534
microRNA expression values and 11861 gene expression values. The sample size in this dataset
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is 202. The main interest in this dataset is to regress the microRNA expressions on the gene ex-
pressions by linear models and explore (a) the relationship between the responses (microRNA)
and covariates (gene expression) and (b) the network structure of microRNA based on fitted re-
gression models.
Let n; m and p denote the numbers of subjects, responses and covariates/parameters, respec-

tively. A multivariate linear model is formulated by

Y ¼ XBþ e; (55)

where Y ¼ y1; …; yn½ �⊤ is a n� m response matrix with m-dimensional vectors of responses
yi ¼ yi1; …; yimð Þ⊤ for i ¼ 1; …; n, X ¼ x1; …; xn½ �⊤ is a n� p design matrix with p-dimensional

vectors of covariates xi ¼ xi1; …; xip
� �⊤

for i ¼ 1; …; n, e ¼ ϵ1; …; ϵn½ �⊤ is a n� m error

matrix with m -dimensional vectors of errors ϵ i ¼ ϵi1; …; ϵimð Þ ⊤ for i ¼ 1; …; n , and B ¼
β1; …; βm½ �⊤ is a p� m parameter matrix with p -dimensional vectors of parameters

βi ¼ βi1; …; βip
	 
⊤

for i ¼ 1; …; m.

We further assume that X is fixed effect and ϵ i is i.i.d. and follows the Gaussian distribution
Nð0; ΣÞ, where Σ ¼ σst½ �ms; t¼1 is assumed to be positive definite. Let Θ ¼ θst½ �ms; t¼1 ≜ Σ�1. The
main target is to estimate B and Θ, where the estimator of B gives the similar interpretation
in conventional regression models and the estimator of Θ reflects the network structure of the
response Y.
We primarily introduce two methods to deal with this problem. The first method is proposed

by Lee & Liu (2012). The key idea of this method is based on the graphical LASSO method.
Specifically, based on (55), we have YjX ∼ NðXB; ΣÞ. Similar to the optimisation in (8), esti-
mators of B and Θ is given by

ðbB; bΘÞ ¼ argmin
B; Θ

h
� n log detðΘÞþtrace Y � XBð ÞΘ Y � XBð Þ ⊤

n o
þλ1

X
j; k

wjk jβjk jþλ2
X
s ≠ t

vstjθstj
i
;

where λ1 and λ2 are two tuning parameters andwjk and vst are weights for the adaptive LASSO. In

the computational perspective, to derive bB and bΘ in numerics, Lee & Liu (2012) provide the
following computational algorithm:

Step 1: Set the separate LASSO solutions βðoldÞjk with j ¼ 1; …; p and k ¼ 1; …; m, and ΘðoldÞ.

Table 3. Summary of supervised learning methods with network structures accommodated. Topics summarise the commonly
used models or data structures in Section 4. Estimation methods show the strategies for constructing models. References
reflect the citations of methods.

Topics Estimation methods References

Multivariate linear models (1) The graphical LASSO Lee & Liu (2012)
(2) Conditional inference Wang (2015)

Multi-class classification (1) Logistic regression with homogeneous or class-dependent
graphically structured covariates accommodated

Chen et al. (2019)

(2) SVM with network based surrogate covariate He et al. (2019)
(3) Network based linear/quadratic discriminant analysis Chen (2022a, 2022c)

Survival analysis (1) Variable selection and SIMEX methods for modelling the Cox PH
model with network based and error-prone covariates

Chen & Yi (2021a)
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Step 2: Given ΘðoldÞ, the updated value BðnewÞ is given by

BðnewÞ ¼ argmin
B

h
trace Y � BXð ÞΘðoldÞ Y � BXð Þ⊤

n o
þ λ1

P
j; k

wjk jβjk j
i
:

Step 3: Given BðnewÞ, the updated value ΘðnewÞ is given by

ΘðnewÞ ¼ argmin
Θ

h
trace Y � BðnewÞX

	 
⊤
Y � BðnewÞX
	 


Θ
n o

� log detðΘÞþλ2
n

X
s ≠ t

vstjθstj
i
:

Step 4: Continue Steps 2 and 3 until convergence.

The second method, proposed by Wang (2015), borrows the idea of the conditional inference
and extends it to the multivariate linear model. To see this, we fix k without loss of generality.
Let yk ¼ y1k ; …; ynkð Þ⊤ be the k-th response and letY�k denote the response matrix ofYwith-
out yk. DefineB�k as the parameter matrix ofBwith βk removed. For any matrixA, letA�k; k be
the k-th column ofAwith k-th component deleted, and letA�k; �k denote a sub-matrix ofAwith
k-th row and column deleted.

By some derivations, the conditional distribution of yk X; Y�k
� ��� is given by

yk X; Y�k
� ��� ∼ N Xβk þ Y�k � XB�k

� �
γk ; eσkkIn

� �
; (56)

where eσkk ¼ σkk � Σ ⊤
�k; kΣ

�1
�k; �kΣ�k; k and γk ¼ Σ�1

�k; �kΣ�k; k ¼ Θ�k; k

θkk
. Note that γk is a func-

tion of Θ, it implies that γk can reflect the dependence between k-th variable and others. There-
fore, the estimators of βk and γk can be determined by

eβk ; eγk� � ¼ argmin
βk ; γk

yk � Xβk � Y�k � XB̌
ð0Þ
�k

	 

γk

��� ���2
2

�
þ ζ 1

Xp
j¼1

ujk βjk
�� ��þ ζ 2

X
s ≠ k

vsk γskj jg;
where B̌

ð0Þ
�k is an initial consistent estimate of B�k, ζ 1 and ζ 2 are two tuning parameters, and ujk

and vsk are weights for the adaptive LASSO.
SinceΘ is a symmetric matrix, it implies that signðθskÞ ¼ signðθksÞ and signðγskÞ ¼ signðγksÞ.

Similar to the crucial issue in Section 2.2.2, two estimatorsbγsk andbγks may not be equal. There-
fore, Wang (2015) suggested setting the final estimators to be zero by the ‘AND rule’ γ̃sk ¼
0and γ̃ks ¼ 0 or the ‘OR rule’ γ̃sk ¼ 0or γ̃ks ¼ 0.

Regarding comparisons of numerical results, Wang (2015) examined his proposed method
and compared the performance with Lee & Liu (2012). Numerical results showed that the
method proposed by Wang (2015) outperforms that developed by Lee & Liu (2012) with
smaller biases of estimators of B and Θ.

In addition to two methods that are based on the GLASSO method and the conditional infer-
ence, respectively, some approaches were also proposed to deal with estimations of the precision
matrix in the presence of the multivariate responses. For example, as motivated by analysis of ge-
netical genomics data, Cai et al. (2013) and Yin & Li (2013) proposed a two-stage estimation
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procedure to first identify the relevant covariates that affect themeans by aℓ1 penalisation and then
estimate the precision matrix using the estimated regression coefficients in the first stage.
Rothman et al. (2010) focused on improving estimation of regression coefficients by incorpo-
rating the covariance information. Li et al. (2012) developed a method that is based on a com-
bination of a kernel-based estimate of the means and a regularised estimate of the precision
matrix.

4.2 Classification

While several methods have been developed to estimate graphical structures based on multi-
variate linear models as presented in Section 4.1, little work has been available to address graph-
ical structure in classification, especially for multi-label classes, which is an important problem
in supervised learning. The goal of classification is to use the information of covariates to clas-
sify subjects to I different classes, where I ≥ 2 is the number of labels. As discussed in
Chen (2018), it is expected that there exists the (pairwise) dependence structure within covari-
ates and that network structures in each class may be different from each other.
In the existing literature, some machine learning methods with network structures accommo-

dated have been discussed. To name a few, Cai et al. (2018) proposed the network linear dis-
criminant analysis that takes network information in predictive variables into consideration.
Zhu et al. (2009) considered penalised support vector machine (SVM) whose penalty function
is based on the set of all pairs of connected covariates. However, those approaches focused on
the binary outcome, that is, I¼ 2, which is a special case of multiclassification with I ≥ 2.
In this section, we introduce some recent works that can handle classification for

multi-classes (I > 2). The first method proposed by Chen et al. (2019) is the logistic regression
with graphically structured covariates accommodated. Specifically, to describe the covariate X
as well as the network structure, the exponential family graphical model (4) is employed, and
the corresponding conditional distribution of xs given x∖fsg for s ¼ 1; …; p is given by

ℙθsðxsjx∖fsgÞ ¼ exp xs
X

t ∈ V∖fsg
θstxt

8<:
9=;þ CðxsÞ � D

X
t ∈ V∖fsg

θstxt

8<:
9=;

24 35;
where θs ¼ θs1; …θsðs � 1Þ; θsðs þ 1Þ; …; θsp

� �⊤
, x∖fsg is the ðp � 1Þ-dimensional vector as de-

fined in (14), andDð · Þ is the normalising constant. Based on sample with size n, the conditional
inference in Section 2.2.2 can be employed, and the estimator of θs for s ¼ 1; …; p is given by

bθs ¼ argmin
θs

�1

n

Xn
j¼1

logℙθsðxjsjxj; ∖fsgÞþλ‖θs‖1

( )
; (57)

where λ is a tuning parameter. Thus, the estimated edge set and the estimated graph can be ob-
tained by AND rule.
There are two methods to do classification. The first approach is called logistic regression

with homogeneous graphically structured predictors (LR-HomoGraph), which considers the
case where the subjects in different classes share a common network structure in the predictors.

Specifically, let bE denote the resulting edge set based on whole data. Then the network based
nominal logistic regression is given by
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pijðxjÞ ¼
exp αi0 þ

X
ðs; tÞ ∈ bEαi; stxjsxjt

0@ 1A
1þ

XI � 1

l¼1

exp αl0 þ
X

ðs; tÞ ∈ bE αl; stxjsxjt
0@ 1A

(58)

for i ¼ 1; 2; …; I � 1, where ðαi0; ðαi; st :ðs; tÞ ∈ bEÞ⊤Þ⊤ is the vector of parameters associated

with class i and the constraint
XI
i¼1

pijðxÞ ¼ 1 is imposed for every j ¼ 1; …; n . When

ðαi0; ðαi; st :ðs; tÞ ∈ bEÞ⊤Þ⊤ for i ¼ 1; …; I is estimated by the likelihood function of (58)
(e.g. Agresti, 2012, p. 273), (58) can be estimated accordingly, and denote the estimator asbpijðxjÞ. The predicted class of a subject j, denoted as i∗, is then determined by the largest value

of bp1jðxjÞ; …; bpI jðxjÞn o
, that is, i∗ ¼ argmax

i¼1;…; I
bpijðxjÞ.

The second method, called the logistic regression with class-dependent graphically struc-
tured covariates (LR-ClassGraph), stratifies the covariate information by class when
characterising the covariate network structures and uses network structures in different classes
to classify subjects. Specifically, for every i and j with i ¼ 1; …; I and j ¼ 1; …; n, define a
binary and surrogate response variable

Y i
j ¼

1; the j-th subject is in class i;

0; otherwise

(
and let bEi denote an estimated set of edges for predictors in class i. After that, define πiðxjÞ ¼
P Y i

j ¼ 1jX j ¼ xj
	 


and consider the class-dependent logistic regression

logit πiðxjÞ
� � ¼ γi0 þ

X
ðs; tÞ ∈ bEi

γistxjsxjt; (59)

where γ0i ; ðγsti :ðs; tÞ ∈ bEiÞ⊤
	 
⊤

is the vector of parameters associated with class i. Applying the

maximum likelihood estimation method based on (59) yields the estimator of

γ0i ; ðγsti :ðs; tÞ ∈ bEiÞ⊤
	 
⊤

, and thus, the estimator bπ iðxjÞ can be obtained from (59). Therefore,

the predicted class label for a subject j is determined by i∗ ¼ argmax
i¼1;…; I

bπ iðxjÞ.
Regarding machine learning methods, network structures are also accommodated to support

vector machine (SVM). For the multi-class response, He et al. (2019) considered the exponen-
tial family graphical model and employed (57) to estimate the network structure. Different from
the approach in Chen et al. (2019) that adopt pairwise interactions to reflect network structures,
He et al. (2019) proposed the network based surrogate covariates to replace the ‘original’ covar-
iates in SVM.

Suppose that bG ¼ ðV ; bEÞ is the estimated graph obtained by (57) based on whole data. To

reflect different association structures among the covariates, we divide the estimated graph bG
as a sequence of non-overlapped and interconnected subgraphs bGk :k ¼ 1; …; K

n o
, where

1 ≤ K ≤ p is the number of subgraphs in bG, and bGk ¼ Vk ; bEk
	 


represents the k-th subgraph
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with Vk and bEk being the corresponding vertex and edge subsets, respectively. Moreover,

⋃
K

k¼1
Vk ¼ V and two subsets Vk1 and Vk2 are disjoint for k1 ≠ k2. When the edge subset bEk is

empty, the corresponding vertex subset Vk contains a single element.

We now adopt bGk with k ¼ 1; …; K to define surrogate covariates, and each subgraph re-
flects a new covariate, yielding a K-dimensional vector of predictors, denoted as

X⋆
j ≜ X ⋆

j; 1; …; X ⋆
j; K

	 
⊤
. The first formulation summarises the predictor measurements using

the vertex information in the subgraphs and defines X⋆
j as XV

j ¼ XV
j; 1; …; XV

j; K

	 
⊤
with

XV
j; k ¼

1

Vk
�� �� X

s ∈ Vk

X j; s (60)

for k ¼ 1; …; K, where Vk
�� �� is the cardinality of the vertex subset Vk . If there exists the k-th

vertex that is fully unconnected other vertices, that is,Vk ¼ fkg, then the k-th surrogate variable
is defined as XV

j; k ¼ X j; k .

The second formulation uses the edge information in the subgraphs and defines X⋆
j as XE

j ¼
XE

j; 1; …; XE
j; K

	 
⊤
with

XE
j; k ¼

1bEk
��� ���

X
s; tð Þ ∈ bEk

X j; sX j; t (61)

for k ¼ 1; …; K, where bEk
��� ��� is the cardinality of the edge subset bEk. Moreover, noting that whenbEk is empty, XE

j; k is defined as the predictor X j; k whose index falls in the corresponding vertex

subsetVk. Finally, when the vector of surrogate covariates is derived, replacing the original covar-
iate X by the surrogate covariate X⋆ in the SVM algorithm enables us to do classification.
The last strategy based on supervised learning is based on discriminant analysis. Let f jjiðX j;·Þ

denote the conditional probability density function of the predictor X j;· given that subject j

comes from the i-th class for i ¼ 1; …; I and j ¼ 1; …; n. Let πi ¼ P Y j ¼ i
� �

denote the prob-

ability that the j-th subject is randomly selected from class i. It is immediate that
XI
i¼1

πi ¼ 1: By

some algebra (Hastie et al., 2008, p. 108) and the Bayes theorem, we obtain the posterior
probability

P Y j ¼ ijX j;·
	 


¼ f jjiðX j;·ÞπiPI
l¼1

f jjlðX j;·Þπl
(62)

for i ¼ 1; …; I and j ¼ 1; …; n. For arbitrary two classes i and l with i ≠ l, the log-ratio of (62)
is defined as

log
P Y j ¼ ijX j;·
	 


P Y j ¼ ljX j;·
	 


8<:
9=; ¼ log

f jjiðX j;· Þ
f jjlðX j;· Þ

 !
þ log

πi
πl

� �
: (63)

If we particularly specify f jjið · Þ as the normal distribution N μi; Σið Þ for class i and define

Θi ¼ Σ�1
i as in Section 2.1.1, then (63) will become
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log
πi
πl

� �
þlog

Θlj j�1=2

Θij j�1=2

 !

þ1

2
ðX j;· � μlÞ⊤ ΘlðX j;· � μlÞ � ðX j;· � μiÞ⊤ ΘiðX j;· � μiÞ
n o

:

(64)

Moreover, if Σi is equal to a commonmatrixΣ for all i ¼ 1; …; I, then we can defineΘ ≜ Σ�1,
and (64) will reduce to

log
πi
πl

� �
� 1

2
μi þ μlð Þ⊤ Θ μi þ μlð Þ þ X⊤

j;· Θ μi þ μlð Þ: (65)

Following the discussion in Hastie et al. (2008), (64) and (65) separately give a quadratic
function with respect to x based on the class i

φiðxÞ ¼ log πið Þ þ 1

2
log Θij j � 1

2
ðx � μiÞ⊤ Θiðx � μiÞ (66)

and a linear function with respect to x based on the class i

δiðxÞ ¼ log πið Þ � 1

2
μ ⊤
i Θμi þ x ⊤ Θμi: (67)

If Θi in (66) and Θ in (67) are sparse, then one can adopt the GLASSO method in Section
2.2.1 to estimate them, yielding NetQDA and NetLDA for estimated (66) and (67), respectively
(e.g. Chen, 2022c). The implementation can be found by the R package NetDA discussed by
Chen (2022a). In fact, if Σi and Σ are empirically estimated and are directly implemented
to (66) and (67), then they are referred to conventional linear/quadratic discriminant analysis
(LDA/QDA) (e.g. Hastie et al., 2008). For the comparisons among NetLDA/NetQDA and
LDA/QDA, the former methods are able to deal with estimation of sparse Θ or Θi, while the
latter ones fail to address conditional independence of two predictors. Hence, in the presence
of dependence structure of predictors, it is expected that the NetLDA and NetQDA methods
outperform the conventional LDA and QDA methods.

4.3 Joint Modelling for Survival Data

Survival analysis is an important topic in statistical analysis and it has been widely applied in
biostatistics, actuarial science and so on. In the framework of survival analysis, the failure time
is set as the outcome of main interest. Different from generic linear models where the response
is complete, the main challenge is that the survival outcome is usually incomplete due to right-
censoring, which is mainly caused by the loss of follow-up of individuals.

A motivated example of this study is the breast cancer data collected by the Netherlands Cancer
Institute (NKI) (van de Vijver et al., 2002). Tumours from 295 women with breast cancer were
collected from the fresh-frozen-tissue bank of the Netherlands Cancer Institute. Of all those
patients, 79 patients died before the study ended, yielding approximately the 73.2% censoring rate.
In addition, the dataset also contains 70 genes that are useful for tumour diagnosis. In this study, the
main interest is to construct a survival model by treating gene expressions as predictors.

Let eT and eC be the failure time and the censoring time, respectively, and let Δ ¼  eT ≤ eC	 

be the censoring indicator. Let T ¼ min eT ; eCn o

denote the ‘observed’ survival time and let

X ¼ X ⊤
C ; X ⊤

D

� �⊤
be a p-dimensional random vector of covariates with XC and XD being
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continuous and discrete variables, respectively. As commented by Chen (2018), we allow X to
have network structure that can be characterised by mixed graphical models (6).
In standard survival analysis, the Cox proportional hazards (PH) model is often employed

with the hazard function specified as

HðtjX Þ ¼ H0ðtÞexp g X ; αð Þf g;
whereH0ð · Þ is the unspecified baseline hazard function, and g X ; αð Þ is the link function of the
linear predictor with the covariate vectorX and the unknown parameter α. To incorporate the PH
model with network structure in covariates, Chen & Yi (2021a) suggested specifying g X ; αð Þ ¼
log ℙβ; ΘðX Þ
� �

, where ℙβ; ΘðX Þ is given by

ℙβ; ΘðX Þ ¼ exp
X
r ∈ V

βrBðXrÞþ
X

ðs; νÞ ∈ E

θsνBðX sÞBðX νÞþ
X
r ∈ V

CðX rÞ � A β; Θð Þ
8<:

9=;:

It yields the generalised Cox proportional hazards model:

HðtjX Þ ¼ H0ðtÞexp
X
r ∈ V

βrBðXrÞþ
X

ðs; νÞ ∈ E

θsνBðXsÞBðX νÞþ
X
r ∈ V

CðX rÞ
8<: � A β; Θð Þ

�
;

(68)

where βr for r ∈ V is the parameter that reflects the main effect associated with the covariate X r,
and for ðs; νÞ ∈ E, the parameter θsν facilitates the association of Xs and X ν in the sense that
θsν ≠ 0 shows the conditional dependence of X s and X ν given other covariates.
To estimate unknown parameters in (68), the partial likelihood function is frequently em-

ployed (e.g. Lawless, 2003). Based on the observed sample ðTi; X i; ΔiÞ: i ¼ 1; …; nf g with
BðxÞ ¼ x, the likelihood function is given by

ℓ β; Θð Þ ¼
Xn
i¼1

∫
X
r ∈ V

X i; rβr þ
X

ðs; νÞ ∈ E

X i; sX i; νθsν

0@ 1A24
� log

Xn
j¼1

exp
X
r ∈ V

X i; rβr þ
X

ðs; νÞ ∈ E

X i; sX i; νθsν

0@ 1AjðtÞ
8<:

9=;
#
diðtÞ; (69)

where iðtÞ ¼  Ti < t; Δi ¼ 1ð Þ and iðtÞ ¼  Ti ≥ tð Þ.

Ideally, the estimators of β andΘ can be obtained by maximising (69). However, this approach
would fail when β and Θ are assumed to be sparse and the covariate is contaminated with mea-
surement error. To simultaneously deal with measurement error, variable selection for β and net-
work detection for Θ, Chen & Yi (2021a) proposed a simulation-based three-stage procedure.
Specifically, following the strategy in Section 3.5, (47) and (48) are employed to generate the
working data Wi;· ðr; ζ Þ in the first stage. After that, for r ¼ 1; …; R and ζ ∈ Z as described
in Section 3.5, we define the surrogate likelihood function ℓr; ζ β; Θð Þ that is determined by (69)
with X i;· replaced by the working data Wi;· ðr; ζ Þ . Then the optimisation problem of the
penalised likelihood function with double penalty functions is proposed:

bβrðζ Þ; bΘrðζ Þ
	 


¼ argmin
β; Θ

ℓr; ζ β; Θð Þ þ λ1φ1 βð Þ þ λ2φ2 Θð Þ� �
;
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which can be solved by the block-coordinate-descent algorithm. In the last stage, we fit regres-

sion models to each of the two sequences ζ ; bβðζ Þ	 

:ζ ∈ Z

n o
and ζ ; bΘðζ Þ

	 

:ζ ∈ Z

n o
with

bβðζ Þ ¼ 1

R

XR
r¼1

bβrðζ Þ and bΘðζ Þ ¼ 1

R

XR
r¼1

bΘrðζ Þ. Finally, the estimators of β andΘ are obtained by

specifying as the predicted values of fitted models at ζ ¼ �1.

5 Real Data Applications

5.1 Example 1: Analysis of the Cell-Signalling Data

In the first data application, we study the cell-signalling dataset (e.g. Sachs et al., 2005),
which contains p ¼ 11 proteins and n ¼ 7466 cells. In this study, our primary interest is to un-
derstand the relationship among various signalling proteins by investigating signalling pathways
and the dependence structure of proteins. As a result, the goal is to adopt estimation methods in
Sections 2 and 3 to characterise the network structure of 11 proteins.

In our analysis, we start by considering the parametric estimation in Section 2.2 and primarily
implement some existing packages summarised in Section 2.3. Specifically, for the GLASSO
based approaches, we examine the R packages glasso, QUIC, dpglasso and clime;
the resulting graphs are displayed in Figure 3. For the C.I. approach, we employ the estimation
methods in Section 2.2.2, which can be implemented by the R packages XMRF, space and
gconcord, respectively. The resulting graphs are displayed in Figure 4. In Figure 3, we ob-
serve that two packages glasso and dpglasso produce graphs with complex edges, while
graphs determined by QUIC and clime contain less edges. Similarly, in Figure 4, the XMRF
method has the most complex network structure and a graph derived by gconcord is most
sparse. From the first glance in Figures 3 and 4, it is interesting to see that no pair of variables
with/without edge is commonly detected by those seven methods. For example, a pair
ðpraf ; pakts:473Þ can not be detected by the space method only; a pair ðPKC; PKAÞ can only
be detected by the glasso method. It shows that the estimation results in this real dataset are
sensitive under various estimation strategies.

Next, we relax assumptions under Section 2.1. The first extension is the non-parametric set-
ting in (20). We primarily adopt the R package huge to identify the network structure, which is
displayed in Figure 5. It is clear to see that a graph determined by huge is more complex than
other graphs in Figures 3 and 4 as most variables are linked with edges, except for some pairs,
such as ðplcg; PIP2Þ and ðPIP2; PIP3Þ.

The second extension is the consideration of measurement error. We primarily examine the
SIMEX approach proposed by Chen & Yi (2022). In the presence of measurement error, to imple-
ment estimation method to address measurement error effects, we employ sensitivity analyses and

specify the covariance matrix Σϵ ¼ ðQ�1 � 1ÞbΣX ∗ withQ ¼ 0:65; 0:75 and 0.85 reflecting differ-

ent magnitudes of measurement error effects, where bΣX ∗ is the empirical estimate of the covariance
matrix based on the data. Here, we display the same result derived by Chen &Yi (2022) in Figure 6.

We observe that more edges are detected whenQ is increasing, such as two additionally iden-
tified pairs ðPIP3; prafÞ and ðpjnk; prafÞ betweenQ ¼ 0:75 andQ ¼ 0:65, and another two pairs
ðpakts473; pjnkÞ and ðpakts473; prafÞ when Q is increasing from 0.75 to 0.85. On the other
hand, network structures in Figures 3 and 4, which can be regarded as the naive analysis by
using error-prone variables, have different results from the SIMEX method which accounts
for measurement error effects. For example, glasso, dpglasso, XMRF and space produce
more complex network structures. While QUIC, clime, gconcord and the SIMEX method
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with different values of R provide sparse network structures, it is interesting to see that some
edges are detected by the SIMEX method only, such as ðPIP3; pjnkÞ , ðPIP3; plcgÞ and
ðpraf ; pmekÞ . On the contrary, a pair ðpakts473; P38Þ can be identified by QUIC, clime
and gconcord only, but is not available in Figure 6. The examination of measurement error
simply demonstrates that in the presence of measurement error in the variables, ignoring the fea-
ture of mismeasurement may produce spurious correlation structures among the variables.

5.2 Example 2: Classification With Gene Expression Data

In this section, we analyse the gene expression data collected by Golub et al. (1999) and com-
pare the performance of network-based classification methods in Section 4.2.
The dataset contains 7128 genes that were measured using Affymetrix oligonucleotide arrays

and the binary outcome including acute myeloid leukaemia (AML, labelled as ‘+1’) and acute
lymphoblastic leukaemia (ALL, labelled as ‘�1’). According to the description of Golub
et al. (1999), the purpose of this study is to identify gene signature for the distinction between
AML andALL. The sample size in the data is 72, coming from the two classes, with 47 specimens

Figure 3. Data application in Section 5.1: network structures determined four different methods in Section 2.2.1
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in class ALL and 25 specimens in class AML. In particular, according to the study design, those
72 samples are composed of the training data of 38 specimens (27 in class ALL and 11 in class
AML) and the testing data of 34 specimens (20 in class ALL and 14 in class AML).

As commented by Chen (2018) and Grimes et al. (2019), network structure is ubiquitous in
biological data, it motivates us to construct classification models with network structures of
gene expressions incorporated. We mainly adopt the network-based classification methods in
Section 4.2, including the logistic regression (Chen et al., 2019), discriminant analysis
(Chen, 2022c) and SVM (He et al., 2019) methods, to examine the gene expression analysis
and make comparisons among those methods.

Noting that the number of genes is extremely larger than the sample size, to make analysis
more stable and reasonable, it is necessary to remove non-informative features before applying
learning algorithms. To detect important genes, we adopt the distribution-free feature screening
method proposed by Chen (2023), which is a powerful approach to address

Figure 4. Data application in Section 5.1: network structures determined three different methods in Section 2.2.2

Figure 5. Data application in Section 5.1: a network structure determined by the package huge
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ultrahigh-dimensional data and is valid to detect informative gene expression values for
binary/categorical responses (e.g. Chen, 2022b). It turns out that 14 genes are selected from
the 38 training sample data, which are strongly correlated to the response of different leukaemia
types, and those selected genes are labelled by their own ID numbers.
We now adopt classification models in Section 4.2 to fit the training data. Specifically, we

first use the package XMRF to identify network structures with (or without) involvement of
the binary response, and the results are displayed in Figures 7 and 8, respectively. In addition,
we adopt the R package NetDA to determine class-dependent and pooled-sample network
structures, and display them in Figures 9 and 10, respectively. Based on two classes, Figures 7
and 9 show that network structures of gene expressions are different from each other, and it sug-
gests that specific network structure may reflect the associated class. For the comparison among
Figures 7–10, we can observe that network structures displayed in Figures 9 and 10 look more
complex than those summarised in Figures 7 and 8.
After that, we construct three models LR-ClassGraph, SVM-ClassVertex and

SVM-ClassEdge based on graphs in Figure 7, where SVM-ClassVertex and SVM-ClassEdge
denote the SVM method with the predictors being replaced by surrogate predictors (60) and
(61) based on the subgraphs in Figure 7, respectively. In addition, based on the network struc-
ture in Figure 8, we derive LR-HomoGraph, SVM-HomoVertex and SVM-HomoEdge, where
SVM-HomoVertex and SVM-HomoEdge approaches follow the similar definitions of
SVM-ClassVertex and SVM-ClassEdge but are derived based on the network structure in
Figure 8. Moreover, to implement the NetQDA and NetLDA methods, we adopt network struc-
tures in Figures 9 and 10 and derive estimates (66) and (67), respectively.
Finally, when the fitted models based on the training data are constructed, we further use the

gene expressions in the testing data to do the prediction. To assess the performance of predic-
tion, we primarily examine the F-score. Specifically, for subject j in the testing data with j ¼
1; …; 34, let byj denote the predicted class label and let yj denote the true class label. For class
i ∈ f�1; 1g, we calculate the number of the true positives (TP), the number of the false posi-
tives (FP), and the number of the false negatives (FN) as follows:

TP ¼
X34
j¼1

 yj ¼ þ1; byj ¼ þ1
	 


; FP ¼
X34
j¼1

 yj ¼ �1; byj ¼ þ1
	 


;

and

Figure 6. Data application in Section 5.1: network structures determined by the SIMEX method proposed by Chen and Yi
(2022) with different values of Q
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FN ¼
X34
j¼1

 yj ¼ þ1; byj ¼ �1
	 


:

Then precision, recall and F-score are respectively given by

Figure 7. Data application in Section 5.2: network structures based on two different classes for the LR-ClassGraph,
SVM-ClassVertex and SVM-ClassEdge methods.

Figure 8. Data application in Section 5.2: a network structure determined for the LR-HomoGraph, SVM-HomoVertex and
SVM-HomoEdge methods.
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Figure 9. Data application in Section 5.2: network structures based on two different classes for the NetQDA method.

Figure 10. Data application in Section 5.2: a network structure determined for the NetLDA method.
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PRE ¼ TP

TPþ FP
; REC ¼ TP

TPþ FN
; andF-score ¼ 2� PRE� REC

PREþ REC
:

In principle, PRE, REC and F-score are between zero to one. Higher values of PRE, REC and
F-score reflect better prediction.

Numerical results for the prediction results, including PRE, REC and F-scores, are
summarised in Table 4. We observe that the LR-HomoGraph and LR-ClassGraph methods have
the same result. With class-dependent network structures accommodated, SVM-ClassVertex
and SVM-ClassEdge outperform SVM-HomoVertex and SVM-HomoEdge, and NetQDA is
more accurate than NetLDA. This phenomenon indicates that the class can be reflected by
the corresponding network structure. For the comparisons among methods, we find that
NetLDA is slightly worse than LR-HomoGraph, SVM-HomoVertex and SVM-HomoEdge
when the network structure is estimated by the pooled sample. On the contrary, with the infor-
mation of classes accommodated, it is interesting to see that NetQDA has the most accurate pre-
diction and outperforms LR-ClassGraph, SVM-ClassVertex and SVM-ClassEdge.

6 Summary

Graphical models are useful tools to analyse the dependence structure among
high-dimensional variables and are widely used in many research areas. In this paper, we over-
view important topics in the developments of graphical models. We focus the discussion on the
estimation procedures and computations. We also summarise fruitful research results for regres-
sion models and classification with network structures accommodated. In addition, some infor-
mation related to existing R packages is also provided in this paper.

Even though estimation methods of graphical models have been explored, some research gaps
still remain. For example, in addition to regression models mentioned in Section 4, network struc-
tures frequently appear in other types of models as well as data structures. It is expected to extend
the graphical structures to dealwith other types of data or complex settings, such as non-parametric
or semiparametric models. Regarding the machine learning frameworks, it is interesting and chal-
lenging to explore other settings and approaches, such as boosting or neural network methods with
graphical structures accommodated. Finally, while several methods have been established, the rel-
evant computational packages have not been available to public users. It is also important to de-
velop R packages for public to implement the estimation methods and further data analysis. Those
topics are also the potential research projects in the future.

In this paper, we pay our attention on discussing the framework of graphical models. In statis-
tical analysis, network data analysis is the other relevant topic and typically includes technological,
biological and information network (e.g. Kolaczyk, 2009; Newman, 2018). Here, we briefly com-
ment the difference between graphical models and network data. In graphical models, known as

Table 4. Data application in Section 5.2: overall performance of classification methods applied to gene expression data.

Methods PRE REC F-score

LR-HomoGraph 1.000 0.928 0.965
LR-ClassGraph 1.000 0.928 0.965
SVM-HomoVertex 0.911 1.000 0.953
SVM-HomoEdge 1.000 0.911 0.953
SVM-ClassVertex 0.933 1.000 0.965
SVM-ClassEdge 1.000 0.928 0.965
NetLDA 0.911 0.911 0.911
NetQDA 1.000 1.000 1.000
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probabilistic modellings and referred to the basic setup in Section 2.1, vertices are formulated by
random variables with a specific distribution, and edges connecting to pairs of random variables
are deterministic and reflect conditional dependence among random variables. On the contrary,
in the network data, vertices can be subjects, such as people, and the interest of network data is
to explore the connections among subjects, where edges can be regarded as relationship, such as
friendship. As a result, randomness would be defined in edges. For example, let Akl ¼ Alk denote
a binary random variable reflecting the presence or absence of an edge between twoverticesk and l
in V . The matrix  ¼ ½Akl� is thus the (random) adjacency matrix for a graph.
The second and key difference is themodel structure and estimation. As introduced in preceding

sections, the developments of graphical models aim to estimate parameters, such as precision ma-
trices, associated with edges of random variables. For the network data, random graphs, referred to
a model specifying a collection of possible graphs, are perhaps primary tools to characterise net-
work structures. In the development of random graphs, the exponential random graph model
(ERGM, Kolaczyk, 2009, Section 6.5) is one of popular approaches, which is defined as

ℙαðX Þ ¼ exp
XJ
j¼1

αjT jðX Þ � φðαÞ
( )

;

where α ≜ α1; …; αJð Þ⊤ is a vector of unknown parameters, φðαÞ is the normalising constant,
and T1ðX Þ; …; TJ ðX Þ are functions of a random vector X on the space of graphs that could be
the number of edges, triangles or stars. There are several approaches for the estimation of α, in-
cluding the stochastic approximation under the Robbins–Monro algorithm (e.g. Snijders, 2002)
and the importance sampling based on the Geyer–Thompson algorithm (e.g. Handcock, 2003;
Hunter & Handcock, 2006). More detailed discussions or relevant developments of network
data analysis can be found in some research papers (e.g. Chatterjee et al., 2011; Chatterjee &
Diaconis, 2013; Yan & Xu, 2013; Yan et al., 2015, 2016) and monographs (e.g. Crane, 2018;
Kolaczyk, 2009, 2017; Newman, 2018); and fundamental computation implementations are
summarised by Kolaczyk & Csárdi (2014).

Endnotes
1This package has been archived on https://cran.r-project.org/src/contrib/Archive/QUIC/.
2This package has been archived on https://cran.r-project.org/src/contrib/Archive/dpglasso/.
3This package has been archived on https://cran.r-project.org/src/contrib/Archive/XMRF/.
4This package has been archived on https://cran.r-project.org/src/contrib/Archive/space/.
5This package has been archived on https://cran.r-project.org/src/contrib/Archive/gconcord/.
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