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Preface

Fate, Time, Occasion, Chance, and Change,
To these all things are subject

P. B. Shelley, ‘Prometheus Unbound’ (1820)

All things change in time

Motion and change are the nature of the world. The scale of motion ranges from
the orbit of galaxies and planets, to the winds, ocean currents, and river flows,
and even to the sub-microscopic, with the ceaseless movement of atoms and
molecules. In the living world there is the locomotion of animals, the movement
of limbs and muscles, and the flows of blood, sap, and other vital fluids. There
is also human made motion in the form of transport by planes, trains, and
automobiles, the mechanical movement of motorised tools, and controlled flows
such as those of electricity, heat, and fluids.

There are as well other forms of change. Birth, growth, and death is a
familiar trajectory for any individual living organism. But these also describe
the evolution of a species as a whole, as well as that of the universe, planets,
eco-systems, and even social structures. One can also include other physical
phenomena that are the subject of more traditional scientific study such as the
progress of chemical reactions, the development of heat and current fluxes, the
formation of patterns by aerodynamic and hydrodynamic flows, the processes
of self-assembly and physical organisation, and the dynamic deformation and
response of materials. These of course occur in nature, industry, technology,
and under controlled laboratory conditions.

The rôle of chance in our world should not be underestimated. When things
occur, their exact trajectory, and their ultimate fate are not perfectly pre-
dictable. In general the complexity of systems, unknown initial conditions,
and the influence of uncontrolled external forces all contribute a degree of ran-
domness that leads to an uncertain future unconstrained by a strict fatalism.
Chance means that changes in time occur not with pure determinism but rather
with statistical probability.

v



vi Preface

Time changes everything

The point belaboured above is that time dependent phenomena are ubiquitous.
The technical word for these is ‘non-equilibrium’. It is a reflection of the chrono-
logical development of science that this, the most common class of systems, is
described in the negative.

Initially, thermodynamics and statistical mechanics were developed for equi-
librium systems, which do not change macroscopically with time. Thermody-
namics is the science of macroscopic systems, and it provides universal laws and
relationships that all equilibrium systems must obey. Statistical mechanics en-
ables the probabilistic description of equilibrium systems at the molecular level.
It gives the mathematical basis for the empirical laws of thermodynamics and
it provides quantitative values for measured thermodynamic parameters.

It is one of the great ironies of science that the word ‘dynamics’ in ‘ther-
modynamics’, and the word ‘mechanics’ in ‘statistical mechanics’, both imply
motion, when in fact both disciplines have been strictly formulated for static
or equilibrium systems. Of course as an approximation they are often applied
to time dependent systems, either instantaneously or else over time intervals
small enough that any change is negligible, or they can be combined with an
empirical theory such as hydrodynamics. But in terms of an exact treatment,
thermodynamics and statistical mechanics are restricted to equilibrium systems.
This raises the question: How does time change thermodynamics and statistical
mechanics?

This book

This book seeks to answer that disarmingly simple question. A coherent formu-
lation of non-equilibrium thermodynamics is given. The approach is based upon
a particular form of entropy, and it has the advantage that almost all of the con-
cepts of equilibrium thermodynamics carry over to the non-equilibrium field. It
also enables a consistent derivation of most of the known non-equilibrium the-
orems and results, which exhibits their inter-relationships and places them in
the context of a bigger picture.

The non-equilibrium probability distribution is also developed, and this pro-
vides a basis for the field of non-equilibrium statistical mechanics. Again, this
enables a unified derivation of known and previously unknown theorems. Im-
portantly, it also enables the development of computer simulation algorithms
for non-equilibrium systems, which are used to test quantitatively the results
and to illustrate them at the molecular level.

Because of the significance of time dependent phenomena, there are many
books and scientific papers concerned with the formulation of non-equilibrium
thermodynamics and non-equilibrium statistical mechanics, and with their ap-
plication to specific systems. The selection of topics, underlying approach, and
method of presentation vary enormously, although certain non-equilibrium the-
orems and results for which there is broad consensus commonly recur. Others
results lie at the cutting edge of current research, and for these detailed justifi-
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cation and explanation are required.
As mentioned above, this book proceeds from the very fundamental prin-

ciples that determine the optimum non-equilibrium thermodynamic state, and
also from the equations of motion and probability distributions appropriate for
non-equilibrium statistical mechanics. The strategy employed here is to set out
the physical basis of the axioms, the close analogy between non-equilibrium and
equilibrium principles, and, most importantly, the theorems and detailed results
that follow as a consequence. In general an attempt is made to provide quanti-
tative tests, experimental or computational, and detailed comparisons between
different approaches, and alternative, independent derivations of the same re-
sult. It is hoped that such concrete evidence and the consistency of the approach
will give some confidence in the fundamental principles that the book is based
upon.

In the present book, most of the traditional topics in the non-equilibrium
field are covered, and some new ones besides. What is perhaps unique here
is that a single underlying approach suffices to derive and to describe all these
results. The fields of non-equilibrium thermodynamics and non-equilibrium sta-
tistical mechanics are here regarded as a continuum that ranges from the macro-
scopic to the sub-microscopic, with Brownian motion and stochastic processes
lying in the boundary region where they merge.

In a sense, this book is one long argument for non-equilibrium thermody-
namics and statistical mechanics. There are several reasons why the reader may
find the present approach useful and may have confidence in the results. First,
is the simplicity of the concepts, examples, and equations. Stripping away all
that is unnecessary removes the possibility of confusion masquerading as com-
plexity, and displays the results in a clear and unambiguous light. Second, is
the physical basis of the approach. Thermodynamics and statistical mechanics
are derived from, and designed for the real world, and here is emphasised the
physical basis and interpretation of all the terms that occur in each equation.
This removes the likelihood of inadvertent non-physical behaviour due to arti-
ficial assumptions, it gives an intuitive feel to the equations and results, and it
enables the common sense test to be readily applied. Third, is the coherence and
self-consistency of the approach. Those theorems and results in non-equilibrium
thermodynamics and statistical mechanics that are widely accepted are all de-
rived here from a single approach based on entropy. This consilience gives some
confidence in both the approach itself and the new results also generated by
it. Fourth, the results of a number of computer simulations are given in the
text, both to illustrate the procedures and to test quantitatively the results. In
addition, certain experimental measurements are used, again quantitatively, to
test predictions of the theory. Such tests should prove convincing, both of the
individual results and of the formulation as a whole.

The fields of thermodynamics and statistical mechanics have grown over
the years. This book is part of that evolution; it is intended to be timely
rather than timeless. The principles for non-equilibrium thermodynamics and
statistical mechanics set out herein consolidate the present state of knowledge
and provide a basis for future growth and new applications.
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Chapter 1

Prologue

This chapter gives an overview of the structure of the theory of non-equilibrium
thermodynamics. The discussion of the Second Law of Thermodynamics in
§1.2 emphasises the need to modify it to include time quantitatively for non-
equilibrium systems. The conceptual nature of probability and randomness in
the physical universe is canvassed in §1.3. Boltzmann’s molecular interpreta-
tion of entropy provides the starting point for a general statistical treatment of
entropy in §1.4 that focuses on its universal nature, its close connection with
probability, and its appropriate formulation for non-equilibrium systems. The
important concept of microscopic reversibility is introduced, which will be cen-
tral to many of the non-equilibrium thermodynamic and statistical mechanical
results in subsequent chapters. The chapter concludes with a discussion in §1.5
of the rôle of reservoirs in thermodynamics.

1.1 Entropy and the Second Law

The origin of equilibrium thermodynamics may be traced to the work of Clausius
with his enunciation of the Second Law,1

Entropy increases during spontaneous changes
in the state of the total system.

(1.1)

State here means the value of some unconserved variable, such as the spatial
distribution of energy or molecules. The law may be formulated in various
ways, some more precise than others, but all the same in their essence. At
the time, entropy was purely a mathematical concept, the integral of the heat
flow divided by temperature.2 The Second Law itself was an empirical theorem
based on many measurements and observations.

1Clausius, R. (1865), Ann. Phys. 125, 353.
2Clausius, R. (1850), Ann. Phys. 79, 368, 500. Clausius, R. (1851), Phil. Mag. 2, 1, 102.

1
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It was not until later that Boltzmann deduced the physical nature of en-
tropy:3 4

The entropy of a state is the logarithm of the number
of molecular configurations in the state.

(1.2)

As will be discussed in detail in coming chapters, the states are functions in
phase space (the space of molecular positions and momenta), and so the number
of molecular configurations is just the associated volume of phase space. It is an
extraordinary achievement of intellect that at a time when the very existence of
atoms and molecules was in dispute, Boltzmann had the insight to deduce the
physical origins of the hitherto mathematical entropy.

On these two foundations rest the two towers that are thermodynamics and
statistical mechanics. From them several important concepts may be imme-
diately deduced. Boltzmann’s insight showed the equivalence of entropy and
probability, since, for equally likely molecular configurations, the probability of
a state is just the number of molecular configurations in that state divided by
the total number. This in turn is simply proportional to the exponential of
the entropy of the state divided by Boltzmann’s constant. The equivalence of
entropy and probability introduced a stochastic element into thermodynamics,
with the new interpretation of the Second Law being that spontaneous transi-
tions are most likely to occur from less probable states to more probable states.
(For a macroscopic system, the likelihood approaches certainty.) Superficially
this is an intuitively obvious notion, and it appears that Boltzmann has provided
both an explanation and a proof of the Second Law (but see below).

That the Second Law is really a probabilistic statement can be readily seen.
For an equilibrium system (i.e. one that is macroscopically unchanging in time),
fluctuations occur about the equilibrium or most probable state. These fluctu-
ations are often immeasurably small experimentally, since their relative magni-
tude scales as the reciprocal of the square root of the size of the system, but
they are nevertheless present due to the incessant motion of the molecules. This
means that by definition transitions to states of lower entropy must occur, in ap-
parent violation of the deterministic form of the Second Law. In fact, for these
spontaneous fluctuations about equilibrium, for every transition that increases
the entropy there must be an opposite transition that decreases the entropy.
One can conclude from this that the Second Law of Thermodynamics is not de-
signed for fluctuations, but rather for systems that have been prepared initially
in an unlikely state that is far removed from the equilibrium state. In such
circumstances one will, with probability approaching unity, observe transitions
toward the state of greatest entropy.

3Boltzmann, L. (1872), Wien. Ber. 66, 275. Boltzmann, L. (1877), Wien. Ber. 76, 373.
4Strictly, this is in units of Boltzmann’s constant, kB = 1.38 × 10−23 J/K. The logarithm

makes entropy an extensive or additive quantity, like energy or size, whereas the number of
configurations itself is multiplicative. Boltzmann’s definition of entropy is valid for a total
or isolated system, where the accessible molecular configurations all have the same energy
and hence the same weight. It is often more useful to deal explicitly with the molecular
configurations of a sub-system (e.g. when the total system consists of a sub-system and a
reservoir), in which case ‘number’ must be replaced by ‘weight’, as will shortly become clear.
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There is a more challenging issue in deciding to what extent Boltzmann’s
probabilistic interpretation of entropy proves the Second Law of Thermody-
namics. Boltzmann’s definition, Eq. (1.2), applies to the probability of a state.
Clausius’ law, Eq. (1.1), applies to the probability of transitions between states.
These are not the same thing. It is directly relevant to what follows that equi-
librium theory rests on Boltzmann’s identification of entropy and probability
for a state, whereas non-equilibrium theory rests on the nature of transition
probabilities. Whether the latter are determined by Clausius’ Second Law, and
if so in what way, are now discussed.

It is intuitively appealing that transitions to a more probable state should
themselves be more probable then transitions to a less probable state, but this
needs to be made more precise. What can one deduce about the transition
probability from the state probability, and how does this illuminate the Second
Law?

Let ℘(a, b|τ) be the unconditional probability of observing the transition
from the state b to the state a in a time interval τ > 0, and let ℘(b, a|τ) be
the probability of the reverse transition. In an equilibrium system there is no
preferred direction of time and so one is just as likely to observe the forward
transition as the reverse, ℘(a, b|τ) = ℘(b, a|τ).5 By the laws of probability, the
unconditional probability is equal to the conditional probability times the prob-
ability of the conditioning statement, ℘(a, b|τ) = ℘(a|b, τ)℘(b). Here, ℘(a|b, τ)
is the probability of the system being in the state a given that it was in the
state b a time τ earlier, and ℘(b) is the probability that the system is in the
state b, which for an equilibrium system does not depend upon time. Now for
a large enough time interval, the two states must be uncorrelated. In this case
the unconditional probability is just the product of the singlet probabilities,
℘(a, b|τ)→℘(a)℘(b), τ → ∞, and the conditional probability becomes indepen-
dent of the initial state, ℘(a|b, τ)→℘(a), τ → ∞. If one now introduces a third
state c, then in this limit

℘(a|b, τ)

℘(c|b, τ)
→ ℘(a)

℘(c)
, τ → ∞. (1.3)

If the state a is more probable than the state c (i.e. has more entropy, according
to Boltzmann), then this says that a system in the state b is in the long term
more likely to make the transition to a than to the state c. That is, transitions
are more likely to be observed in the direction of increasing entropy. This is
one sense in which Boltzmann’s physical interpretation of entropy explains the
Second Law of Thermodynamics.

The preceding argument cannot be the whole story, since it applies only
in the long time limit. It is not clear to what extent the finite observations
times upon which the Second Law of Thermodynamics is based qualify. A
less rigorous but nevertheless illuminating argument for finite intervals goes as

5This assumes that the states are insensitive to the sign of the molecular velocities. Ex-
amples include the spatial distribution of energy or number. A slightly more complicated but
in essence the same argument holds in the contrary case, such as the states representing the
spatial distribution of momentum.
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follows. Denote the value of the state by x, and let S(x) be its entropy. Let
n±(x) be the number of molecular transitions that increase or decrease the
value of x. As mentioned above, for an equilibrium system, for every forward
transition there is a reverse, n+(x) = n−(x). The key assumption to make is
that the number of such molecular transitions should be proportional to the
number of molecular configurations, n±(x) ∝ exp S(x)/kB. This says in essence
that larger states (as measured by the number of molecular configurations) have
a greater number of associated transitions. Considering a state to have a finite
width Δx, then the excess number of forward transitions is n+(x + Δx/2) −
n−(x − Δx/2) ∝ ΔxdS(x)/dx. This says that if the entropy is an increasing
function of x, then the forward transitions outweigh the backward transitions,
and vice versa. This is in essence the Second Law of Thermodynamics.6

Although not rigorous, this particular argument serves to link Boltzmann’s
interpretation of entropy with Clausius’ Second Law of Thermodynamics by
relating the number of transitions between configurations to the number of
configurations themselves. An essential ingredient of the argument is that the
transitions are non-infinitesimal (i.e. it applies to steps of finite width), from
which it follows that the driving force for the transitions is the gradient in the
entropy.

Irrespective of the exact quantitative relationship between Boltzmann’s Law
(entropy represents the probability of a state) and Clausius’ Law (transitions
are in the direction of entropy increase), there are further important results that
can be gleaned from the Second Law of Thermodynamics.

The Second Law says that an increase in entropy drives transitions. The
corollary of this is that a system in which there are no spontaneous nett macro-
scopic transitions is in a state of maximum entropy. (The phrase ‘nett macro-
scopic’ recognises the existence of both molecular motion and macroscopic fluc-
tuations.) This static state is called the equilibrium state, and by the proba-
bilistic nature of entropy discovered by Boltzmann, it is the most likely state.
Equilibrium thermodynamics always refers to the most likely state.

In practice, the major quantitative use of the Second Law of Thermody-
namics is in determining the equilibrium state, by maximising the entropy, or
equivalently by minimising the associated free energy. The Second Law tells
the difference between possible constrained states in which the system is not-
in-equilibrium. For example, of two possible crystal structures it gives the more
stable one as the one with greater entropy.

1.2 Time Dependent Systems

The preceding discussion outlined the rôle of Clausius’ Second Law and Boltz-
mann’s identification of entropy for equilibrium systems. The issue now ad-
dressed is the appropriate generalisation of these two laws to time dependent

6See §1.4.4 for a more satisfactory presentation of this argument, and §7.6.2 for a rigorous
statistical mechanical derivation.
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systems. To do this, one has to identify the fundamental concepts that underly
these two laws and to articulate their non-equilibrium analogue.

1.2.1 The Second Law is Timeless

The major qualitative outcome of the Second Law of Thermodynamics is that
it gives the direction of the transitions between states. In common parlance, it
gives the arrow of time: evolution forward in time is in the direction of increasing
entropy. Note that this is a qualitative rather than a quantitative result. The
Second Law is silent about the speed of motion, or the rate of transition.

This point deserves emphasis. As mentioned at the end of the preceding
section, the quantitative outcome of the Second Law is limited to deciding the
relative stability of constrained equilibrium states. A quantitative theory for
non-equilibrium systems must be able to give the rate of transitions, or the
speed of motion, or the value of material flows or fluxes, or the time at which
events occur or their duration. The law says nothing quantitative about the
transitions between them other than their direction. In short, the Second Law
is timeless.

1.2.2 The Second Entropy

Extreme Dissipation

There are essentially two ways in which one might try to generalise the Second
Law to include time quantitatively. One way—deprecated in this book—is to
focus on the rate of change of entropy, which is also called the dissipation.
Curiously enough, two axioms for the dissipation that are the exact opposite
of each other have been proposed. One school of thought asserts that the rate
of change of entropy is a maximum in the optimum non-equilibrium state, and
the other school asserts that it is a minimum. Equivalently, it is claimed that
spontaneous changes in a non-equilibrium system either increase or decrease the
dissipation, respectively. Perhaps the best known advocate for such a principle
is the Nobel laureate Prigogine, who at various times asserted one or the other,
or even both.7

There are several reasons to doubt the validity of any approach to time de-
pendent systems based upon finding the extreme value of the dissipation. The
obvious one is that the proponents themselves cannot decide between the two
contradictory propositions, which indicates that there is no compelling reason
for either. Unlike Clausius’ Second Law, there is no experimental or computa-
tional evidence to support any principle based upon the dissipation. Although
one or other of the two proposed principles has been around for the better part
of a century, it has not proved possible to erect upon either a coherent and
complete theory for non-equilibrium thermodynamics, or to demonstrate their
consistency with either known measurements or accepted theorems.

7Kondepudi, D. and Prigogine, I. (1998), Modern Thermodynamics: From Heat Engines

to Dissipative Structures, (Wiley, Chichester).
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States in Time

The approach taken in the present book to generalising Clausius’ and Boltz-
mann’s laws to non-equilibrium systems retains unchanged the key concepts
from each law. From Boltzmann one takes the identification of entropy with
the number (or weight) of molecular configurations of the state, and hence with
the probability of the state. And from Clausius one takes the notion of con-
strained states, the increase in entropy during spontaneous transitions between
such states, and the corollary that the entropy is a maximum in the optimum
non-equilibrium state.

The new idea is to generalise the notion of state to a higher level that includes
time. For example, in the equilibrium case the system is constrained to be in
the state x, which is the value of a non-conserved variable such as the spatial
distribution of energy or number. In the non-equilibrium case the relevant states
are transitions in a certain time, for example x → x′ in time τ , and the relevant
entropy for a system constrained to have such a transition might be written
S(2)(x′, x|τ). This is here called the second entropy; it could equally be named
the transition entropy, or the two-time entropy. The unconditional transition
probability is simply proportional to its exponential.

Conceptually, the second entropy is the same as the ordinary entropy; it
is still the logarithm of the number (or weight) of molecular configurations

in the state, except that now state refers to a transition, x
τ→ x′, and the

relevant molecular configurations are those that give x now and x′ at a time τ
in the future. What is new is that the non-equilibrium states now correspond
to transitions between equilibrium states. This turns out to be the appropriate
way to insert time into Boltzmann’s and Clausius’ laws.

The transition x → x′ in time τ corresponds to a velocity, flux, or rate

of change, namely
◦
x≡ (x′ − x)/τ . It may also correspond to an event at a

given time or over an interval, x′ = x(τ |x). For simplicity, the word ‘flux’ will
henceforth be used to denote generically all these time dependent objects. For
technical reasons, it is useful for the time interval τ to be finite rather than
infinitesimal (c.f. the discussion in §1.1 on p. 3). In the present view, the fluxes
are the objects of constraint, and the second entropy for a given flux gives a
quantitative answer to all the questions that could be asked of a non-equilibrium
system.

The analogue of the Second Law for non-equilibrium thermodynamics may
be formulated as

The second entropy increases during
spontaneous changes in the flux.

(1.4)

This says that fluxes spontaneously evolve in time in the direction of increasing
second entropy, and that the optimum or most likely flux, which may be called
the stable non-equilibrium state, is the one with greatest second entropy. Note

that even though flux can be written as conditional on the initial state,
◦
x (x)

or x(τ |x), strictly speaking this law applies to unconditional transitions, which
corresponds to maximisation with respect to both x and x′.
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As a concrete example, the flux under consideration could be taken as the
heat flow in the presence of a fixed temperature gradient. In this case the steady
state heat flow observed experimentally would correspond to the maximum of
the second entropy with respect to all constrained heat flows in the presence of
the given temperature gradient. If it were possible to turn on the temperature
gradient, then the transient heat flux observed to increase from zero to its final
steady state value would coincide with an increase in the second entropy. If the
heat flow were to increase further past this optimum value, the second entropy
would begin to decrease. If the temperature gradient is turned off, then the
initial second entropy (i.e. that for zero temperature gradient but non-zero heat
flux) would be lower than the second entropy for the final state of zero gradient

and flux. (In this example, the heat flux is the
◦
x and the temperature gradient

of the sub-system is the x. The second entropy is a maximum with respect to
x when the sub-system temperature gradient is equal to that applied by the
reservoirs.)

In an analogous fashion, Boltzmann’s molecular identification of entropy
carries over to the second entropy,

The second entropy is the logarithm of the number
of molecular configurations that give the flux.

(1.5)

As will be discussed in much greater detail in the coming chapters, transitions or
fluxes are functions in phase space, just like the equilibrium states themselves,
and so the number of molecular configurations is again the associated volume
of phase space.

Generalising the notion of states to pair transitions in a specified time is
obviously the first in a hierarchy of such higher-order states. One can have the
third entropy, for example, that gives the probability of three states, x1, x2,
and x3 at times t1, t2, and t3, or, for systems homogeneous in time, at time
intervals t21 and t32. For higher-orders than this, one might refer to the path
entropy. The pair level suffices for steady state non-equilibrium systems, and
the higher-orders may be required for transient, harmonic, or otherwise time
varying systems.

With this generalised view of transitions as states, the entire theory of non-
equilibrium thermodynamics and non-equilibrium statistical mechanics becomes
completely analogous to their equilibrium counterparts. In what follows of this
chapter, the basic mathematical rules for entropy and second entropy are given.
In later chapters these are applied to the physical problems that comprise non-
equilibrium thermodynamics and non-equilibrium statistical mechanics.

1.3 Nature of Probability

To begin, a brief philosophical discussion of the concept of probability and the
related notion of randomness is in order. Although thermodynamics and sta-
tistical mechanics are firmly rooted in the physical sciences with measurable
outcomes and concrete consequences, it is not an empty exercise to discuss the
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conceptual basis that underlies these disciplines. The reason that this is impor-
tant is that all scientists require an image or internal picture of their field that
enables them to rationalise measurements, to reconcile results with intuition,
to understand observed phenomena, and to forecast likely outcomes. In short,
the conceptual basis of a field provides insight that can explain what is known,
and that is generally a prerequisite for detailed calculation or measurement.
Without physical insight one is reduced to mere mathematical proof: a logical
derivation devoid of physical imagery may convict, but it does not convince.

Although it is important—indeed essential—to have mental images of nat-
ural phenomena, one also has to recognise that such are a representation of
the phenomena, not the phenomena themselves. The fact that the image is a
simplification of reality means that in all cases there must eventually arise a
contradiction between the image and the fact. When this occurs one must be
prepared to either augment the original picture, or else to replace it with a new
way of thinking about the phenomenon. This can be more difficult than one
would have thought, since so deeply rooted can these internal pictures become
that one thinks of the phenomena only in their terms, and the normal reaction
is to question the calculation or measurement rather than the concept itself.

In the case of probability, particularly in statistical mechanics, there are
three philosophical positions that have been adopted: frequency, credibility, and
measure. These can all be formulated so that their mathematical manipulation
obeys the laws of probability, so mathematically there is no distinction between
them. But as concepts that guide thinking about probability in the physical
sciences, they are not equally useful.

1.3.1 Frequency

Probability interpreted as frequency holds that the probability of the outcome of
an event is proportional to the number of times that it recurs in a long sequence
of trials. This is the most widespread understanding of probability and is as
likely to be found in departments of statistics as at horse races, casinos, and
stock exchanges. In statistical mechanics, frequency as the conceptual basis for
probability is implicit in the ensemble formulation of the subject.

The frequency interpretation of probability in the physical sciences is unsat-
isfactory for several reasons. Most tellingly, the number of times a particular
outcome occurs differs every time the trial is repeated. Accordingly the fre-
quency does not have a unique value for what is the same physical process,
which is contrary to the essential requirement of a physical property. One con-
cludes that the identification of frequency with probability confuses cause and
effect: the reality is that frequency is a consequence of probability but is not
identical to probability.

This confusion of rôles is also evidenced by the fact that frequency can only
be calculated after the trial, whereas if probability is to have a physical reality it
must exist independent of the trial. Once-only events (e.g. a horse race) deserve
a probability, and yet one cannot physically carry out repeated trials of these. In
these cases frequentists think of a fictitious trial of repetitious events and speak
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of probability as referring to the frequency of the outcome in this imaginary
world. As mentioned above, in statistical mechanics the ensembles introduced
by Boltzmann, and used by Maxwell and by Gibbs, share in common with the
frequency interpretation of probability this fictitious replication of the original
system.

1.3.2 Credibility

The second view of probability holds that it is the degree of reasonable be-
lief that a particular outcome will occur. This subjectivist interpretation is
widespread amongst Bayesian statisticians, and depends upon the connection
between probability and inductive logic. A detailed presentation of this con-
nection was given by Cox, who cast assertions in the language of set theory.8

The difference between deductive and inductive reasoning is exemplified by the
syllogisms:

Deductive

If it rains, Bob carries an umbrella.
It is raining.

Therefore, Bob carries an umbrella.

Inductive

If it rains, Bob carries an umbrella.
Bob carries an umbrella.

Therefore, it is likely raining.

The deductive reasoning says that rain makes an umbrella certain, ℘(U |R) = 1,
whereas the inductive reasoning says that an umbrella increases the probabil-
ity of rain, ℘(R|U) > ℘(R). There are convincing arguments that inductive
reasoning is more broadly applicable than deductive reasoning, that it is more
applicable to real world problems, and that it more closely reflects the way
people actually think and learn.

Inductive reasoning is closely related to the problem of inference, namely
estimating the value of some parameter given limited information or data. In
practice one communicates the probability distribution of the likely values of
the parameter, which is interpreted as indicating one’s belief or confidence in
those values.

It is emphasised that the rules of inductive reasoning that follow from the
set theoretical formulation of assertions are the same as the rules of probability.
The issue then is not whether rational beliefs can be formulated as probability,
but whether probability is solely a measure of reasonable belief.

In statistical mechanics, and in other branches of science, the subjectivist
interpretation of probability underlies the so-called principle of maximum en-
tropy. This is taken to have a particular meaning that is motivated by, but
which is different from, the Second Law of Thermodynamics. It states that
the probability distribution that should be used is the one that maximises the
entropy constrained by the given information. A coherent formulation of sta-
tistical mechanics was given in terms of the principle of maximum entropy by

8Cox, R. T. (1961), The Algebra of Probable Inference, (Johns Hopkins Press, Baltimore,
MD). Cox, R. T. (1978), Of Inference and Inquiry: An Essay in Inductive Logic, in The

Maximum Entropy Formalism, Levine, R. D. and Tribus, M. (eds), (MIT Press, Cambridge,
MA).



10 1. Prologue

Jaynes.9 For example, Jaynes asserts that the Maxwell-Boltzmann distribution
results from maximising the entropy with respect to the probability, given the
information that the system is constrained to have an average energy. Tem-
perature, in this interpretation, is simply a Lagrange multiplier introduced to
satisfy the constraint.

In the subjectivist view probability measures beliefs, which are modified by
data or information, and entropy measures lack of information or ignorance.
For this reason subjectivists often speak of the information entropy. The more
information one has, the sharper and more constrained is the probability dis-
tribution and the lower is the entropy. The known information or data (e.g.
the average number observed in a trial) acts as a constraint on the possible
probability distributions. The principle of maximum entropy gives the recipe
for finding the correct probability distribution given certain information. This
distribution is the least biased distribution since any other distribution would ei-
ther be inconsistent with the information or have a lower entropy, which implies
the existence of additional constraints. Either these additional constraints are
known, in which case they should be explicitly taken into account, or they are
not known, in which case the lower entropy is a manifestation of an unjustified
bias in one’s beliefs. It is the laws of probability and the principle of maximum
entropy that give the prescription for unbiased and rational beliefs.

In practice, the subjectivist viewpoint of probability and the related princi-
ple of maximum entropy have had relatively little impact on thermodynamics
and statistical mechanics. There appear to be three main reasons for this. First
is mathematical: as detailed in the following sections, there is a one-to-one re-
lationship between the entropy of a state and the probability of a state. It
therefore makes no mathematical sense to attempt to maximise the entropy
with respect to the probability. Second, is that the approach divorces probabil-
ity from the underlying physical causes. For example, viewing temperature as
simply a Lagrange multiplier precludes the understanding gained from a lifetime
of actual experience and a history of experimental measurement. Third, there
is a deeply rooted philosophical or psychological resistance to the proposition
that a measurement is just the belief of the experimentalist for the value of the
measured quantity. Most scientists regard the world as having some objective
reality, which it is their happy task to uncover, and the subjectivist viewpoint is
alien to this philosophy. The dependence of the outcome of an experiment upon
the knowledge of the observer, as in Jaynes’ interpretation of statistical mechan-
ics, or as in the general credibility interpretation of probability, is unsettling and
disconcerting to those accustomed to dealing with physical phenomena. It is
arguable that this interpretation over-emphasises the rôle of the observer to the
exclusion of underlying physical causes. Many see it as peculiarly solipsistic
to view entropy as a measure of the observer’s uncertainty rather than of the
physical disorder of the system.

9Jaynes, E. T. (1957), Phys. Rev. 106, 620 and 108, 171. Rosenkrantz, R. D. (1983),
(Ed.), E. T. Jaynes: Papers on Probability, Statistics, and Statistical Physics, (D. Reidel,
Dordrecht).
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Figure 1.1: The space of conditions that lead to one collection of four mutually
exclusive outcomes, {a, b, c, d}, (dashed boundaries), and to another collection of
four mutually exclusive outcomes, {w, x, y, z}, (solid boundaries). The shaded
region corresponds to the joint outcome cx. The weight of each outcome is
proportional to the volume or measure of the conditions that cause it.

1.3.3 Measure

The third conceptual basis for probability, and the one adopted in this book,
holds that it is a physical property of the system, namely it is the measure (or
weight, or proportion) of states that give the designated outcome compared to
the total weight of possible outcomes. Popper, in his objective philosophy of
science, called it propensity.10 The idea of measure differs from the frequency
interpretation of probability in that it does not require a series of trials, real
or imaginary, to obtain, but rather takes the probability to exist as a physical
object that is a measurable or calculable from the underlying material properties
of the system. In short, probability is taken as the cause, and frequency as an
effect.

Figure 1.1 sketches this general idea for the physical basis of probability.
The probability of an outcome is determined by its weight as measured in the
space of conditions that influence the outcome relative to the weight of all pos-
sible outcomes. For example the collection of outcomes might be whether a coin
lands head or tails, and the space of conditions might include the mass distribu-
tion of the coin, the initial orientation of the coin, the initial linear and angular
momenta, the drag force of the wind, the elasticity and friction of the landing
place, etc. In principle, by measurement or by calculation, one could map the
multidimensional space of these conditions in terms of the particular outcome
that they yield. There may be practical issues in quantifying the weight, includ-
ing the possibility that different types of conditions have different dimensions,
and that non-linear transformations of the conditions lead to different relative
weights, but it may be argued that the prescription for quantitatively determin-
ing the weights in a particular problem is quite separate from the general notion

10Popper, K. R. (1959), Brit. J. Philos. Sci. 10, 25.
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of the existence of weight. Accepting that the relative weight of the conditions
that lead to an outcome gives the probability of that outcome, it follows that
the laws for combining and manipulating probabilities are the laws of set and
measure theory. These are set out in §1.4 below.

1.3.4 Determination of Randomness

Any exploration of the physical basis of probability necessitates a discussion of
the origin of randomness in the physical universe. This is particularly important
in view of the historical development of statistical mechanics. Boltzmann’s early
identification of the entropy of a state with the number of molecular configura-
tions in the state was made at a time when Newton’s (equivalently Hamilton’s)
equations of motion were assumed to characterise the behaviour of atoms and
molecules. These equations are both completely deterministic, which appears
to contradict the randomness demanded by a probabilistic description, and time
reversible, which appears to contradict the monotonic entropy increase embod-
ied in Clausius’ formulation of the Second Law of Thermodynamics.

To answer the first objection, namely how randomness arises from determin-
istic equations of motion, Boltzmann introduced the concept of an ensemble of
systems, each member being an identical macroscopic copy of the original, but
differing in their initial microscopic or molecular configuration. The ensemble
of systems evolves in time, each member according to the deterministic equa-
tions of motion. The probability of a state at a given time is taken to be the
proportion of the ensemble that is in the state. The randomness in this picture
arises from the assigned distribution of the initial states of the members of the
ensemble.

The ensemble picture is today more or less the standard view of probability in
thermodynamics and statistical mechanics, but there are several weaknesses in
it. First, it is no more than a mental image that has almost no relationship with
actuality; the physical reality is not Avogadro’s number of copies of identical
systems, but rather a single system that is to be measured or characterised. As a
mental artifice, ensemble theory is more akin to the frequency interpretation of
probability than it is to the measure interpretation of probability as a physical
object. Second, the ensemble picture does not give the prescription for the
distribution of initial states, which itself determines the probability distribution,
but this must be obtained by other physical considerations. Third, as will be
discussed in detail in forthcoming chapters, it implies a conservation law for
probability, which stems from a fixed number of ensemble members, that is
not true in reality. As mentioned above, one must be careful to distinguish
the physical reality, in this case probability, from the mental image of reality,
in this case ensembles. That the number of ensemble members is conserved
in this mental picture of probability does not make it true that probability
is conserved in real physical systems. Fourth, ensembles are an artificial way
of introducing indeterminacy in physical systems that is both unnecessary and
overly complicated. The ensemble picture obscures an understanding of the true
physical origin of randomness and precludes the full mathematical exploitation
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of randomness in statistical mechanics.

Although one can modify the ensemble picture to address each of these
concerns, an arguably more satisfactory approach is to identify the actual origin
of randomness in physical systems and to develop the notion and quantitative
values of probability on that basis.

One possibility for randomness in the physical universe is the recognition
that the world is ultimately quantum mechanical, which path was not available
at the time of Boltzmann. However, this does not solve the problem because
the vast majority of atoms and molecules behave classically due to their size,
and for such systems one still has to account for indeterminacy. Quantum
mechanics does not differ from classical mechanics for the motion of such atoms
and molecules. Although there are systems for which quantum mechanics is
essential, it is clear that randomness is more general than this and it occurs in
both classical and quantum systems.

A second possibility is to consider that randomness arises from a lack of
precision in the specifications of the initial conditions of the system, since it is
known that the subsequent trajectory can be exquisitely sensitive to these. A
related viewpoint attributes indeterminacy to the fact that the precise details of
the intermolecular interactions are either unknown or are too complex to account
for fully. Both these ideas tend toward the subjectivist view of probability.
They take what are undoubtedly practical difficulties in the calculation of the
behaviour of the system to be the physical principle that underlies randomness.

A third possibility, and the approach taken in this book, is based upon the
so-called reservoir formalism, where the system of interest is actually a sub-
system of a larger system with which it interacts. The molecular configuration
of the sub-system is therefore a projection of the configuration of the total
system, and the evolution of the sub-system is not determined by the sub-system
configuration alone.11 This indeterminacy in the sub-system evolution when the
reservoir configuration is not treated explicitly is manifest in stochastic terms
that are added to the classical picture of Hamilton’s deterministic equations of
motion, and this gives rise to a probabilistic treatment of the sub-system state.
Quantitative treatments of the probability follow from the physical nature of
the interaction between the sub-system and the reservoir, as will be given in
later chapters.

This interpretation of randomness in the equations of motion—it arises from
the projection of the total system onto the sub-system that is being treated
explicitly—also accounts for the second objection that was made to Boltzmann’s

11If Γs denotes the molecular configuration of the sub-system, and Γr that of the reservoir,
then these determine the future configuration of the sub-system, Γ

′
s = Γ(t|Γs,Γ′r). A different

configuration of the reservoir gives a different evolution of the sub-system, Γ′′s = Γ(t|Γs,Γ′′r ).
This means that if the reservoir coordinates are projected out of the problem, then the current
sub-system configuration does not uniquely determine the evolution. This unpredictability is
what is meant by saying that the equations of motion of the sub-system are stochastic: the
probability distribution of the reservoir configuration determines the probability distribution
of the sub-system evolution, and consequently the probability distribution of the sub-system
itself. This projection operation has the same effect as what is often called a contracted
description.
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identification of entropy with the number of molecular configurations, namely
that the equations of motion are time reversible but the Second Law of Thermo-
dynamics gives a preferred direction to time. It turns out that the projection
operation contributes both stochastic and dissipative terms to the equations
of motion, and that these are time irreversible with the resultant tendency for
entropy increase legislated by Clausius.

The criticism might be made that there is a degree of circularity in defining
probability as weight or measure or even entropy. Whilst the self-referential na-
ture of the definitions is undeniable, they nevertheless reflect the physical origin
of probability, and they determine the mathematical rules for its manipulation.
The physical interpretation of randomness as arising from the projection of ex-
ternal influences leads to the quantitative evaluation of probability. These laws
of probability and its relation to entropy are now given in a general setting that
abstracts from any specific physical system.

1.4 States, Entropy, and Probability

1.4.1 Macrostates and Microstates

The statistical basis of thermodynamics and statistical mechanics is here out-
lined. The ideas set out here that link entropy to probability are quite general
and apply more broadly than the physical applications in the rest of the book.
Conversely, the rôle of entropy in thermodynamics and statistical mechanics is
largely independent of the precise physical or molecular details of the particular
system under consideration.

The mathematical theory of entropy and probability is based on set theory
(see Fig. 1.1 on p. 11). One needs the concepts of microstates, macrostates,
and collectives. Basically, a collective contains all macrostates of a given type,
and a macrostate is a set of microstates. At any instant the system may be
characterised as being in a macrostate xα of an x-collective. For example, this
could be an energy collective, and xα is a particular value of the energy of the
system.12 A collective is a complete set of disjoint states. This means that
at any one time the system is in one, and only one, macrostate of a given
collective. For the present, a discrete set of states is considered, α = 1, 2, 3 . . ..
Only non-degenerate collectives are allowed, which means that there is a one-
to-one relationship between the macrostate label and the value of the physical
observable, α = β ⇔ xα = xβ .

Macrostates belonging to different collectives are not disjoint, so that the sys-
tem can simultaneously be in the macrostate xα and the macrostate yβ, where,
for example, x might represent the energy collective and y might represent the
collective of number macrostates. This could also be denoted as the macrostate
{xα, yβ}, or, if there is no ambiguity, simply αβ.

12For the present purposes, one should imagine that energy is not conserved. For example,
this could be the energy in a specified half of the system. Or the ‘system’ could actually be a
sub-system that can exchange energy with a reservoir.
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There is a fundamental set of states called microstates that are complete,
disjoint, and indivisible. For example, in classical statistical mechanics the mi-
crostates are taken to be the phase space of the atoms’ positions and momenta.
It is convenient to label the microstates by Roman letters and the macrostates by
Greek letters. Each macrostate is a set of microstates. Because the macrostates
in a collective comprise a disjoint and complete set, each microstate belongs to
a unique macrostate of a given collective. A microstate belongs to a macrostate
if the value of the physical observable when the system is in the microstate is
equal to the value of the macrostate, i ∈ α ⇔ xi = xα. At any instant, the
system is in one, and only one microstate, and in consequence it is in one, and
only one macrostate of a given collective. It can of course be simultaneously in
macrostates of different collectives.

The mathematical distinction between macrostates and microstates lies in
the fact that microstates cannot be sub-divided into smaller states. But in prac-
tical physical applications, one never really has such an idealised mathematical
indivisibility. For example, in taking classical phase space as the collective of mi-
crostates, in many cases one ignores electronic degrees of freedom, the rotations
of non-spherical molecules, or the internal conformations of macromolecules. In
almost every case one also ignores the configurations of the system or reservoir
external to the sub-system of primary interest, so that in fact the microstates
of the sub-system are actually macrostates of the total system.

For this reason the formal expression for entropy and probability that fol-
lows is invariant to the representation; it applies equally to macrostates as to
microstates. Microstates may still be defined for any physical application, and
they are to be interpreted as the finest level of description that will be used
in the given problem. However, it is important to keep in mind that such mi-
crostates can themselves have internal states that are included as a whole rather
than individually.

1.4.2 Weight and Probability

Each microstate has a non-negative weight, ωi.
13 It follows that each macrostate

has a weight that is the total weight of the microstates it contains,

ωα =
∑
i∈α

ωi. (1.6)

In the special case that the microstates have equal weight, it is often convenient
to give this a value of unity, ωi = 1, in which case the weight of a macrostate is
just the number of microstates that it contains, nα =

∑
i∈α. The weight of the

system is

W =
∑
α

ωα =
∑

i

ωi. (1.7)

13The physical origin or value of this weight is not required here for the formal development
of the theory. In practice, any internal degrees of freedom of the microstates can be expressed
through the values of the weights.
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Because the collectives are complete, the total weight of the system is the same
whichever collective is used to obtain it.

The probability of a macrostate is the weight of the state divided by the total
weight,

℘α =
ωα

W
. (1.8)

This holds unchanged for microstates. The probability is obviously normalised
to unity,∑

α

℘α = 1. (1.9)

The average of a function is defined as,

〈f〉 =
∑

α

℘αfα. (1.10)

This has been written for a function defined on a macrostate collective. An
analogous formula holds for a function of the microstates.

The relationship between probability and weight is so direct that concep-
tually they must be regarded as the same thing. In particular, the laws of
probability are a direct consequence of the linear additive nature of the weights
and of the rules of set theory. Let α and β be macrostates in different collectives,
and let αβ denote the macrostate that the system is simultaneously in both,
which can also be denoted by the intersection of the sets α ∩ β (see Fig. 1.1 on
p. 11). The weight of such a joint state is

ω(αβ) =
∑

i

ωiδ(xα − xi)δ(yβ − yi) =
∑

i∈α∩β

ωi. (1.11)

The Kronecker delta that appears here is defined such that δ(0) = 1 and is
zero otherwise. The sums are over microstates. If α and β belong to the same
collective, ω(αβ) = ωαδ(α− β). Because of the disjoint, complete nature of the
collectives, one must have∑

β

ω(αβ) = ωα, (1.12)

which is a type of reduction condition, since the pair weight has been reduced
to a singlet weight. It can also be regarded as a type of conservation law for
weight. From this it follows∑

α,β

ω(αβ) = W. (1.13)

Accordingly the unconditional probability that the system is simultaneously in
the macrostate α and the macrostate β is

℘(αβ) =
ω(αβ)

W
. (1.14)
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If the system is in the macrostate β, then the conditional probability that it is
in the state α is

℘(α|β) =
1

ωβ

∑
i∈α∩β

ωi =
ω(αβ)

W

W

ωβ
=

℘(αβ)

℘(β)
. (1.15)

The first equality follows because the conditioning statement that the system is
in the macrostate β means that the total weight is ωβ, and the weight that is
the numerator is that part of the total weight that is in the macrostate α. This
is more usually written in the form of Bayes’ theorem,

℘(αβ) = ℘(α|β)℘(β). (1.16)

In words this says that the probability that the system is simultaneously in the
state α and the state β is equal to the probability that it is in the state α given
that it is in the state β, times the probability that it is in the state β.

The remaining significant law of probability is that of disjunction,

℘(α ∪ β) = ℘(α) + ℘(β) − ℘(αβ), (1.17)

where the union of the two sets appears on the left-hand side. This says that the
probability that the system is in the state α, or that it is in the state β (which
includes the possibility that it is in both), is equal to the probability that it is
in the state α plus the probability that it is in the state β less the probability
that it is in both. The last term is evidently a correction for double counting of
the weight in the region of intersection.

1.4.3 Entropy

Entropy is conceptually equivalent to both weight and probability. The entropy
of the total system is just the logarithm of the total weight,

S ≡ kB ln W, (1.18)

where Boltzmann’s constant is kB = 1.38 × 10−23 J/K. The entropy of a
macrostate is similarly defined as

Sα ≡ kB ln ωα = kB ln
∑
i∈α

ωi. (1.19)

To avoid ambiguity in the case that one is dealing with more than one collec-
tive, the left-hand side would be best written S(xα). As mentioned above, the
formalism has been developed so that there is no real distinction between mi-
crostates and macrostates. This means that the entropy of a microstate is also
the logarithm of its weight,

Si ≡ kB ln ωi. (1.20)

In the event that one is dealing with equally weighted microstates, then
without loss of generality one may give them unit weight, ωi = 1. In this case,
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the weight of a macrostate is just the number of microstates that it contains,
ωα = nα ≡

∑
i∈α, and the entropy of a macrostate is just the logarithm of

the number of microstates that it contains, Sα = kB ln nα. This is Boltzmann’s
original definition of entropy.

From these definitions, the probability of a macrostate is just the exponential
of its entropy,

℘α =
1

W
eSα/kB . (1.21)

In view of its exceedingly simple definition, entropy is in concept the same
as weight and probability. In most cases they could be used interchangeably.
Because of its normalisation, probability contains less information than the other
two.

Entropy does have one advantage over weight and probability, namely that
it is a linear additive variable. The total weight of two independent macrostates
is Wtotal = WαWβ , whereas the total entropy, which is the logarithm of this, is
Stotal = Sα + Sβ. Thermodynamics is largely predicated on the notion of linear
additivity, which is why energy, number, volume, etc. play such a central rôle.
By defining entropy in this logarithmic fashion, many thermodynamic formulae
can be expressed more simply in terms of entropy than in terms of weight.

In physical terms, entropy is often interpreted as a measure of the disorder
of a system. If one compares two macrostates, then the one with the greater
number of microstates (or greater weight of microstates if they are not equally
likely) is the one with greater entropy. But in the sense that ordered means
predictable and disordered means unpredictable, the more microstates there are
the less one is able to predict the specific microstate that the system is in. As
another example, if one could place a few objects on a large grid, then the num-
ber of regular or ordered arrangements is very much less than the number of
irregular arrangements, and since the logarithm of the number can be identified
with the entropy, one sees that greater entropy corresponds to greater disorder.
Similarly, in communications theory the entropy is often equated to the infor-
mation content of a message: the less predictable the successive symbols in the
message then the more informative it is said to be.14

One can rearrange the total entropy as

S = kB ln W

= kB

∑
α

℘α ln
ωαW

ωα

=
∑
α

℘α [Sα − kB ln ℘α] . (1.22)

The second equality follows because the sum over the macrostate probability is
normalised to unity, and the third equality follows from the definitions, Sα ≡

14Information is here meant in a computational rather than a sociological sense; it is debat-
able whether a painting by Jackson Pollack is indeed more informative than one by, say, Piet
Mondrian.
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kB ln ωα and ℘α ≡ ωα/W . The interpretation of this is that the total entropy
is the sum of two contributions: the −kB℘α ln ℘α term represents the disorder
associated with the breadth of the probability distribution (i.e. the uncertainty
over which macrostate the system is in), and the ℘αSα term represents the
internal entropy of each macrostate.

This expression holds as a sum over any collective of macrostates, and it
also holds as a sum over microstates. With this expression there is no preferred
representation of the system; this is an invariant expression for the entropy of
the system.

This invariance is exceedingly important. One often sees in both textbooks
and the research literature the entropy written as15

S̃ = −kB

∑
α

℘α ln ℘α. (1.23)

Compared to the correct expression, Eq. (1.22), one sees that this is missing the
internal entropy of the states. Equivalently, it sets this term to zero,

∑
α

℘αS̃α = 0. (1.24)

It is often the case that only differences in entropy have physical meaning, and so
it is always possible to add a constant to the macrostate entropy, S̃α = Sα + X
(equivalently, a multiplicative factor for the macrostate weights), that makes
the sum vanish, X ≡ −

∑
α ℘αSα. However the side effect of this is that the

total entropy S̃ would have a different value depending upon the collective used
to evaluate it. Also, one would have to choose a different constant X for each
collective, but this would mean that the macrostate weights were no longer the
sum of weights of the microstates in each macrostate. Such a loss of the property
of linear additivity is very severe, particularly in the case that the microstate
weights have a quantitative value derived from some physical argument.

In the case of thermodynamics and statistical mechanics, which generally
treat a sub-system and a reservoir, the full expression, Eq. (1.22), gives the
total entropy of the sub-system and the reservoir, whether the sum is over
microstates or macrostates. The variant expression, Eq. (1.23), gives the sub-
system entropy alone if the sum is over microstates, and it gives a quantity that
to leading-order is zero if the sum is over macrostates.

15This is essentially the H-function of Boltzmann. Gibbs called it the average of the index
of probability, [Gibbs, J. W., (1902), Elementary Principles in Statistical Mechanics De-

veloped with Special Reference to the Rational Foundation of Thermodynamics, (Yale Univ.
Press, New Haven, CT). Reprinted by Dover, New York (1960)]. Shannon defined the so-
called ‘information entropy’ by this expression in his theory of communications, [Shannon, C.
E. and Weaver, W. (1949), The Mathematical Theory of Communication, (Univ. of Illinois
Press, Urbana)]. Arguably, the most spirited proponent of this expression for the entropy
has been Jaynes, who based his maximum entropy formulation of statistical mechanics and of
probability theory upon it, (Jaynes, 1957; Rosenkrantz, 1983).
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1.4.4 Transitions and the Second Entropy

Weight

In both the equilibrium and the non-equilibrium case, the microscopic state of
the system changes in time. This is represented by transitions between mi-
crostates in a given time interval, i

τ→ j. These microstate transitions may be
deterministic, but, as for the microstate weights themselves, this is a mathe-
matical abstraction that is generally not satisfied in the real world. Due to the
‘internal’ states that physical microstates often have (in some cases such inter-
nal states actually represent the state of the system external to the sub-system
of interest), the microstate transitions generally have a stochastic element in
addition to any underlying deterministic behaviour. Both extreme cases (fully
deterministic and completely random), and everything in between, can be ac-
commodated by a transition weight, ω(j, i|τ), where the order of the arguments

means i
τ→ j.

Invoking a time interval implicitly assumes an equilibrium system which
is to say a system that is homogeneous in time. This is consistent with the
analysis of the preceding sections, where the probability of a state, ℘α was
explored, rather than the probability of a state at a given time, ℘α(t). The
present case that requires only a time interval is sufficient to account for the
simplest non-equilibrium state, namely a steady state system. Shortly this will
be generalised from a transition between a pair of microstates to a sequence
of consecutive pair transitions, otherwise known as a path or a trajectory. In
§8.3.1 the generic treatment will be given for time dependent weights, which is
required for the most general non-equilibrium system.

Let α and β label macrostates in either the same or in different collectives.
The weight of a transition between these two macrostates, α

τ→ β, is

ω(β, α|τ) =
∑
i∈α

∑
j∈β

ω(j, i|τ). (1.25)

Even if the microstate transitions are fully deterministic, the transitions between
macrostates are always stochastic. This is not to say that they are completely
random (in the sense of a uniform probability distribution), but rather that they
are statistically rather than perfectly predictable. The stochastic character of
macrostate transitions arises from the fact that specifying the macrostate does
not specify the microstate that the system is in.

For each microstate i there is a conjugate microstate i† such that

ω(j, i|τ) = ω(i†, j†|τ). (1.26)

That is, the forward transition between the original states has the same weight
as the reverse transition between the conjugate states. This is called micro-

scopic reversibility. In a physical system, i† represents the same microstate as
i but with all the velocities reversed.16 Microscopic reversibility must hold in

16If any magnetic fields or Coriolis forces are present, these should also be reversed, since
both are derived from velocities.
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a physical system for both deterministic and stochastic rules for the transitions
between microstates. Note that in the sum over states, both i and i† occur. For
an equilibrium system, a microstate and its conjugate have the same weight,
ω(i) = ω(i†).

For each macrostate α in a particular collective there is also a conjugate
macrostate, α†. Again this has the physical interpretation of the macrostate
with positions unchanged but velocities reversed. If the physical observable
is an even function of the velocities, then xα = xα† , and, due to the non-
degenerate nature of the macrostate labels, α = α†. If the physical observable
is an odd function of the velocities, then xα = −xα† . If the collective is not an
even function of the velocities (i.e. it has either odd or else mixed parity), then
α �= α†, and both occur once in any sum over macrostates. In view of this, the
weight of the reverse transition between the conjugate macrostates satisfies

ω(α†, β†|τ) =
∑
i∈α†

∑
j∈β†

ω(i, j|τ)

=
∑
i†∈α

∑
j†∈β

ω(i†, j†|τ)

=
∑
i†∈α

∑
j†∈β

ω(j, i|τ)

= ω(β, α|τ). (1.27)

The second equality uses the fact that i ∈ α ⇔ i† ∈ α†, and that (α†)† = α.
The third equality uses microscopic reversibility. The final equality uses the fact
that the i† and j† are dummy summation variables, and that each state and its
conjugate occur once in the summation. One sees that microscopic reversibility
implies macroscopic reversibility, which is to say that the forward and reverse
transitions between macrostates have the same weight. This result holds for all
macrostates: even, odd, and mixed. For macrostates of even parity, one has the
stronger result ω(α, β|τ) = ω(β, α|τ), but this is not required.

Macroscopic reversibility appears to say that there is no preferred direction
of time, which would seem to contradict the Second Law of Thermodynamics.
This question is addressed following the discussion of probability below.

For the case of simultaneous macrostates treated in §1.4.2, where ω(α, β)
was the weight attached to the system being in both the macrostate α and the
macrostate β, a reduction condition was established as Eq. (1.12),

∑
β ω(α, β) =

ω(α). This followed from the disjoint, complete nature of the macrostates.
There is obviously a close relationship between simultaneous macrostates and
the present problem of transitions between macrostates, since the transition
i

τ→ j can be regarded as the joint macrostate, i at t and j at t+τ . Accordingly,
since the set of target microstates is complete and disjoint, one must have a
reduction rule for the transition,

∑
j

ω(j, i|τ) = ω(i), (1.28)
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where on the right-hand side is the weight of the microstate, which was denoted
above as ωi. This may be interpreted as a conservation law for weight: the orig-
inal weight of microstate i is distributed unchanged by the transitions amongst
all the target microstates j. In view of microscopic reversibility one must have∑

i

ω(j, i|τ) =
∑

i

ω(i†, j†|τ) = ω(j†) = ω(j). (1.29)

Similar normalisations follow for the macrostate transitions,∑
α

ω(α, β|τ) = ω(β), and
∑

β

ω(α, β|τ) = ω(α). (1.30)

This result will be used to establish the very important reduction condition on
the second entropy below.

In view of this normalisation, the total weight of transitions for the given
time interval is∑

i,j

ω(j, i|τ) =
∑

i

ω(i) = W. (1.31)

This is the same as the total weight of the system, and is independent of the
length of the time interval. There is no fundamental distinction between mi-
crostates and macrostates in these definitions, and the same total weight holds
for the macrostate transitions,∑

α,β

ω(α, β|τ) =
∑

β

ω(β) = W. (1.32)

Probability

The unconditional transition probability is

℘(β, α|τ) ≡ ω(β, α|τ)

W
. (1.33)

The joint probability defined in §1.4.2, ℘(αβ) ≡ ω(αβ)/W , is the τ → 0 of the
present expression. The conditional transition probability is

℘(β|α, τ) ≡ ℘(β, α|τ)

℘(α)
. (1.34)

This is the probability that the system will be in the macrostate β at a time τ
in the future, given that it is currently in the macrostate α. These definitions
apply as well to microstates.

The macroscopic reversibility for the weights yields

℘(α†, β†|τ) = ℘(β, α|τ), (1.35)
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which says that one is just as likely to observe the forward transition between two
macrostates as one is to observe the reverse transition between their conjugate
states. For the conditional transition probability one obtains

℘(α†|β†, τ) =
℘(α†, β†|τ)

℘(β†)
=

℘(β, α|τ)

℘(β)
= ℘(β|α, τ)

℘(α)

℘(β)
. (1.36)

This may be rearranged as

℘(α†|β†, τ)

℘(β|α, τ)
=

℘(α)

℘(β)
= e[S(α)−S(β)]/kB . (1.37)

This says that the ratio of forward and reverse conditional transition proba-
bilities is proportional to the exponential of the entropy difference of the two
macrostates.

Boltzmann and Clausius Revisited

Before proceeding to the second entropy, it is worthwhile using this result for
the conditional transition probability to revisit the discussion in §1.1 on p. 3
of the way in which Boltzmann’s physical interpretation of entropy justifies
the Second Law of Thermodynamics. In the case that α and β belong to the
same collective of macrostates, and that γ is a macrostate approximately half
way between the two of them, then the product of the ratio of the conditional
transition probabilities from γ is

e[S(α)−S(β)]/kB =
℘(α|γ, τ)

℘(γ†|α†, τ)

℘(γ|β, τ)

℘(β†|γ†, τ)
≈ ℘(α|γ, τ)2

℘(β†|γ†, τ)2
. (1.38)

The approximate equality follows because γ is the mid-macrostate, which implies
that the transition γ → α ought be approximately the same as the transition
β → γ, and the transition α† → γ† ought be approximately the same as the
transition γ† → β†. For simplicity one can look at even parity macrostates, in
which case this becomes

℘(α|γ, τ)

℘(β|γ, τ)
≈ e[S(α)−S(β)]/2kB . (1.39)

This says that if the macrostates are ordered in terms of increasing entropy, then
the likelihood of observing an entropy increasing transition from the current
state over an entropy decreasing transition equals the exponential of half the
difference in their entropy.17 This is the connection between Clausius’ law for
spontaneous transitions and Boltzmann’s physical identification of entropy.

Macroscopic reversibility for even parity states, ℘(α, β|τ) = ℘(β, α|τ), says
that the probability of the forward transition occurring is the same as that of the

17The factor of one half found here corrects its absence in the hand-waving argument in §1.1
on p. 3. One can invoke the mid-point theorem to assert that there must exist a γ between
the two macrostates that makes the present result correct.
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backward transition. Note that this is the unconditional probability. The result
holds even if one state, say α, is far less likely than the other. Mathematically,
the result says that if ℘(α) � ℘(β), then the conditional transition to the more

likely state, α
τ→ β is far more likely than the reverse, ℘(β|α, τ) � ℘(α|β, τ),

and the likelihood factors exactly balance. Physically, the result means that
for every fluctuation from equilibrium, there is a reverse fluctuation back to

equilibrium, where equilibrium means the most likely macrostate. This means
that the unconditional transition from the unlikely state, ℘(β, α|τ), which is
in the direction toward equilibrium, must have been preceded by a fluctuation
away from equilibrium, ℘(α, β|τ).

Second Entropy

As for the macrostates themselves, for macrostate transitions one can define an
entropy—the second entropy—that is the logarithm of the weight,

S(2)(α, β|τ) ≡ kB ln ω(α, β|τ). (1.40)

This could also be called the transition entropy, or the two-time entropy. The
superscript (2) is actually redundant since the order of the entropy can be de-
duced from the number of its arguments. However, it does serve to differentiate
the entropy of a transition from the ordinary entropy of multiple macrostates
in different collectives. Also, by explicitly exhibiting the superscript as here
it is emphasised that this is a distinct object from the more familiar ordinary
entropy. One has an identical definition for the second entropy of microstate
transitions.

By definition, the exponential of the second entropy gives essentially the
unconditional transition probability,

℘(α, β|τ) =
1

W
eS(2)(α,β|τ)/kB . (1.41)

Similarly, the conditional transition probability is given by

℘(α|β, τ) = e[S
(2)(α,β|τ)−S(β)]/kB . (1.42)

This suggests defining the conditional second entropy as

S(2)(α|β, τ) ≡ S(2)(α, β|τ) − S(β), (1.43)

in terms of which the conditional transition probability is

℘(α|β, τ) = eS(2)(α|β,τ)/kB . (1.44)

The most likely state given the current state, α(τ |β), is the one that max-
imises the second entropy,

∂S(2)(α, β|τ)

∂α

∣∣∣∣
α=α

= 0. (1.45)
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This definition, together with the normalisation condition on the transition
weight, Eq. (1.30), may be used to establish the very important reduction con-
dition,

S(β) = kB ln ω(β)

= kB ln
∑
α

ω(2)(α, β|τ)

≈ kB ln ω(2)(α(τ |β), β|τ)

= S(2)(α(τ |β), β|τ). (1.46)

The third equality used the fact that the logarithm of a sum is approximately
equal to the logarithm of the largest term in the sum, which is valid when the
distribution of states α is sharply peaked about the most likely state, α. This
reduction condition says that the maximum value of the second entropy in the
future (or the past) is equal to the first entropy of the current state. This reduc-
tion condition will be generalised in §8.3.1 below to the case of time dependent
weights, which is required for the most general non-equilibrium system.

1.4.5 The Continuum

The preceding formulation of macrostates, probability, and entropy has been in
terms of discrete states, α = 1, 2, 3, . . .. In most cases, particularly in thermody-
namics and classical statistical mechanics, the macrostates form a continuum.
Energy is an example of such a continuous variable. The formalism is virtually
unchanged in the continuum limit.

For example, if x is a real number that represents the value of a physical
observable, then one defines the weight density ω(x) and the corresponding
probability density, ℘(x) = ω(x)/W . The latter represents the probability of
finding the system within dx of x. The total weight is just

W =

∫
dxω(x), (1.47)

which is dimensionless. The average of a function of the continuous macrostate
label is as usual

〈f〉 =

∫
dx℘(x)f(x). (1.48)

There is one minor complication in defining the entropy for such a continuum
of macrostates. Since it is preferable that arguments of logarithms be dimen-
sionless, one introduces an arbitrary width Δ(x) that has the same dimensions
as x. In terms of this the entropy of the macrostate x is defined to be

S(x) ≡ kB ln[ω(x)Δ(x)]. (1.49)

The probability density remains proportional to the exponential of the entropy,
but the width also appears,

℘(x) ≡ ω(x)

W
=

eS(x)/kB

Δ(x)W
. (1.50)
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It is emphasised that the width Δ(x) has no physical significance.18 It can be
taken to be constant, or it can be chosen to vary with x, or it can be neglected
altogether. The explicit appearance of the width in the probability density
cancels with its implicit contribution to the entropy, so that it in no way affects
the probability density itself. Since the total weight is dimensionless, the explicit
appearance of the width gives the probability density the correct dimensions of
inverse x. For simplicity, it is probably best to take the width to be independent
of x. In this case, differences in entropy or derivatives of the entropy do not
depend upon the choice of its constant value. In practice, entropy is such a
rapidly varying function of the physical observable that even if one has chosen
the width to vary with x, this variation is negligible compared to that of the
entropy itself.

As in the discrete case, the total entropy may be written as an average of
the internal entropy and the probability,

S = kB ln W

=

∫
dx℘(x)kB ln W

=

∫
dx℘(x)

[
S(x) − kB ln

eS(x)/kB

W

]

=

∫
dx℘(x) [S(x) − kB ln {℘(x)Δ(x)}] . (1.51)

This is the continuum analogue of Eq. (1.22). Although the arbitrary width
appears explicitly here, it cancels with the corresponding term in S(x), and the
total entropy is independent of the choice of Δ(x).

1.5 Reservoirs

In applications of thermodynamics and statistical mechanics one generally has
in mind a particular system. The surroundings or rest of the universe are of
interest only in so far as they affect the particular system, and it is almost
always the case that such effects are indirect. If the details of such interactions
were important, the relevant part of the surroundings would have to be included
as part of the system of interest.

For example, if one is interested in the structure of a protein in solution,
then most of the liquid can be ignored except possibly for those molecules im-
mediately adjacent to the protein. The molecules of the liquid far removed from
the protein need not be treated explicitly, but they appear indirectly, as a heat
bath, for example, that sets the temperature of the protein and adjacent liquid.
Similarly, if one is interested in the dynamics of protein folding, the distant

18In classical statistical mechanics, it is conventional to take the width or volume element
of phase space to be proportional to Planck’s constant to the power of the size of the sub-
system. This is purely a convention that has no fundamental justification in terms of quantum
mechanics or in terms of experimental measurement.
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liquid molecules enter the equations of motion indirectly via a stochastic term
derived from their temperature.

The use of reservoirs greatly simplifies thermodynamics and statistical me-
chanics since it avoids having to keep track of the full detail of the surroundings.
This external influence is accounted for in a gross sense via a statistical proba-
bility that is derived from the thermodynamic state of the surroundings rather
than from its exact molecular identity.

The reservoir formalism was originally developed by Gibbs (1902) to handle
this situation. The formalism will be treated in explicit detail in later chapters,
particularly for the non-equilibrium equations of motion. Here a brief outline
of the general approach is described.

1.5.1 Equilibrium Systems

The total system consists of a sub-system and a reservoir, with the sub-system
being of detailed interest and the reservoir being secondary. One generally
identifies one or more conserved variables, the linear additive quantities such
as the energy, number, volume, charge etc. that can exchange between the sub-
system and the reservoir. Let x be the conserved quantity that is exchangeable
between the reservoir and the sub-system,

xtotal = xs + xr, (1.52)

where the subscripts s and r stand for sub-system and reservoir, respectively.
The total system is isolated from the rest of the universe, so that the total
quantity does not change, xtotal = const. Consequently, changes in the sub-
system are equal and opposite to those of the reservoir, Δxs = −Δxr.

The total entropy when the sub-system is in the macrostate xs is the sum
of that of the sub-system and that of the reservoir,

Stotal(xs|xtotal) = Ss(xs) + Sr(xtotal − xs). (1.53)

Writing the entropy as the sum of that of the individual systems in the respec-
tive states is valid if the interaction between the two systems does not perturb
significantly their individual natures. This is the case if the volume of the
boundary region is very much less than the volume of either the sub-system or
the reservoir. One further assumes that the reservoir is very much larger than
the sub-system. Hence the reservoir formalism is predicated on the condition
|xbdry| � |xs| � |xtotal|. Since entropy is an extensive variable (this is the
reason for defining it as a logarithm), it is of the same order as the macrostate
itself. This enables a Taylor expansion of the reservoir entropy to be truncated
after the linear term,

Sr(xtotal − xs) = Sr(xtotal) − xs
dSr(xtotal)

dxtotal
+ O

(
x2

s

xtotal

)
= const. − xsλr. (1.54)
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The constant is independent of the sub-system and is of no interest or phys-
ical import. The specific field variable of the reservoir, which is the entropy
derivative, depends upon the exchangeable variable; examples include the reser-
voir temperature, chemical potential, pressure, electrostatic potential etc. The
first neglected term and higher are smaller than the retained term by factors of
the size ratio of the sub-system to the reservoir, which vanishes in the present
limit that the reservoir is infinitely larger than the sub-system. With this the
sub-system dependent part of the total entropy is

Stotal(xs|λr) = Ss(xs) − xsλr. (1.55)

Notice how now the reservoir only enters through its field variable.
This may be made more concrete by considering the canonical equilibrium

system. In this case the sub-system can exchange energy, xs ⇒ Es with a
reservoir of (reciprocal) temperature, λr ⇒ T−1

r ≡ ∂Sr(Er, Nr, Vr)/∂Er. The
total entropy in this case is related to the Helmholtz free energy, as is discussed
below.

The probability distribution for the macrostate of the sub-system is propor-
tional to the exponential of the total entropy. That is

℘(xs|λr) =
1

W (λr)
eSs(xs)/kBe−xsλr/kB , (1.56)

where the total weight, also called the partition function, is

W (λr) =

∫
dxs eSs(xs)/kBe−xsλr/kB . (1.57)

One could include the width of the macrostates to make this dimensionless, if
one desired.

Again to make this concrete, for microstates of the sub-system, Γs, which
have no internal entropy, Ss(Γs) = 0, for the canonical equilibrium system, xs ⇒
Es(Γs) and λr ⇒ T−1

r , this probability is ℘(Γs|Tr) = W (Tr)
−1e−Es(Γs)/kBTr .

This may be recognised as the Maxwell-Boltzmann probability distribution.
The summed total entropy is Stotal(λr) = kB ln W (λr). The word ‘total’ here

means the sub-system entropy plus the reservoir entropy, and the word ‘summed’
means that it is summed over all sub-system macrostates. Here and below,
reservoir entropy really means the sub-system dependent part of the reservoir
entropy. In contrast there is the constrained sub-system entropy, Ss(xs), the
total constrained entropy, Stotal(xs|λr) = Ss(xs) − xsλr, and the maximal value
of the total constrained entropy, Stotal(xs|λr) = Ss(xs) − xsλr. The macrostate
that gives the latter satisfies

∂Stotal(xs|λr)

∂xs

∣∣∣∣
xs=xs

= 0, or
∂Ss(xs)

∂xs

∣∣∣∣
xs=xs

= λr. (1.58)

Since the x derivative of the entropy is the field variable λ, this says that in
the most likely macrostate there is equality between the field variables of the
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sub-system and the reservoir, λs ≡ λs(xs) = λr. For example, if x were energy,
then since the energy derivative of the entropy is equal to the reciprocal of
the temperature, this says that in the most likely energy macrostate there is
temperature equality between the sub-system and the reservoir.

Because the summed total entropy contains the maximal total entropy, one
has the strict inequalities

Stotal(λr) > Stotal(xs|λr) ≥ Stotal(xs|λr). (1.59)

Thermodynamics always refers to the most likely state, and it is Stotal(xs|λr)
that is generally meant.19 Statistical mechanics generally refers to the sum over
states, so in this case it is Stotal(λr). In practice the entropy is an exceedingly
rapidly varying function of its argument, and so with practically negligible error
one has Stotal(λr) ≈ Stotal(xs|λr). Finally, thermodynamics tends to deal with
free energies rather than entropy. The relationship between the two is relatively
trivial, since in general the free energy is minus the reservoir temperature times
the total maximal constrained entropy,

F (λr) ≡ −TrStotal(xs|λr) = Trλrxs − TrSs(xs) ≈ −kBTr ln W (λr). (1.60)

The final equality is the statistical mechanical formula for the free energy in
terms of the partition function. For the case that the exchangeable variable
is energy, one can make the identification xs ⇔ Es and λr ⇔ 1/Tr, and this
reads F (Tr) = Es − TrSs(Es), which is the usual thermodynamic formula for
the Helmholtz free energy.

The average value of the sub-system macrostate is

〈xs〉 ≡
∫

dxs ℘(xs|λr)xs

=
1

W (λr)

∫
dxs eSs(xs)/kBe−xsλr/kBxs. (1.61)

It is an exercise to show that this can also be written as the derivative of the
partition function,

〈xs〉 = −kB
∂ ln W (λr)

∂λr
. (1.62)

In general the probability distribution is sharply peaked about its most likely
value, which means that there is consistency between the thermodynamic for-
mula and the statistical mechanical formula 〈xs〉 ≈ xs.

1.5.2 Non-Equilibrium Steady State

A relatively small modification of the reservoir formalism suffices for one of the
most common non-equilibrium systems, namely a steady thermodynamic flux.

19Most textbooks do not distinguish explicitly between the total entropy and the sub-system
entropy.
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Examples include heat flow due to a temperature gradient, shear flow due to
a velocity gradient, and diffusion due to a chemical potential gradient. The
specific case of steady heat flow will be treated in Ch. 4, and what follows is an
abbreviated survey of the generic approach.

For the simplest case of one-dimensional flow in the z-direction, one considers
the sub-system as sandwiched between two reservoirs with different values for
the conjugate field variable, say λr,±. If the boundaries of the sub-system are
at z = ±Lz/2, then it turns out that the relevant variables are

λr,0 ≡ λr,+ + λr,−

2
, and λr,1 ≡ λr,+ − λr,−

Lz
. (1.63)

These have the interpretation of the mean value of the field variable, and the
gradient of the field variable, respectively.

Let ρx(z) be the volume density of the field variable that is exchangeable
with the reservoirs (e.g. in the case of heat flow it is the energy density, and λ
is the inverse temperature). Then the zeroth and first moments are

X0 = A

∫ Lz/2

−Lz/2

dz ρx(z), and X1 = A

∫ Lz/2

−Lz/2

dz zρx(z), (1.64)

where A is the cross-sectional area. The entropy of the sub-system in the
macrostate represented by these two moments is written Ss(X0, X1). It is
straightforward to show that these moments are conjugate to the field variables
defined above,

∂Ss(X0, X1)

∂X0
= λs,0, and

∂Ss(X0, X1)

∂X1
= λs,1. (1.65)

That the first moment is conjugate to the gradient can be seen from the fact
that their product has the dimensions of entropy.

In the optimum state, which in this case is the steady state, the field variables
of the sub-system are equal to those applied by the reservoir,

λs,0 = λr,0, and λs,1 = λr,1. (1.66)

Hence for steady heat flow, the sub-system takes on a temperature gradient
that is in essence equal to the temperature difference of the reservoirs divided
by their separation.

The above results refer to structure, albeit the structure of a non-equilibrium
system. However it is the flux that is the more obviously non-equilibrium quan-
tity. It turns out that the flux in x, Jx, which is the amount of x crossing a
plane per unit area per unit time, is related to the rate of change of the first
moment of the sub-system,

Jx =
1

ALz
Ẋ0

1 . (1.67)

This follows because the nett effect of a uniform flux inside the sub-system is
to take an amount per unit time of Δx = AJx from the boundary region at
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z = −Lz/2, and to deposit it at the other boundary at z = +Lz/2, so that
the internal rate of change of the moment is −(−Lz/2)AJx + (Lz/2)AJx =
LzAJx. Here the superscript 0 signifies the rate of change in the moment of
the sub-system isolated from the reservoirs. In the next chapter the regression
hypothesis will be derived, which states that the most likely flux for a given
structure, X1, is proportional to the derivative of the entropy,

Ẋ0
1 = C

∂Ss(X0, X1)

∂X1
= Cλs,1. (1.68)

The constant C is a transport coefficient, such as the thermal conductivity,
diffusion constant, etc.

This result holds for an isolated system. The reservoirs serve to fix the value
of the moment, X1, via the implicit equation, λs,1(X1) = λr,1. The reservoirs
also act as a source and sink for the variable in flux; they continually add and
accept just the right amount of the material in flux at the boundaries so that
the internal flux is cancelled and the first moment is maintained constant. That
the flux in an isolated system is the same as in the presence of reservoirs will
be true when the volume of the boundary region is negligible compared to the
volume of the sub-system. One also needs the reservoirs to be so large that the
amount of material exchanged has negligible effect on the value of their field
variable, and also that the conductivity of the reservoirs be much greater than
that of the sub-system, so that any gradient in the field variable in the reservoirs
themselves can be neglected.
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Chapter 2

Fluctuation Theory

This chapter develops fluctuation theory, primarily for equilibrium systems,
but with the focus on transitions between thermodynamic states. It is these
transitions that form the basis of non-equilibrium theory. Initially the analy-
sis is restricted to macrostates of the same time parity, with behaviour of the
time correlation function and the form of the second entropy being obtained
by symmetry arguments. It is shown that the time correlation function decays
exponentially in Markov systems. A small time expansion of the time correla-
tion function that is valid in both Markov and non-Markov systems is carried
out, and from it Onsager’s regression hypothesis, Onsager’s reciprocal relation,
and the Green-Kubo expression for the transport coefficients are derived. The
fluctuation analysis is then generalised to the case of systems of mixed time
parity.

2.1 Gaussian Probability

In an equilibrium system fluctuations occur about the most likely state. In what
follows, these will be taken to be Gaussian. Gaussian probability plays a central
rôle in the physical universe for two reasons. First, the Gaussian probability
distribution is stable, by which is meant that any variable that is the sum
of other variables that each have a Gaussian probability distribution is itself
Gaussian distributed. Second, the Gaussian probability distribution follows
from the central limit theorem, which means that the probability distribution
tends to the Gaussian distribution for any variable that is the sum of arbitrarily
distributed variables as their number increases. Since the stochastic portion of
the behaviour of all physical variables is due to multiple stochastic influences, at
least classically, and since most variables of physical interest are linear additive
variables, the Gaussian probability distribution is both necessary and sufficient
to account for the statistical behaviour of reasonably likely states.

For a macrostate collective X , the fluctuations represent the departure from
the equilibrium or most likely state, say x = X − X. Consider M collectives of

33
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continuum macrostates, and let x = {x1, x2, . . . , xM} be the vector represent-
ing the state of the system as represented by fluctuations in these collectives.
Obviously, x = 0.

The most important concepts emerge from the simplest case that each of the
collectives is of pure parity, and all of them have the same parity. This means
that either x† = x, or else x† = −x, which is to say that when the velocities of
all the particles in the universe are reversed, either the value of the macrostate
is unchanged or else it reverses sign. The more general case of mixed parity is
treated in detail in §2.5.

The present system is taken to be isolated (no exchange with any reservoir).
Eventually the influence of a reservoir will be treated in detail. For the present
one can allude to one aspect of Onsager’s regression hypothesis,1 namely that
the rate of regression back to equilibrium of a fluctuation in an isolated system
is the same as though the initial departure from equilibrium had been induced
by a reservoir.

For example, suppose the collective of interest is the energy difference be-
tween two halves of the isolated system. A non-zero value of this represents a
fluctuation away from the equilibrium state of equal energy in the two halves.
However, such an asymmetry in the energy distribution can also be induced by
placing the system between two reservoirs of different temperatures and allow-
ing energy exchange. The internal rate of relaxation of the energy asymmetry,
which can be related to the heat flow across the mid-plane, is the same in both
cases. This example illustrates why the transport properties of an isolated sys-
tem are relevant to steady flows induced by externally applied gradients, which
is contained in Onsager’s regression hypothesis

In what follows, upper case Roman letters denote an M×M matrix. The jux-
taposition of two vectors means a dyadic matrix, which has elements {xy}ij =
xiyj ; if there is no ambiguity with the scalar product, the symmetric dyadic
may be written x2 ≡ xx. Also, z = Ax is a vector formed by ordinary ma-
trix multiplication, the scalar product of two vectors is y · x ≡ yTx, where the
superscript T means transpose, and the double scalar product can be written
using the ‘inside-out’ convection, A : xy ≡ yTAx ≡ y · Ax.

Define the time correlation matrix,

Q(τ) ≡ k−1
B 〈x(τ)x(0)〉 . (2.1)

The diagonal elements of Q(τ) are called autocorrelations, and the off-diagonal
elements are called cross-correlations.

By the time homogeneity of an equilibrium system one has

〈x(τ)x(0)〉 = 〈x(0)x(−τ)〉 , or Q(τ) = Q(−τ)T. (2.2)

By macroscopic reversibility one has

〈x(τ)x(0)〉 =
〈
x(−τ)†x(0)†

〉
= 〈x(−τ)x(0)〉 , or Q(τ) = Q(−τ). (2.3)

1The regression hypothesis encompasses a number of concepts, including that the flux is
linearly proportional to the thermodynamic force, that this force is the same whether the
non-equilibrium state is due to a spontaneous fluctuation or is determined by an external
reservoir or field, and that the flux is independent of time. It is derived in §2.3 and in §2.5.
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These two mean that in the present pure parity case, the time correlation matrix
is symmetric, Q(τ) = Q(τ)T.

One can perform an expansion of the entropy to second-order about the most
likely state,

S(x) =
1

2
S : xx, (2.4)

where

S ≡ ∂2S(x)

∂x∂x

∣∣∣∣
x=0

(2.5)

may be called the fluctuation matrix. Evidently, the fluctuation matrix as a
matrix of second derivatives is symmetric, ST = S. The main interest is in
departures from the most likely state, and S(0) has here been set to zero. The
fluctuation matrix is negative definite, because the entropy of a fluctuation is
by definition less than that of the most likely state.

In equilibrium thermodynamics, the second derivatives of the entropy that
comprise a fluctuation matrix can be expressed as second derivatives of an ap-
propriate free energy.2 Examples of such quantities include the heat capacity,
the thermal expansivity, and the isothermal compressibility. These material
properties can be measured directly in the laboratory with macroscopic mea-
surements, or they can be calculated with statistical mechanics from an inter-
molecular potential. A great deal of chemical engineering and materials science
depends upon tabulated values of these coefficients.

The probability of the fluctuation is the exponential of this quadratic form
for the entropy,

℘(x) =
1

W
exp

S : xx

2kB
. (2.6)

By design, this is a Gaussian probability. Normalisation gives the total entropy
of the fluctuations as

W = (2πkB)M/2|−S|−1/2 =
∣∣−2πkBS−1

∣∣1/2
, (2.7)

where | . . . | denotes the determinant. Recall that the vector x has M compo-
nents. The static correlation function, Q0 ≡ Q(0), is related to the fluctuation
matrix by

Q0 = −S−1. (2.8)

2Attard, P. (2002a), Thermodynamics and Statistical Mechanics: Equilibrium by Entropy

Maximisation, (Academic Press, London).
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This result follows from the definition,

Q0 = k−1
B 〈x(0)x(0)〉

=
1

kBW

∫
dxxxeS:xx/2kB

=
1

kBW

∫
dxxkBS−1 ∂

∂x
eS:xx/2kB

=
1

W

{[
xS−1eS:xx/2kB

]∞
−∞

− S−1

∫
dx eS:xx/2kB

}
= −S−1. (2.9)

In the fourth equality, an integration by parts has been used, with the integrated
portion vanishing due to the negligible probability of extreme fluctuations.

The second entropy may be expanded similarly to quadratic order,

S(2)(x′,x|τ) =
1

2
A(τ) : xx + B(τ) : x′x +

1

2
A′(τ) : x′x′. (2.10)

Here x ≡ x(0) is the current state, and x′ ≡ x(τ) is the future state. The
matrices A(τ), B(τ), and A′(τ) are second derivative matrices,

A(τ) ≡ ∂2S(2)(0,x|τ)

∂x∂x

∣∣∣∣
x=0

, A′(τ) ≡ ∂2S(2)(x′,0|τ)

∂x′∂x′

∣∣∣∣
x′=0

, (2.11)

and

B(τ) ≡ ∂2S(2)(x′,x|τ)

∂x∂x′

∣∣∣∣
x′=x=0

. (2.12)

Clearly the two ‘pure’ matrices are symmetric, A(τ) = A(τ)T and A′(τ) =
A′(τ)T The second entropy must be negative with maximum S(2)(0,0|τ) = 0.

Time homogeneity means that S(2)(x′,x|τ) = S(2)(x,x′|−τ ), which implies

A(−τ) = A′(τ), and B(τ) = B(−τ)T. (2.13)

Similarly, macroscopic reversibility gives the behaviour upon reversing the ve-
locities, S(2)(x′,x|τ) = S(2)(x′†,x†|−τ ) = S(2)(x′,x|−τ ). The final equality
follows because each term in the quadratic form is unchanged when the sign of
both vectors is changed, as in the pure odd case. Hence

A(τ) = A′(τ), and B(τ) = B(τ)T. (2.14)

The most likely future state given the present state is obtained by maximising
the second entropy with respect to x′. That is

∂S(2)(x′,x|τ)

∂x′

∣∣∣∣
x′=x′

= 0. (2.15)
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This gives3

x′ ≡ x(τ,x) = −A(τ)−1B(τ)x. (2.16)

Similarly, the most likely present state that would lead to x′ is x ≡ x(−τ,x′) =
−A(τ)−1B(τ)x′. The result that the most likely future position is linearly pro-
portional to the current position is a formally exact consequence of the Gaussian
form for the fluctuations. It justifies Onsager’s original regression hypothesis,
that the rate of return to equilibrium is linearly proportional to the gradient
in the entropy. It represents a type of factorisation that splits the time depen-
dence from the state dependence. However, until the time dependence of the
fluctuation matrices is established, the full power of the hypothesis cannot be
exploited, as will be discussed in greater detail in §2.3.

The second entropy may be rearranged in terms of the departure from the
future most likely state,

S(2)(x′,x|τ) =
1

2
A(τ) :

[
x′ + A(τ)−1B(τ)x

]2
+

1

2

[
A(τ) − B(τ)A(τ)−1B(τ)

]
: xx, (2.17)

where the squared vector signifies the symmetric dyadic matrix.
The reduction condition was given as Eq. (1.46). This says that in the most

likely state the second entropy must equal the first entropy,

S(2)(x′,x|τ) = S(x). (2.18)

A similar reduction holds for the most likely prior state, S(2)(x′,x|τ) = S(x′).
The physical origin of the reduction condition is that the probability distribution
is sharply peaked about the most likely state such that fluctuations are relatively
negligible. Using either of these and the preceding form for the second entropy
establishes an exact relation between the two fluctuation matrices,

A(τ) − B(τ)A(τ)−1B(τ) = S. (2.19)

This result in essence means that there is only one independent fluctuation
matrix.

The transition probability is the exponential of the second entropy,

℘(x′,x|τ) =
1

W (2)
eS(2)(x′,x|τ)/kB . (2.20)

Obviously this is Gaussian, and from the rearranged form of the second entropy
and the reduction condition one can see that the normalisation factor is

W (2) = (2πkB)M |−A(τ)|−1/2 |−S|−1/2
. (2.21)

3There is a close relationship between the most likely state derived from the second (or
higher-order) entropy and stochastic processes or Brownian motion, as is discussed in Chs 3,
10, and 11.
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For Gaussian statistics, means equal modes, which allows the fluctuation
matrices to be related to the time correlation matrix. One has

Q(τ) = k−1
B 〈x′x〉

= k−1
B 〈x′x〉

= −A(τ)−1B(τ)k−1
B 〈xx〉

= A(τ)−1B(τ)S−1. (2.22)

Alternatively,

Q(τ) = k−1
B 〈x′x〉 = S−1B(τ)A(τ)−1 . (2.23)

This is just the transpose of the preceding expression.
Using these, the generic regression hypothesis, Eq. (2.16), can be written in

terms of the time correlation function,

x′ = −A(τ)−1B(τ)x = −Q(τ)Sx. (2.24)

The term Sx = ∇S(x) is the thermodynamic driving force toward the equilib-
rium state. Post multiplying both sides of this by xT and taking the average
yields an identity, since

〈
[∇S(x)]xT

〉
= −kBI. The time dependence of the

fluctuation matrices and of the time correlation function will be derived shortly,
and the full power and utility of the regression hypothesis in non-equilibrium
thermodynamics will be demonstrated.

The expressions for the time correlation function in terms of the fluctuation
matrices can be inverted. Using the reduction condition, Eq. (2.19), and the
macroscopic reversibility condition one has

A(τ)−1S = I − A(τ)−1B(τ)A(τ)−1B(τ) = I − Q(τ)SQ(τ)S. (2.25)

Here and throughout I is the identity matrix. Hence

A(τ) = [I − SQ(τ)SQ(τ)]
−1

S. (2.26)

This is clearly symmetric, as it must be. Using this in the second form for the
time correlation function and rearranging for the cross fluctuation matrix one
obtains

B(τ) = [I − SQ(τ)SQ(τ)]−1
SQ(τ)S = A(τ)Q(τ)S. (2.27)

These show that the time correlation function completely determines the fluc-
tuation coefficients, the second entropy, and the transition probability.

2.2 Exponential Decay in Markovian Systems

The preceding analysis provided a formally exact description of fluctuations in
terms of the time correlation function. A key result was the generic regres-
sion hypothesis, Eq. (2.24), which showed that the most likely future state was
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linearly proportional to the current state. Now the aim is to derive the time
dependence of the proportionality constant, which is the time correlation func-
tion.

Obtaining quantitatively the time correlation function from a given inter-
molecular potential is one of the objects of statistical mechanics. Thermody-
namics, however, gives the generic behaviour of systems that is independent of
such molecular details and that relies upon only a few macroscopically measured
quantities. In this and the following section the time dependence of the fluctu-
ation matrices and of the time correlation function are analysed with a view to
expressing them in terms of a few macroscopic, hopefully universal, properties.
In the first instance it will be shown that Markovian systems, which are a good
approximation to some real world systems, have exponentially decaying time
correlation functions. After that, it will be shown that in the small time limit,
all systems, both Markovian and non-Markovian, have linearly decaying time
correlation functions. The small time limit is all that is required to develop the
non-equilibrium thermodynamics of steady state systems.

At very long times the initial and final macrostates must become uncorre-
lated. Hence the joint fluctuation in x′ and x must be the same as the product
of their independent fluctuations, S(2)(x′,x|τ) → S(x′) + S(x), τ → ∞. This
means that one must have

A(τ) → S, B(τ) → 0, τ → ∞. (2.28)

These are consistent with the vanishing of the time correlation function in the
long time limit, Q(τ) → 0, τ → ∞, as can be seen from Eq. (2.22).

At very short times, the most likely final state must be the same as the
initial state, x(τ,x) → x, τ → 0. This follows because the system does not have
time to leave its current macrostate. Using this in Eq. (2.16) shows that

A(τ)−1B(τ) → −I, τ → 0. (2.29)

Finally, for the present case of macrostates all with the same time parity,
Eqs (2.13) and (2.14) show that the fluctuation matrices must be even functions
of time,

A(τ) = A(−τ), and B(τ) = B(−τ). (2.30)

Accordingly the time correlation function must also be even, Q(τ) = Q(−τ).
The three results just listed are formally exact, but one needs to establish

additional behaviour to reduce the fluctuation matrices and the time correla-
tion function to the few macroscopic parameters that are required for a non-
equilibrium thermodynamic theory. To do this one has first to ascertain carefully
the time regime over which such a universal theory is to be applied.

Figure 2.1 shows the time evolution of a fluctuation, x(τ,x). In this case
the macrostate collective is the first energy moment, x ≡ E1, which tells the
asymmetry of the energy distribution in the two halves of the system. Also
the average value is used in place of the most likely value, but neither these
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Figure 2.1: Regression of a fluctuation in the first energy moment. The iso-
lated system at time τ = 0 is in a dynamically disordered state, with non-zero
energy moment Boltzmann-distributed according to a fixed temperature gradi-
ent. The evolution of the moment forwards and backwards in time (solid curve)
is obtained by molecular dynamics simulations of a Lennard-Jones fluid us-
ing adiabatic Hamiltonian trajectories averaged over initial states. The dashed
line is a fitted line, E1(τ) = a + b|τ |, and the dotted curve is an exponential,
E1(τ) = a exp [|τ |b/a]. The inset is a magnification for small times. More details
may be found in P. Attard, J. Chem. Phys. 122, 154101 (2005a).

nor the details of the simulation are important here. What is important is
the generic behaviour shown in Fig. 2.1 that is typical of all fluctuations of
macrostates of the same parity. That the regression in the fluctuation is even in
time is true for macrostates and mixtures of macrostates that all have the same
parity, either pure even or pure odd with respect to velocity reversal. In Fig. 2.1
one can identify three time regimes: the molecular or infinitesimal regime, the
small time or linear or steady regime, and the long time regime. In this case the
molecular regime is |τ | � 0.1, and one can see that the fluctuation goes smoothly
through the initial state, which means that it possesses a Taylor expansion,
x(τ,x) ∼ x+c(x)τ2+d(x)τ4+. . .. Only even powers of τ appear here. The small
time regime is here 0.1 � |τ | � 1, and it is characterised by a linear regression
in the fluctuation. Because the regression must be an even function of time,
in the small time regime it must have the form, x(τ,x) ∼ a(x) + b(x)|τ | (with
a(x) ≈ x and terms of order τ2, |τ |3 etc. neglected). Because the absolute value
is not an analytic function, this is not a Taylor expansion, and this functional
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form cannot apply in the molecular regime, as the fits in the figure clearly show.
One reason for nevertheless calling this the small time regime is that this must
be a small-τ expansion, since this functional form cannot hold in the long time
limit, where instead x(τ,x) → 0, |τ | → ∞. Following the short time regime
is what might be called the long time regime, here |τ |�1. For this system the
fluctuation decays exponentially, but such exponential behaviour does not occur
in all systems. Indeed in some cases the approach to zero can be power-law,
and in other cases it can even be non-monotonic.

The behaviour in the molecular regime depends upon the details of the
intermolecular potential. It represents the time required for the system to come
up to speed at the start of a regression before it settles into steady regression
of the fluctuation. The small time or linear regime is the steady state regime
in which the velocity or rate of change of the macrostate is constant. In what
follows, the molecular regime will be referred to as infinitesimal τ , and the
linear regime will be referred to as small τ . The rate of change or slope of the
regression in this small time regime is related to the hydrodynamic transport
coefficients, as will be explained shortly, and it is the regime to which non-
equilibrium thermodynamics refers. The non-analytic form for the terms in the
small-τ expansion arise from a resummation of an infinite number of terms in
the Taylor expansion of the molecular regime. The upper limit on the small
time regime is essentially that there cannot be a significant change in the state

of the system, which means that |τ ||◦x| � |x|. This follows because in essence
the state provides the driving force for the velocity, and so the velocity cannot
remain constant once the state has changed significantly.

A Markov system is one in which there is no memory. By this is meant that
the future state is determined solely by the present state and not by the history
of the system prior to the present state. The transition probability for three
states factorises in a Markov system,

℘(x3,x2,x1|t32; t21) = ℘(x3|t32,x2; t21,x1)℘(x2,x1|t21)
≈ ℘(x3|t32,x2)℘(x2,x1|t21). (2.31)

The first equality is formally exact, and expresses the probability of x3 condi-
tional upon being in the preceding two states. The second equality represents
the Markov approximation; it is true if the intermediate state x2 removes all
influence or memory of the state x1 on the final state x3.

Not all systems display Markovian behaviour, but for those that do the
generic regression hypothesis, Eq. (2.24), takes on a particularly simple form.
The most likely transition x1 → x3 in time t31 is

x3 = −Q(t31)Sx1. (2.32)

Mimicking the analysis of Fox and Uhlenbeck,4 one can introduce an interme-
diate time, t1 < t2 < t3, and write this as a pair of successive transitions,

x3 = −Q(t32)Sx2 = Q(t32)SQ(t21)Sx1. (2.33)

4Fox, R. F. and Uhlenbeck, G. E. (1970), Phys. Fluids, 13, 1893, 2881.
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The Markov approximation appears at the first equality, namely that the tran-
sition x2 → x3 is not influenced directly by the prior state x1. Comparing these
two expressions one must have

−Q(t31)S = Q(t32)SQ(t21)S, (2.34)

which implies that

Q(τ) = −e|τ |ΛS/2S−1. (2.35)

This is known as Doob’s theorem, and it applies to any random process that is
both Gaussian and Markov.5

One concludes that the time correlation functions for Markov systems are
exponentially decaying. The decay rate is determined by a constant matrix Λ,
which will turn out to be related to the transport coefficients of the system.
Hence this result fulfils the thermodynamic goal of characterising the system by
a few macroscopic parameters.

In the small time limit the exponential may be linearised to give,6

Q(τ) = −S−1 − |τ |Λ/2, |τ ||ΛS| � 1. (2.36)

2.3 Small Time Expansion

The preceding analysis showed that in the Markov regime the time correlation
function was linear in |τ | on scales much less than the exponential decay time.
The absolute value arises because it is an even function of time. Since this is
not an analytic function, one can conclude that this result cannot hold down
to infinitesimal time scales, where instead one must have a Taylor expansion of
the form

Q(τ) = −S−1 +
1

2
τ2Q̈(0) + . . . , τ → 0. (2.37)

Hence one has to distinguish between on the one hand infinitesimal or molec-
ular time scales, and on the other what will be called small time scales, which
are defined as much less than the system decay time, but much greater than
molecular time scales. The reason that the Markov regime cannot persist down
to molecular time scales is that the system needs time to forget the preceding
states.

In general (Markov and non-Markov), the influence of velocity decays rel-
atively rapidly, and one can define a velocity relaxation time τrelax such that
x(τ |x, ẋ) ≈ x(τ |x), τ � τrelax. For the small time expansion to be valid, one

must have |τ | � |x/
◦
x (τ |x)|. In a Markov system both of these can be simul-

taneously satisfied. By definition they cannot be simultaneously satisfied in a
non-Markov system.

5Doob, J. L. (1942), Ann. Math. 43, 351.
6The criterion for smallness might be better written −|τ |ΛS : xx � x · x for all x.
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In the general pure parity case the time correlation function must be an
even function of τ , with a leading term O(τ2) in the molecular regime, and a
leading term O(|τ |) in the small time regime. This last result has just been
proven for a Markov system using Doob’s theorem for the exponential decay of
correlations. Such exponential decay, either monotonic or damped sinusoid, is
expected whenever the decay of the future state depends upon the magnitude

of the current state,
◦
x (τ |x), and so one expects the result also to hold for

non-Markov system in the small time regime. In §2.4.7, in which the transition
x1 → x2 → x3 is briefly discussed, it is argued that non-Markov corrections
to the Markov result are of higher-order in the time interval in the small time
limit.

All of the following results apply to the small time regime, and it is assumed
that the linearity in |τ | holds for all systems. In the non-Markov case, the time
interval τ is not larger than the relaxation time, so that x(τ |x) �= x(τ |x, ẋ).
Nevertheless the most likely conditional value x(τ |x) is well defined and corre-
sponds to the most likely value depending on the starting position irrespective
of the starting velocity (equivalently, summed over all starting velocities). Ac-
cordingly, expansions in powers of |τ | will now be obtained for the fluctuation
matrices in the second entropy.

The second entropy in fluctuation approximation may be rearranged as

S(2)(x′,x|τ) =
1

2
A(τ) : x2 + B(τ) : x′x +

1

2
A(τ) : x′2 (2.38)

=
−1

2
B(τ) : [x′ − x]

2
+

1

2
[A(τ) + B(τ)] :

[
x′2 + x2

]
.

Recall the inside-out convention for the double scalar product, A : xy ≡ y ·Ax,
and the square convention for the symmetric dyadic matrix, x2 ≡ xx. This
expression is restricted to fluctuations of variables all of the same parity, but no
other restriction is placed on the system.

In the limit τ → 0, the future state must be the same as the present state,
x′ = x. This means that the transition probability must become a delta-
function, ℘(x′,x|τ) → δ(x′ − x)℘(x), τ → 0. In view of this, the first term
in the second form for the second entropy must diverge as

B(τ) =
1

|τ |Λ
−1 + B + O(τ), |τ | → 0. (2.39)

The notation for the coefficient of the leading 1/|τ | term has been chosen to
be consistent with that chosen for the Markov analysis, as will shortly become
clear. The second term in the second form for the second entropy must remain
finite, and so one must also have

A(τ) =
−1

|τ | Λ
−1 + A + O(τ), |τ | → 0. (2.40)

To leading-order these give A(τ)−1B(τ) = −I, |τ | → 0, as demanded by
Eq. (2.29). The expansions are even in time in this present pure parity case.
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Using these two expansions in the reduction condition, Eq. (2.19), yields

S = A(τ) − B(τ)A(τ)−1B(τ)

=
−1

|τ | Λ
−1 + A −

[
1

|τ |Λ
−1 + B

] [
−1

|τ | Λ
−1 + A

]−1 [
1

|τ |Λ
−1 + B

]
= 2[A + B] + O(τ). (2.41)

Terms of linear order in the time interval have been neglected here. This de-
termines the sum of the two constant contributions to the fluctuation matrices,
which is all that will be required for the regression theorem. For a Markov
system one can establish the stronger result that B = 0 and A = S/2, but this
is not required here.

The most likely future state is

x(τ,x) = −A(τ)−1B(τ)x

= −
[
−1

|τ | Λ
−1 + A

]−1 [
1

|τ |Λ
−1 + B

]
x

= [I + |τ |Λ(A + B)] x

= x +
|τ |
2

ΛSx + O(τ2). (2.42)

This is the general form of the regression hypothesis that applies in both Markov
and in non-Markov systems of pure parity. It shows that for small time inter-
vals the fluctuation regresses linearly in the thermodynamic force and linearly
in time. Post-multiplying by k−1

B x and taking the average yields the time cor-
relation function, Q(τ) = −S−1 − |τ |Λ/2. This agrees with the Markov result
above in the small time limit.

It should be made clear that one cannot extend these results for a non-
Markov system for a small time interval to longer time scales by piecing together
consecutive small time intervals, which is essentially what was done for the
Markov system. Implicit in the second entropy S(2)(x2,x1|τ) for the transition

x1
τ→ x2, is that the initial macrostate x1 arose from a fluctuation and had no

other special conditions. For the consecutive transitions x1
t21→ x2

t32→ x3, the
intermediate state x2 does not arise from an unconditional fluctuation, but from
the prior state x1. A non-Markov system retains a memory of this, and so one
cannot break the third entropy down to the sum of two unconditional second
entropies.

The second entropy in the small time limit is

S(2)(x′,x|τ) =
−1

2|τ |Λ
−1 : [x′ − x(τ,x)]

2
+

1

2
S : x2

=
−1

2|τ |Λ
−1 : [x′ − x]

2
+

1

2
S : x′x − |τ |

8
x · SΛSx

=
−1

2|τ |Λ
−1 : [x′ − x]

2
+

1

4
S :
[
x′2 + x2

]
− |τ |

8
x · SΛSx

+ O(τ2). (2.43)
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Here terms of order τ2 have been neglected, including the term −B : [x′ − x]
2
/2.

The first equality satisfies the reduction condition exactly, which is to say that
the maximum value of the second entropy is equal to the first entropy,

S
(2)

(τ,x) ≡ S(2)(x′,x|τ) =
1

2
S : x2. (2.44)

The final equality satisfies the reduction condition to order τ2. One can in fact
add a term of O(τ2) to the final equal that ensures that the reduction condition
is satisfied exactly.

2.4 Results for Pure Parity Systems

2.4.1 Onsager Regression Hypothesis and Reciprocal

Relations

Now several useful and well-known results are derived from the small time ex-
pansion. As has just been shown, the most likely future position to leading-order
in τ is

x′ ≡ x(τ,x) = −Q(τ)Sx = x +
1

2
|τ |ΛSx. (2.45)

Hence the most likely coarse velocity, which is the average velocity over the
interval, is

◦
x(x) ≡ x′ − x

τ
=

τ̂

2
ΛSx. (2.46)

Recall that τ̂ ≡ sign(τ) = τ/|τ |. The final two terms represent the thermo-
dynamic force, f(x) ≡ ∂S(x)/∂x = Sx. Hence the result says that the most
likely flux is linearly proportional to the thermodynamic driving force and is
independent of the length of the time interval. It is this form that is known
as the Onsager regression hypothesis (together with the identification of the
internal force with the reservoir force); arguably, since it is here derived rather
than assumed, it could be called a theorem. That the flux has opposite sign in
the future, τ̂ > 0, than in the past, τ̂ < 0, reflects the fact that in the future
the system most likely returns to equilibrium, and in the past the system most
likely came from equilibrium.

The transport matrix is symmetric

Λ = ΛT, (2.47)

because A(τ) and B(τ) are symmetric. This is the celebrated Onsager reciprocal
relation.7 This symmetry says that the cross-coupling transport coefficients are
equal.

7Onsager, L. (1931), Phys. Rev. 37, 405, and 38, 2265.
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As an example, take the case of isothermal diffusion in a multi-component
mixture. In this case the regression theorem gives the mass fluxes in terms of
the chemical potential gradients, which is known as Ficks law. The reciprocal
relation says that the diffusion constant that gives the flux of species α in re-
sponse to the gradient of chemical potential of species β, is equal to the diffusion
constant that gives the flux of species β in response to the gradient of chemical
potential of species α.

The coupling of electric and heat currents, which is known as a thermo-
electric effect, provides another example. There is the Seebeck effect, which is
the driving of an electric current by a temperature gradient, and the Peltier
effect, which is heat flux driven by a voltage, otherwise known as an electro-
chemical gradient. The symmetry of the transport matrix Λ means that the
proportionality constant for these two effects is the same.

The most widely used example of a type of reciprocal relation is for chemical
reaction rates, where the rate coefficient for the forward reaction is known to
be equal to that of the reverse reaction. This phenomenon originally motivated
Onsager’s Nobel prize-winning work.

Onsager’s insight in deriving the reciprocal relations was that they were a
consequence of macroscopic reversibility. This reversibility entered the present
derivation in the symmetry of the cross fluctuation matrix, B(τ) = B(τ)T, and
the equality of the ‘pure’ fluctuation matrices, A(τ) = A′(τ). Equivalently, and
closer to Onsager’s original derivation, it follows from the symmetry of the time
correlation function, Q(τ) = Q(τ)T. These specific symmetries only hold in the
case that the macrostates all have the same parity; the more general case of
mixed parity is treated in §2.5.

2.4.2 Green-Kubo Expression

The linear expansion for the time correlation function, Eq. (2.45), is actually
equivalent to the Green-Kubo expressions for the transport coefficients.8 This
may be rearranged in more familiar form by writing

Λ =
−2

|τ |
[
Q(τ) + S−1

]
=

−2

|τ |
[
k−1
B 〈x(τ)x(0)〉 − k−1

B 〈x(0)x(0)〉
]

=
−2

kB|τ |

∫ τ

0

dt′ 〈ẋ(t′)x(0)〉 . (2.48)

The present expansion is valid for small but non-infinitesimal τ . In practice,
Green-Kubo expressions such as this are evaluated in computer simulations for

8Green, M. S. (1954), J. Chem. Phys. 22, 398. Kubo, R. (1966), Rep. Progr. Phys. 29,
255. Kubo, R., Toda, M., and Hashitsume, N. (1978), Statistical Physics II. Non-equilibrium

Statistical Mechanics, (Springer-Verlag, Berlin). Zwanzig, R. (2001), Non-equilibrium Statis-

tical Mechanics, (Oxford University Press, Oxford). Actually, the relationship between the
time correlation function and the transport coefficient was already given by Onsager in his
papers on the reciprocal relations.
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increasing values of τ , so that the left-hand side is actually Λ̃(τ). Once one goes
beyond the infinitesimal regime, whose extent is not known a priori, there is
a range of τ values over which Λ̃(τ) is constant, and this is taken as the value
of the transport coefficient. Depending on the system, beyond the small time
regime, Λ̃(τ) will decrease with increasing τ . Hence Λ is sometimes taken as the
maximum value of Λ̃(τ), (see, for example, Fig. 10.2 on p. 338).

2.4.3 Physical Interpretation of the Second Entropy

An explicit expression for the second entropy can be obtained in terms of the
transport matrix. Using the most likely future position, one has

x′ − x′ = τ
◦
x −|τ |

2
ΛSx + O(τ2). (2.49)

Hence to leading-order the second entropy is

S(2)(x′,x|τ) = S(x) +
1

2

[
−Λ−1

|τ | + O(τ0)

]
: [x′ − x′]

2

= S(x) − |τ |
2

Λ−1 :

[
◦
x − τ̂

2
ΛSx

]2
+ O(τ2)

= S(x) − |τ |
2

Λ−1 :
◦
x

2
+

τ

2

◦
x ·Sx − |τ |

8
x · SΛSx + O(τ2).

(2.50)

The ordinary entropy is S(x) = S : x2/2. The second entropy is here written

explicitly for fluctuations in the flux. Unlike the position x′, the flux
◦
x is an

intensive function of time, which is to say that it should not depend upon the
length of the time interval. The second entropy can be seen to be a linear or
extensive function of the time interval.

The second entropy written in this form has a fairly transparent physical
interpretation. The first term on the right-hand side is the ordinary entropy.
It is all that remains once the flux has been optimised. In this sense the first
entropy may be said to determine the structure of the non-equilibrium system.
This is a direct consequence of the reduction condition. This term has great
significance in the determination of non-equilibrium pattern formation, as will
become evident in later chapters. The second term on the right-hand side of
the final equality is quadratic in the flux, and, since it is always negative, it
is unfavourable. This is the term that limits the flux. On general grounds
a flux represents a dynamically ordered state, and so it must be entropically
unfavourable, and, from symmetry, the decrease in entropy must depend upon
the magnitude but not upon the direction of the flux, as the present quadratic
form shows. The third term on the right-hand side of the final equality is

positive when the flux is in the opposite direction to the fluctuation,
◦
x ·x < 0,

since S is negative definite. That is, it is positive when the flux reduces the
fluctuation. This term is half the rate of entropy production, since it is the flux
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times the thermodynamic force. This term is linear in the flux, as it must be
from symmetry, and it is what drives the flux to be non-zero. The final term
on the right-hand side of the final equality is negative, and depends explicitly
only on the structure and not directly upon the flux. It is difficult to give a
simple physical interpretation of this term, but mathematically it cancels with
the second and third terms when the flux is optimum.

In summary, this expression for the second entropy shows that the optimum
flux in a non-equilibrium system represents the balance of two competing effects:
a positive effect related to the rate of entropy production that is linear in the
flux and that dominates at small fluxes, and a negative effect representing the
cost of the dynamic order of the flux that is quadratic in the flux and that
dominates at large fluxes.

2.4.4 The Dissipation

This simple physical interpretation of the variational nature of the second en-
tropy contrasts with the dissipation, which has been put forward by some as
a basis for determining the behaviour of non-equilibrium systems, §1.2.2. The
rate of entropy production for a general, not necessarily optimum, flux is

Ṡ(ẋ,x) = ẋ · ∂S(x)

∂x
= ẋ · Sx. (2.51)

Using the above results for the most likely flux, the optimal rate of entropy
production is therefore

◦

S(x) =
τ̂

2
x · SΛSx. (2.52)

The preceding analysis showed that the optimum flux is the one that max-
imises the second entropy. It neither maximises nor minimises the rate of en-
tropy production. The maximum dissipation in Eq. (2.51) occurs when the flux
is ẋ = −∞, and the minimum dissipation occurs when the flux is ẋ = +∞
(taking for simplicity a one component macrostate and x > 0). In contrast
to the second entropy, the dissipation is only a bilinear form in the flux and
the force, and so it cannot be made an extreme value. The most likely rate of
entropy production, Eq. (2.52), is neither a maximum nor a minimum. This is
why the rate of entropy production cannot be used as a variational principle for
non-equilibrium systems (c.f. the remarks in §1.2.2).

2.4.5 Stability Theory

The first entropy of the fluctuations must be negative, and so the matrix S
must be negative definite. This obviously ensures the existence of the Gaussian
probability, and also the stability of the optimum state, x = 0.

The second entropy must also be negative, again since fluctuations measure
the departure from the optimum state. Again this is necessary for the stability
of the transitions. Hence the matrix A(τ) must be negative definite, as follows
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by setting x = 0, for example. Similarly the matrix A(τ) + B(τ) must be
negative definite, as follows by setting x = x′. More generally, the double

matrix

(
A B
B A

)
must be negative definite.

Because the transport matrix Λ is the negative of the leading-order term
of A(τ), it must be positive definite. This imposes certain restrictions on the
transport coefficients that it comprises. Such limits on the magnitudes of the
cross-coupling coefficients can be useful in mixed component systems.

The rate of entropy production is determined by the matrix SΛS. Writing
y = Sx, one has that y · Λy ≥ 0 for all y. Hence SΛS is positive definite.
Accordingly, the result for the most likely coarse rate of entropy production,
Eq. (2.52), implies that the entropy will most likely increase in the future, and
that it most likely decreased in the past.

The first entropy for the fluctuation is negative, S(x) ≤ 0, with equality if
and only if x = x = 0. As just discussed, the most likely coarse rate of change
of the first entropy, Eq. (2.52), is positive definite. These two conditions appear
to satisfy the definition of a Lyaponov function, L(x) (in this case a negative
Lyaponov function).9 Such functions are associated with the stability of the
optimum state of an equilibrium or of a non-equilibrium system. They can be
thought of as a measure of the distance from the optimum state.

Some caution should however be exercised in either calling the first entropy
a Lyaponov function, or else in using it for a trajectory. Generally a Lyaponov
function is applied at each point on a trajectory (i.e. it is written L(x) rather
than L(x; τ,x0) or L(x; [x])). The conditions that a Lyaponov function must
satisfy are often written L(x) ≤ 0 and dL(x)/dt ≥ 0, and these are interpreted
as implying that the trajectory monotonically approaches the optimum state,
x(t) → x, (Keizer, 1987). The influence of the prior history of the trajectory is
generally not included in the definition of the Lyaponov function.

For a Markov system, the most likely future value x(t|x0) as a function of
time t (even large times) approaches the optimum value exponentially, which is
to say monotonically. Consequently, the first entropy also increases monotoni-
cally as a function of time (in a most likely sense). However for a non-Markov
system neither of these two conditions necessarily holds, and one can have non-

monotonic behaviour. The fact that
◦
S ≥ 0 is true for small time intervals and

for no special conditions on the initial state x. As discussed in the connection
with the small-time, non-Markov expansion in §2.3 on p. 44, one cannot extend
the second entropy analysis for non-Markov systems to long times by piecing
together the results for small time intervals, because the intermediate states
now have special conditions on them, namely that they arose from a specified
prior state.

This point for non-Markov systems raises questions about the utility of
Lyaponov functions that don’t depend upon the prior history of the system.
The two facts—the first entropy of a fluctuation is negative, and the most likely

9Keizer, J. (1987), Statistical Thermodynamics of Non-equilibrium Processes, (Springer-
Verlag, New York), §7.2.
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coarse rate of change of the first entropy immediately following a fluctuation is
positive—do not tell the whole story about the behaviour of the first entropy
on the whole trajectory of a fluctuation, because the rate of change of the first
entropy can change sign on the most likely trajectory at long times for a non-
Markov system. In this chapter, the stability of the most likely state and also the
stability of the most likely transitions have been implicitly assumed throughout
by postulating Gaussian fluctuations and negative definite quadratic forms for
the first and second entropy, respectively.

2.4.6 Non-Reversibility of the Trajectory

A major consequence of the analysis is that the trajectory is not at all reversible.
That is, if one goes backward from the final state then one does not return to
the original initial state. Instead,

x(−τ,x(τ,x)) =

[
I +

|τ |
2

ΛS

] [
I +

|τ |
2

ΛS

]
x

= x + |τ |ΛSx + O(τ2). (2.53)

Denote the three relevant states by x1, x2 ≡ x(τ,x1), and x3 ≡ x(−τ,x2). This
says that in the future the system will move from x1 toward equilibrium, so
that S(x2) > S(x1). However, x1 is not as likely a prior state for x2 as is x3,
since the latter is even closer to equilibrium, S(x3) > S(x2) > S(x1).

2.4.7 Third Entropy

In the above only the singlet and pair fluctuations were analysed, which involved
quadratic forms for the ordinary entropy and for the second entropy. For a
Gaussian system, all orders of fluctuations can be expressed as sums of all
possible pair-wise products. This means, for example, that the most general
form for the third entropy is

S(3)(x3,x2,x1|t32, t21) =
1

2
C : x2

3 +
1

2
C ′ : x2

1 +
1

2
D : x2

2

+ E : x2x3 + E′ : x2x1 + F : x1x3. (2.54)

The time dependence of the fluctuation matrices has not been shown. In the
case that t32 = t21, the primed matrices equal their unprimed counterparts.
This could be rearranged to show explicitly the terms [x3 −x2]

2 and [x2 −x1]
2,

and taking the limit t31 → 0, one would deduce expansions with leading-order
|t|−1 for C, D, and E. The fluctuation matrix F , which contains the non-
Markovian behaviour, is to leading-order Ot0. For a Markovian system, F = 0,
and the third entropy may be written as the sum of the second entropies for the
individual transitions,

S(3)(x3,x2,x1|t32, t21) = S(2)(x3,x2|t32) + S(2)(x2,x1|t21)− S(x2). (2.55)

Subtracting the first entropy accounts for double counting of the intermediate
state.
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2.5 Fluctuations of Mixed Time Parity

2.5.1 Second Entropy and Time Correlation Functions

The preceding sections in this chapter treated transitions between macrostates
all of which have the same time parity. That is, either x† = x, or else x† = −x,
where the dagger denotes the conjugate state with all velocities reversed. In
this section the mixed parity case, where neither of these hold, will be analysed.

It is convenient to deal with macrostates individually of pure parity. With-
out loss of generality, each of the xi can be taken to be purely odd or purely
even. If one is interested in a state of mixed parity, say y, then one can simply
form its even and odd projections, y± ≡ [y ± y†]/2, and include these as two
components of x. Since y = y+ + y−, any property of y can be obtained by a
linear combination of the equivalent property of y±.

Define the diagonal parity matrix ε with elements εij = ±δij . That is,

εii = 1 if xi = x†i , and εii = −1 if xi = −x†i . Hence x† = εx. Also, the square
of the parity matrix is the identity matrix, εε = I.

The time correlation matrix was defined above as the equilibrium average
of the dyadic matrix of the fluctuations, Q(τ) ≡ k−1

B 〈x(τ)x(0)〉. By the time
homogeneity of an equilibrium system one has

〈x(τ)x(0)〉 = 〈x(0)x(−τ)〉 , or Q(τ) = Q(−τ)T. (2.56)

By macroscopic reversibility one has

〈x(τ)x(0)〉 =
〈
x(−τ)†x(0)†

〉
, or Q(τ) = εQ(τ)Tε. (2.57)

The fluctuation expressions for the first entropy are unchanged from the pure
parity case analysed in the preceding sections. One still has

S(x) =
1

2
xTSx, (2.58)

with the fluctuation matrix being

S ≡ ∂2S(x)

∂x∂x

∣∣∣∣
x=0

= −kB 〈xx〉−1 = −Q(0)−1. (2.59)

Since S is symmetric, so is Q(0). Macroscopic reversibility in this case reads
Q(0) = εQ(0)ε, which implies that there is no instantaneous coupling between
variables of different time parity,

〈xi(0)xj(0)〉 = 0, if εii �= εjj . (2.60)

It also follows that the parity matrix commutes with the fluctuation matrix,
εS = Sε, or εSε = S.

The most general quadratic form for the second entropy is

S(2)(x′,x|τ) =
1

2
x · A(τ)x + x · B(τ)x′ +

1

2
x′ · C(τ)x′. (2.61)
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Here x ≡ x(0) is the current state, and x′ ≡ x(τ) is the future state. The
matrices A(τ) and C(τ) are second derivative matrices of the same variable,

A(τ) ≡ ∂2S(2)(0,x|τ)

∂x∂x

∣∣∣∣
x=0

, and C(τ) ≡ ∂2S(2)(x′,0|τ)

∂x′∂x′

∣∣∣∣
x′=0

, (2.62)

and as such are symmetric, A(τ) = A(τ)T and C(τ) = C(τ)T . The matrix
B(τ) is the cross second derivative,

B(τ) ≡ ∂2S(2)(x′,x|τ)

∂x∂x′

∣∣∣∣
x′=x=0

, (2.63)

and in general is neither symmetric nor asymmetric. The second entropy must
be negative S(2)(x′,x|τ) ≤ S(2)(0,0|τ) = 0.

The symmetry properties of the second entropy are similar to those of
the time correlation function. Time homogeneity means that S(2)(x′,x|τ) =
S(2)(x,x′|−τ). Hence

A(−τ) = C(τ), and B(τ) = B(−τ)T. (2.64)

Similarly, macroscopic reversibility gives the behaviour upon reversing the ve-
locities, S(2)(x′,x|τ) = S(2)(x′†,x†|−τ) = S(2)(εx′, εx|−τ). Hence

εA(τ)ε = C(τ), and εB(τ)ε = B(τ)T. (2.65)

These mean that if all of the xi are pure odd, or all of them are pure even, then
A(τ) = C(τ) and B(τ) = B(τ)T, as were invoked in the preceding sections of
this chapter.

The most likely future state given the present state is obtained by maximising
the second entropy with respect to x′. One obtains

x′ ≡ x(τ,x) = −C(τ)−1B(τ)Tx. (2.66)

Similarly, the most likely present state that would lead to x′ is

x ≡ x(−τ,x′) = −A(τ)−1B(τ)x′. (2.67)

The second entropy may be rearranged in terms of the departure from the
future most likely state,

S(2)(x′,x|τ) =
1

2

[
x′ + C(τ)−1B(τ)Tx

]T
C(τ)

[
x′ + C(τ)−1B(τ)Tx

]
+

1

2
xT
[
A(τ) − B(τ)C(τ)−1B(τ)T

]
x. (2.68)

It can also be written in terms of the departure from the prior most likely state,

S(2)(x′,x|τ) =
1

2

[
x + A(τ)−1B(τ)x′

]T
A(τ)

[
x + A(τ)−1B(τ)x′

]
+

1

2
x′T

[
C(τ) − B(τ)TA(τ)−1B(τ)

]
x′. (2.69)
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The reduction condition (c.f. Eq. (1.46)) in which the second entropy reduces
to the first entropy in the most likely state, obviously holds also for this mixed
parity case. Explicitly,

S(2)(x′,x|τ) = S(x), or S(2)(x′,x|τ) = S(x′). (2.70)

Accordingly, the two preceding forms for the second entropy immediately allow
one to conclude

A(τ) − B(τ)C(τ)−1B(τ)T = S, (2.71)

and

C(τ) − B(τ)TA(τ)−1B(τ) = S. (2.72)

These are actually equivalent, as can be seen by pre- and post-multiplying either
one by the parity matrix, and invoking the macroscopic reversibility condition,
Eq. (2.65).

For Gaussian statistics, means equal modes, which allows the fluctuation
matrices to be related to the time correlation matrix. One has

Q(τ) = k−1
B 〈x′x〉

= k−1
B 〈x′x〉

= −C(τ)−1B(τ)Tk−1
B 〈xx〉

= C(τ)−1B(τ)TS−1. (2.73)

Alternatively,

Q(τ) = k−1
B 〈x′x〉

= −k−1
B 〈x′x′〉B(τ)TA(τ)−1

= S−1B(τ)TA(τ)−1. (2.74)

These two relations and the reduction condition allow the fluctuation matri-
ces to be rewritten in terms of the correlation matrices. Using the first form of
the reduction condition, Eq. (2.71), and the macroscopic reversibility condition,
Eq. (2.65), one has

A(τ)−1S = I − A(τ)−1B(τ)C(τ)−1B(τ)T

= I −
[
εC(τ)−1B(τ)T

]2
= I − [εQ(τ)S]

2
, (2.75)

where the first form for the time correlation function has been used to obtain
the final equality. With εQ(τ) = Q(τ)Tε, this is

A(τ) =
[
I − SQ(τ)TSQ(τ)

]−1
S. (2.76)
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This is clearly symmetric, as it must be. Using this in the second form for the
time correlation function and rearranging for the cross fluctuation matrix one
obtains

B(τ) =
[
I − SQ(τ)TSQ(τ)

]−1
SQ(τ)TS = A(τ)Q(τ)TS. (2.77)

These show that the time correlation function completely determines the fluc-
tuation coefficients, the second entropy, and the transition probability. In par-
ticular, with these the most likely future position, Eq. (2.66), may be written

x′ = −Q(τ)Sx. (2.78)

This result is formally identical to the pure parity case, Eq. (2.24). The term
Sx = ∂S(x)/∂x is the thermodynamic driving force toward the equilibrium
state, and as has been mentioned, post-multiplying both sides by xT and taking
the average yields an identity, since

〈
[∇S(x)]xT

〉
= −kBI.

2.5.2 Small Time Expansion for the General Case

The small time expansion for the fluctuations matrices and the time correlation
function given in §2.3 was for a Markov or non-Markov, pure parity system. In
this section the expansion is generalised to fluctuations of mixed parity. The
small time expansion in this case is linear in |τ | and τ . (Recall the discussion
at the start of §2.3 that distinguished between infinitesimal or molecular time
scales and small or macroscopic time scales.)

In the limit τ → 0, the future state must be the same as the present state,
x′ = x. This means that the transition probability must become a delta-
function, ℘(x′,x|τ) → δ(x′ − x)℘(x), τ → 0. It follows that the fluctuation
matrices must diverge as τ−1 in this limit. Hence one has expansions of the
form,

A(τ) =
A−1

|τ | +
A′−1

τ
+ A0 + A′0 τ̂ + O(τ), (2.79)

and

B(τ) =
B−1

|τ | +
B′−1

τ
+ B0 + B′0τ̂ + O(τ). (2.80)

Since C(τ) = A(−τ), one also has

C(τ) =
A−1

|τ | −
A′−1

τ
+ A0 − A′0τ̂ + O(τ). (2.81)

The matrices for A are symmetric. Since B(−τ) = B(τ)T, the unprimed coef-
ficient matrices in its expansion are symmetric, and the primed ones are anti-
symmetric.
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In the pure parity case only powers of |τ | appeared, because the fluctuations
were even in time. In the present mixed parity case, the fluctuations are not
symmetric in time, and both |τ | and τ enter the expansion.

As mentioned previously, although this is a small time expansion, the time
scales are longer than molecular time scales, and the non-analytic terms arise
from resummation of the Taylor expansion that would apply on molecular time
scales. By starting the expansion at τ−1, the second entropy will turn out to
be an extensive function of the time interval when written in terms of the flux,
which is what one might expect.

In the τ → 0 limit one must have A(τ)−1B(τ) → −I, Eq. (2.29). This means
that the leading-order coefficients must satisfy

B−1 + τ̂B′−1 = −A−1 − τ̂A′−1. (2.82)

Since A′−1 is symmetric and B′−1 is antisymmetric, one must have A′−1 = B′−1 =
0. Replacing the leading coefficient by what will later become the symmetric
part of the transport matrix, the expansion now is

A(τ) =
−Λ−1

|τ | + A0 + A′0τ̂ + O(τ), (2.83)

and

B(τ) =
Λ−1

|τ | + B0 + B′0τ̂ + O(τ). (2.84)

The relation between A0 and B0 will now be obtained by expanding the
reduction condition to zeroth order in τ ,

S = A(τ) − B(τ)C(τ)−1B(τ)T

=
[
−Λ−1|τ |−1 + A0 + A′0τ̂

]
−
[
Λ−1|τ |−1 + B0 + B′0τ̂

]
×
[
−Λ−1|τ |−1 + A0 − A′0τ̂

]−1 [
Λ−1|τ |−1 + B0 − B′0τ̂

]
=

[
−Λ−1|τ |−1 + A0 + A′0τ̂

]
−
[
Λ−1|τ |−1 + B0 + B′0τ̂

]
× [−I + |τ |ΛA0 − τΛA′0]

−1
[I + |τ |ΛB0 − τΛB′0]

=
[
−Λ−1|τ |−1 + A0 + A′0τ̂

]
−
[
Λ−1|τ |−1 + B0 + B′0τ̂

]
×
[
−I + |τ |Λ(A0 + B0) − τΛ(A′0 + B′0) + O(τ2)

]
=

[
−Λ−1|τ |−1 + A0 + A′0τ̂

]
+
[
Λ−1|τ |−1 + A0 + 2B0 − A′0τ̂ + O(τ)

]
= 2(A0 + B0) + O(τ). (2.85)

With this, the expansion for the time correlation function is

Q(τ) = C(τ)−1B(τ)TS−1

=
[
−Λ−1|τ |−1 + A0 − A′0τ̂

]−1 [
Λ−1|τ |−1 + B0 − B′0τ̂

]
S−1

= [I − |τ |ΛA0 + τΛA′0]
−1

[−I − |τ |ΛB0 + τΛB′0] S
−1

= [−I − |τ |Λ(A0 + B0) + τΛ(A′0 + B′0)] S
−1

= −S−1 − |τ |
2

Λ + τΘ + O(τ2). (2.86)



56 2. Fluctuation Theory

Since Q(−τ) = Q(τ)T, the coefficient of τ must be antisymmetric, and so one
must have

Θ ≡ Λ(A′0 + B′0)S
−1 = −S−1(A′0 − B′0)Λ. (2.87)

The odd time fluctuation matrices can be written in terms of this antisymmetric
transport matrix,

A′0 =
1

2

[
Λ−1ΘS − SΘΛ−1

]
, and B′0 =

1

2

[
Λ−1ΘS + SΘΛ−1

]
. (2.88)

This means that one has essentially three coefficient matrices to determine the
time correlation function Q(τ) to linear order in τ : S, Λ, and Θ. One requires
one more relation between A0 and B0 to determine A(τ) and B(τ) to zeroth
order in τ .

For the pure parity case, the transport matrix is symmetric. For the mixed
parity case, the transport matrix would correspond to L(τ̂) ≡ Λ − 2τ̂Θ, which
evidently contains an antisymmetric part that is odd in time. By time homo-
geneity and macroscopic reversibility, Q(−τ) = εQ(τ)ε, or in component form,
Qij(−τ) = εiiεjjQij(τ). Recall that the parity matrix gives the time signature

of the macrostate, x†i = εiixi. Using this in the small time expansion one sees
that the elements of the symmetric part of the transport matrix are zero for
states of different parity,

Λij = 0 if εiiεjj = −1, (2.89)

and that the elements of the antisymmetric part of the transport matrix are
zero for states of the same parity,

Θij = 0 if εiiεjj = 1. (2.90)

Similarly {S−1}ij = 0 if εiiεjj = −1.

In view of these results it can be convenient to order the macrostates in x

so that all those of even parity come before all those of odd parity. In this
grouped representation the matrices sub-divide into four blocks: the matrices
Λ, S−1 (and hence S) are symmetric and block diagonal, and the matrix Θ is
antisymmetric and block adiagonal.

The optimum flux is

◦
x =

τ̂

2
[Λ − 2τ̂Θ] Sx. (2.91)

This is the form of Onsager’s regression hypothesis for a system of mixed parity.
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The second entropy may be rewritten in terms of fluctuations in the flux,

S(2)(x′,x|τ) =
1

2
A(τ) : x2 + B(τ) : x′x +

1

2
C(τ) : x′2

=
1

2
C(τ) : [x′ − x]

2
+ [B(τ) + C(τ)] : x′x

+
1

2
[A(τ) − C(τ)] : x2

=
1

2
C(τ) : [x′ − x]

2
+ [x′ − x] ·

[
B(τ)T + C(τ)

]
x

+
1

2

[
A(τ) + 2B(τ)T + C(τ)

]
: x2

=
1

2
S : x2 − |τ |

2
Λ−1 :

◦
x

2
+τ

◦
x · [A0 + B0 − τ̂ (A′0 + B′0)]x

− |τ |
2

Λ−1 :
◦
x(x; τ̂ )2 + O(τ2). (2.92)

The final term on the right-hand side ensures that the reduction condition is
satisfied to linear order in τ . The third term contains what may be called the
mixed parity thermodynamic force,

F(x) ≡ 2 [A0 + B0 − τ̂ (A′0 + B′0)]x ≡ Sx − 2τ̂Λ−1ΘSx. (2.93)

The first term on the right-hand side is evidently the derivative of the entropy,
and the second term is an additional term that only arises in the mixed parity
case. Loosely speaking, the third term in the expression for the second entropy
may be called half the rate of mixed parity entropy production. The terminology
is not entirely satisfactory, because the additional mixed parity term does not
contribute to the real rate of entropy production.

The physical interpretation of the second entropy written in terms of fluctu-
ations in the flux is similar to that given for the pure parity case in §2.4.3. The
first term on the right-hand side of the final equality is the ordinary entropy. It
is the only term that survives when the flux is optimum, and it determines the
structure of the non-equilibrium state for such an optimum flux. The second
term is negative and quadratic in the flux. It represents the cost of dynamic
order and it opposes any increase in the magnitude of the flux. The third term
is half the rate of mixed parity entropy production. It drives the flux to be in
the same direction as the thermodynamic force. From the definiteness of the
matrices that is established below, this term favours the projection of the future
flux in the opposite direction to x (i.e. to decrease x), since this increases the
second entropy, and it favours the alignment of the past flux and x, both of
which are expected on physical grounds. The fourth term is independent of the
flux, at least explicitly, and is required to ensure the reduction condition for
the optimum flux. The physical interpretation of the mixed parity term in the
entropy production and of this flux-independent term is not clear.

The antisymmetric part of the transport matrix has an effect on the most
likely future or past states. For the mixed parity case,

x(τ,x) − x(−τ,x) = −[Q(τ) − Q(−τ)]Sx = −2τΘSx + O(τ2). (2.94)
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This would be zero for the pure parity case. Similarly the fluctuation matrices
now have a contribution that is odd in time.

The antisymmetric part of the transport matrix, Θ, is extremely important
for the time development of a system at the molecular level. It will be seen that
the adiabatic evolution of the system is contained in this term (c.f. the treat-
ment of driven Brownian motion in §3.6.3, and the treatment of non-equilibrium
statistical mechanics in Ch. 8).

The optimum rate of entropy production is unaffected by the antisymmetric
contribution in the mixed parity case. One has

◦

S(x) =
1

τ
[x(τ,x) − x] · Sx

= x ·
[
τ̂

2
SΛ + SΘ

]
Sx

=
τ̂

2
x · SΛSx + O(τ). (2.95)

The final equality follows because the symmetric double scalar product of an
antisymmetric matrix vanishes. This result for the dissipation is identical to the
pure parity result, Eq. (2.52).

Since the second entropy must be less than or equal to zero, it follows that
A(τ), C(τ), and A(τ) + C(τ) ± 2B(τ) are all negative definite matrices. Since
as τ → 0 the leading term dominates, it follows that Λ is a positive definite
matrix. The leading contribution to the positive case of the third of these is
2A0 + 2B0 + 2τ̂B′0, and so one concludes that A0 + B0 ±B′0 must be a negative
definite matrix. But only the symmetric part of a matrix contributes to its
definiteness, so the term B′0 is irrelevant. Since A0 + B0 = S/2, one could have
deduced directly that this is negative definite.

One could assume that the negative definiteness of the fluctuation matrix
functions holds for the τ0 term itself, arguing that there is a τ regime where this
is large enough to dominate the τ−1 term, but where the neglected terms linear
in τ are not yet significant. If this is the case then one has A0 ± A′0, A0 ± B0,
and hence A0 itself, are negative definite.

2.5.3 Magnetic Fields and Coriolis Forces

The operation of velocity reversal or conjugation, x ⇒ x†, is designed to re-
verse exactly the time evolution of the system. If the system is influenced by
external forces or other interactions with external reservoirs, then the velocities
of the atoms and molecules of these external systems also have to be reversed,
otherwise the trajectory of the sub-system will not exactly traverse its former
path.

Some forces, most notably magnetic forces, which arise from electronic mo-
tion or electric currents, and Coriolis forces, which arise from rotational motion,
are velocity dependent. Hence implicit in the conjugation operation is that any
magnetic field or rotational motion must also be reversed.
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The time correlation function in an external magnetic field B, for example,
might be written Q(τ ;B). In this case time homogeneity yields

〈x(τ)x(0)〉B = 〈x(0)x(−τ)〉B , or Q(τ ;B) = Q(−τ ;B)T. (2.96)

Macroscopic reversibility reads

〈x(τ)x(0)〉B =
〈
x(−τ)†x(0)†

〉
−B

, or Q(τ ;B) = εQ(−τ ;−B)ε. (2.97)

For further discussion below, these two results can be combined in a form such
that the sign of the time interval remains unchanged,

Q(τ ;B) = εQ(τ ;−B)Tε. (2.98)

The matrices in the small time expansion of the correlation function now
depend upon the magnetic field,

Q(τ ;B) = −S(B)−1 − |τ |
2

Λ(B) + τΘ(B) + O(τ2). (2.99)

The first two terms on the right-hand side are even in time, and the final term is
odd. Hence time homogeneity, Eq. (2.96), implies that the entropy fluctuation
matrix and the pure parity transport matrix are symmetric,

S(B) = S(B)T, and Λ(B) = Λ(B)T, (2.100)

and that the mixed parity transport matrix is antisymmetric,

Θ(B) = −Θ(B)T. (2.101)

Notice that the magnetic field need not, indeed must not, be reversed to ensure
these symmetries. Macroscopic reversibility, Eq. (2.97), implies that the par-
ity matrix commutes with the entropy fluctuation matrix and the pure parity
transport matrix,

εS(−B)ε = S(B), and εΛ(−B)ε = Λ(B), (2.102)

and that it ‘anti-commutes’ with the mixed parity transport matrix,

εΘ(−B)ε = −Θ(B). (2.103)

These hold if and only if the magnetic field is reversed. Similar results hold for
Coriolis forces.

Useful, more explicit, forms of these results can be obtained in the small
magnetic field limit. In this case a Taylor expansion about B = 0 to quadratic
order in the field can be made. One has

Λij(B) = Λ
(0)
ij +O(B2), and Θij(B) = B ·Θ(1)

ij +O(B3), εii = εjj , (2.104)

and

Λij(B) = B ·Λ(1)
ij +O(B3), and Θij(B) = Θ

(0)
ij +O(B2), εii �= εjj . (2.105)
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Onsager’s reciprocal relations (i.e. the symmetry of the transport matrix)
were generalised to the case of magnetic fields and Coriolis forces by Casimir.10

It should be noted that many books neglect the difference between the future
and the past transport matrix (i.e. they do not avert to its dependence upon τ̂ ).
Those forms for the reciprocal relations in the presence of magnetic fields when
the time dependence is neglected can be reconciled with the results obtained
here by invoking the symmetry of the time correlation that does not change the
sign of the time interval, Eq. (2.98). The expressions given by de Groot and
Mazur in their §§IV.3 and VII.4,11 and the expression represented by Pottier’s
Eq. (2.8.5),12 are consistent with Eq. (2.98).

10Casimir, H. B. G. (1945), Rev. Mod. Phys. 17, 343.
11de Groot, S. R. and Mazur, P. (1984), Non-equilibrium Thermodynamics, (Dover, New

York).
12Pottier, N. (2010), Non-equilibrium Statistical Physics: Linear Irreversible Processes,

(Oxford University Press, Oxford).



Chapter 3

Brownian Motion

In the preceding chapter, both the fluctuations and the transitions in the macro-
states of an equilibrium system were analysed in terms of Gaussian probabilities.
This entailed a quadratic form for the second entropy, and from a small time ex-
pansion for the coefficients, several non-equilibrium theorems were established.

In this chapter, fluctuations are treated as a stochastic process. This serves
to introduce some of the concepts and results for statistical mechanics that
will be more formally derived from first principles in Chs 7 and 8. Readers
primarily interested in non-equilibrium thermodynamics, or who wish to see an
application of fluctuation theory in detail, may wish to skip directly to Chs 4–6
where conductive heat flow, fluctuation hydrodynamics, and non-equilibrium
pattern formation in convective heat flow are treated.

For a stochastic process the system is viewed as following a random trajec-
tory in time, x(t).1 The prototypical stochastic process is Brownian motion,
which originally referred to the erratic movement of small pollen grains in water
recorded by Robert Brown (1828).2 Einstein developed the first statistical anal-
ysis of the motion, and showed that the mean square displacement grew linearly
with time.3 A similar probabilistic analysis was given independently by Smolu-
chowski (1906).4 Einstein’s and Smoluchowski’s approach was based upon the
diffusion of the probability density, which was later formalised by Fokker and
Planck.5

Langevin6 formulated the problem by taking the acceleration of a particle to

1In many books the class of a stochastic process is denoted by a capital letter, X(t), and an
actual realisation of the trajectory by a lower case letter, x(t). Here, however, this distinction
will not be observed, and whether x(t) denotes the value of the macrostate at each time for
a specific trajectory, or the set of all possible trajectories, must be gleaned from the context.

2Brown, R. (1828), Phil. Mag. 4, 171. For a brief history of Brownian motion, see Haw,
M. D. (2002), J. Phys.: Condens. Matter, 14, 7769.

3Einstein, A. (1905), Ann. Phys. 17, 549.
4von Smoluchowski, M. (1906), Ann. Phys. 21, 756.
5Fokker, A. (1914), Ann. Phys. 43, 810. Planck, M. (1916), Sitz. Ber. Preuss. Akad. Wiss.

324.
6Langevin, P. (1908), C. R. Acad. Sci. Paris, 146, 530.
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be due to deterministic and random forces. This generated a random walk from
what is now called a stochastic differential equation. Langevin attributed the
deterministic force to Stokes drag, a dissipative hydrodynamic force proportional
to the velocity, and the random force to the fluctuating molecular motion of the
solvent. Using the equipartition theorem, Langevin showed the magnitudes
of these two forces were related. This has come to be called the fluctuation
dissipation theorem and it has far greater generality than the original application
to Brownian motion. Its derivation and application will play a central rôle in
non-equilibrium statistical mechanics in subsequent chapters of this book.

The full treatment of Brownian motion and stochastic processes can only
proceed from the basis of non-equilibrium statistical mechanics. Specifically,
the fundamental form of the non-equilibrium probability distribution and the
transition probability need to be established. However, in view of the historical
primacy Brownian motion has played in the development of statistical mechan-
ics, it seems worthwhile to give here an introductory treatment of the subject
based on the second entropy theory of fluctuations that was elucidated in the
preceding chapter.

What thermodynamic fluctuations and Brownian motion have in common is
that the macrostate of interest evolves in time in a manner that has both deter-
ministic and random elements. The analogy with thermodynamic fluctuations
breaks down somewhat for the original application of Brownian motion to the
movement of pollen grains in water, because in this case there is no restoring
force acting on the particle, and no preferred position or direction of motion.
This type of Brownian motion can also be called a random walk, or, a free Brow-
nian particle. For this original case the analogy between a random walk and a
thermodynamic fluctuation is not completely satisfactory, since thermodynamic
fluctuations are localised about the equilibrium value of the macrostate. How-
ever one can apply an external field (e.g. an optical trap such as laser tweezers,
or an electrostatic potential) that pins or directs the Brownian particle, and
which more closely resembles a thermodynamic fluctuation. Free and trapped
Brownian particles are treated in §§3.2 and 3.3, respectively.

Two important concepts emerge from this analysis: the fluctuation-dissipat-
ion theorem, which fixes the ratio of the magnitudes of the dissipative and
stochastic forces, and the universal nature of the dissipative force, which is
shown to be statistical in origin rather than hydrodynamic.7

Historically and conceptually, Brownian motion lies intermediate between
thermodynamics and statistical mechanics. On the one hand it is a good quan-
titative model for thermodynamic fluctuations, and on the other hand, as in
Einstein’s original treatment, it can be usefully described by a probability distri-
bution and a transition probability, which are the stuff of statistical mechanics.
Position-velocity time correlation functions are given in the large drag regime in
§3.5. In §3.6 an heuristic presentation of the probability distribution of a Brow-
nian particle in a stationary and in a moving potential trap is given, also in the

7The dissipative force is consistent with Stoke’s hydrodynamic drag, which is Langevin’s
original justification, but it is actually more fundamental. The functional form applies as well
to non-hydrodynamic systems, as will be shown in Chs 7 and 8.
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large drag regime. In §3.6.3 the probability distribution for a moving trap in the
small drag regime is derived from the mixed parity fluctuation results of the pre-
ceding chapter. In §3.7 expressions for the evolution of the entropy and for the
non-equilibrium probability distribution are obtained, and the Fokker-Planck
equation and the limitations on Liouville’s theorem are discussed.

3.1 Gaussian, Markov Processes

The state of the system at time t is denoted x(t) and is referred to generically as
the position. This might be a three-dimensional vector representing the position
of a single Brownian particle, or a multi-dimensional vector representing the
positions of a number of Brownian particles, or it might be a set of fluctuating
macrostates. For a stochastic process, the change in position along a trajectory
has deterministic and stochastic contributions. The deterministic part is the
most likely position, which, for Gaussian fluctuations for macrostates all of
the same time parity in the small time limit was obtained above, Eq. (2.45).
The stochastic part represents the Gaussian fluctuations about this most likely
outcome. That is, the next step in the stochastic process can be written

x(t + τ) = x(t) +
|τ |
2

ΛSx(t) + R̃(t). (3.1)

The most likely next position is this with R̃ = 0, x(τ |x) ≡ x + |τ |ΛSx/2. The
probability distribution for the random ‘force’ is just the exponential of the
second entropy, Eq. (2.50),

℘(R̃) =
|Λ|−1/2

(2πkB|τ |)M/2
exp

[
−Λ−1 : R̃R̃

2kB|τ |

]
. (3.2)

Here M is the number of components in the position or macrostate vector x, and
kB is Boltzmann’s constant. For the Markov case, successive random forces are

uncorrelated,
〈
R̃(t + τ)R̃(t)

〉
= 0. Their covariance is

〈
R̃(t)R̃(t)

〉
= kB|τ |Λ.

The stochastic process is written in the form of a difference equation rather
than a differential equation. Recall that the theory is valid for time intervals |τ |
that are larger than the molecular regime, but which are small enough that the
change in state is relatively negligible. The random force R̃ represents the sum
total of the molecular influences on the evolution of the state during the non-
infinitesimal time step τ . More precisely, it is the excess over the mean molecular
influences, since the latter give the deterministic part of the evolution.

The simplest attempt to generate a trajectory based upon Eq. (3.1) is to use
it recursively,

xn+1 = xn +
|τ |
2

ΛSxn + R̃n, n = 0, 1, 2, . . . , (3.3)

where xn ≡ x(tn|x0), tn ≡ nτ , and the R̃n are independent random variables,
Gaussian distributed as above. This is only true for a Markov system, in which
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the value of the macrostate at each node depends only upon the value at the
preceding node (c.f. the comment in §2.3 on p. 44). Gaussian, Markov processes
are also called Ornstein-Uhlenbeck processes.

For a more general non-Markov process, the deterministic part of the process
depends upon the values at two or more preceding nodes, the precise number
required being dependent upon the rate of decay of the non-Markov influences.
Such non-Markov stochastic process are treated in Ch. 10.

The Gaussian, Markov process described above is trivial for a deterministic
force that is a linear function of the macrostate, ∂S(x)/∂x = Sx. This is
the case for the thermodynamic fluctuations treated in the preceding chapter.
The most likely trajectory can be immediately integrated to give exponential
behaviour. More generally, the Brownian particle or stochastic process may
occur in the presence of an arbitrary force, F(x, t). In such cases either analytic
or numeric solutions are required for the most likely trajectory and for averages
of quantities over the trajectory.

In the physical theory of stochastic processes two thermodynamic variables
appear: the thermodynamic force, Sx = ∂S(x)/∂x, and the transport matrix,
Λ. The distribution of the random forces is completely determined by the trans-
port matrix, and how the dissipative force is determined by the transport matrix
and the thermodynamic force. This is the fluctuation dissipation theorem. The
fluctuation part of the theorem refers to the random forces. The dissipative
part refers to the deterministic forces, which terminology will be made clearer
in the following example. The physical content of the fluctuation dissipation
theorem is that there is a direct quantitative relationship between the stochas-
tic forces and the deterministic forces. Whenever one has forces that arise from
‘hidden’ variables, such as the present resummation of molecular forces over
the non-infinitesimal time step, then one always has a deterministic part and
a stochastic part that are linearly proportional to each other and that are re-
lated by a fluctuation dissipation theorem. This point will prove important in
developing equations of motion for the statistical mechanics of non-equilibrium
systems. For the present, one can simply note that it is unphysical to have a de-
terministic dissipative contribution to the equations of motion whilst neglecting
the stochastic contribution demanded by the fluctuation dissipation theorem.

3.2 Free Brownian Particle

As a concrete example, consider a free Brownian particle in a solvent. The
stochastic motion of a Brownian particle is also called a random walk, and it is
in many respects a good model for thermodynamic fluctuations in general. The
macrostate of the system in the first case is taken to be the velocity v. The
Brownian particle has mass m, kinetic energy is mv2/2, and entropy

S(v) =
−mv2

2T
, (3.4)
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where T is the temperature of the solvent, which acts as a heat reservoir. This is
the total entropy, which is equal to the reservoir entropy because the Brownian
particle has no internal entropy, since v represents a microstate of the sub-
system. One can see that this is of Gaussian form, with the entropy matrix just
−m/T times the identity matrix. The variance of the velocity is therefore

〈
v2
〉

=
3kBT/m. The thermodynamic force is ∂S(v)/∂v = −mv/T , and hence the
dissipative term in the difference equation is (|τ |Λ/2)∂S(v)/∂v = −m|τ |λv/2T .
Here the transport matrix is just Λ = λI, where λ is a scalar that will be related
to the diffusion constant below. The stochastic process is then

v(t + τ) = v(t) − |τ |mλ

2T
v(t) + R̃′(t), (3.5)

or, with R̃ ≡ mR̃′/|τ |,

m
Δv(t)

Δt
= −γv(t) + R̃(t), τ > 0. (3.6)

The left-hand side can be interpreted as mass times acceleration, with Δt ≡ τ .
Hence the first term on the right-hand side is the drag or friction force, with
the friction coefficient being

γ ≡ m2λ

2T
. (3.7)

From Eq. (3.2), the variance of the random force is
〈
R̃(t) · R̃(t)

〉
= 6kBTγ/|τ |.

In the continuum limit, this becomes
〈
R̃(t + s) · R̃(t)

〉
= 6kBTγδ(s). That the

magnitude of the fluctuations is given by the friction coefficient is a manifesta-
tion of the fluctuation dissipation theorem.

Dropping the stochastic contribution, the most likely acceleration is

v̇(t) =
−γ

m
v(t), (3.8)

which evidently gives exponential decay of the velocity,

v(t) = e−γ|t|/mv(0). (3.9)

For a Markov process, this exponential form of regression is exact. Accordingly
one has

〈v(t) · v(0)〉 = 〈v(t) · v(0)〉

=
3kBT

m
e−γ|t|/m. (3.10)

One can relate the transport coefficient to the more usual diffusion constant
by invoking Einstein’s result that the variance of the position grows linearly
with time,

〈[r(t) − r(0)] · [r(t) − r(0)]〉 = 6|t|D, (3.11)
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where D is the diffusion constant. (This result will be derived in the following
section.) Differentiating this with respect to time and invoking the exponential
form of the regression theorem one obtains

D =
1

3
〈v(t) · [r(t) − r(0)]〉

=
1

3

∫ t

0

dt′ 〈v(t) · v(t′)〉

=
1

3

∫ t

0

dt′
3kBT

m
e−γ|t−t′|/m

=
kBT

m

m

γ

[
1 − e−γt/m

]
=

kBT

γ
, t � m/γ. (3.12)

where the exponential term has been neglected for large times. This shows the
relationship between the drag coefficient and the diffusion constant,

γ = kBT/D. (3.13)

The diffusion constant is determined by the magnitude of the stochastic fluctu-
ations in position, as will be seen next, and the friction coefficient is determined
by the magnitude of the dissipative force. This explains the origin of the nomen-
clature fluctuation dissipation theorem.

3.3 Pinned Brownian Particle

Now the same Brownian particle can be treated from the point of view of position
macrostates, r. Suppose it experiences a potential energy in the form of a
harmonic trap centred at the origin, U(r) = κr2/2. Hence the entropy is

S(r) =
−κ

2T
r2, (3.14)

the variance is
〈
r2
〉

= 3kBT/κ, and the thermodynamic force is −κr/T .
The stochastic process is then

r(t + τ) = r(t) − |τ |κD

kBT
r(t) + R̃x(t), (3.15)

where the transport matrix for this formulation is denoted Λ ≡ 2D/kB, where
D will turn out to be the diffusion constant. This random force has covariance〈
R̃x(t) · R̃x(t)

〉
= kB|τ |Λ = 2|τ |D. Taking the scalar product with r(t) yields

〈[r(t + τ) − r(t)] · r(t)〉 =
−|τ |κD

kBT
× 3kBT

κ
= −3D|τ |, (3.16)

since there is no correlation between the current position and the random force,〈
r(t)R̃(t)

〉
= 0. Note that this is negative, which says that both in the future
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and in the past the particle lies closer to the origin than it does now, which is
what one expects because the origin is the equilibrium state. The right-hand
side is independent of the spring constant, and so this expression also holds in
the free particle limit, κ → 0. Changing first τ to −τ , and then t to t+ τ , shows
that the left-hand side is also equal to 〈[r(t) − r(t + τ)] · r(t + τ)〉. Adding these
together and taking the negative, one has

〈[r(t + τ) − r(t)] · [r(t + τ) − r(t)]〉 = 6D|τ |, (3.17)

which is just Einstein’s expression. This confirms the identification of D with
the diffusion constant, and shows that it gives the magnitude of the fluctuations
in position. The result is significant in that it predicts that the mean square
displacement of a random walk, which is another name for Brownian motion,
grows linearly in time, which contrasts with the quadratic growth that would
be expected for deterministic motion. The present analysis for a pinned particle
shows that the result is independent of the trap constant, but is restricted to
the small time limit. For a free particle (i.e. a random walk in the absence
of a trap), one might expect that the mean square displacement would grow
linearly in time without limit. However, that is not such a good model for a
thermodynamic fluctuation, which always has a restoring force that seeks to
return it to the equilibrium state.

The analysis of velocity fluctuations invoked an exponential form for the time
correlation function, which not only assumes Markovian behaviour, but it also
invoked the long time limit, |τ | � m/γ. However, the position analysis invoked
the short time limit in the case of a non-zero trap constant, |τ | � kBT/κD.
Hence the analyses are both valid in the regime

Dm

kBT
� |τ | � kBT

κD
. (3.18)

This is satisfied in the small diffusion constant limit, or, equivalently, in the
large drag limit.

One of the more interesting aspects of the above analysis is the emergence of
the dissipative force in Eq. (3.6), −γv. This is the drag force that was originally
invoked by Langevin, and rationalised on the basis of Stokes’ law in hydrody-
namics. In this the drag force on a sphere is linear in, and opposite to, the
velocity, with the proportionality constant dependent upon the sphere radius,
the fluid viscosity, and the hydrodynamic boundary conditions. Nowadays one
would say that continuum hydrodynamics is not applicable on the length scales
of Brownian particles, but nevertheless the dissipative force in this form is appli-
cable, and the challenge is to justify it on the basis of non-equilibrium statistical
mechanics. One compelling reason for seeking such a fundamental justification
is that no such hydrodynamic argument exists for an analogous dissipative force
for thermodynamic fluctuations, yet nevertheless these and other stochastic pro-
cesses appear to behave identically to Brownian motion. A virtue of the present
fluctuation approach is that the friction force law emerges from the regression
theorem. That is, the form of the dissipative force is determined by the univer-
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sal behaviour of thermodynamic fluctuations, rather than by a hydrodynamic
result for a particular system.

3.4 Diffusion Equation

In a sense, the fundamental characteristic of a Brownian particle is that the
average quadratic displacement, the variance, grows linearly with the time in-
terval. One can construct a Gaussian transition probability from Eq. (3.17),
namely

℘(r|r′, τ) =
e−[r′−r]·[r′−r]/4D|τ |

(4πD|τ |)3/2
,

Dm

kBT
� |τ | � kBT

κD
. (3.19)

This is the probability that the particle will be at r at time t + τ given that it
was at r′ at time t. It is Gaussian because the total displacement over the time
interval is the sum of many random minuscule displacements. The time interval
cannot be too small, because the Einstein result only holds after long intervals
such that the prior history of the particle has no influence. This is independent
of the trap constant, so it applies as well to the free particle, κ → 0.

Assume that the system is in a transient non-equilibrium state (due for
example, to specified initial conditions) such that ℘(r, t) is the probability of
the Brownian particle being at r at time t. In this case the transition probability
gives the evolution,

℘(r, t + τ) =

∫
dr′ ℘(r|r′, τ)℘(r′, t), (3.20)

as follows from the laws of probability. Expanding ℘(r′, t) to second-order about
r, this is

℘(r, t + τ) =

∫
dr′

e−[r′−r]·[r′−r]/4D|τ |

(4πD|τ |)3/2

[
℘(r, t) + [r′ − r] · ∇℘(r, t)

+
1

2
[r′ − r] [r′ − r] : ∇∇℘(r, t) + . . .

]
= ℘(r, t) + |τ |D∇2℘(r, t). (3.21)

Assuming that the probability varies little over the time interval τ , this is

∂℘(r, t)

∂t
≈ ℘(r, t + τ) − ℘(r, t)

τ
= τ̂D∇2℘(r, t), (3.22)

where τ̂ ≡ sign(τ). Recall that τ cannot be made arbitrarily small because the
Einstein result does not hold on infinitesimal time scales. The appearance of the
sign of the time interval signifies the irreversibility inherent in thermodynamics
and statistical mechanics.

This is known as the diffusion equation. It is a simplified version of the
Fokker-Planck equation, which will be derived more rigorously in §3.7.3.
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The solution of the diffusion equation is

℘(r, t) =
1

(4πD|t|)3/2
e−r·r/4D|t|. (3.23)

This corresponds to the particle being at the origin initially, ℘(r, 0) = δ(r). That
this is a Gaussian centred on the origin reflects the fact that the random steps
are equally likely positive as negative. The width of the Gaussian increases with
time, which represents the diffusion over time of the particle from its starting
point. The diffusion equation was originally given by Einstein and presented as
a way to determine Avogradro’s number. Such a measurement was successfully
carried out by Perrin from the sedimentation of colloidal particles several years
later.8

3.5 Time Correlation Functions

The simultaneous treatment of position and velocity fluctuations of the pinned
Brownian particle is a mixed parity case that reveals certain self-consistency
requirements. The general expression for the time correlation function was
given in Ch. 2, Eq. (2.1). Focusing on one-dimensional motion for simplicity,
the time correlation matrix for position-velocity macrostates is

Q(τ) ≡
(

Qxx(τ) Qxv(τ)
Qvx(τ) Qvv(τ)

)
= k−1

B

(
〈x(τ)x(0)〉 〈x(τ)v(0)〉
〈v(τ)x(0)〉 〈v(τ)v(0)〉

)
. (3.24)

Here x(t) is the position and v(t) = ẋ(t) is the velocity, and 〈x〉 = 〈v〉 = 0.
By macroscopic reversibility, the self-correlation functions Qxx(τ) and Qvv(τ)
are even functions of the time interval, whereas the cross-correlation function is
odd, Qxv(τ) = −Qxv(−τ) = −Qvx(τ). Also, the velocity correlation functions
are evidently the time-derivatives of the position correlation functions,

Q̇xx(τ) = Qvx(τ), and Q̇xv(τ) = Qvv(τ). (3.25)

Now Qvv(0) =
〈
v2
〉
/kB = T/m for this one-dimensional case. If, as above,

one assumes Markovian behaviour, then

Qvv(τ) =
T

m
e−γ|τ |/m, (3.26)

where, as above, γ is the friction coefficient. One does not linearise this, which
is equivalent to the requirement that |τ | � m/γ.

The off-diagonal element can be obtained by integration,

Qxv(τ) =

∫ τ

0

dt Qvv(t)

= τ̂
T

γ

[
1 − e−γ|τ |/m

]
= τ̂

T

γ
, |τ | � m/γ. (3.27)

8Perrin J. (1908), C. R. Acad. Sci. Paris, 146, 967.
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Notice that this is O(τ0), since τ̂ ≡ sign(τ). Because this is proportional to
the sign of the time interval, it formally vanishes when |τ | = 0: Qxv(0) =
[Qxv(0+) + Qxv(0

−)]/2 = 0. This is an exact requirement: there can be no
instantaneous coupling between variables of opposite parity.

From the results given in the preceding section,
〈
r2
〉

= 3kBT/κ, and 〈r(t)·
[r(t + τ) − r(t)]〉 = −3D|τ |, for this one-dimensional case one can deduce that
the position autocorrelation function is

Qxx(τ) =
T

κ
− D

kB
|τ |, (3.28)

where D is the diffusion constant. This is valid in the small time limit, |τ | �
kBT/2κD, which comes from insisting that the most likely change in the first
entropy be relatively negligible, [x′−x]∂S(x)/∂x � |S(x)|. The time derivative
is Q̇xx(τ) = −Dτ̂/kB. But since this must equal Qvx(τ) = −Qxv(τ), compar-
ison with the preceding result shows that γ = kBT/D. This is the fluctuation
dissipation theorem deduced in §3.2.

The most likely rate of regression of the Brownian particle for a given dis-
placement is

v(x) = −Qvx(τ)Sxxx − Qvv(τ)Svvv(x)

=
τ̂T

γ
× −κ

T
x +

−Te−γ|τ |/m

m
× −m

T
v(x)

=
−τ̂κ

γ
x, |τ | � m/γ. (3.29)

This says that for a given displacement, the fluctuation will regress in the future
at a constant rate such that the drag force, −γv, is equal and opposite to the
spring force, −κx. This is in accord with one’s physical intuition.

All of the preceding results apply if

Dm

kBT
� |τ | � kBT

2κD
. (3.30)

This is the small diffusion, or, equivalently, the large drag limit. That is, the
velocity correlations decay much faster than the position correlations.

In the opposite limit of small drag, large diffusion, one linearises the expo-
nential to obtain,

Qvv(τ) =
T

m
− γT

m2
|τ | + O(τ2). (3.31)

In this limit, |τ | � m/γ. Integrating this, the off-diagonal element is

Qxv(τ) =

∫ τ

0

dt

[
T

m
− γT

m2
|t|
]

=
T

m
τ − γT

2m2
τ̂ τ2 + O(τ3). (3.32)

Note that Qxv(0) = 0. Setting Qvx(τ) = −Qxv(τ) and integrating once more,

Qxx(τ) − Qxx(0) =

∫ τ

0

dt Qvx(t) =
−T

2m
τ2 +

γT

6m2
|τ |3. (3.33)



3.6. Non-Equilibrium Probability Distribution 71

Using Qxx(0) = T/κ this is

Qxx(τ) =
T

κ
− T

2m
τ2 +

γT

6m2
|τ |3 + O(τ4). (3.34)

This shows that the Einstein result—that the mean square displacement grows
linearly in time—does not hold in the small drag limit. This could also be called
the ballistic regime.

3.6 Non-Equilibrium Probability Distribution

3.6.1 Stationary Trap

Although the full treatment must await the derivation of non-equilibrium statis-
tical mechanics in Ch. 8, it is nevertheless possible to give a heuristic derivation
of the probability distribution of a Brownian particle based on the above results.

With the potential trap located at b(t), the energy of the Brownian particle
is the sum of its kinetic energy and the potential trap energy,

H(x,v; t) =
m

2
v · v +

κ

2
[x − b(t)] · [x − b(t)]. (3.35)

This assumes a spherical trap. One expects the Brownian particle to follow the
minimum of the potential trap as it moves, and so this may be described as a
driven Brownian particle.

If the trap is stationary, b(t) = b, then the usual equilibrium results apply.
The entropy of the position-velocity macrostate is

S(x,v) =
−m

2T
v · v − κ

2T
[x − b] · [x − b], (3.36)

where T is the temperature. The probability distribution is simply the expo-
nential of this,

℘MB(x,v|b) =
(mκ)3/2

(2πkBT )3
e−mv·v/2kBT e−κ[x−b]·[x−b]/2kBT , (3.37)

where kB is Boltzmann’s constant. For this stationary trap, the most likely
velocity is zero, v = 0. This equilibrium probability distribution is called the
Maxwell-Boltzmann distribution.

Figure 3.1 shows four equally likely configurations of the Brownian particle
in a fixed trap. Notice that the probability is unchanged by reflection of the
particle position in the trap minimum or by reversal of the particle velocity.
The fact that one has these two independent symmetries arises because the
probability distribution is for position and velocity evaluated at the same time,
℘(x(t),v(t)|b), and therefore there is no instantaneous coupling between them.
If instead one asked for the probability of the position at one time and the
velocity at another time, ℘(x(t),v(t + τ)|b), then the two upper configurations
of Fig. 3.1 are equally likely, and the two lower configurations of Fig. 3.1 are
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Figure 3.1: Four equally likely configurations of a Brownian particle in a sta-
tionary trap.

equally likely. Moreover, if the velocity is in the future, τ > 0, then the upper
configurations are more likely than the lower configurations, and vice versa for
the past. This is Eq. (3.29) in pictures.

3.6.2 Uniformly Moving Trap

Now suppose that the potential trap is moving with uniform velocity, b(t) = ḃt.9

This gives rise to a steady state, in which the particle is fixed relative to the
trap. That is, the most likely velocity of the particle must equal the trap velocity,
v(t) = ḃ. But by Eq. (3.29), in the steady velocity state, the drag force is equal
and opposite to the trap force, and so the most likely displacement from the
trap minimum must be x(t) − b(t) = −(γ/κ)v(t) = −γḃ/κ. Recall that the
friction coefficient is related to the diffusion constant by γ = kBT/D. Both the
most likely velocity and the most likely displacement are constant in time, as
befits the steady state.

The most likely configurations are shown in Fig. 3.2 for two equal and op-
posite trap velocities. These configurations for a moving trap are obviously the
same as the most likely future velocities of a stationary trap, the two upper
configurations of Fig. 3.1.

The non-equilibrium probability distribution may be written ℘(x,v|t, ḃ).
Note that the position and the velocity are at the same time t. Although it is
a steady state problem, the probability distribution is nevertheless dependent
upon this time, and it is properly described as a non-equilibrium distribution.
Based on the fluctuation theory, this probability distribution will be Gaussian.
Since the most likely values of the position x(t) and the velocity v(t) have been
given above, it remains to determine their variance.

9The results will also apply as an approximation when the variations in velocity are rel-
atively negligible. In the more general case of arbitrary motion of the trap, memory effects
must be accounted for, and one has to use the non-Markov analysis of Ch. 10.
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Figure 3.2: The respective most likely configurations of a Brownian particle in
a trap moving to the right and to the left.
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Figure 3.3: Relative fluctuations in a non-equilibrium system. The circles are for
the position,

〈
[x(t) − 〈x(t)〉]2

〉
/(kBT/κ), and the triangles are for the velocity,〈

[ẋ(t) − 〈ẋ(t)〉]2
〉
/(kBT/m), of the driven Brownian particle for ω = 0.7. The

line is a guide to the eye. The data were obtained by stochastic molecular
dynamics simulations, [Attard, P. (2009a), J. Chem. Phys. 130, 194113].

Within the frame of reference of the moving trap, fluctuations in position
and velocity are identical to their equilibrium counterparts for a stationary trap.
In other words, the motion of the trap is a macroscopic coordinate that does
not directly contribute to the entropy, which is determined by the number of
accessible microscopic configurations of the solvent. Hence the variance in this
non-equilibrium case must be the same as in the equilibrium case.

This picture is confirmed by the non-equilibrium simulation data in Fig. 3.3,
which shows the relative fluctuations about the average position and velocity
for a Brownian particle in an oscillating parabolic trap in a soft-sphere solvent.
The data were obtained by non-equilibrium stochastic molecular dynamics sim-
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ulations (see Ch. 11). To the extent that the relative fluctuations equal unity,
they confirm that the fluctuations in the non-equilibrium system are the same
as those in the equilibrium system.

On the basis of these arguments and simulation data, one concludes that the
non-equilibrium probability distribution is given by

℘(x,v|t, ḃ) =
(mκ)3/2

(2πkBT )3
e−m[v−v(t)]2/2kBT e−κ[x−x(t)]2/2kBT . (3.38)

Recall v(t) = ḃ and x(t) = ḃt−γḃ/κ. Here the notation [. . .]2 means the scalar
product [. . .] · [. . .]. Factors that are constant with respect to x and v, but which
may depend upon time, have been incorporated into the partition function.

This is the first non-equilibrium probability distribution given in the present
book. In order to see the conceptual difference between this and the equilibrium
Maxwell-Boltzmann distribution, use will be made of the conjugate microstate,
{x,v}† = {x,−v}. Further, in what is commonly called time reversal, the effect
of reversing the trap velocity, ḃ ⇒ −ḃ, will also be explored.

The equilibrium Maxwell-Boltzmann distribution for the stationary trap
clearly obeys the symmetry

℘MB({x,v}†|b(t)) = ℘MB({x,v}|b(t)). (3.39)

Note that ḃ does not enter. This says that the Maxwell-Boltzmann distribution
is insensitive to the direction of time.

In contrast, the non-equilibrium probability distribution changes upon ve-
locity reversal,

℘({x,v}†|t, ḃ) �= ℘({x,v}|t, ḃ). (3.40)

In fact, ℘({x,v}†|t, ḃ)/℘({x,v}|t, ḃ) = e−2mv·v(t)/kBT . This dependence upon
the arrow of time is the crucial difference between the Maxwell-Boltzmann dis-
tribution and a non-equilibrium probability distribution.

In general, the probability distribution is the exponential of the reservoir
entropy, ℘({x,v}|t, ḃ) = Z(t)−1 exp Sr({x,v}|t, ḃ)/kB. In the non-equilibrium
case the reservoir entropy can be written as the instantaneous equilibrium ex-
pression or static part, plus a non-equilibrium excess or dynamic part,

Sr({x,v}|t, ḃ) = Sr,st({x,v}|b(t)) + Sr,dyn({x,v}|t, ḃ). (3.41)

The static part of this is just the usual Maxwell-Boltzmann factor,

Sr,st({x,v}|b(t)) =
−κ

2T
[x − b(t)]2 − m

2T
v2. (3.42)

Inserting this into the preceding equation for the reservoir entropy and equating
it to the fluctuation expression given above, one sees that the non-equilibrium
excess or dynamic part of the reservoir entropy must be equal to

Sr,dyn(x,v|t, ḃ) ≡ m

T
ḃ · v − γ

T
ḃ · [x − b(t)]. (3.43)
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Here factors independent of v and x have been incorporated into the normalisa-
tion factor Z. This dynamic part of the entropy evidently depends upon the sign
of the velocity. The full significance of this factorisation of the non-equilibrium
probability distribution cannot be appreciated until the full presentation of non-
equilibrium statistical mechanics in Ch. 8. Nevertheless a hint at the origin and
interpretation of this term may be given as follows.

For a stationary trap, the position autocorrelation function was given as
Eq. (3.28), Qxx(τ) = T/κ − D|τ |/kB. This was valid in the short time limit,
|τ | � kBT/2κD. Assuming Markovian behaviour, this may be extended to long
times by exponentiation,

Qxx(τ) =
T

κ
e−κD|τ |/kBT

=
T

κ
e−κ|τ |/γ, (3.44)

since γ = kBT/D. Differentiating this gives the velocity-position correlation
function,

Qvx(τ) =
−Dτ̂

kB
e−κ|τ |/γ. (3.45)

Both these apply to a stationary trap in the long time limit.

These correlation matrices apply also to the fluctuations of a moving trap.
Let y(t) denote the fluctuation, or departure from the most likely position at
time t,

y(t) ≡ x(t) − x(t) = x(t) − b(t) + γḃ/κ. (3.46)

The departure velocity is similarly ẏ(t) ≡ v(t) − ḃ. The most likely departure
at time t + τ given the current departure is

y(t + τ |y(t), ẏ(t)) = −Qxx(τ)Sxxy(t) − Qxv(τ)Svv ẏ(t)

=

[
y(t) +

mτ̂

γ
ẏ(t)

]
e−κ|τ |/γ. (3.47)

The rate that the external potential does work on the sub-system is

∂U(x, t)

∂t
= −κḃ · [x − b(t)] = −κḃ · y + const. (3.48)

Here and below, only terms that depend upon x and v are required for the
probability distribution. The adiabatic rate of change of the static part of
the reservoir entropy, is just Ṡ0

r,st({x,v}|b(t)) = −T−1∂U(x, t)/∂t. It will be
shown in Ch. 8 that the dynamic part of the reservoir entropy subtracts the
total adiabatic contribution that occurred in reaching the current configuration
from the current equilibrium value of the entropy. This can be estimated from
the integral over the most likely trajectory leading to the present point from
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some time t − s in the past. Discarding constants this is

Sr,dyn(x,v|t, ḃ) = −
∫ 0

−s

dτ Ṡ0
r,st(y(t + τ), ẏ(t + τ)|b(t + τ))

=
−κ

T
ḃ ·
∫ 0

−s

dτ y(t + τ |y(t), ẏ(t))

=
−κ

T
ḃ ·
∫ 0

−s

dτ

[
y(t) +

mτ̂

γ
ẏ(t)

]
e−κ|τ |/γ

=
−κ

T
ḃ ·
[
y(t) − m

γ
ẏ(t)

]
γ

κ

[
1 − e−κ|s|/γ

]
=

−γ

T
ḃ · [x − b(t)] +

m

T
ḃ · v. (3.49)

In the final equality, it has been assumed that a sufficiently long trajectory has
been used so that the exponential term can be neglected, which means that the
result is independent of the lower limit of the integral. Also neglected have been
terms quadratic in the trap velocity, which terms are independent of the current
particle position and velocity. The final result, which agrees with Eq. (3.43)
above, will be derived from first principles in the following section. On the basis
of the present analysis one may conclude that the physical interpretation of the
dynamic part of the reservoir entropy is that it corrects for double counting in
the static part of the reservoir entropy by cancelling that part of the current
value that arose from adiabatic rather than from heat processes.

3.6.3 Mixed Parity Formulation of the Moving Trap

The preceding subsection presented the non-equilibrium probability distribution
for a Brownian particle in a uniformly moving trap in a somewhat heuristic fash-
ion. This section gives a more rigorous derivation of the distribution. The no-
tation and concepts foreshadow those to be used in the general non-equilibrium
theory of Ch. 8. The present analysis also illustrates the connection between
the non-equilibrium statistical mechanics and fluctuation theory of Ch. 2. In
particular, the position and the velocity of the Brownian particle have oppo-
site parity, and therefore the results for fluctuations of mixed parity, §2.5.1, are
required for the full analysis.

There is no coupling between different Cartesian components, and so for
simplicity the focus is on one-dimensional motion. The Brownian particle has
position x and velocity ẋ. This represents the phase space of the sub-system,
X ≡ {x, ẋ} (the momentum p = mẋ is trivially related to the velocity), with
the solvent being considered as the reservoir and being accounted for statisti-
cally. The time dependent external potential is of the form of a harmonic trap,
U(x, t) = κ[x − b(t)]2/2, in uniform motion, b(t) = ḃt. The static part of the
reservoir entropy is the instantaneous canonical form,

Sr,st(X, t) =
−1

T
H(X, t) =

−m

2T
ẋ2 − κ

2T
[x − b(t)]2. (3.50)
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As discussed in connection with Eq. (3.29), most likely the particle moves
with the same velocity as the trap and is displaced from the minimum such that
the drag force, −γẋ, is equal and opposite to the restoring force, −κ[x − b(t)],

ẋ(t) = ḃ, and x(t) = b(t) − ḃγ/κ. (3.51)

The friction coefficient is related to the drag force by γ ≡ 1/βD. One of the
outcomes of the following analysis is a first principles derivation of this physically
plausible result. For the initial analysis, it is not necessary to specify explicitly
the most likely configuration, X(t) ≡ {x(t), ẋ(t)}.

For the fluctuation Y = {y, ẏ} = X(t) − X(t), the reservoir entropy of the
non-equilibrium system is10

Sr(X, t) =
γḃ2

T
t +

1

2
S : Y 2, (3.52)

with the entropy matrix being the same as that of the equilibrium system,

S =

(
−κ/T 0

0 −m/T

)
. (3.53)

The justification for this result is that the entropy associated with the fluctua-
tions in the non-equilibrium system (moving trap) are the same as those in the
equilibrium system (stationary trap). The initial term that is independent of
the fluctuation and that grows linearly with time represents the heat most likely
dissipated to the reservoir by the drag force against the most likely motion of
the particle.11 This term has only trivial effects and could be incorporated into
the partition function.

The mathematical derivation of this expression for the reservoir entropy is
given in what follows of this subsection.

The following analysis is valid in the small drag regime, |τ | � m/γ, in
contrast to the analysis of the non-equilibrium probability distribution given in
the preceding section, which was valid in the large drag regime, m/γ � |τ | �
γ/2κ (equivalently, the small diffusion regime, βmD � |τ | � 1/2βκD, since
D = 1/βγ). In the present case the velocity-velocity time correlation function
decreases linearly with time,

Qẋẋ(τ) ≡ k−1
B 〈ẏ(t + τ)ẏ(t)〉X

=
T

m
− γT

m2
|τ | + O(τ2). (3.54)

10When it is necessary to be more precise, the reservoir entropy will be written Sr,Y(Y, t) ≡

(γḃ2t/T ) − (κ/2T )y2 − (m/2T )ẏ2, and as Sr,X(X, t) ≡ (γḃ2t/T ) − (κ/2T )[x − x(t)]2 −

(m/2T )[ẋ − ẋ(t)]2. These are of course numerically equal, Sr,X(X, t) = Sr,Y(Y, t). The
partial time derivatives of these are not equal, ∂Sr,Y(Y, t)/∂t �= ∂Sr,X(X, t)/∂t, because the
derivative at constant configuration is not the same as the derivative at constant fluctuation.

11 Strictly speaking, one should also add to this term (γ2 ḃ2/2κT ) + (mḃ2/2T ). This is
constant with respect to time and configuration, and so is immaterial.



78 3. Brownian Motion

Again this result is justified by the fact that the time correlation of the non-
equilibrium fluctuations is identical to that of the equilibrium fluctuations. In-
tegrating this, the position-velocity time correlation function is

Qxẋ(τ) ≡ k−1
B 〈y(t + τ)ẏ(t)〉X

=
T

m
τ − γT

2m2
τ̂ τ2 + O(τ3), (3.55)

with Qẋx(τ) = Qxẋ(−τ). There is no instantaneous coupling between fluctua-
tions of opposite parity, Qxẋ(0) = k−1

B 〈y(t)ẏ(t)〉X = 0. Integrating once again,
the position-position time correlation function is

Qxx(τ) ≡ k−1
B 〈y(t + τ)y(t)〉X

=
T

κ
− T

2m
τ2 +

γT

6m3
|τ |3 + O(τ4), (3.56)

with of course Qxx(0) = −S−1
xx . Normally one would neglect all terms O(τ2) and

higher, but below the inverse of a matrix will be required, and it is necessary to
retain the term −Tτ2/2m in Qxx(τ) for this.

In what follows, the transport coefficient (here γ; more generally the Λ and
the S) is taken to be independent of the configuration X , or, equivalently, the
departure Y . In general it is a material property of the system, and it may
depend upon time, both directly and indirectly by a dependence on the most
likely state at the current time X(t). It is important to note that by definition
the most likely state does not depend upon the current state but only upon
time, ∂X(t)/∂X(t) = 0. This means that any potential non-linear effects are
incorporated into the transport and fluctuation matrices via the current most
likely state. The second entropy describes the fluctuations about the most likely
state, and these in general are small enough not to effect the transport matrices.
The independence of the transport matrix from the current state is significant
in the presentation of the Fokker-Planck equation and the expression for the
probability flux given below.

The most likely future position for the mixed parity case was given in terms
of the time correlation function as Eq. (2.78),

Y (t + τ |Y, t) = −Q(τ)SY, (3.57)

or

y(t + τ |Y, t) =
[
1 − κ

2m
τ2 +

γκ

6m2
|τ |3
]
y +

[
τ − γ

2m
τ̂ |τ |2

]
ẏ

= y + τ ẏ + O(τ2),

ẏ(t + τ |Y, t) =
[
− κ

m
τ +

γκ

2m2
τ̂ |τ |2

]
y +

[
1 − γ

m
|τ |
]
ẏ

= ẏ − τ
κ

m
y − |τ | γ

m
ẏ + O(τ2). (3.58)

These make sense. The second term on the right-hand side of each of these is
just the adiabatic force, since ẏ0 = ẏ and ÿ0 = ẍ0 − ẍ0 = −κy/m. The third
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term on the right-hand side of the velocity equation can be interpreted as the
friction force. As discussed below, one can add the zero-mean fluctuating force,
R̃, to these to obtain the stochastic, dissipative equations.

The fluctuation matrices for the mixed parity case have the form given in
Eqs (2.83) and (2.84),

A(τ) =
−1

|τ | Λ
−1 + A0 + A′0τ̂ + O(τ), (3.59)

and

B(τ) =
1

|τ |Λ
−1 + B0 + B′0τ̂ + O(τ). (3.60)

These coefficients were given in terms of the coefficients in the expansion for
the time correlation function, Eq. (2.86), Q(τ) = −S−1 − |τ |Λ/2 + τΘ +O(τ2).
Comparing this to the explicit expression for the time correlation function given
here, one has

Λ =

(
T |τ |/m 0

0 2γT/m2

)
, Θ =

(
0 T/m

−T/m 0

)
. (3.61)

Strictly speaking Λxx = 0, and the exhibited term belongs to a higher-order
coefficient matrix. This term has been retained here because the matrix is
singular without it. One has from Eq. (2.85),

A0 + B0 =
S

2
=

(
−κ/2T 0

0 −m/2T

)
, (3.62)

and from Eq. (2.88),

A′0 + B′0 = Λ−1ΘS =

(
0 −m/T |τ |

mκ/2γT 0

)
. (3.63)

Using these, the second entropy in the form of Eq. (2.92) is

S(2)(Y ′, t + τ ; Y, t)

= Sr(Y, t) − |τ |
2

Λ−1 :
◦

Y
2 + τ

◦

Y · [A0 + B0

− τ̂ (A′0 + B′0)] Y − |τ |
2

Λ−1 :
◦

Y (Y ; τ̂)2 + O(τ2)

= Sr(Y, t) − m

2Tτ2
[y′ − y]2 − m2

4γT |τ | [ẏ
′ − ẏ]2

− κ

2T
[y′ − y]y − m

2T
[ẏ′ − ẏ]ẏ +

m

Tτ
[y′ − y]ẏ − τ̂mκ

2γT
[ẏ′ − ẏ]y

− m

2Tτ2
[y′ − y]2 − m2

4γT |τ | [ẏ
′ − ẏ]2 + O(τ2). (3.64)

Recall that the coarse velocity is
◦

Y ≡ [Y ′−Y ]/τ . Also, Y ≡ Y (t), Y ′ ≡ Y (t+τ),
and Y ′ ≡ Y (t + τ |Y, t).
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Maximising the second entropy with respect to y′ and ẏ′ one obtains

y′ = y + τ ẏ + O(τ2),

ẏ′ = ẏ − τ
κ

m
y − |τ | γ

m
ẏ + O(τ2). (3.65)

These agree with the result obtained above directly from the time correlation
function, Y (t + τ |Y, t) = −Q(τ)SY . The most likely reservoir force is

R = −|τ | γ

m
ẏ =

|τ |
2

Λẋẋ
∂Sr(X, t)

∂ẏ
. (3.66)

This has only a velocity component, because the most likely reservoir force for
the position is O(τ2). The adiabatic force (equivalently acceleration) for the
position and for the velocity are

ẏ0 = ẏ, ÿ0 =
−κ

τm
y. (3.67)

This adiabatic force for the velocity came from the coupling of the position and
velocity via {A′0 + B′0}xẋ (equivalently Θxẋ). Similarly, the adiabatic term in
the position equation originated from {A′0 + B′0}ẋx (equivalently Θẋx).

The stochastic part of the force can be added to these deterministic equa-
tions. From the result for the second entropy its variance is

〈
R̃R̃
〉

Y ′
= |τ |kBΛ =

⎛
⎜⎝

kBTτ2

m
0

0
2γkBT |τ |

m2

⎞
⎟⎠ . (3.68)

Since
〈
R̃yR̃y

〉
X

∼ O(τ2), the stochastic force on the position evolution can be

neglected. Hence the stochastic dissipative equations become

y(t + τ) = y(t) + τ ẏ(t) + O(τ2),

ẏ(t + τ) = ẏ(t) − τ
κ

m
y(t) − |τ | γ

m
ẏ(t) + R̃ + O(τ2). (3.69)

For brevity, the subscript denoting the velocity component is not shown on R,
R̃, or R.

Now the most likely configuration, X(t), is obtained. Recall that the fluc-
tuation is Y ≡ X − X(t). The stochastic, dissipative equations of motion,
transformed from the fluctuation Y to the actual configuration X , are

x(t + τ) = x(t) + τ
dx(t)

dt
+ τẋ(t) − τẋ(t)

= x(t) + τẋ(t),

ẋ(t + τ) = ẋ(t) + τ
dẋ(t)

dt
− τ

κ

m
[x(t) − x(t)] − |τ | γ

m

[
ẋ(t) − ẋ(t)

]
+ R̃

= ẋ(t) + τẍ0(t) + RX(t) + R̃. (3.70)
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This gives the trajectory of the particle if the most likely trajectory is known.
The most likely reservoir force acting on the actual velocity is

RX(t) ≡ R(t) + τ
dẋ(t)

dt
− τẍ0(t)

= −|τ | γ

m
[ẋ − ḃ] + 0 − τ

γ

m
ḃ

= −|τ | γ

m
ẋ − (τ − |τ |) γ

m
ḃ. (3.71)

The subscript X on the left-hand side indicates the most likely reservoir force
acting on the actual coordinates, in this case the actual velocity; it does not
indicate the position coordinate of the force vector. The final equality going
forward in time, τ > 0, is of the form of a traditional friction or drag force.

There are two expressions for the reservoir entropy. There is the fluctuation
expression postulated above on the basis that fluctuations in a non-equilibrium
system are the same as in an equilibrium system,

Sr(X, t) =
γḃ2t

T
− κ

2T
y2 − m

2T
ẏ2

=
γḃ2t

T
− κ

2T
[x − x(t)]2 − m

2T
[ẋ − ẋ(t)]2, (3.72)

with the initial, time dependent, constant representing the dissipation, as will
shortly be justified, (see also footnote 11 on p. 77). And there is a formal
decomposition of the reservoir entropy,

Sr(X, t) = Sr,st(X, t) + Sr,dyn(X, t). (3.73)

The static part of the reservoir entropy is

Sr,st(X, t) ≡ −H(X, t)

T
=

−κ

2T
[x − b(t)]2 − m

2T
ẋ(t)2, (3.74)

and the non-equilibrium part of the reservoir entropy is

Sr,dyn(X, t) ≡ −
∫ t

0

dt′ Ṡ0
r,st(X(t′|X, t), t′)

=
1

T

∫ t

0

dt′
∂H(X(t′|X, t), t′′)

∂t′′

∣∣∣∣
t′′=t′

=
−κḃ

T

∫ t

0

dt′ [x(t′|X, t) − b(t′)]. (3.75)

The full justification for the form of this formal decomposition of the reser-
voir entropy will be given in Ch. 8. Here it may simply be noted that in a
canonical system, the reservoir entropy changes by exchanging energy with the
sub-system, ΔSr = −ΔHs/T , and this is the only way that the sub-system
energy can change. However, in a non-equilibrium system, the sub-system en-
ergy can also change by adiabatic evolution, Ḣ0

s = ∂Hs/∂t, and so the change
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in reservoir entropy is the change in sub-system energy with this subtracted,

ΔSr = −
[
ΔHs − τḢ0

s

]
/T . Integrating this over the most likely backward tra-

jectory from the present configuration gives the above expression.
The two expressions for the reservoir entropy must be equal, and equat-

ing them will yield the most likely configuration X(t). In order to do this,
Sr,dyn(X, t) must first be evaluated. The deterministic form of the stochastic
dissipative equations for the fluctuation can be rearranged as

Y (t + τ |Y, t) − Y (t)

τ
= MY (t), M ≡

(
0 1

−κ/m −τ̂ γ/m

)
. (3.76)

Assuming Markovian behaviour, and taking the limit τ → 0, this has exponen-
tial solutions,

Y (t′|Y, t) = e(t′−t)MY (t). (3.77)

Inserting this into the non-equilibrium part of the reservoir entropy and inte-
grating, one obtains

Sr,dyn(X, t) =
−κḃ

T

∫ t

0

dt′
[{

e(t′−t)MY (t) + X(t′)
}

x
− b(t′)

]

=
−κḃ

T

{
M−1Y (t)

}
x

+ c(t)

=
−κḃ

T

[γ
κ

[x − x(t)] − m

κ
[ẋ − ẋ(t)]

]
+ c(t), (3.78)

since τ̂ = −1. The time dependent, configuration independent constant, c(t) ≡
[−κḃ/T ][−ḃγt/κ], will be discussed below.

With this result, the two expressions for the reservoir entropy, Eqs. (3.72)
and (3.73), can be equated term by term. It is clear that the coefficients of the
quadratic terms are equal. Equating the term linear in x yields

κ

T
xx(t) =

κ

T
xb(t) − ḃγ

T
x, or x(t) = b(t) − ḃγ/κ. (3.79)

Similarly the term linear in ẋ yields

m

T
ẋẋ(t) = 0 +

ḃm

T
ẋ, or ẋ(t) = ḃ. (3.80)

These two result are physically reasonable and could have been written down
directly. Most likely the particle moves with the same velocity as the trap,
and it is most likely offset from the trap minimum by an amount such that the
restoring force, −κ[x(t)− b(t)], is equal and opposite to the drag force, −γẋ(t).

Using this result for the most likely position, the time dependent part of the
constant may now be obtained,

c(t) =
−κḃ

T

∫ t

0

dt′ [x(t′) − b(t′)] =
γḃ2t

T
. (3.81)
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This confirms in essence the most likely dissipation that was added to the fluc-
tuation form for the second entropy above. In the most likely state, Y = 0,
the fluctuation expression, Eq. (3.72), is Sr(X(t), t) = Sr(t). In that same
state, X = X(t), the formal expression, Eq. (3.73), reduces to Sr(X(t), t) =
Sr,st(X(t), t)+Sr,dyn(X(t), t) = (−m/2T )ḃ2− (κ/2T )(γḃ/κ)2 +c(t). With these
results, the two expressions for the reservoir entropy, Eqs (3.72) and (3.73), are
equal (apart from an immaterial constant, (γ2ḃ2/2κT ) + (mḃ2/2T ); see foot-
note 11 on p. 77).

Using this explicit expression for the most likely position and velocity, the
stochastic, dissipative equations of motion written in terms of the actual con-
figuration are

x(t + τ) = x(t) + τẋ(t) + O(τ2), (3.82)

ẋ(t + τ) = ẋ(t) − τ
κ

m

[
x(t) − b(t) + γḃ/κ

]
− |τ | γ

m

[
ẋ(t) − ḃ

]
+ R̃

= ẋ(t) − τ
κ

m
[x(t) − b(t)] − |τ | γ

m
ẋ(t) + R̃ − γḃ

m
[τ − |τ |].

For τ > 0, this has the form of the original Langevin equation, including a
dissipative friction or drag force that is proportional to the actual velocity. For
τ < 0 there is an extra term that is missing in the original form of the equation.
This term is essential for correct retrograde analysis.

3.7 Entropy, Probability, and their Evolution

This section derives expressions for the rates of change of entropy and probabil-
ity. Most of the equations are structured so that the first equality is the generic
result, and the subsequent equalities represent the specific application to the
Brownian particle in the moving trap using the explicit results derived above.
The Fokker-Planck equation and Liouville’s theorem are discussed in the light
of these general and specific analyses.

3.7.1 Time Evolution of the Entropy and Probability

The adiabatic rate of change of the reservoir entropy, expressed in terms of the
fluctuation, is12

Ṡ0
r,Y(Y, t) ≡ ∂Sr,Y(Y, t)

∂t
+ Ẏ 0 · ∇Sr,Y(Y, t)

=
γḃ2

T
+ ẏ

−κ

T
y +

−κ

m
y
−m

T
ẏ

=
γḃ2

T
. (3.83)

12Recall, Sr,Y(Y, t) ≡ (γḃ2t/T ) − (κ/2T )y2 − (m/2T )ẏ2 , and Sr,X(X, t) ≡ (γḃ2t/T ) −

(κ/2T )[x − x(t)]2 − (m/2T )[ẋ − ẋ(t)]2, and that these are numerically equal.
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Since ẏ0 = ẏ and ÿ0 = ẍ0 − ẍ0(t) = (−κ/m)[x− b(t)−{x(t)− b(t)}] = −κy/m,
one has Ẏ 0 ·∇Sr,Y(Y, t) = 0. Hence only the partial time derivative contributes

to Ṡ0
r,Y(Y, t). From the point of view of the actual configuration,

Ṡ0
r,X(X, t) ≡ ∂Sr,X(X, t)

∂t
+ Ẋ0 · ∇Sr,X(X, t)

=
γḃ2

T
+

κ

T
ḃ[x − x(t)] + ẋ

−κ

T
[x − x(t)] +

−κ

m
[x − b(t)]

−m

T
[ẋ − ḃ]

=
γḃ2

T
− κ

T
ẏy +

κ

T
[y − γḃ/κ]ẏ

=
γḃ2

T
− γḃ

T
ẏ. (3.84)

In passing, one notes that this invokes the result Ẋ0 ·∇Sr,st(X, t) = 0. One sees

that Ṡ0
r,X(X, t) �= Ṡ0

r,Y(Y, t). The reason for the difference is that the adiabatic
development of the most likely configuration is not equal to the full development,

Ẋ0 �= Ẋ. Hence although the initial entropies are equal, Sr,X(X, t) = Sr,Y(Y, t)

when Y = X − X(t), the final ones aren’t, Sr,X(X + ΔtẊ
0, t + Δt) �= Sr,Y(Y +

ΔtẎ
0, t + Δt), because Y + ΔtẎ

0 �= X + ΔtẊ
0 − X(t) − ΔtẊ(t).

The deterministic rate of change is the change on the most likely trajectory.

For the reservoir entropy expressed in fluctuations it is (with Y
′ ≡ Y (t+τ |Y, t))

ddetSr,Y(Y, t)

dt
=

1

τ

[
Sr,Y(Y

′
, t + τ) − Sr,Y(Y, t)

]
= Ṡ0

r,Y(Y, t) +
R

τ

∂Sr,Y(Y, t)

∂ẏ

=
γḃ2

T
+ τ̂

γ

T
ẏ2. (3.85)

Using the fact that the most likely reservoir force acting on the actual velocity
is RX = −|τ |γẋ/m− (γḃ/m)(τ − |τ |) = R− γḃτ/m, the deterministic derivative
of the reservoir entropy expressed in the actual configuration is

ddetSr,X(X, t)

dt
= Ṡ0

r,X(X, t) +
RX

τ

∂Sr,X(X, t)

∂ẋ

=
γḃ2

T
− γḃ

T
ẏ +

1

τ

[
−|τ |γẏ

m
− γḃ

m
τ

]
−mẏ

T

=
γḃ2

T
+ τ̂

γ

T
ẏ2. (3.86)

The two deterministic derivatives agree, ddetSr,X(X, t)/dt = ddetSr,Y(Y, t)/dt,
because the most likely trajectory is actually the deterministic trajectory. The
fact that the forward, τ > 0, and backward, τ < 0, derivatives differ is a
manifestation of the irreversibility of the equations of motion.
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Using the formal decomposition of the reservoir entropy, the deterministic,
backward, τ < 0, derivative is

ddetSr,X(X, t)

dt
=

ddetSr,st(X, t)

dt
+

ddetSr,dyn(X, t)

dt

= Ṡ0
r,st(X, t) +

RX

τ

∂Sr,st(X, t)

∂ẋ
− Ṡ0

r,st(X, t)

=
1

τ

[
−|τ |γẏ

m
− γḃ

m
τ

]
−mẋ

T

=
−γ

T

[
ẋ − 2ḃ

]
ẋ. (3.87)

The second equality follows from the fundamental theorem of calculus, since
the integral is over the same path as the derivative. This agrees with the two
preceding results for the case τ < 0. Notice that in order to obtain the agree-
ment, it was necessary to retain the constant, time dependent term, γḃ2t/T , in
the reservoir entropy. The significance of this result lies in the generality of the
second equality,

ddetSr,X(X, t)

dt
=

RX

τ

∂Sr,st(X, t)

∂ẋ
, τ < 0. (3.88)

This is a general result that is demanded from the laws of material conservation,
which are themselves the basis of Gibb’s formulation of equilibrium thermody-
namics. It provides the justification for, and the origin of, the formal expression
for the entropy of a non-equilibrium system, Eq. (3.73).

The total rate of change of the reservoir entropy requires an expansion to
quadratic order and an average over the stochastic force13

dSr,X(X, t)

dt
=

dSr,Y(Y, t)

dt
=

ddetSr,X(X, t)

dt
+

1

2τ

〈
R̃R̃
〉

Y ′
: ∇∇Sr,X(X, t)

=
γḃ2

T
+ τ̂

γ

T
ẏ2 − τ̂

γkB

m
. (3.89)

By the equipartition theorem,
〈
ẏ2
〉

X
= kBT/m, and so on average only the most

likely dissipation,
〈
Ṡr,X(X, t)

〉
X

= ∂Sr,Y(Y, t)/∂t = γḃ2/T , contributes. The

most likely dissipation arises on the most likely actual trajectory, −γẋ(t)2/m =
−γḃ2/m). The result says that the entropy created by the dissipation (due
to the fluctuations, −γẏ2/m), is on average cancelled by the fluctuations (of
the fluctuations, γkBT/m2).14 This exact cancellation of the stochastic and

13The discussion of the stochastic calculus in connection with the Fokker-Planck equation
in footnote 18 on p. 89 below and in §11.3.3 is relevant to this entropy derivative and to the
following probability derivative.

14The random force from the reservoir sometimes kicks the sub-system into a state of higher
energy, and sometimes into a state of lower energy. Because of the non-linear potential,
and because of the expansion to second-order, the energy increasing kicks exceed the energy
decreasing ones, which corresponds to the reservoir losing energy via fluctuations going forward
in time. Conversely, the drag force dissipates energy to the reservoir, increasing its entropy,
again forward in time
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the dissipative terms only occurs because the fluctuation dissipation theorem
ensures that their magnitudes are equal.

The non-equilibrium probability density is essentially the exponential of the
reservoir entropy,

℘Y (Y, t) =
eSr,Y(Y,t)/kB

Z(t)
=

eβγḃ2te−βκy2/2e−βmẏ2/2

Z(t)
, (3.90)

with β = 1/kBT , and the normalising partition function being Z(t) = 2πeβγḃ2t

/β
√

mκ. One can also write ℘X(X, t) = ℘Y (Y, t), but this is not needed for
what follows because the deterministic derivative gives the same result for both
forms, as does the full derivative.

The deterministic derivative is

ddet℘Y (Y, t)

dt
=

{
−Ż(t)

Z(t)
+

ddetSr,Y(Y, t)

kBdt

}
℘Y (Y, t)

= τ̂βγẏ2℘Y (Y, t), (3.91)

and the full derivative, after expanding to quadratic order and averaging over
the stochastic force, is

d℘Y (Y, t)

dt
=

ddet℘Y (Y, t)

dt
+

1

2τ

2γ|τ |
βm2

[(
∂Sr,Y(Y, t)

kB∂ẏ

)2

+
∂2Sr,Y(Y, t)

kB∂ẏ2

]
℘Y (Y, t)

= τ̂βγẏ2℘Y (Y, t) +
γτ̂

m

[
βmẏ2 − 1

]
℘Y (Y, t). (3.92)

One can draw a very important conclusion from this result. The equiparti-
tion theorem shows that the stochastic term exactly vanishes when integrated
over configuration space,

∫
dY ℘Y (Y, t)

[
βmẏ2 − 1

]
=
〈
βmẏ2 − 1

〉
X

= 0. This
means that to an approximation this term also vanishes point-wise,[

βmẏ2 − 1
]
℘Y (Y, t) ≈ 0. (3.93)

The reason that this is a reasonable approximation at every point in the config-
uration space is that on those points that are likely to occur, the equipartition
theorem is satisfied, βmẏ2 ≈ 1. Conversely, those points where the equipartition
theorem is badly dissatisfied, βmẏ2 � 1, are unlikely to occur, ℘Y (Y, t) ≈ 0.
(These approximations hold with increased accuracy for multiple particles.)
This means that to a reasonable approximation the full derivative of the non-
equilibrium probability density can be taken to be equal to the deterministic
derivative

d℘Y (Y, t)

dt
≈ ddet℘Y (Y, t)

dt
. (3.94)
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This result is more general that the present problem of Brownian motion; it is a
result of the generalised equipartition theorem derived later in §3.7.4. However,
it only holds for the non-equilibrium probability density; it does not hold for
a general phase function, df(X, t)/dt �= ddetf(X, t)/dt. The full significance
and generality of the result can be better appreciated from the discussion of
Liouville’s theorem, later in §3.7.5.

3.7.2 Compressibility of the Equations of Motion

From the normalisation of the non-equilibrium probability density, one can ob-
tain a relationship between the compressibility of the deterministic part of the
equations of motion and the total time derivative of the probability density.
With Y ′ ≡ Y (t + τ |Y, t) the deterministic evolution of the fluctuation in a time
step, one has15

1 =

∫
dY ′ ℘(Y ′, t + τ)

=

∫
dY

[
1 + ∇ · [τẎ 0 + R]

] [
℘(Y, t) + τ

ddet℘(Y, t)

dt

]
(3.95)

=

∫
dY ℘(Y, t) +

∫
dY

[
(∇ · R)℘(Y, t) + τ

ddet℘(Y, t)

dt

]
+ O(τ2).

Since the compressibility of the adiabatic force vanishes, one has ∇· [τẎ 0+R] =
∇·R. By normalisation, the first integral of the final equality is unity, and so the
second integral must vanish. Hence in general, one must have that the average
compressibility of the most likely trajectory must be equal and opposite to the
total rate of change of the probability density,

∫
dY

d℘(Y, t)

dt
=

∫
dY

ddet℘(Y, t)

dt
=

−1

τ

〈
∇ · R

〉
X

. (3.96)

Because the stochastic terms cancel in the total derivative of the probability den-
sity when integrated over phase space, as discussed in connection with Eq. (3.92),
this result also holds for that case. This also means that the stochastic forces
do not contribute to the compressibility.

For the particular case of driven Brownian motion, R = −γ|τ |ẏ/m, the
compressibility is τ−1∇ · R = −τ̂γ/m, a constant. Using Eq. (3.91) for the
deterministic derivative of the probability distribution, and also the equiparti-
tion theorem, the left-hand side of this result is τ̂βγ < ẏ2 >X= τ̂ γ/m, which
confirms the validity of the result.

15For a general Cartesian vector space with volume element dr, one has dr′ =
∏

i dr′i =∏
i

[
dri + τdri(∂ṙi/∂ri)

]
= dr

[
1 + τ

∑
i(∂ṙi/∂ri) + O(τ2)

]
= dr

[
1 + τ∇ · ṙ

]
. The adiabatic

motion does not contribute to this because Hamilton’s equations are incompressible. Note that
the stochastic contributions to the evolution of each vertex of the volume element, including
the variance, cancel, and so they don’t contribute to this. In this case the most likely value
and the average value coincide.
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The probability of a volume element, P (Y, t) ≡ [dY ℘(Y, t)], has time deriva-
tive dP (Y, t)/dt ≡ τ−1(∇ · R)[dY ℘(Y, t)] + dY d℘(Y, t)/dt . Its integral is
therefore∫

dY

[
1

dY

dP (Y, t)

dt

]
=

∫
dY

[
d℘(Y, t)

dt
+

℘(Y, t)

τ
∇ · R

]
= 0. (3.97)

Unlike the probability density, the total time derivative of the probability of a
volume element is zero when integrated over all of phase space.

3.7.3 The Fokker-Planck Equation

The Fokker-Planck equation gives the expression for the partial time derivative
of a probability density.16 In the first place it will be derived in a fairly general
setting, and then the explicit results for driven Brownian motion will be inserted.

As above, let X ≡ {x, ẋ} be the configuration in phase space, let Y =
X(t) − X(t) denote the fluctuation or departure from the most likely state, let
Y ′ = Y (t + τ), and let Y ′ = Y (t + τ |Y, t) denote the conditional most likely
fluctuation. The latter is given by the deterministic part of the stochastic,
dissipative equations, Y (t + τ |Y, t) = −Q(τ)SY ≡ Y + τẎ 0 + R, with the force
(more precisely, the acceleration) being

Ẏ 0 = ΘSY, and R = −|τ |ΛSY/2. (3.98)

The first of these is the adiabatic contribution to the force (any possible non-
adiabatic, asymmetric contributions from the reservoir have not been explicitly
included), and the second term arises solely from the reservoir. The matrix
ΘS couples only variables of opposite time parity, whereas the entropy matrix
S couples only variables of the same time parity. This means that ∇ · Ẏ 0 =
ΘαγSγα = 0. Hence the divergence of the total force is

∇ · [τẎ 0 + R] =
−|τ |

2
TR(ΛS), (3.99)

where TR denotes the trace.17

The transition probability is essentially the exponential of the second en-
tropy. By the reduction condition, the maximum value of the second entropy
occurs at Y ′ and equals the first entropy, S(2)(Y ′, t + τ ; Y, t) = Sr(Y, t), as can
be confirmed for the expression given explicitly as Eq. (3.64). Accordingly the
conditional second entropy is defined as

S(2)(Y ′, t + τ |Y, t) ≡ S(2)(Y ′, t + τ ; Y, t) − Sr(Y, t)

=
−1

2|τ |Λ
−1 :

[
Y ′ − Y ′

]2
. (3.100)

16For a comprehensive account of the Fokker-Planck equation and Liouville’s theorem, see
Risken, H. (1984), The Fokker-Planck Equation, (Springer-Verlag, Berlin).

17Similarly, the antisymmetric nature of Θ means that it does not contribute to the rate
of change of the reservoir entropy. In the general case this is dSr(Y, t)/dt = ∂Sr(Y, t)/∂t +
[τẎ 0 + R] · ∇Sr(Y, t) + τ̂kBΛ : ∇∇Sr(Y, t)/2 = γḃ2/T + τ̂Y · SΛSY/2 + τ̂kBΛ : S/2. The
deterministic part of this is positive definite going forward in time. The final two terms cancel
on average.
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In terms of this, the exact conditional transition probability is a Gaussian,

℘ne(Y
′, t + τ |Y, t) =

1

Z(2)
eS(2)(Y ′,t+τ |Y,t)/kB. (3.101)

Here the normalising partition function is Z(2) = (2πkB|τ |)M/2
√

|Λ| where M
is the number of coordinates, which is two for the present case of Brownian
motion.

Now the time evolution of an arbitrary probability density is given under
the action of this, the actual transition probability. The partial time derivative
of the probability density is

∂℘(Y ′, t)

∂t

=
℘(Y ′, t + τ) − ℘(Y ′, t)

τ

=
1

τ

{
−℘(Y ′, t) +

∫
dY ℘(Y ′, t + τ |Y, t)℘(Y, t)

}

=
1

τ

{
−℘(Y, t) +

∫
dY

1

Z(2)
e−Λ−1:[Y ′−Y ′]

2
/2kB|τ |℘(Y, t)

}

=
1

τ

{
−℘(Y, t) +

1

Z(2)

∫
dY ′

[
1 −∇ · [τẎ 0 + R]

]
e−Λ−1:[Y ′−Y ′]2/2kB|τ |

× ℘(Y ′ + Y − Y ′, t)

}

=
1

τ

{
−℘(Y, t) +

1

Z(2)

∫
dY ′

[
1 −∇ · [τẎ 0 + R]

]
e−Λ−1:[Y ′−Y ′]

2
/2kB|τ |

[
℘(Y ′, t) + (Y − Y ′ + Y ′ − Y ′) · ∇℘(Y ′, t)

+
1

2
(Y − Y ′ + Y ′ − Y ′)2 : ∇∇℘(Y ′, t)

]}

= −1

τ
∇ ·
[
[τẎ 0 + R]℘(Y ′, t)

]
+

τ̂kB

2
Λ : ∇∇℘(Y ′, t) + O(τ). (3.102)

In obtaining the final equality, use has been made of the facts that the weighted
integral of Y ′ − Y ′ is zero, that Y − Y ′ = −[τẎ 0(Y ) + R(Y )] = −[τẎ 0(Y ′) +
R(Y ′)] + O(τ2), and that the weighted integral of (Y − Y ′ + Y ′ − Y ′)2 equals
the weighted integral of (Y ′ − Y ′)2 plus O(τ2).

This is the Fokker-Planck equation. It has been assumed here that the
transport and entropy matrices do not depend upon Y , (see the discussion in
§3.6.3 on p. 78).18

18Derivatives and integrals of functions of stochastic variables generally require a stochastic
calculus, either that due to Stratonovich or that due to Itô. The usual derivation of the
Fokker-Planck equation proceeds from one or other of these: see Risken (1984), or Gardiner,
C. W. (1983), Handbook of Stochastic Methods, (Springer, New York). In the case, and
only in the case, that the variance of the random force, here denoted Λ, depends on phase
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It is worthwhile giving this result in terms of the actual variable X = Y +
X(t). Since Y (t + τ |Y, t) = Y + τẎ 0 + R, one has X(t + τ |X, t) = X + τẊ0 +

R + τdX(t)/dt − τẊ0 ≡ X + τẊ0 + RX. The Fokker-Planck equation for the
probability distribution of the actual variable X is as above with ℘(Y, t) ⇒
℘(X, t) and R ⇒ RX ,

∂℘(X, t)

∂t

=
−1

τ
∇ ·
[
[τẊ0 + RX(X, t)]℘(X, t)

]
− τ̂ kB

2
Λ−1 : ∇∇℘(X, t)

= −
[
dX(t)

dt
− Ẋ0(t)

]
· ∇℘(X, t) − Ẋ0 · ∇℘(X, t)

− 1

τ
∇ · [R(X, t)℘(X, t)] − τ̂ kB

2
Λ : ∇∇℘(X, t). (3.103)

Recall that ℘(X, t) and ℘(Y, t) are different functions of their arguments, which
fact is signified by the different symbols used for their arguments. In the second
equality, the first term on the right-hand side may be interpreted as a drift term.

These two expressions for the Fokker-Planck equation give the partial time
derivative of an arbitrary (not necessarily the exact) probability distribution.
The result invoked the exact conditional transition probability, which is equiv-
alent to the exact stochastic, dissipative equations of motion.

For the particular case of driven Brownian motion that is a concern of this
chapter, the Fokker-Planck equation is explicitly

∂℘(X, t)

∂t
=

−dX(t)

dt
· ∇℘(X, t) − 1

τ

∂ [τ ẏ(t)℘(X, t)]

∂x

+
1

τ

∂ [{(τκ/m)y + (|τ |γ/m)ẏ}℘(X, t)]

∂ẋ
− τ̂ γkBT

m2

∂2℘(X, t)

∂ẋ2

=
−dX(t)

dt
· ∇℘(X, t) − ẏ

∂℘(X, t)

∂x
+

[
κ

m
y +

τ̂ γ

m
ẏ

]
∂℘(X, t)

∂ẋ

+ τ̂
γ

m
℘(X, t) − τ̂ γkBT

m2

∂2℘(X, t)

∂ẋ2
. (3.104)

This gives the rate of change of an arbitrary probability distribution for the
trapped Brownian particle due to the actual transition probability. Here Y ≡
X − X(t) for the most likely configuration that corresponds to the given prob-
ability distribution. In the case that this most likely configuration is the ex-
act one, X = {b(t) − γḃ/κ, ḃ}, the first term on the right-hand side becomes
−ḃ∂℘(X, t)/∂x.

space, here denoted X or Y , and that the system has no memory, then each choice yields a
different version of the Fokker-Planck equation. Alternatively, a given Fokker-Planck equation
corresponds to two different evolution equations for the stochastic variable. In the present
book, and arguably in physical problems in general, the variance never depends on phase
space (it may depend upon space and time, but not upon phase space). Also, the no memory
limit is singular and must be interpreted with care. Consequently in §11.3.3 it is argued that
in physical systems the stochastic calculus plays only a limited rôle, and that there is no
ambiguity in the Fokker-Planck equation or in the evolution of other phase functions.
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For the actual non-equilibrium probability density for the Brownian particle
in the uniformly moving trap,

℘(X, t) =
1

Z(t)
eβγḃ2te−βκ[x−b(t)+γḃ/κ]2/2e−βm[ẋ−ḃ]2/2

=
1

Z(t)
eβγḃ2te−βκy2/2e−βmẏ2/2, (3.105)

the Fokker-Planck equation yields

∂℘(X, t)

∂t
=

{
βκḃy + βκẏy −

[
κ

m
y +

τ̂ γ

m
ẏ

]
βmẏ + τ̂

γ

m

+
τ̂γ

βm2

[
(βmẏ)2 − βm

]}
℘(X, t)

= βκḃy℘(X, t). (3.106)

This result agrees with the result that can be obtained by taking directly the
partial time derivative of the explicit form for the probability distribution. This
confirms the consistency of the analysis.

3.7.4 Generalised Equipartition Theorem

The equipartition theorem normally refers to an equilibrium system, and, orig-
inally, to the momentum: the average of the square of any one component of
momenta is

〈
p2

iα

〉
= mkBT . It arises because the Maxwell-Boltzmann probabil-

ity density is proportional to the exponential of the Hamiltonian, which contains
the kinetic energy, which is a sum of the squares of the momenta. A slight gen-
eralisation of the equipartition theorem therefore states that for any equilibrium
system, there is kBT per quadratic degree of freedom in the Hamiltonian.

For the present case of a Brownian particle, in either a stationary or a
moving trap, the Hamiltonian contains a term κy2/2, and since this appears in
the exponent of the probability density, both equilibrium (stationary trap), and
non-equilibrium (uniformly moving trap), the form of the equipartition theorem
is
〈
y2
〉

x
= kBT/κ. The fact that this holds in this example of a non-equilibrium

system is interesting, and it is worthwhile exploring the generality of the result,
particularly because it is directly relevant to the discussion of Liouville’s theorem
that follows.

The key to presenting the most general form of the equipartition theorem
can be gleaned from Eq. (3.92), which was given in the particular context of
a trapped Brownian particle. All probability densities, equilibrium and non-
equilibrium, can be formally written as the exponential of the first entropy. Of
the two terms on the right-hand side of Eq. (3.92) that arise from the stochas-
tic contribution, the second derivative, ∂2S/∂ẏ2, can be interpreted as giving
the coefficient of any term that appears as a quadratic in the exponent of the
probability, and the square of the first derivative, [∂S/∂ẏ]2, can be interpreted
as giving the square of the component of such a quadratic term. Stated in this
form the relationship with the original equipartition theorem is evident.
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The derivation and statement of the generalised equipartition theorem is in
fact rather trivial. Using the general and formally exact expression for the prob-
ability density for phase space or other microspace,19 ℘(X, t) = Z−1eSr(X,t)/kB ,
one has

k−2
B 〈[∇Sr(X, t)] [∇Sr(X, t)]〉X = k−2

B

∫
dX ℘(X, t) [∇Sr(X, t)] [∇Sr(X, t)]

= k−1
B

∫
dX [∇℘(X, t)] [∇Sr(X, t)]

= −k−1
B

∫
dX ℘(X, t)∇∇Sr(X, t)

= −k−1
B 〈∇∇Sr(X, t)〉X . (3.107)

The second equality follows from the definition of the probability density as the
exponential of the reservoir entropy, and the third equality follows from an in-
tegration by parts and the vanishing of the probability for extreme fluctuations.
This is the generalised equipartition theorem. For a single component it reads〈(

∂Sr(x, t)

kB∂x

)2
〉

x

+

〈
∂2Sr(x, t)

kB∂x2

〉
x

= 0. (3.108)

The generalised equipartition theorem is equivalent to
∫

dX ∇∇℘(X, t) = 0,
as can be shown directly by integration and the vanishing of the probability and
its gradient for extreme values. In some circumstances it may be a reasonable
approximation to apply this at each point, not just on average,

∇∇℘(X, t) ≡
[
k−1
B ∇∇Sr(X, t) + k−2

B {∇Sr(X, t)}{∇Sr(X, t)}
]
℘(X, t)

≈ 0. (3.109)

Although one could choose an X for which the bracketed term is non-negligible,
the probability of such values is small. When the sum of the two terms inside
the brackets is large, the probability density is small, and vice versa.

This second derivative arose in the total time derivative of the probability
density, Eq. (3.92), and in the Fokker-Planck equation, for the partial time
derivative of the probability density, Eq. (3.103). In both cases it arose directly
from the stochastic part of the equations of motion. Hence, in so far as the
equipartition theorem holds with negligible error at each point, then the time
evolution of the probability density is given by the deterministic equations of
motion. That is, the stochastic contribution can be neglected.20

19When X represents a microstate, there is no sub-system entropy associated with it, and
St(X, t) = Sr(X, t). When X represents a macrostate, the total entropy St(X, t) = Ss(X, t)+
Sr(X, t) has to be used in place of the reservoir entropy in the derivation.

20The approximation of neglecting the stochastic part of the equations of motion is only
valid for the evolution of the probability density itself. It is not valid for any other function of
phase space. In general, deterministic non-Hamiltonian equations of motion give unphysical
results.
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3.7.5 Liouville’s Theorem

The generic Fokker-Planck equation (3.103) may be written in the form,

∂℘(X, t)

∂t
=

−1

τ
∇ · [τẊ0 + RX(X, t)℘(X, t)]− τ̂kB

2
∇ · [Λ∇℘(X, t)] . (3.110)

This follows because the variance of the fluctuations, essentially Λ, is constant
with respect to X . As discussed in §3.6.3 on p. 78, this may depend upon
the most likely current state, Λ(X(t)). The fluctuations Y about this state
are always relatively small and one can almost always neglect non-linear effects
beyond those contained in X(t), which by definition do not depend upon X .

This form of the Fokker-Planck equation represents a conservation law for
the probability, ∂℘(X, t)/∂t = −∇ · J℘(X, t), with the probability flux being

J℘(X, t) = Ẋdet℘(X, t) +
τ̂kB

2
Λ∇℘(X, t). (3.111)

The deterministic velocity is Ẋdet ≡ Ẋ0 + RX(X, t)/τ , and the first term rep-
resents the flux of probability carried by the deterministic motion. The second
term is obviously the flux due to the stochastic part of the equations of motion.

Liouville’s theorem follows by neglecting the stochastic contribution in the
Fokker-Planck equation, and rearranging it as the total time derivative,

d℘(X, t)

dt
=

∂℘(X, t)

∂t
+ Ẋdet(X, t) · ∇℘(X, t)

= −
[
∇ · Ẋdet(X, t)

]
℘(X, t). (3.112)

The deterministic velocity contains the adiabatic (Hamiltonian) velocity and
other terms that come from Θ and which are independent of τ̂ in the veloc-
ity, and also the dissipative forces that come from Λ and which scale with τ̂
in the velocity. These dissipative forces are a non-Hamiltonian term that are
sometimes chosen in an ad hoc fashion. The first equality is the formally exact
definition of the convective derivative (it was denoted ddet/dt above), which is
the same as the total derivative for deterministic equations of motion such as
one often sees in the literature,

X(t + τ) = X(t) + τẊdet(X(t), t). (3.113)

Here the total derivative was equated to the compressibility of the equations
of motion by neglecting the stochastic contribution to the Fokker-Planck equa-
tion. The rationale for this neglect lies in the results of the preceding subsection,
§3.7.4, and will be revisited shortly. First, however, the conventional justifica-
tion for Liouville’s theorem will be discussed.

Liouville’s theorem has the appearance of a conservation law for probability,
with the probability flux being J℘(X, t) = Ẋdet(X, t)℘(X, t). Compared to the
above expression, this neglects the stochastic term. This is consistent with the
above derivation of Liouville’s theorem in which the stochastic contribution to
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the Fokker-Planck equation was neglected. However, it must be stressed that
this is not an exact formula for the probability flux, but an approximation that
holds in those regimes where the stochastic contribution is negligible.

These particular deterministic forms for the probability flux and for Li-
ouville’s theorem follow from the ensemble interpretation of probability (see
§1.3).21 Briefly, the ensemble picture says that one has M replicas of the sys-
tem of interest, and that the probability density at a point in phase space at a
particular time, ℘(X, t), is proportional to the number of members of the en-
semble in the neighbourhood of the point Ω, ℘(X, t) = MΩ(t)/ΩM . Assuming
that ensemble members cannot be created or destroyed, then the only way for
the probability density to change with time is for members of the ensemble to
be carried across the boundaries of Ω by the evolution of the trajectory. Hence
the divergence of the probability flux gives the rate of change per unit volume,

∂℘(X, t)

∂t
= −∇ ·

[
Ẋdet℘(X, t)

]
. (3.114)

This is equivalent to the above expression for Liouville’s theorem.
An alternative but related justification for Liouville’s theorem has been of-

fered, based upon the normalisation condition on the probability density∫
dX ℘(X, t) = 1. (3.115)

This has been taken to represent a conservation law on the probability density,
and it has been argued that this leads to Eq. (3.114) for the rate of change of
probability.22 The normalisation condition was used above to derive Eq. (3.96),
which may be seen to be an integral form of Eq. (3.114), but it is not a local
condition. The reduction condition for the weight of joint states, Eq. (1.12), and
the related conservation law for weight during a transition, Eq. (1.28), both of
which follow from the general laws of probability, are also global conditions that
hold for a sum over a complete set of states, rather than a local conservation
law as assumed in Liouville’s theorem.

Both arguments implicitly assume that the probability flux is J℘(X, t) =

Ẋdet(X, t)℘(X, t), which neglects the stochastic contributions. Hence there are
two issues raised by Liouville’s theorem: first, whether it is valid to neglect
stochastic contributions to the evolution of the probability density, and sec-
ond whether it is valid to neglect stochastic contributions to the equations of
motion themselves. Consequent on the second question is the validity of the
deterministic evolution of an arbitrary function of the space.

21As discussed in §1.3, the ensemble interpretation of probability is an early mental image
developed as one way to account for randomness in classical mechanics. It should not be
mistaken for the physical basis of statistical mechanics; any dissonance between the ensemble
interpretation and physical reality demands modification of the former.

22Zwanzig, R. (2001), Non-equilibrium Statistical Mechanics, (Oxford University Press,
Oxford). For example, on p. 37: ”Whenever a conservation law of this kind is encountered,
we expect that the time derivative of the conserved quantity or density is balanced by the
divergence of a flux, a velocity times that density.”
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First, as shown in the preceding subsection, §3.7.4, the stochastic contribu-
tion to the evolution of the probability density is generally negligible. This is
because the generalised equipartition theorem holds on the likely points of the
space. It therefore follows that Liouville’s theorem for the evolution of the prob-
ability density is a good approximation to the Fokker-Planck equation. (This
assumes that the stochastic equations of motion satisfy the fluctuation dissipa-
tion theorem.) The correct interpretation of Liouville’s theorem is not that it
represents the evolution of the probability density for deterministic equations
of motion, but rather that it represents the evolution of the probability density
for the exact dissipative, stochastic equations of motion. It is just that the
stochastic contribution to the evolution of the probability density is negligible
due to the generalised equipartition theorem.

Second, it is not generally valid to use deterministic, non-Hamiltonian equa-
tions of motion, and it is not valid to follow the evolution of the system or of
general functions of the space of the system based on such deterministic, non-
Hamiltonian equations of motion.23 Deterministic, non-Hamiltonian equations
of motion do not obey the fluctuation dissipation theorem, and as such give
unphysical results. In practice the theorem is violated in two ways. First the
stochastic contribution to the equations of motion is neglected. Since random-
ness is an inevitable consequence of the projection from the total system to the
sub-system, deterministic non-Hamiltonian equations of motion cannot repre-
sent a real physical system. Second, both the magnitude and quite often the
functional form of the non-Hamiltonian term are in error. Since the fluctuation
dissipation theorem specifies the magnitude of the dissipative force in terms
of the strength of the fluctuations, one does not have the freedom to take the
zero fluctuation limit with non-zero dissipation. Nor does one have the free-
dom to arbitrarily choose the functional form of the non-Hamiltonian term, as
is often done to obtain some or other desired time average. It is usually the
case that deterministic non-Hamiltonian equations of motion do not invoke the
correct functional form of the dissipation that maximises the second entropy.
Deterministic non-Hamiltonian equations of motion correspond to the transi-
tion probability ℘(X ′|X, τ) = δ(X ′−X − τẊdet), which cannot be obtained as
the zero variance limit of the exact transition probability.

That Liouville’s theorem is an approximation can be seen explicitly for the
Brownian particle in the moving trap. The left-hand side of Liouville’s theorem
in the form of Eq. (3.114) is given by Eq. (3.106),

∂℘(X, t)

∂t
= βκḃy℘(X, t). (3.116)

The right-hand side of Eq. (3.114), using ẋ0 = ẋ and τẍ0 + RX = τẍ0 + R −

23Deterministic Hamiltonian equations of motion are valid for an isolated system. They can
be obtained by taking the variance to zero in the more general theory, since the dissipative
force also scales with the variance. The stochastic and the dissipative forces represent the
interaction with the reservoir, and the zero variance limit therefore represents an isolated
system. In this case, and only in this case, Liouville’s theorem is exact.
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γḃτ/m = −τκ[x − b(t)]/m − |τ |γẏ/m − γḃτ/m (c.f. Eqs (3.66) and (3.86)) is

−∇ ·
[
Ẋdet℘(X, t)

]
=

−℘(X, t)

τ
∇ · RX −

[
Ẋ0 +

RX

τ

]
· ∇℘(X, t)

=

{
τ̂ γ

m
+ βκyẋ +

[
κ

m
[x − b(t)] +

τ̂ γẏ

m
+

γḃ

m

]
(−βmẏ)

}
℘(X, t)

=

{
τ̂ γ

m
− τ̂βγẏ2 + βκḃy

}
℘(X, t). (3.117)

Clearly, these last two equations, which are the two sides of Liouville’s the-
orem, Eq. (3.114), are not equal to each other. However, on those points of
phase space that satisfy the generalised equipartition theorem, ẏ2 ≈ kBT/m,
or on those points that occur with negligible probability, ℘(X, t) ≈ 0, they are
approximately equal and Liouville’s theorem is approximately satisfied.



Chapter 4

Heat Conduction

Steady heat flow may be regarded as the canonical non-equilibrium system,
since it is the closest analogue of the canonical equilibrium system. The latter
consists of a sub-system in thermal contact with a heat reservoir of a given
temperature, whereas steady heat flow is accounted for by a sub-system in ther-
mal contact with two heat reservoirs of different temperatures. As the canonical
non-equilibrium system it is the archetype of all steady state flows. This chapter
provides a thermodynamic formulation of the problem in terms of the second
entropy, with the main aim of providing the thermodynamic justification of
Fourier’s law of conductive heat flow,

J0
E = −λ∇T, (4.1)

where J0
E is the conductive energy flux, λ is the thermal conductivity, and ∇T

is the temperature gradient. In deriving this result, the rôle of the reservoirs
in determining the not-in-equilibrium structure of the sub-system, and the rela-
tionship between the heat flow between the reservoirs and the internal relaxation
of the sub-system, is explained.

4.1 Equilibrium System

For a system, isolated from its surroundings, the state is specified by the values
of the extensive variables, which in the simplest case are the total energy E,
number N , assuming a one-component system, and volume V . The ordinary
or first entropy is a function of the state, S(E, N, V ). The temperature of the
state, T (E, N, V ), is defined by1

1

T
≡ ∂S(E, N, V )

∂E
, (4.2)

1Attard, P. (2002a), Thermodynamics and Statistical Mechanics: Equilibrium by Entropy

Maximisation, (Academic Press, London).
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the pressure, p(E, N, V ), is defined by

p

T
≡ ∂S(E, N, V )

∂V
, (4.3)

and the chemical potential, μ(E, N, V ), is defined by

μ

T
≡ −∂S(E, N, V )

∂N
. (4.4)

These define the thermodynamically conjugate variables: (inverse) temperature
is conjugate to energy, etc.

One can also define the entropy density, σ(ε, ρ) ≡ S(E, N, V )/V , where the
energy density is ε ≡ E/V , and the number density is ρ ≡ N/V . Notice how
the entropy density is a function of just two intensive variables. In terms of
these densities it is straightforward to show that

1

T
=

∂σ(ε, ρ)

∂ε
,

μ

T
= −∂σ(ε, ρ)

∂ρ
, and

p

T
= σ(ε, ρ) − ε

T
+

μρ

T
. (4.5)

This chapter is concerned with energy flow, and henceforth the number and
volume will not be shown explicitly. The heat capacity CV can be defined from
the derivative of the temperature,

C−1
V =

∂T (E)

∂E
= −T 2∂2S(E)

∂E2
. (4.6)

This is the heat capacity at constant volume, which is to be distinguished from
the heat capacity at constant pressure. When the sub-system is connected to a
thermal reservoir with which it can exchange energy, the heat capacity deter-
mines the rate of change of the sub-system energy with the reservoir temperature
(the first equality), and it determines the fluctuations in the sub-system energy
about the average sub-system energy (the second equality; see below).

Now consider a sub-system, subscript s, connected to a thermal reservoir,
subscript r, with which it exchanges energy. The total system, sub-system plus
reservoir, is isolated, and so the total energy, Etotal = Es + Er, is conserved,
dEtotal = 0, or, dEs = −dEr. The total entropy is

Stotal(Es|Tr) = Ss(Es) + Sr(Er) = Ss(Es) −
Es

Tr
. (4.7)

In the second equality, a Taylor expansion of the reservoir entropy has been
made about Etotal, and the constant part, Sr(Etotal), which is independent of
the sub-system, has been neglected Also neglected have been the higher-order
terms in the Taylor expansion, which contain powers of the ratio of the sub-
system energy to the total energy. This is called the constrained total entropy,
and it holds for any value of the sub-system energy.

To find the most likely energy, Es(Tr), the constrained total entropy is max-
imised,

∂Stotal(Es|Tr)

∂Es

∣∣∣∣
Es=Es

= 0, or Ts(Es) = Tr. (4.8)
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Es 

Tr 

Es0  Es1 

Tr+ 

Tr− 

J0 L 

Figure 4.1: Canonical equilibrium system (left) and canonical non-equilibrium
system (right).

In the equilibrium or most likely state, this says that the temperature of the
sub-system is equal to that of the reservoir. The left-hand side may be denoted
T s.

In most treatments of equilibrium thermodynamics, it is generally the free
energy rather than the total entropy that is invoked. These are in general
related to the total entropy by a factor of minus the temperature. In the present
canonical case, the constrained Helmholtz free energy is

F (Es|Tr) ≡ −TrStotal(Es|Tr) = Es − TrSs(Es). (4.9)

The minimum value of the constrained Helmholtz free energy, which is often
what is actually meant in textbooks, is F (Tr) ≡ F (Es|Tr). In terms of this, the
constant volume heat capacity alluded to above is

CV =
−1

T 2
r

∂2(F/Tr)

(∂T−1
r )2

. (4.10)

As mentioned, this gives the fluctuations of the energy of the sub-system about
their equilibrium value (c.f. Eqs (2.1) and (2.8)),

〈
(Es − Es)

2
〉

= −kB

[
∂2Stotal

∂E2
s

]−1

= kBT 2
r CV. (4.11)

4.2 First Energy Moment and First Tempera-

ture

In steady heat flow, a thermal gradient is applied to the sub-system by two
reservoirs of different temperatures (see Fig. 4.1). For the present it is sufficient
to consider the case of weak gradients, and to keep only the linear, leading-order
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term. In response, the induced energy density in the sub-system is non-uniform,
and to leading-order it can be taken to have constant gradient,

ε(z) = ε0 + ε1z. (4.12)

Here only variations in the z-direction are considered. In this case, the total
energy of the isolated sub-system, which is just the zeroth moment, is

E0 = A

∫ L/2

−L/2

dz ε(z) = ALε0. (4.13)

The width of the sub-system is L and its area is A. The first energy moment is

E1 = A

∫ L/2

−L/2

dz zε(z) =
AL3

12
ε1. (4.14)

One can use these moments to define a macrostate of the sub-system, {E0, E1},
with entropy

S(E0, E1) = A

∫ L/2

−L/2

dz σ(ε(z)). (4.15)

A subscript s will be appended to these when reservoirs are added and it becomes
necessary to distinguish between the energy moment of the sub-system and that
of the reservoirs.

The local reciprocal temperature is

∂σ(ε(z))

∂ε(z)
=

1

T (z)

=
1

T (0)
+ z

dT (z)−1

dz

∣∣∣∣
z=0

+ O(T ′′)

≡ 1

T0
+ z

1

T1
. (4.16)

Here a Taylor expansion has been performed of the reciprocal temperature to
linear order. This defines the zeroth temperature T0 as the mid temperature,
and it defines the first temperature T1 as the reciprocal of the gradient of the
reciprocal temperature. With a change in energy density being Δε(z) = Δε0 +
zΔε1, a change in entropy is therefore

ΔS(E0, E1) = A

∫ L/2

−L/2

dz
∂σ(ε(z))

∂ε(z)
[Δε0 + zΔε1]

= A

∫ L/2

−L/2

dz

[
1

T0
+ z

1

T1

]
[Δε0 + zΔε1]

= AL
Δε0

T0
+

AL3

12

Δε1

T1

=
ΔE0

T0
+

ΔE1

T1
. (4.17)
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One can see from this that the zeroth and first temperatures are thermodynam-
ically conjugate to the zeroth and first energy moments, respectively,

∂S(E0, E1)

∂E0
=

1

T0
, and

∂S(E0, E1)

∂E1
=

1

T1
. (4.18)

Conventional treatments of heat flow are in terms of temperature T and tem-
perature gradient ∇T , rather than the present zeroth and first temperatures.
One can compare the present analysis with conventional results by making the
identifications, T0 ⇒ T and T−1

1 ⇒ −T−2∇T . Both the present and con-
ventional treatments assume small temperature gradients such that only the
leading-order terms in the gradient need be retained.

4.3 Second Entropy

For steady heat flow, the primary relevant variables are the first energy moment,
E1, and the first temperature, T1. Henceforth the zeroth energy moment and
the zeroth temperature will not be shown explicitly.

The first energy moment is a non-conserved variable that fluctuates in time
about its equilibrium value, E1 = 0. This is for an isolated sub-system. The
equilibrium value essentially corresponds to a uniform energy profile, or to equal
amounts of energy in each half of the sub-system. The first entropy in fluctuation
approximation is

S(E1) =
1

2
SE2

1 , (4.19)

with the fluctuation coefficient (for this one-dimensional problem it is a scalar)
being

S ≡ ∂2S(E1)

∂E2
1

∣∣∣∣
E1=0

=
−kB

〈E1(0)2〉 . (4.20)

The averages here and below are canonical equilibrium ones. The first temper-
ature is evidently the thermodynamic force,

1

T1
≡ ∂S(E1)

∂E1
= SE1. (4.21)

The second entropy for the transition E1
τ→ E′1 is

S(2)(E′1, E1|τ) =
A(τ)

2

[
E′1

2
+ E1

2
]

+ B(τ)E′1E1. (4.22)

The short time expansions of the fluctuation coefficients, Eqs (2.39) and (2.40),
are

A(τ) =
−1

|τ |Λ + A + O(τ), and B(τ) =
1

|τ |Λ + B + O(τ), (4.23)
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with the reduction condition, Eq. (2.41), yielding, A+B = S/2. The most likely
future state is

E
′

1 =
−B(τ)

A(τ)
E1

= E1 +
|τ |Λ
2

SE1 + O(τ2). (4.24)

With this and the reduction condition the second entropy may be rewritten

S(2)(E′1, E1|τ) =
1

2
SE2

1 − 1

2Λ|τ |

[
E′1 − E1 −

|τ |Λ
2

SE1

]2
+ O(τ2)

=
1

2
SE2

1 − |τ |
2Λ

[
◦

E1 − τ̂Λ

2
SE1

]2
, (4.25)

where τ̂ = sign(τ). This expansion is valid for small time intervals.

Recall that the coarse velocity is
◦

E1≡ [E′1 −E1]/τ , and hence its most likely

value is
◦

E1 = τ̂ΛSE1/2. It is now necessary to relate this rate of change of the
first energy moment to the energy flux. The conductive energy flux, J0

E, is the
amount of energy per unit area per unit time crossing a plane by conduction. In
the present geometry this is in the z-direction. The superscript 0 is appended
here to make it clear that this is really the conductive heat flux, which is distinct
from energy that may be transported by convection or from energy change due
to work being performed. The full import of this distinction will not become
clear until Ch. 5, where hydrodynamics is derived.

If the heat flux is uniform, as it is in the steady state, then no change in the
energy density occurs in the interior of the system: at each plane, what flows in
equals what flows out. Change only occurs at the boundaries of the sub-system,
across which no energy may flow in the present isolated case. The nett effect of
a uniform flux is to remove an amount of energy per unit time of AJ0

E from the
boundary region at z = −L/2, and to add it to the boundary region at z = L/2.
This changes the first energy moment at a rate of2

◦

E1=
−L

2
(−AJ0

E) +
L

2
(AJ0

E) = V J0
E, (4.26)

where V = AL is the volume of the sub-system. Because the flux is uniform,
the energy profile of the interior of the sub-system is unchanging in time. In
the steady state, the coarse velocity is the same as the instantaneous velocity.

2In mathematical terms, the flux is constant inside the sub-system , J0
E(z) = J0

E , |z| < L/2,
and it vanishes beyond the boundaries, J0

E(z) = 0, |z| > L/2. Hence its derivative is a sum of
δ-functions, dJ0

E(z)/dz = J0
E [δ(z + L/2) − δ(z − L/2)]. The rate of change of energy density

is the divergence of the flux, ε̇(z) = −dJ0
E(z)/dz. Hence the rate of change of the first energy

moment is Ė1 = A
∫

dz zε̇(z) = ALJ0
E.
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Using this result the most likely heat flux is

J
0

E =
τ̂Λ

2V
SE1

=
τ̂Λ

2V

1

T1

=
−τ̂Λ

2V T 2
∇T. (4.27)

For fluxes forward in time, τ̂ = 1, this is Fourier’s law, Eq. (4.1), with the
thermal conductivity identified as λ ≡ Λ/2V T 2.

4.4 Thermal Conductivity and Energy Correla-

tions

The fluctuations and the regression theorem were derived in the small time limit
in §2.3. In this limit the time correlation function decays linearly in time. For
the present problem of steady heat flow, the thermal conductivity, λ ≡ Λ/2V T 2,
can be obtained from the slope of the time correlation function in this small
time limit. There are several notionally equivalent expressions. Multiplying
both sides of the regression result, Eq. (4.24), by E1, taking the average, and
rearranging one has

λ =
−1

V kBT 2|τ | 〈[E1(t + τ) − E1(t)]E1(t)〉 + O(τ). (4.28)

The right-hand side is an even function of τ . The left-hand side ought to be
independent of the time interval, and so the explicit dependence on τ on the
right-hand ought to cancel, which can be used as a guide to the small time
regime. If one multiplies both sides by τ and differentiates with respect to τ ,
this may alternatively be formulated as

λ =
−τ̂

V kBT 2

〈
Ė1(t + τ)E1(t)

〉
+ O(τ), (4.29)

where τ̂ ≡ sign(τ). The right-hand side is still an even function of τ .
The averages that appear here are canonical equilibrium averages. This

means that one generates points in the sub-system phase space, Γ0, according
to the Maxwell-Boltzmann distribution, and for each such point one computes
the trajectory of the isolated sub-system according to Hamilton’s equations of
motion, Γ0(t|Γ0), t ∈ [0, τ ]. To be specific, Eq. (4.28) can be written in Green-
Kubo form,

λ =
−1

V kBT 2|τ |

∫
dΓ0 ℘MB(Γ0|T0)

∫ τ

0

dt ˆ̇E1(Γ
0(t|Γ0))Ê1(Γ0). (4.30)

Obviously the shorter the time interval required for each trajectory, the more
efficient will be the simulation.
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Figure 4.2: The thermal conductivity, λ(τ) (in units of the Lennard-Jones time
and size parameter, kB/τLJσLJ), at ρ = 0.8 and T0 = 2. The symbols are
simulation data, with the triangles using the instantaneous velocity, Eq. (4.29),
and the circles using the coarse velocity over the interval, Eq. (4.28). The solid
line is a guide to the eye.

Typical results of such a simulation are shown in Fig. 4.2. It can be seen
that the terminal velocity conductivity, Eq. (4.29), reaches it short time asymp-
tote faster than the coarse velocity conductivity, Eq. (4.28). The latter is a
smoother curve, due to the fact that it integrates the former over time. How-
ever, one should not confuse smoothness with statistical error; smoothness only
means that adjacent points are highly correlated. In fact, the statistical error,
calculated on the basis of the fluctuations in the conductivity at a given time
in independent runs, is about six times smaller for Eq. (4.29) compared with
Eq. (4.28).

4.5 Reservoirs

In the preceding two sections, results for an isolated sub-system were estab-
lished, including the rate of decay of spontaneous fluctuations in the energy
moment. Now the treatment is extended to the case that the sub-system can
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exchange energy with two reservoirs of different temperatures, and it is shown
that these reservoirs induce a non-zero energy moment, and that the flux of en-
ergy between the reservoirs through the sub-system is the same as the regression
of a spontaneous fluctuation in an isolated system whose original magnitude is
equal to the induced moment.

4.5.1 First Entropy

The boundaries between the two reservoirs and the sub-system are located at
z = ±L/2, and the reservoirs have respective temperatures, Tr±. Conduction
alone is treated here (i.e. no convection), so gravity plays no rôle, and it does not
matter which reservoir is the hotter. Suppose at each boundary the sub-system
exchanges energy with the respective reservoir such that ΔEr± represents the
change in energy of that reservoir. In this case the change in the total reservoir
entropy is

ΔSr =
ΔEr+

Tr+
+

ΔEr−

Tr−

=
ΔEr0

Tr0
+

ΔEr1

Tr1
. (4.31)

Here has been defined the change in the zeroth and first energy moments of the
reservoirs,

ΔEr0 ≡ ΔEr+ + ΔEr−, and ΔEr1 ≡ L

2
ΔEr+ − L

2
ΔEr−, (4.32)

and the zeroth and first reservoir temperatures,

1

Tr0
≡ 1

2

[
1

Tr+
+

1

Tr−

]
, and

1

Tr1
≡ 1

L

[
1

Tr+
− 1

Tr−

]
. (4.33)

There is an obvious analogy between these definitions of the reservoir mo-
ments and temperatures and those of the isolated sub-system given above. The
definitions of the energy moments and temperatures ensure that the two forms
for the change in the reservoir entropy are equivalent; no approximation has
been introduced here. The first form for the change in the reservoir entropy
implicitly assumes that the reservoir temperatures Tr± are those at the place
where the energy exchange occurs, which will be true if the boundary region is
small compared with any gradient in the reservoir temperature. In practice, one
generally assumes that the reservoir conductivity is infinite, so that the reservoir
temperature itself is the same as the reservoir temperature at the boundary.

From energy conservation, one must have that the change in the sub-system
energy at each boundary due to exchange with the reservoir must be equal and
opposite to the change in the respective reservoir energy, ΔrEs± = −ΔEr±. In
view of the definitions above, this is equivalent to

ΔrEs0 = −ΔEr0, and ΔrEs1 = −ΔEr1. (4.34)
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The reservoir-induced change in the sub-system energy moments is just

ΔrEs0 ≡ ΔrEs+ + ΔrEs−, and ΔrEs1 ≡ L

2
ΔrEs+ − L

2
ΔrEs−. (4.35)

This assumes that the boundary region in the sub-system where energy exchange
with the reservoir occurs is small compared with the size of the sub-system itself.

The total change in the energy moment of the sub-system is the sum of the
adiabatic change3 (i.e. the internal change that would occur if the sub-system
were isolated from the reservoirs) and the reservoir-induced change,

ΔEs0 = Δ0Es0 + ΔrEs0, and ΔEs1 = Δ0Es1 + ΔrEs1. (4.36)

Since the total energy is conserved in an isolated system (i.e. a system that
evolves adiabatically under Hamilton’s equations of motion), one has Δ0Es0 = 0.

From the change in the reservoir entropy given above, it is convenient to
write the reservoir entropy as

Sr(t) =
Er0(t)

Tr0
+

Er1(t)

Tr1
. (4.37)

Here has been defined the part of the reservoir energy moment that depends
upon the sub-system (i.e. the constant part of the reservoir energy that is inde-
pendent of the sub-system is ignored). Although this depends upon time, due
to the energy flux through the sub-system, it is assumed that the reservoirs are
so large that over the time course of any experiment the reservoir temperature
does not significantly change. These reservoir moments have the property that
they change according to

ΔEr0(t) = ΔEr0 = −ΔrEs0, (4.38)

and

ΔEr1(t) = ΔEr1 = −ΔrEs1. (4.39)

With these, the total entropy of the system is

Stotal(Es0, Es1|Tr0, Tr1) = Ss(Es0, Es1) +
Er0(t)

Tr0
+

Er1(t)

Tr1
. (4.40)

The sub-system entropy may be written as a quadratic form in the first energy
moment, since one is generally working in the regime of small temperature
gradients.

The reservoir-induced derivatives of the total entropy are,

∂Stotal

∂rEs0
=

1

Ts0
− 1

Tr0
, (4.41)

3Adiabatic here and throughout means the time development of an isolated system ac-
cording to Hamilton’s equations of motion. This precludes thermostats, dissipative terms,
artificial forces, or any other term that does not form part of the Hamiltonian of the system.
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and

∂Stotal

∂rEs1
=

1

Ts1
− 1

Tr1
. (4.42)

One sees from these that the entropy is a maximum with respect to the reservoir-
induced changes when the zeroth and first temperatures of the sub-system equal
those of the reservoir,

T s0 = Tr0, and T s1 = Tr1. (4.43)

For this non-equilibrium system this most likely state corresponds to the steady
state. The result could probably have been anticipated, since it simply says
that the temperature of the sub-system at each boundary is equal to that of the
reservoir at that boundary.

Note that only the zeroth and first reservoir temperatures entered the analy-
sis, and only the reservoir-induced changes in the zero and first energy moments
needed to be considered. Formally, the higher-order reservoir temperatures are
zero. This means that the only effect of maximising the total entropy with
respect to the changes in the higher-order sub-system energy moments is to es-
tablish that the most likely values of the higher-order sub-system temperatures
are zero. This means that the most likely values of the higher-order sub-system
energy moments are also zero. In other words, the zeroth and first temperatures
are both necessary and sufficient to characterise the steady state in the present
slab geometry.

Note that one does not maximise the ordinary total entropy with respect
to the adiabatic changes, Δ0. As will be seen next, one instead performs the
adiabatic maximisation of the second entropy to obtain the most likely heat
flux.

4.5.2 Second Entropy

Now the second entropy of the sub-system in contact with the two thermal
reservoirs will be given. The dependence on the zeroth energy moment and
zeroth temperature will be suppressed, since Δ0E0 = 0, and also only the
adiabatic change in the first moment is required for the heat flux.

In the preceding section the notation Δ0 and Δr (and also ∂r) denoted
a virtual change in the constrained moment that was subsequently used to
optimise the moment. In this section, the notation Δ0

τ and Δr
τ will denote a

physical change in the moment over the time interval τ . These are essentially
the adiabatic and the reservoir-induced constrained fluxes, and virtual changes
in them, ∂Δ0

τ and ∂Δr
τ , will be used to optimise them.

The second entropy for an isolated system in the small time limit, Eq. (2.50),
consists of four terms: the first entropy of the sub-system , a term quadratic
in the flux, a term bilinear in the flux and the thermodynamic force, and a
term independent of the fluxes that enforces the reduction condition for the
most likely flux. The flux referred to is the internal or adiabatic flux (i.e. for an
isolated sub-system).
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When reservoirs are added, the only changes to this expression are that
the first entropy of the sub-system is replaced by the first entropy of the total
system, and the internal rate of entropy production is replaced by the total rate
of entropy production. The term quadratic in the internal flux, which represents
the cost of dynamic order, remains unchanged. The term independent of the
fluxes is chosen to ensure that the total second entropy for the optimum fluxes
reduces to the total ordinary entropy. Making these changes gives

S
(2)
total(Δ

0
τ Es1, Δ

r
τEs1, Es1|Tr1, τ)

=
1

2
SE2

s1 +
Er1(t)

Tr1
− 1

2Λ|τ | [Δ
0
τ Es1]

2 +
1

2
Δ0

τEs1SEs1

+
1

2
Δr

τEs1

[
SEs1 −

1

Tr1

]
+

|τ |Λ
8

[
S2E2

s1 −
2SEs1

Tr1

]
. (4.44)

Terms O(τ2) have been neglected here. The sub-system thermodynamic force
is T−1

s1 = SEs1. The first two terms on the right-hand side sum to the total
ordinary entropy. The third term is the term quadratic in the internal flux. The
fourth term is the entropy production due to the internal change. The fifth term
is the entropy production due to exchange with the reservoir. The final term
is the constant (i.e. the term independent of the fluxes) required to satisfy the
reduction condition for the second entropy evaluated at the most likely fluxes.

The derivatives are

∂S
(2)
total

∂Δ0
τ Es1

=
−1

Λ|τ |Δ
0
τEs1 +

1

2
SEs1, (4.45)

∂S
(2)
total

∂Δr
τ Es1

=
1

2

[
SEs1 −

1

Tr1

]
, (4.46)

and4

∂S
(2)
total

∂rEs1
= SEs1−

1

Tr1
+

1

2
S
[
Δ0

τ Es1 + Δr
τEs1

]
+

|τ |Λ
8

[
2S2Es1 −

2S

Tr1

]
. (4.47)

Setting the first of these to zero yields the most likely internal flux,

◦
E1

0 ≡ Δ0
τ Es1

τ
=

τ̂Λ

2

1

Ts1
. (4.48)

This expression for the most likely flux is the same as for an isolated system,
namely that the flux is proportional to the gradient of the sub-system tem-
perature. Setting the second to zero shows that the most likely sub-system
temperature gradient is equal to that applied by the reservoirs,

Ts1 = Tr1. (4.49)

4In order to determine the optimum initial sub-system moment Es1, one only takes the
reservoir-induced derivative, ∂rEs1, without considering the internal or adiabatic derivative
∂0Es1. This follows from the assumption that the changes in the sub-system moment are
dominated by exchange with the reservoir, which is equivalent to the assumption that the
conductivity of the reservoir is much greater than the conductivity of the sub-system.
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Setting the third to zero shows that the internal change in the sub-system energy
moment is equal and opposite to the reservoir-induced change,

Δ0
τEs1 = −Δr

τEs1. (4.50)

This result holds if, and only if, the sub-system first temperature is already in
its optimum state, Ts1 = Tr1.

This last result means that the change in the moment due to heat exchange
with the reservoir most likely cancels the relaxation of the energy moment due
to internal processes, so that once the energy moment has reached its preferred
value, Ts1 = Tr1, then the total change in moment is zero, Δτ Es1 = 0. Whereas
in the isolated sub-system the moment relaxes to zero, here this internal change
is cancelled by the exchange with the reservoir, which has the nett effect of
holding the sub-system moment constant.

Although the total change in energy moment is zero, it consists of two non-
zero contributions: the adiabatic change and the equal and opposite reservoir-
induced change. By energy conservation, the latter is itself equal and opposite
to the change in the reservoir moment,

Δ0
τEs1 = −Δr

τEs1 = Δτ Er1. (4.51)

This means that even though the structure of the sub-system is unchanging in
time, there is nevertheless a steady heat flow between the reservoirs so that their
energy distribution is steadily changing. This says that in the steady state, the
heat flow between the reservoirs is equal to the adiabatic flux of an isolated
sub-system with the same spontaneous temperature gradient as induced by the
reservoirs. This result is one of the notions embodied by Onsager’s regression
hypothesis.

The second entropy evaluated for the most likely changes is

S
(2)
total(Δ

0
τEs1,Δr

τEs1, Es1|Tr1, τ)

= Stotal(Es1) −
|τ |Λ
8

1

T 2
s1

+
|τ |Λ
4

1

Tr1Ts1
+

|τ |Λ
8

[
1

T 2
s1

− 2

Tr1Ts1

]
= Stotal(Es1). (4.52)

This is the required reduction condition.
A clarification on the notation might be useful. The internal flux was here

denoted
◦

E1
0 ≡ Δ0Es1/τ , where the superscript 0 means internal changes (i.e.

those in the absence of the reservoir). However, in the preceding section the
conductive flux was introduced, which would be related to the present internal

coarse velocity by J0
E =

◦

E1
0/V . The superscript 0 on the left-hand side means

the conductive energy flux. The notation is actually consistent in the sense that
in the present analysis, number fluxes and momentum fluxes were precluded,
and so the internal changes can only occur by conduction, not by convection or
by the performance of work. The matter will be revisited in the next chapter,
where the equations of hydrodynamics are derived.
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4.6 Heat and Number Flow

In Eq. (4.27), the most likely conductive heat flux was shown to be5

J
0

E =
ΛEE

2V
∇ 1

T
. (4.53)

(In this and the following section, ∇T−1 and ∇(μ/T ) will be used instead 1/T1

and m1.) From Fourier’s law, Eq. (4.1), the thermal conductivity is identified as
λ ≡ ΛEE/2V T 2. The temperature gradient provides the thermodynamic driving
force. This result comes from maximising the second entropy, S(2)(E′1; E1|τ).

It is of interest to discuss the combination of heat flow and number flow.
The number flux, like the energy flux, is just the rate of change of the first
number moment, J0

N = Ṅ1/V . As will be discussed in the following chapter,
due to momentum conservation the first number moment is conserved for a pure
system. In order to avoid this restriction, in the present case number refers to a
mobile species able to move in a fixed background lattice so that its momentum
is not conserved. Hence N1 fluctuates, and, in the language of the following
chapter, J0

N is the diffusive part of the number flux, which is actually the total
number flux when only one species is mobile.

The second entropy may be formulated as a quadratic form for both vari-
ables, S(2)(E′1, N

′
1; E1, N1|τ). Maximising this the most likely fluxes are

J
0

E =
Λ∗EE

2V
∇ 1

T
− Λ∗EN

2V
∇μ

T
,

J
0

N =
Λ∗NE

2V
∇ 1

T
− Λ∗NN

2V
∇μ

T
. (4.54)

Here the thermodynamic driving force for number is

−m1 ≡ −∇μ

T
=

∂S(1)(E1, N1)

∂N1
. (4.55)

The cross transport coefficient, Λ∗NE = Λ∗EN, is related to the Soret coefficient
and it gives the diffusion in response to a temperature gradient (thermodiffu-
sion). The inverse effect, the heat flux due to a chemical potential gradient, is
called the Dufour effect.

Using subscripts to denote the derivatives of the second entropy, S
(2)
EE =

limτ→0 |τ |∂2S(2)(E′1; E1|τ)/∂E2
1

∣∣
E′

1=E1=0
, etc., one has

ΛEE = −[S
(2)
EE]−1, (4.56)

and, from the general expression Λ∗ = −[S(2)]−1,

Λ∗EE = −

⎧⎨
⎩
(

S
(2)
EE S

(2)
EN

S
(2)
NE S

(2)
NN

)−1
⎫⎬
⎭

EE

=
−S

(2)
NN

S
(2)
EES

(2)
NN − S

(2)
ENS

(2)
NE

. (4.57)

5In this section and the next, it is always the most likely future flux , τ̂ = 1.
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These two transport coefficients are not equal to each other, ΛEE �= Λ∗EE. Note

that because S(2)(E′1; E1|τ) = S(2)(E′1, N
′
1 = 0; E1, N1 = 0|τ), the S

(2)
EE that

appears here is the same in both equations.

In the case that there is no number flux, J
0

N = 0, Eq. (4.54) shows that the
thermodynamic force for number is

∇μ

T
=

Λ∗NE

Λ∗NN

∇ 1

T
. (4.58)

In this case the energy flux is

J
0

E =
Λ∗EE

2V
∇ 1

T
− Λ∗EN

2V

Λ∗NE

Λ∗NN

∇ 1

T

=
1

2V

[{(
Λ∗EE Λ∗EN

Λ∗NE Λ∗NN

)−1
}

EE

]−1

∇ 1

T

=
−1

2V

[
S

(2)
EE

]−1

∇ 1

T

=
ΛEE

2V
∇ 1

T
, J

0

N = 0. (4.59)

This is equal to the original conductive energy flux, Eq. (4.53), which was ob-
tained when the number flux was ignored. This analysis shows that ΛEE =
Λ∗EE − Λ∗EN[Λ∗NN]−1Λ∗NE.

4.7 Heat and Current Flow

Consider the case that the mobile species treated in the preceding section has
charge q, and that an electric potential φ(r, t) is applied. In the most common
case the potential corresponds to a constant and uniform electric field, φ(r, t) =
−Eelz. As discussed in the first section of the following chapter, §5.1, the
internal energy density is εint(r, t) = ε(r, t)− qn(r, t)φ(r, t), where n(r, t) is the
number density, and the kinetic energy of the convective flow of the mobile
species has been neglected as it is quadratic in the velocity.6 The total energy
flux is JE = J0

E + J
ψ
E = J0

E + qφJN, where the convective velocity has been
neglected. The conductive energy or heat flux, J0

E, was analysed above.

The rate of change of the entropy of the sub-system is derived in Eq. (5.43).
Neglecting the viscous pressure tensor, chemical reaction rate, and the surface

6It is assumed that the mass of the fixed species is much greater than that of the mobile
species, m0 � m1, from which it follows that the convective or barycentric velocity is much
less than the velocity of the mobile species, v � v1. This means that for the mobile species,
the diffusive velocity is equal to the total velocity, ṽ1 = v1, and that the diffusive and total
number fluxes are the same, J

0
N = JN = n1v1. In the present problem with only one mobile

species, the subscript 1 will be dropped, and the velocity of the mobile species will not appear
explicitly (instead n−1

JN will be used). The formulae in Ch. 5 will be applied to the current
problem by setting the convective velocity to zero, v = 0, wherever it occurs in them.
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integrals, for the present isolated system it is7

Ṡs =

∫
dr

{
J0

E · ∇ 1

T
− JN ·

[
q∇φ

T
+ ∇μ

T

]}

=

∫
dr

{[
J0

E − μJN

]
· ∇ 1

T
− 1

T
JN · ∇[μ + qφ]

}

=

∫
dr

{[
J0

E + qφJN

]
· ∇ 1

T
− JN · ∇μ + qφ

T

}
. (4.60)

These three expressions allow one to define the fluxes and conjugate thermody-
namic forces as convenient.

Choosing the first equality, with fluxes {J0
E,JN} and thermodynamic forces

{∇T−1,−qT−1∇φ−∇(μ/T )} = {T−1
1 ,−qT−1∇φ−m1}, the most likely fluxes

that result from maximising the second entropy are

J
0

E =
Λ∗EE

2V
∇ 1

T
− Λ∗EN

2V

[
q∇φ

T
+ ∇μ

T

]
,

JN =
Λ∗NE

2V
∇ 1

T
− Λ∗NN

2V

[
q∇φ

T
+ ∇μ

T

]
. (4.61)

These equation can either be interpreted as applying to the z-component, or else
as vector equations with the Λ being a scalar times the 3 × 3 identity matrix.
Recall the Onsager reciprocal relation, Λ∗NE = Λ∗EN. Evidently, since Λ∗ is

positive definite, the most likely dissipation is positive, Ṡs ≥ 0.

Alternatively, from the second equality in the dissipation, Eq. (4.60), one

can define J
‡
E ≡ J0

E −μJN. It will be shown following Eq. (4.86) below that this

is closely related to the entropy flux, J
‡
E = TJS ≡ T [(∂σ/∂ε)JE +(∂σ/∂n)JN].8

The most likely fluxes can then be written

J
‡

E =
Λ‡EE

2V
∇ 1

T
− Λ‡EN

2V

∇ [μ + qφ]

T
,

JN =
Λ‡NE

2V
∇ 1

T
− Λ‡NN

2V

∇ [μ + qφ]

T
, (4.62)

7The expression for the dissipation used here and derived in the next chapter does not
agree with the expressions given by de Groot, S. R. and Mazur, P. (1984), Non-equilibrium

Thermodynamics, (Dover, New York).
8The present J

‡
E is identical to the J

∗
Q given as Eq. (2B.2.1) in Pottier, N. (2010), Non-

equilibrium Statistical Physics: Linear Irreversible Processes, (Oxford University Press, Ox-
ford). Pottier’s expressions for the entropy source, Eq. (2B.1.3) and Eq. (2B.2.3), are the
same as the third and the second equalities in the present Eq. (4.60), respectively. Pottier’s
interpretation of the coefficient of JN in Eqs (2B.2.2) and (2B.6.6) as the entropy per particle
is not strictly correct, because the entropy is not an extensive function solely of the number.
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Rearranging this in the previous form one has

J
0

E =
1

2V

[
Λ‡EE + μΛ‡EN

]
∇ 1

T
− Λ‡EN

2V

[
q∇φ

T
+ ∇ μ

T

]
+ μJN

=
1

2V

[
Λ‡EE + 2μΛ‡EN + μ2Λ‡NN

]
∇ 1

T

− 1

2V

[
Λ‡EN + μΛ‡NN

] [q∇φ

T
+ ∇ μ

T

]

JN =
1

2V

[
Λ‡NE + μΛ‡NN

]
∇ 1

T
− Λ‡NN

2V

[
q∇φ

T
+ ∇μ

T

]
. (4.63)

Hence one can identify

Λ∗EE = Λ‡EE + 2μΛ‡EN + μ2Λ†NN, Λ∗EN = Λ‡EN + μΛ‡NN, (4.64)

and Λ∗NN = Λ‡NN. It is worth mentioning that these relationships can be used
to show that the formula for the thermal conductivity also holds for these coef-
ficients, ΛEE = Λ‡EE − Λ‡EN[Λ‡NN]−1Λ‡NE.

Finally, one sees that the third equality in the dissipation, Eq. (4.60), involves
the total total energy flux, JE ≡ J0

E + qφJN. The most likely fluxes in this case
are

JE =
Λ†EE

2V
∇ 1

T
− Λ†EN

2V
∇μ + qφ

T
,

JN =
Λ†NE

2V
∇ 1

T
− Λ†NN

2V
∇μ + qφ

T
. (4.65)

Rearranging this in the form of the original fluxes one has

J
0

E =
1

2V

[
Λ†EE − qφΛ†EN

]
∇ 1

T
− Λ†EN

2V

[
q∇φ

T
+ ∇μ

T

]
− qφJN

=
1

2V

[
Λ†EE − 2qφΛ†EN + q2φ2Λ†NN

]
∇ 1

T

− 1

2V

[
Λ†EN − qφΛ†NN

] [q∇φ

T
+ ∇μ

T

]

JN =
1

2V

[
Λ†NE − qφΛ†NN

]
∇ 1

T
− Λ†NN

2V

[
q∇φ

T
+ ∇μ

T

]
. (4.66)

Hence one can identify

Λ∗EE = Λ†EE − 2qφΛ†EN + q2φ2Λ†NN, Λ∗EN = Λ†NE − qφΛ†NN, (4.67)

and Λ∗NN = Λ†NN.

Ohm’s Law

The electric current is qJN. For the case of uniform temperature, ∇T−1 =
0, and chemical potential, ∇(μ/T ) = 0, and with the electric field uniform,
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φ(r, t) = −Eelz, the most likely current is

qJN =
Λ∗NN

2V T
q2Eel. (4.68)

This is Ohm’s law, qJN = R−1Eel, with the resistivity (the reciprocal of the
electrical conductivity) being R ≡ 2V T/q2Λ∗NN.

Joule Effect

The heating of a conductor due to an electric current is known as the Joule
effect. For uniform temperature, ∇T−1 = 0 (which means that the conductor
is in thermal contact with a heat reservoir of uniform temperature along its
length), chemical potential, ∇(μ/T ) = 0, internal energy, ∇εint = 0, pressure,
∇p = 0, number density, ∇n = 0, and electric field, ∇2φ = 0, which mean that

∇ · J0

E = ∇ · JN = 0, the rate of energy change per unit volume is

∂ε

∂t
= −∇ · JE

= −∇ ·
[
J

0

E + qφJN

]
= qEel · JN

= R−1Eel ·Eel = q2RJN · JN. (4.69)

This is positive, as obviously also is the dissipation, σ̇ = T−1dε/dt. (Here and
below, the local dissipation is sometimes written as σ̇ ≡ ∂σ(r, t)/∂t.)

Seebeck Effect

The Seebeck effect refers to the development of an electric potential between
two junctions held at different temperatures and connected by two different
conductors in parallel, one of which is open. Since the potential is measured
in an open circuit, there is no current, JN = 0. Using Eq. (4.61), for a single
conductor in an applied potential, this condition is evidently satisfied when

q∇φ

T
+ ∇μ

T
= [Λ∗NN]−1Λ∗NE∇T−1. (4.70)

In the absence of a temperature gradient, one can interpret this, (q∇φ/T ) +
∇(μ/T ) = 0, as meaning that a gradient in the chemical potential gives rise to
an internal electric potential that is equal and opposite to the externally applied
potential, ∇(μ/T ) = −(q∇φint/T ). This result means that a single conductor
in a temperature gradient develops an electric potential that is equivalent to the
gradient in the chemical potential.9

9Consider the following thought experiment. First, take a length of conductor and place
it in a temperature gradient with no external electric field. From Eq. (4.61), charge carriers
preferentially segregate at one end until JN = 0 or ∇(μ/T ) = [Λ∗NN]−1Λ∗NE∇T−1. Second, cut
the conductor in the middle whilst maintaining the temperature gradient so that charge cannot
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In view of this, the Seebeck coefficient can be defined as the ratio of the
(internal) potential gradient to the temperature gradient. With ∇μ = −q∇φint,
and using Eq. (4.62) with JN = 0, one obtains

η ≡ ∇φint

∇T
=

−∇μ

q∇T
=

1

qT

Λ‡NE

Λ‡NN

. (4.71)

If instead one were to take ∇(μ/T ) = −(q∇φint/T ), then Eq. (4.61) gives

η∗ ≡ ∇φint

∇T
=

−T∇(μ/T )

q∇T
=

1

qT

Λ∗NE

Λ∗NN

= η +
μ

qT
. (4.72)

Since only the relative value of the chemical potential has physical significance,
the additional term that appears here can have no physical consequences and
could be set to zero, in which case η∗ = η.

As mentioned above, the Seebeck effect is the voltage measured across a
break in one of two different conductors that are connected in parallel, with
the terminii held at two different temperatures. Accordingly, it is the difference
in Seebeck coefficients that is important. Since the mobile charge carriers in
the two conductors must be at the same chemical potential, μ1 = μ2,

10 one
must have η1 − η2 = η∗1 − η∗2 . This reiterates the point that there is no practical
difference between the two definitions. For the same reason one could also define
η† ≡ Λ†NE/qTΛ†NN = η∗ + φ/T , with no physical consequences.

Peltier Effect

The inverse of the Seebeck effect is the Peltier effect. An electric current in a
conductor at uniform temperature causes an energy flux that depends upon the
transport coefficients of the material. Hence the junction of two conductors will
be a source or sink of energy, depending upon the direction of current flow. The
junction is thus heated or cooled at a rate that depends upon the heat capacity
of the surrounding material.

In essence, the Peltier coefficient is the ratio of the energy flux to the electric
current. The common definition is to use J‡E for the energy flux, perhaps because
of its close relationship with the entropy flux. Using Eq. (4.62) with ∇T = 0,
the Peltier coefficient is

π ≡ J
‡

E

qJN

∣∣∣∣∣
∇T=0

=
Λ‡EN

qΛ‡NN

. (4.73)

rearrange. Third, bring the two pieces to equal temperature, keeping them fixed in place and
disconnected. A voltmeter connected to their ends will now show a potential difference given
by q(∇φ)/T = −∇(μ/T ). Since T is uniform, this is equivalent to q∇φ = −∇μ. Note that no
potential difference would be measured at the end of the second stage, which suggests that the
latter expression is the correct one that also holds in the presence of a temperature gradient.

10The subscripts 1 and 2 here and in the following subsection refer to two different conduc-
tors, not to the mobile and immobile charge species.
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In some ways this is not entirely satisfactory since it is the total energy flux
delivered at the junction that gives the temperature rise. With the total energy
flux being JE = J

‡
E + [μ + qφ]JN, one could instead define the Peltier coefficient

as the ratio of this to the electric current at uniform temperature,

π̃ ≡ JE

qJN

∣∣∣∣
∇T=0

=
J
‡

E + [μ + qφ]JN

qJN

∣∣∣∣∣
∇T=0

= π + φ + μ/q. (4.74)

Since only the relative value of the electro-chemical potential has physical signif-
icance, the additional term that appears here can have no physical consequences
and could be set to zero, in which case π̃ = π.

In any case, because the potential is continuous across the barrier, φ1 = φ2,
as is the chemical potential, μ1 = μ2, the difference in the Peltier coefficients is
the same for either definition, π1 − π2 = π̃1 − π̃2. It is the difference in Peltier
coefficients of the two conductors that gives the rate of heat dissipation at the
junction and the consequent rate of temperature rise of the reservoir in contact
with it. One can conclude that there is no practical difference between the two
definitions.

The Peltier and Seebeck coefficients are related by

Tη = π, (4.75)

as can be confirmed by inspection. This is called the second Kelvin relation.
This equality is a consequence of the symmetry of the transport matrix. This
specific relationship was one of the motivating factors for Onsager’s derivation
and explanation of the reciprocal relations.

Thomson Effect

Energy is dissipated by a current flow and by a heat flow. The Thompson effect
gives the power due to the cross coupling of current and energy flow that is in
excess of that due to Joule heating and to the heat conduction.

The Joule effect discussed above gives the dissipation due to a current flow,

∂εJ

∂t
=

2V T

Λ∗NN

JN · JN = q2RJN · JN. (4.76)

In the derivation of the Joule effect, the current flowing in a uniform temperature
and chemical potential field was used, JN(0) = −q−1R−1∇φ. However, it is
conventional in the analysis of the Thomson effect to use the total number
flux in the presence of a temperature and electro-chemical gradients, JN =
JN(0) + (Λ∗NE/2V )∇T−1 − (Λ∗NN/2V )∇(μ/T ).

For heat flow in the absence of particle flow, the power is derived from
Fourier’s law,

∂εF

∂t
= −∇ · J0

E(JN = 0) =
−1

2V
∇ ·
[
ΛEE∇

1

T

]
, (4.77)
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where ΛEE = Λ∗EE − Λ∗EN[Λ∗NN]−1Λ∗NE.
The Thomson effect is the power additional to these two that is dissipated

when a current flows along a temperature gradient; it is the power due to the
cross coupling of current and heat flow. One can imagine that the sub-system,
the conductor of volume V , can exchange charge and energy with two reservoirs
at either end, which provide the temperature and electro-chemical potential
gradient, and that it can exchange energy with a reservoir along its length that
has the same temperature gradient as the terminal reservoirs. Hence in the
steady state ∇ · JE �= 0. Because charge is conserved in the conductor, in the
steady state, ∇ · JN = 0.

The total energy flux is JE = J
‡
E + [μ + qφ]JN. Using Eq. (4.62),

J
‡

E =
Λ‡EE

2V
∇ 1

T
− Λ‡EN

2V

∇ [μ + qφ]

T
,

=
Λ‡EE

2V
∇ 1

T
− Λ‡EN

2V

[
−2V

Λ‡NN

JN +
Λ‡NE

Λ‡NN

∇ 1

T

]

=
1

2V

[
Λ‡EE − Λ‡ENΛ‡NE

Λ‡NN

]
∇ 1

T
+

Λ‡EN

Λ‡NN

JN

=
ΛEE

2V
∇ 1

T
+ qTηJN. (4.78)

The final equality uses the definition of the Seebeck coefficient, Eq. (4.71), as

well as Eqs (4.59) and (4.64), which give ΛEE = Λ‡EE − Λ‡EN[Λ‡NN]−1Λ‡NE. The
thermal conductivity is λ ≡ ΛEE/2V T 2. Also required is

∇[μ + qφ] =
Λ‡NE

Λ‡NN

T∇ 1

T
− 2V T

Λ‡NN

JN = −qη∇T − q2RJN, (4.79)

which is a rearrangement of the second equality in Eq. (4.62).
With these, and the steady state charge conservation law, ∇ · JN = 0, the

power is

∂ε

∂t
= −∇ · JE = −∇ ·

[
J
‡

E + [μ + qφ]JN

]
= −∇ ·

[
T 2λ∇ 1

T

]
− qJN · ∇(Tη) − JN · ∇[μ + qφ]

= ∇ · [λ∇T ] + q2RJN · JN − qJN · ∇(Tη) + qηJN · ∇T

=
∂εF

∂t
+

∂εJ

∂t
− qT

∂η

∂T
JN · ∇T. (4.80)

The final equality uses the fact that the local value of the Seebeck coefficient
is a function of the local temperature and local density, and that the latter is
relatively incompressible,

∇η =
∂η

∂T
∇T +

∂η

∂n
∇n ≈ ∂η

∂T
∇T. (4.81)
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The final term in the expression for the total power is called the Thomson
power,

∂εThomson

∂t
= −qT

∂η

∂T
JN · ∇T. (4.82)

The factor multiplying the current and the temperature gradient is called the
Thomson coefficient, α ≡ −T∂η/∂T .

Dissipation

The rate of change of the sub-system entropy density is derived in Eq. (5.41).
For the present case (neglecting terms quadratic in the velocity, the number flux
being the same as the diffusive number flux), in the general case of arbitrary
fluxes it is

∂σ(r, t)

∂t
=

−1

T
∇ · J0

E − q

T
JN · ∇φ +

1

T
μ∇ · JN. (4.83)

Recall that the convective velocity is zero in the present problem, v = 0.
For a constant external potential, the most likely state is a steady state

and the structure of the sub-system must be constant. Hence ∂σ(r, t)/∂t = 0,
∇ · JE(r, t) = 0, and ∇ · JN(r, t) = 0, with the latter two identically giving
the first.11 This identity can be used to give a requirement on the conductive
energy flux, namely

1

T
∇ · J0

E = − q

T
JN · ∇φ. (4.84)

Similarly the number conservation requirement, ∇ · JN(r, t) = 0, provides a
condition on the temperature and chemical potential fields of the conductor,
which makes them non-linear.

The rate of dissipation of the sub-system just given (both the general case
and the steady state case) holds for both an isolated sub-system and for a sub-
system that can exchange energy and charge with reservoirs. In the reservoir
case it is shown in Eq. (5.43) that the general result can be written to show
explicitly the fluxes across the boundaries,

Ṡs

V
= J0

E · ∇ 1

T
− J0

N · ∇
[
q∇φ

T
+ ∇ μ

T

]
−
{
∇·
(

1

T
J0

E

)
−∇·

(μ

T
JN

)}

= J0
E · ∇ 1

T
− J0

N · ∇
[
q∇φ

T
+ ∇ μ

T

]
− Ṡr

V
. (4.85)

11The condition invoked here, ∇ · JE(r, t) = 0, differs from the assumption made in the
preceding section, ∇ · JE(r, t) �= 0. In that section it was assumed that the conductor could
exchange energy along its length with a reservoir that had the same imposed temperature
gradient. In the present analysis it is assumed that neither charge or energy can exchange
with a reservoir along the conductor’s length (i.e. a diathermal or adiabatic surface coating),
and that such exchanges only occur at the two ends of the conductor.
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The term in braces arises from the exchange with the reservoirs, and is therefore
equal to the dissipation of the reservoirs, as can be confirmed explicitly,

Ṡr

V
= ∇ ·

[
1

T
J0

E − μ

T
JN

]
= ∇ ·

[
1

T
JE − μ + qφ

T
JN

]
. (4.86)

The term in brackets clearly represents the entropy flux, JS ≡ (∂σ/∂ε)JE +
(∂σ/∂n)JN. If the external potential depends upon time then one has to add a
source term to the dissipation, namely q∂φ/∂t. These expressions for the rate
of change of entropy and the entropy flux hold generally.12

In the steady state no dissipation occurs in the conductor (the sub-system),
and all of the dissipation occurs in the reservoirs at each end (see footnote 11

on p. 118). That is, in the steady state, Ṡs = 0, and so the two terms above
must cancel, which gives a useful expression for the reservoir dissipation. The
total dissipation in the steady state is

Ṡtotal

V
=

Ṡr

V
= J

0

E · ∇ 1

T
− JN · ∇

[
q∇φ

T
+ ∇μ

T

]

= Λ∗ :

{
∇ 1

T
,

[
q∇φ

T
+ ∇μ

T

]}2

= [Λ∗]−1 :
{
J

0

E,JN

}2

, (4.87)

where the transport coefficients that appear in Eq. (4.61) have been written in
matrix form. Since the transport matrix is positive definite, this proves that
the total dissipation is positive, as it must be.

This result for the dissipation was based upon setting the left-hand side of
Eq. (4.85) to zero. Alternatively one can proceed from Eq. (4.86) and write the
dissipation as

Ṡtotal

V
=

Ṡr

V
= ∇ ·

[
1

T
JE − μ + qφ

T
JN

]

= JE · ∇ 1

T
− JN · ∇μ + qφ

T
. (4.88)

This is readily shown to be equal to the preceding expression.

12The present author is unable to make sense of the expressions given for the rate of change
of entropy in Ch. III of de Groot and Mazur, (1984). For the specific case of thermo-electric
flows, their expression for the rate of change of the entropy density in the most likely state,
Eq. (XIII.84), ∂σ/∂t = −∇ · JS,tot + TJS,tot · ∇T−1 − T−1JN · ∇[μ + qφ], contrasts with
the present expression, ∂σ/∂t = −∇ · JS. Their JS,tot given by the right-hand side of their

Eq. (XIII.77) can be shown to equal the present JS. It can be shown that in the most likely
state (to which case all the analysis of de Groot and Mazur is restricted), the additional two
terms that appear in their Eq. (XIII.84) compared to the present expression do not cancel.

The expression for the entropy flux given by Pottier, (2010), following Eq. (2B.6.6), JS =
J∗Q/T , is the same as the expression given here, since J∗Q ≡ J0

E − μJN.
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Chapter 5

Second Entropy for

Fluctuating Hydrodynamics

The conceptual basis of hydrodynamics consists of three elements: the conser-
vation laws, localised equilibrium thermodynamics, and the phenomenological
transport laws. Respective examples of each of these are that the rate of change
of density is given by the divergence in the number flux, that the change in
the local energy density equals the change in the local temperature times the
heat capacity, and that the conductive heat flux equals the thermal conductivity
times the temperature gradient.

Although there is no doubting the practical success of hydrodynamics, there
is some motivation to establish the foundations of the discipline within the
broader framework of non-equilibrium thermodynamics. Firmer foundations
might justify, for example, the assumed relationships of equilibrium thermody-
namics in the presence of convective fluxes. They might also provide insight
into extending hydrodynamics into new regimes, such as the generalisation of
the phenomenological transport laws to systems rapidly varying in space and
time. There is also the possibility that proceeding beyond hydrodynamics to the
underlying non-equilibrium thermodynamics may reveal new insights into the
causes of observed non-equilibrium phenomena, and it may offer new computa-
tional algorithms for hydrodynamics based upon the same type of variational
principles that have proven useful in equilibrium thermodynamics (i.e. entropy
maximisation, or, equivalently, free energy minimisation).

The connection between hydrodynamics and non-equilibrium thermodynam-
ics occurs via the second entropy. This formulation treats the material fluxes
as fluctuating quantities with a variance that is proportional to the hydro-
dynamic transport coefficients. Such a fluctuation approach to hydrodynamics
was originally given by Landau and Lifshitz.1 Although not well known amongst
main-stream practitioners of hydrodynamics, thermodynamic researchers have

1Landau, L. D. and Lifshitz, E. M. (1959), Fluid Mechanics, (Pergammon Press, Oxford).
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122 5. Second Entropy for Fluctuating Hydrodynamics

extended and applied the fluctuation approach to a range of different phenom-
ena.2 The present approach to fluctuating hydrodynamics is directly based on
the second entropy, which has the advantages of making a direct connection
with non-equilibrium thermodynamics, and of providing variational principles
that are suitable for numerical algorithms and for a fundamental understanding
of various hydrodynamic phenomena.

The chapter begins with the material conservation laws, §5.1. The entropy
density for hydrodynamic flows is derived in §5.2. In §5.3 the second entropy
for hydrodynamics is formulated. Here the fluxes and the fields are treated as
equivalent fluctuating or constrained variables, which enables the hydrodynamic
problem to be solved by variational techniques instead of by the more usual
partial differential equation approach. It is shown in §5.4 that maximising the
second entropy with respect to the fluxes yields the Navier-Stokes and energy
equations. This shows the mathematical equivalence of the second entropy
theory and the usual partial differential equation approach to hydrodynamics.3

A significant feature of the present approach is the reduction condition.
This is invoked to explain why equilibrium thermodynamics can be invoked in
hydrodynamic (non-equilibrium) problems: the solution of the hydrodynamic
equations for given structural fields maximises the second entropy and reduces it
to the first entropy. In practice all of hydrodynamics is based upon the assump-
tion of local thermodynamic equilibrium (for example, the replacement of the
energy density by the heat capacity times the temperature), and the provision
of a sound thermodynamic foundation for local thermodynamic equilibrium in
the form of the reduction condition fills a gap in the theory and provides comfort
for the application of hydrodynamics in extreme regimes.

5.1 Conservation Laws

5.1.1 Densities, Velocities, and Chemical Reactions

Let nk(r, t) be the number density of species k at position r and time t. All
functions below have this dependence, but for clarity this will usually not be
shown explicitly. The entire set of number densities will be denoted n ≡ {nk}.
Using number density (i.e. per unit volume) instead of mass density (i.e. per
unit mass, or specific), facilitates integration over space. The mass density is
ρk ≡ mknk, where mk is the molecular mass of species k, with the entire set
denoted m ≡ {mk}. The velocity of species k is vk, and its momentum density is
pk ≡ mknkvk, where bold face type signifies a three-dimensional spatial vector.

2Fox, R. F. and Uhlenbeck, G. E. (1970), Phys. Fluids, 13, 1893 and 2881. Keizer, J. (1987),
Statistical Thermodynamics of Non-equilibrium Processes, (Springer-Verlag, New York). Or-
tiz de Zárate, J. M. and Sengers, J. V. (2006), Hydrodynamic Fluctuations in Fluids and Fluid

Mixtures, (Elsevier, Amsterdam).
3Although the two theories are formally equivalent in a mathematical sense for the optimum

fluxes, the second entropy theory is in addition applicable for non-optimum fluxes, which
phenomenological hydrodynamics is not. Also, there may be computational advantages in the
variational approach.
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The total number, mass, and momentum density are n ≡
∑

k nk, ρ ≡∑
k mknk = m · n, and p ≡

∑
k mknkvk, respectively. In terms of these the

barycentric or centre of mass velocity is

v(r, t) ≡ p(r, t)/ρ(r, t) =

∑
k mknk(r, t)vk(r, t)∑

k mknk(r, t)
. (5.1)

The diffusive or peculiar velocity is measured with respect to the centre of mass
velocity, ṽk(r, t) ≡ vk(r, t) − v(r, t). The peculiar momentum is defined in
terms of this, p̃k(r, t) ≡ mknk(r, t)ṽk(r, t), and has the property that in total
it vanishes in the centre of mass frame,

∑
k p̃k(r, t) = 0.

The kinetic energy density is κ =
∑

k mknkv2
k/2. Here vk ≡ |vk |, and

v2
k = vk · vk , and similarly below. The peculiar kinetic energy density is κ̃ =∑

k mknkṽ2
k/2, and one has κ = κ̃ + ρv2/2. The external potential energy

density is nψ ≡
∑

k nkψk = n ·ψ, where ψk(r, t) is the external potential acting
on species k, and the set of external potentials is ψ(r, t) ≡ {ψk(r, t)}.

For greatest generality, the possibility of chemical reactions is included.
Lower case Roman letters label the molecular species, lower case Greek let-
ters label the reaction, and upper case Roman letters label the atomic species.
Chemical reaction α is written∑

k

ναkakI = 0. (5.2)

Here ναk is the stoichiometric coefficient, which is the number of molecules of
type k in reaction α. This is an integer that is positive for reactants, negative
for products, and zero if the molecule does not appear in the reaction. Also,
akI is the number of atoms of type I in a molecule of type k. With it, the
molecular mass is mk =

∑
I akIMI , where MI is the atomic mass. Hence

multiplying the reaction equation by MI and summing over atomic species shows
that

∑
k ναkmk = 0, which is to say that mass is conserved in a chemical

reaction. A similar conservation law holds for charge. If the external potential
is due to gravity, then ψk ∝ mk, and

∑
ψkναk = 0. The same result holds if

the external potential arises from an electric field.
The rate of reaction α is denoted ξ̇α. This is defined such that the rate of

change of the density of species k due to chemical reactions is

ṅreact
k = −

∑
α

ξ̇αναk. (5.3)

Note that, in general, the reaction rate is a function of position, ξ̇α(r, t), typically
through its dependence on the local concentrations, ξ̇α(n(r, t)).

5.1.2 Number Flux

Chemical reactions provide a source in the number conservation equation. The
conserved part is represented by the number convection term, which is the
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number flux, JN,k(r, t) = nk(r, t)vk(r, t). The diffusive part of this is just the
flux in the centre of mass frame, J0

N,k(r, t) = nk(r, t)ṽk(r, t).
The number of molecules in a volume V at r at time t is

Nk(r, t) =

∫
V

dr′ nk(r′, t). (5.4)

In the absence of chemical reactions, this can only change by molecules passing
across the boundary. With n̂ the outward normal, and using Gauss’ theorem
one has

∂Nk(r, t)

∂t
=

∫
V

dr′
∂nk(r′, t)

∂t

= −
∮

Ω

dR′ n̂ · JN,k(r′, t)

= −
∫

V

dr′∇ · JN,k(r′, t). (5.5)

For small enough volume this is

∂nk(r, t)

∂t
= −∇ · JN,k(r, t). (5.6)

The source term when chemical reactions are present will be added to this below.
The total time derivative, also known as the convective derivative, the ma-

terial derivative, or the hydrodynamic derivative, is

dnk(r, t)

dt
≡ ∂nk(r, t)

∂t
+ vk(r, t) · ∇nk(r, t)

= −∇ · [nk(r, t)vk(r, t)] + vk(r, t) · ∇nk(r, t)

= −nk(r, t)∇ · vk(r, t). (5.7)

On the left is the rate of change of the number density with time in a frame
moving along with the flow. The right-hand side says that this is due to the rate
of change of the co-moving volume, which is just the divergence of the velocity.

The number flux is just the momentum density, apart from a factor of the
molecular weight, and this is a conserved variable. Hence for a single component,
isolated system, it makes no sense to talk about fluctuations in the number flux,
or to maximise the second entropy with respect to number flux. However for
a multi-component system one can investigate the fluctuations in the number
fluxes, subject to the constraint of the value of the total number flux. Or for a
system in the presence of an external field, such as that imposed by fixed walls or
by a fixed porous matrix, the fluctuations in number flux are non-zero. Another
example is a solute at infinite dilution in a solvent, where one can explore the
solute flux, treating the solvent as a fixed background.

Returning to the case of chemical reactions, one can simply add the source
term to the divergence of the number flux. Hence the rate of change of number
is

∂nk(r, t)

∂t
= ṅreact

k (r, t) −∇ · JN,k(r, t). (5.8)
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Since mass is conserved in the chemical reactions,

ρ̇react ≡
∑

k

mkṅreact
k =

∑
k,α,I

MIakI ξ̇αναk = 0, (5.9)

one has that the time derivative of the mass density is

∂ρ(r, t)

∂t
= −

∑
k

mk∇ · JN,k(r, t) = −∇ · p(r, t). (5.10)

5.1.3 Energy Flux

The time rate of change of the external potential is a source of energy. Apart
from this, energy is conserved, so one can define an energy flux whose divergence
gives the time rate of change of energy density. The energy conservation law is

∂ε(r, t)

∂t
=
∑

k

nk(r, t)
∂ψk(r, t)

∂t
−∇ · JE(r, t). (5.11)

The energy density ε comprises the kinetic energy, the intermolecular potential
energy, and the external potential energy (see below).

There are three types of energy flux into a volume: the heat energy conducted
across the boundaries, the molecular energy convected across the boundaries,
and the work performed on the volume. One can write JE = J0

E +Jconv
E +J

ψ
E +

Jwork
E . The two contributions that comprise the convective part have here been

shown explicitly: one part is due to the mean velocity, Jconv
E , and the excess,

J
ψ
E , is the external potential carried by the diffusive flux (see next).

The thermodynamic contribution is due to conduction and occurs in the
absence of molecular flow, v = 0. The superscript 0 is used to denote such
diffusive flow, which in this case is called the heat flow. In the steady state the
heat flow is proportional to the temperature gradient, as will be seen.

The convective contribution to the energy flux is simply the transport of the
energy per molecule by the total number flow,

Jconv
E (r, t) = ε(r, t)v(r, t). (5.12)

Since the energy density ε includes the external potential energy density, nψ ≡∑
k nkψk, this term includes the potential energy carried by the mean convec-

tion,
∑

k nkψkv. The excess is the external potential energy carried by the
diffusive convective part,

J
ψ
E(r, t) =

∑
k

nk(r, t)ψk(r, t)ṽk(r, t)

=
∑

k

ψk(r, t)J0
N,k(r, t). (5.13)

The external field also contributes the source term,
∑

k nk∂ψk/∂t.
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Define the pressure tensor, P (r, t), with Pαβ being the β component of the
force per unit area of the α face acting on the negative side of the face by the
positive side. It can be shown that the tensor is symmetric.4 For a fluid at
rest, the pressure tensor is diagonal, with the three elements each equal to the
thermodynamic pressure, p. Let the area of the α face be Aα, and let the volume
be V = AαLα, for α = x, y, or z (no summation convention). In general, the
rate of change of energy of a molecule with velocity v in a force field f is −f ·v.
Hence the rate of change of the energy of the volume V due to the pressure field
and the motion of the molecules within it is

Δp(V ε)

Δt
=

∑
αβ

Aα [Pαβ(r − Lα/2, t)vβ(r − Lα/2, t)

− Pαβ(r + Lα/2, t)vβ(r + Lα/2, t)]

= −
∑
αβ

AαLα
∂

∂xα
[Pαβ(r, t)vβ(r, t)]

= −V ∇ ·
[
P (r, t) · v(r, t)

]
. (5.14)

Note that the difference between the two terms in the first equality arises because
it is the force acting on the volume across each interface that is required. Hence
the derivative of the energy due to the pressure work done following the flow is

d(V ε)

dt
= −V ∇ ·

[
P · v

]
. (5.15)

Using the fact that the compressibility of the flow gives the rate of change of
the volume, dV /dt = V ∇ · v, the partial derivative of the energy density due
to pressure work and to convective transport, and in the absence of an external
field, is therefore

∂ε

∂t
=

dε

dt
− v · ∇ε

=
1

V

d(V ε)

dt
− ε

V

dV

dt
− v · ∇ε

= −∇ ·
[
P · v

]
− ε∇ · v − v · ∇ε

= −∇ ·
[
P · v

]
−∇ · (εv). (5.16)

From this one can identify the energy flux due to the work done as

Jwork
E (r, t) = P (r, t) · v(r, t). (5.17)

In view of the above, the rate of change of energy density at a fixed position
is

∂ε(r, t)

∂t
=
∑

k

nk(r, t)
∂ψk(r, t)

∂t
−∇ · JE(r, t), (5.18)

4Faber, T. E. (1995), Fluid Dynamics for Physicists, (Cambridge University Press, Cam-
bridge).
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where the total energy flux is

JE(r, t) = J0
E(r, t) + Jconv

E (r, t) + J
ψ
E(r, t) + Jwork

E (r, t)

= J0
E(r, t) + ε(r, t)v(r, t) +

∑
k

ψk(r, t)J0
N,k(r, t)

+ P (r, t) · v(r, t). (5.19)

The pressure tensor comprises the equilibrium pressure p, and the viscous
pressure tensor Π, P = pI + Π, where I is the identity tensor. The viscous
pressure tensor arises in shear flow and causes viscous heating. If it is neglected,
so that Pαβ = pδαβ , then the energy flux becomes (no external potential)

JE(r, t) = [ε(r, t) + p(r, t)]v(r, t) + J0
E(r, t), ψ = Π = 0. (5.20)

The bracketed term is the enthalpy density, and this form for the energy flux
often appears in textbooks. The argument for neglecting the viscous terms is
that the constitutive relations show that they are linear in the velocity, and
hence they contribute a second-order term (i.e. Παβvβ ∼ Ov2). This is a non-
linear term, and so neglecting them is said to give a linear theory.

The internal energy density is the molecular part of the energy density,
which eliminates the contribution of the external potential and the centre of
mass kinetic energy density,

εint(r, t) = ε(r, t) − n(r, t)ψ(r, t) − ρ(r, t)v(r, t)2/2

= ε(r, t) − n(r, t) · ψ(r, t) − p(r, t) · p(r, t)

2m · n(r, t)
. (5.21)

In terms of this, the energy flux may be written

JE(r, t) = J0
E + εintv +

1

2
ρv2v +

∑
k

ψkJN,k + P · v. (5.22)

Everything on the right-hand side is a function of r and of t.

5.1.4 Linear Momentum

The gradient of the external potential provides a source of momentum. Hence
the rate of change of momentum density is the sum of that due to the source
and that due to divergence of the momentum flux,

∂p(r, t)

∂t
= −

∑
k

nk(r, t)∇ψk(r, t) −∇ · J
P
(r, t). (5.23)

Recall that the momentum is p = ρv.
The momentum flux tensor can be obtained from the rate of change of the

momentum of the volume V due to the pressure field,

ΔpV pβ

Δt
=

∑
α

Aα [Pαβ(r − Lα/2, t) − Pαβ(r + Lα/2, t)]

= −
∑
α

AαLα
∂

∂xα
Pαβ(r, t). (5.24)
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Hence the derivative of the momentum following the flow due to the pressure
field is (in the absence of an external potential)

ρ(r, t)
dv(r, t)

dt
= −∇ · P (r, t). (5.25)

(The mass of the volume element is constant following the flow.) Now,

∂p

∂t
=

∂(ρv)

∂t

=
d(ρv)

dt
− v · ∇(ρv)

= ρ
dv

dt
+ v

dρ

dt
− v · ∇(ρv)

= ρ
dv

dt
− vρ∇ · v − v · ∇(ρv)

= −∇ · P −∇ · [ρvv]. (5.26)

From this the momentum flux tensor may be identified as just the pressure
tensor plus the convective momentum flux,

J
P
(r, t) = P (r, t) + p(r, t)v(r, t). (5.27)

The diffusive part of the momentum flux is the viscous pressure tensor, J0

P
≡ Π.

5.2 Entropy Density and its Rate of Change

Now the first entropy density for the system is obtained in the presence of
convecting fluxes. Then the above conservation laws are used to derive the
dissipation.

The first entropy density for the actual sub-system with the external poten-
tial and fluxes is written σ(r, t). The entropy density of the related sub-system
without external potential or fluxes, is denoted by the subscript 0. This has
energy density equal to the internal energy density of the original system, and
number density equal to the original number density, and one must have

σ(r, t) = σ0(ε
int(r, t), n(r, t)). (5.28)

This follows because the entropy is essentially the number of accessible molecular
configurations, and it is the internal part of the energy that is available to the
molecular configurations. In view of this the entropy density may formally be
written as a function of the energy, number, and momentum densities, and the
external potentials, σ(ε, n,p, ψ) = σ0(ε

int, n).
The energy density derivative of the entropy density gives the local temper-

ature, T (r, t),

∂σ0(ε, n)

∂ε
=

1

T
, (5.29)
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and the number density derivative gives the local chemical potential, μk(r, t),

∂σ0(ε, n)

∂nk
=

−μk

T
, or

∂σ0(ε, n)

∂n
=

−μ

T
. (5.30)

It is straightforward to relate the pressure p(r, t), to the entropy density (e.g. us-
ing the fact that the pressure is essentially the volume derivative of the entropy,
or alternatively that it is the negative of the grand potential density),

σ0(ε, n) =
[
ε + p − n · μ

]
/T. (5.31)

This result will be used below. The chemical potential and the pressure are that
of a stationary system without external potentials with the specified internal
energy and number densities.

The above derivatives of the ‘bare’ entropy density, together with the internal
energy given above, εint = ε − n · ψ − p · p/2m · n, allow the derivatives of the
entropy density itself to be obtained. One has(

∂σ

∂ε

)
n,p,ψ

=
∂σ0(ε

int, n)

∂εint
=

1

T
, (5.32)

(
∂σ

∂ψ

)
ε,n,p

=
∂σ0(ε

int, n)

∂εint

(
∂εint

∂ψ

)
ε,n,p

=
−1

T
n, (5.33)

(
∂σ

∂p

)
ε,n,ψ

=
∂σ0(ε

int, n)

∂εint

(
∂εint

∂p

)
ε,n,ψ

=
−1

T
v, (5.34)

and (
∂σ

∂n

)
ε,p,ψ

=
∂σ0(ε

int, n)

∂n
+

∂σ0(ε
int, n)

∂εint

(
∂εint

∂n

)
ε,p,ψ

=
1

T

[
−μ − ψ + v2m/2

]
. (5.35)

With these thermodynamic derivatives, the rate of change of the entropy
density may be obtained. One has

∂σ(r, t)

∂t

=
∂σ(ε, n,p, ψ)

∂t

=
∂ε

∂t

(
∂σ

∂ε

)
n,p,ψ

+
∂n

∂t
·
(

∂σ

∂n

)
ε,p,ψ

+
∂p

∂t
·
(

∂σ

∂p

)
ε,n,ψ

+
∂ψ

∂t
·
(

∂σ

∂ψ

)
ε,n,p

=

[
∂ε

∂t
− n ·

∂ψ

∂t

]
1

T
− ∂p

∂t
· v

T
− ∂n

∂t
·
[
μ + ψ − v2m/2

] 1

T
. (5.36)
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Using the conservation laws to express the partial time derivatives as fluxes,
this becomes

∂σ(r, t)

∂t
=

−1

T

∑
k

[
μk + ψk − mkv2/2

] [
ṅreact

k −∇ · (nkvk)
]

− 1

T
∇ ·
[
J0

E + εintv +
ρv2v

2
+
∑

k

ψkJN,k + P · v
]

+
v

T
·
[∑

k

nk∇ψk + ∇ ·
[
P + pv

]]
. (5.37)

There are three groups of terms of the right-hand side. The terms involving the
external potential are

RHSψ =
−1

T

∑
k

ψk

[
ṅreact

k −∇ · (nkvk)
]
− 1

T
∇ ·
[∑

k

ψknkvk

]

+
1

T

∑
k

nkv · ∇ψk

= − 1

T

∑
k

nkṽk · ∇ψk. (5.38)

Recall that since mass or charge is conserved in a chemical reaction, then∑
k ψkναk = 0, which implies that

∑
k ψkṅreact

k = 0. The terms on the right-
hand side involving higher powers of the velocity are

RHSv

=
1

T

∑
k

mkv2

2

[
ṅreact

k −∇ · (nkvk)
]
− 1

2T
∇ ·
[
ρv2v

]
+

v

T
· [∇ · (pv)]

=
−1

2T

∑
k

v2∇ · pk − 1

2T
∇ ·
[
v2p

]
+

v

T
· [∇ · (pv)]

=
−1

2T

∑
k

v2∇ · pk − 1

2T
[v · v∇ · p + 2vp :∇v] +

1

T
[v · v∇ · p + vp :∇v]

=
−v2

2T

∑
k

∇ · p̃k = 0. (5.39)

These manipulations may be readily confirmed by writing the scalar products
as sums over the components. The terms on the right-hand side involving the
pressure tensor are

RHSP =
−1

T
∇ ·
[
P · v

]
+

v

T
·
[
∇ · P

]
=

−1

T

[
p∇ · v + Π : ∇v

]
. (5.40)

The final bracketed term is simply P : ∇v. With these results the rate of change
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of entropy density becomes

∂σ(r, t)

∂t

=
−1

T

∑
k

μk

[
ṅreact

k −∇ · (nkvk)
]
− 1

T
∇ ·
[
J0

E + εintv
]

− 1

T

∑
k

nkṽk · ∇ψk − 1

T

[
p∇ · v + Π : ∇v

]

=
−1

T
∇ · J0

E − 1

T
Π : ∇v − 1

T

∑
k

μkṅreact
k − 1

T

∑
k

J0
N,k · ∇ψk

+
1

T

∑
k

μk∇ · (nkṽk) +
1

T

∑
k

μk∇ · (nkv)

− 1

T
v · ∇εint − 1

T
εint∇ · v − 1

T
p∇ · v

=
−1

T
∇ · J0

E − 1

T
Π : ∇v − 1

T

∑
k

μkṅreact
k − 1

T

∑
k

J0
N,k · ∇ψk

+
1

T

∑
k

μk∇ · J0
N,k − v · ∇σ − σ∇ · v. (5.41)

This uses the expression for the entropy density, σ =
[
εint + p − n · μ

]
/T , the

result that T∇σ = ∇εint −
∑

k μk∇nk, and also the expression for the diffusive
number flux, J0

N,k ≡ nkṽk. Everything on the right-hand side is a function of r

and t.

The source rate of change of each species is dependent upon the reaction
rates, ṅreact

k = −
∑

α ξ̇αναk. Typically, it is the reaction rates that are the
independent variables. Accordingly, this contribution to the dissipation is better
written in terms of the reaction rates,

− 1

T

∑
k

μkṅreact
k =

1

T

∑
k,α

ξ̇αναkμk =
1

T

∑
α

ξ̇αAα. (5.42)

Here Aα =
∑

k ναkμk is called the chemical affinity of the reaction. This term
is a source of dissipation of the entropy density of the sub-system that arises
from the chemical reactions that are occurring.

5.2.1 Sub-system Dissipation

The rate of change of the entropy density may be integrated over the volume
to give the rate of change of the entropy of the sub-system, Ṡs. Integrating the
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divergences of the velocity and of the fluxes by parts, one obtains,

Ṡs =

∫
dr

∂σ(r, t)

∂t

=

∫
dr

{
−1

T
∇ · J0

E − 1

T
Π : ∇v +

1

T

∑
α

ξ̇αAα

−
∑

k

[
J0

N,k · ∇ψk

T
− μk

T
∇ · J0

N,k

]
−∇ · (σv)

}

=

∫
dr

{
J0

E · ∇ 1

T
− 1

T
Π : ∇v +

1

T

∑
α

ξ̇αAα

−
∑

k

J0
N,k ·

[
∇ψk

T
+ ∇μk

T

]}

−
∮

dr n̂ ·
{

J0
E

T
+ σv −

∑
k

μk

T
J0

N,k

}
. (5.43)

Here n̂ is the outward normal, and Stokes’ theorem has been used for the partial
integrations. Notice how the rate of change of entropy of the sub-system is a
linear functional of the three diffusive fluxes, J0

E, Π, and J0
N,k, and of the reaction

rates ξ̇α.

It is henceforth assumed that the boundaries are fixed and impermeable, in
which case the velocities vanish on the boundaries, vk(r, t) = 0, r ∈ bdry, and
only the diffusive heat flux across the boundary survives in the surface integral,

Ṡs =

∫
dr

{
J0

E · ∇ 1

T
− 1

T
Π : ∇v +

1

T

∑
α

ξ̇αAα

−
∑

k

J0
N,k ·

[
∇ψk

T
+ ∇μk

T

]}
−
∮

dr n̂ · J0
E

T
.

(5.44)

Everything in the integrand is a function of r and t. This simplification of fixed
and impermeable boundaries is not essential since the full boundary integral
will also cancel in the expression for the rate of total entropy production, as is
discussed below.

This expression for the entropy production of the sub-system is quite general,
and it holds for arbitrary diffusive fluxes and densities, including those with a
specified time dependence. In such a constrained state, there need not be any
relationship between the fluxes and the densities. There is no requirement that
such a constrained state should be physically realisable; this expression for the
entropy production of the sub-system holds in general.
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5.2.2 Steady State

The rate of entropy production of the sub-system for constrained fluxes and
fields will be used below to formulate the second entropy. But first an explicit
expression for the dissipation in the steady state will be obtained. In this state
there is a specific relationship between the fluxes and the densities; they cannot
be chosen independently.

In the steady state, the structure of the sub-system (i.e. the densities at each
location) does not change with time, and hence the entropy density is constant,
∂σ(r, t)/∂t = 0, (steady state). It follows that Ṡs = 0, (steady state), or∮

dr n̂ · J0
E

T
=

∫
dr

{
J0

E · ∇ 1

T
− 1

T
Π : ∇v +

1

T

∑
α

ξ̇αAα

−
∑

k

J0
N,k ·

[
∇ψk

T
+ ∇μk

T

]}
, (steady state). (5.45)

This expresses the nett heat flow across the boundary as an integral of the
diffusive fluxes over the sub-system volume. This assumes that steady state
fluxes exist for the specified velocity and temperature fields. In fact there is
usually a limited set of such fields that are compatible with the steady state.

The reservoir entropy changes by just this heat flow across the boundary,
divided by the reservoir temperature at that place on the boundary. This is
true whether or not the heat flow across the boundary represents the steady
state heat flow. Assuming that the sub-system temperature equals the reservoir
temperature at that place on the boundary, T (r, t) = Tr(r, t), r ∈ bdry, then
the rate of change of the reservoir entropy is

Ṡr =

∮
dr n̂ · J0

E

T
, (general)

=

∫
dr

{
J0

E · ∇ 1

T
− 1

T
Π : ∇v +

1

T

∑
α

ξ̇αAα

−
∑

k

J0
N,k ·

[
∇ψk

T
+ ∇μk

T

]}
, (steady state). (5.46)

The first equality is true in general (provided that energy is the only flux across
the boundary; in the contrary case, the negative of the surface integral in
Eq. (5.43) applies). The second equality holds only in the steady state. The
total dissipation is the sum of the rates of entropy production of the sub-system
and the reservoir, Ṡtot = Ṡr + Ṡs. Obviously in the steady state, this reduces to
the entropy produced in the reservoir alone, Ṡtot = Ṡr, (steady state).

5.3 Second Entropy

The second entropy for a general isolated system was given in Ch. 2, Eq. (2.50).
This was written in terms of fluxes, and was valid to linear order in the time
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step. In Ch. 4, Eq. (4.44), this was applied to the case of conductive heat flow
in the presence of a reservoir. In general in the small time limit the second
entropy consists of four terms: the ordinary first entropy for the structure, a
term quadratic in the fluxes, a term bilinear in the fluxes and the thermodynamic
forces that represents half the rate of total entropy production, and a term
independent of the fluxes that ensures that the reduction condition is satisfied
by the optimum fluxes.

An expression for the rate of first entropy production for the sub-system
alone in the case of hydrodynamic flows was derived above, Eq. (5.43). Notice
that the only fluxes that appear are the diffusive ones: the diffusive energy flux,
J0

E, which was called the conductive energy flux (or the heat flux in Ch. 4),
the diffusive number fluxes, J0

N,k or J0
N, the diffusive momentum flux tensor,

Π, which is more commonly called the viscous pressure tensor, and the rates of

chemical reaction, ξ̇α or ξ̇. These are essentially the molecular part of the full
fluxes, and it is they that fluctuate. The convective and work parts of the fluxes
are macroscopic in nature and do not directly contribute to the dissipation.
This means that the second entropy for hydrodynamics is a quadratic function
of the diffusive fluxes.

The dissipation of the sub-system, Eq. (5.43), contains a boundary integral
that represents the heat flow into the sub-system divided by the temperature
at that point. It was assumed that the boundaries were fixed and impermeable
so that there were no convective fluxes across them. This is equal and opposite
to the entropy production of the reservoirs for the general constrained state,
the first equality in Eq. (5.46). This is true provided that the temperature of
the sub-system at a point on the boundary is equal to the temperature of the
reservoir at that point. This means that the boundary integral cancels, and the
total dissipation is

Ṡtotal =

∫
dr

{
J0

E · ∇ 1

T
− 1

T
Π : ∇v +

1

T

∑
α

ξ̇αAα

−
∑

k

J0
N,k ·

[
∇ψk

T
+ ∇μk

T

]}
. (5.47)

This is valid for arbitrary fluxes and fields. It is also valid if other fluxes are
allowed to cross the boundaries of the sub-system, because also in this case,
the surface integral representing the entropy production of the reservoir is equal
and opposite to that representing the entropy production of the sub-system in
Eq. (5.43), and the two surface integrals therefore cancel.

Now for the term in the second entropy that is quadratic in the dissipa-
tive fluxes. In principle the transport matrix has size equal to the square
of the number of components of the diffusive fluxes and reaction rates. One
can invoke the Curie symmetry principle to reduce this number.5 Since the

5de Groot, S. R. and Mazur, P. (1984), Non-equilibrium Thermodynamics, (Dover, New
York), §VI.2.
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rate of dissipation is a scalar, for an isotropic system there can be no cou-
pling between scalars, vectors, and traceless second rank tensors. Nor is there
coupling between vector components in different directions. Accordingly, the
viscous pressure tensor is decomposed into its scalar part and its traceless
part, which is denoted by an asterisk, Π = πI + Π∗. The scalar part is
clearly π = TR[Π]/3. The shear rate tensor may be similarly decomposed,
∇v = [∇ · v/3]I + [∇v]∗. Since the viscous pressure tensor is symmetric, one
has the result that Π : ∇v = π∇ · v + Π∗ : [∇v]sym,∗. Because the three Carte-
sian coordinates are equivalent in an isotropic system, there is a single transport
coefficient for the traceless part of the viscous pressure tensor, and this is related
to the shear viscosity, η.

The scalar part of the viscous pressure tensor and the scalar reaction rates
all couple. Let L0 be the transport matrix for these scalars. If there are R
chemical reactions, α = 1, 2, . . . , R, then L0 has dimension (R + 1) × (R + 1).
The reaction rate ξ̇α is the flux of a variable of even time parity, whereas the
scalar part of the momentum flux tensor, π, is the flux of a variable of odd time
parity. Hence L0 is a mixed parity case. It can be written in block form, with
symmetric block diagonals, and antisymmetric block adiagonals. In the event
that there are no chemical reactions, the single transport coefficient is related
to the bulk (or extensional) viscosity, ηb. The coupling between the scalar part
of the viscous pressure tensor and the scalar reaction rates is often called the
chemical viscosity, and it is generally small and often neglected.6

The vector heat flux and the vector diffusive fluxes all couple (in three blocks,
one for each Cartesian component). If there are K species, then there are K−1
independent diffusive fluxes, and hence each Cartesian block has K2 couplings
and K2 corresponding transport coefficients. An isotropic medium is assumed,
and so these are the same for each block. The transport matrix L1 = Λ1 is
symmetric, because both energy and number have even time parity. In the
event that there is a single species, the single transport coefficient is related to
the thermal conductivity, λ. More generally, they are related to the diffusion
constants and to the Soret coefficients.

Finally, the traceless second rank tensor Π∗ couples to itself. The transport
matrix L2 = Λ2 is 9 × 9. However for an isotropic medium it has only one
independent entry, which is related to the shear viscosity, η.

These transport coefficients are possibly position dependent via their depen-
dence on the local thermodynamic state, but this will be neglected here.

Now recall the formulae for the second entropy in the generic mixed parity
case, §2.5.2. The second entropy in the small time limit, Eq. (2.92), is

S(2)(x′,x|τ) = S(x) − |τ |
2

Λ−1 :
◦
x

2
+

τ

2

◦
x ·F(x; τ̂ )

− |τ |
2

Λ−1 :
◦
x(x; τ̂ )2 + O(τ2), (5.48)

6Kuiken, G. D. C. (1984), Thermodynamics for Irreversible Processes, (John Wiley and
Sons, Chichester, England), pp. 133–135.



136 5. Second Entropy for Fluctuating Hydrodynamics

where the first entropy is S(x) = S : x2/2, and the mixed parity force is

F(x; τ̂ ) ≡ 2 [A0 + B0 − τ̂(A′0 + B′0)]x

=
[
I − 2τ̂Λ−1Θ

]
Sx

≡ Λ−1L(τ̂ )Sx. (5.49)

One can see in this expression for the second entropy the four terms mentioned
above: the first entropy of the structure, the term quadratic in the fluxes, the
term bilinear in the fluxes and the thermodynamic forces that represents half
the rate of total entropy production, and the term independent of the fluxes
that ensures that the reduction condition is satisfied by the optimum fluxes.
One has three matrices: the ordinary fluctuation matrix S, the flux fluctuation
matrix Λ, and the transport matrix, L(τ̂). For fluctuations all of the same
parity, L(τ̂) = Λ.

In hydrodynamics, one replaces the coarse velocities by the instantaneous
fluxes. It is understood that in this limit one is dealing with future changes, so
that τ > 0 and τ̂ = 1. In what follows, the first of these conventions, |τ | → 0,
will be observed. However the dependence of the transport matrix and the
most likely fluxes on the direction of time will be shown explicitly, with the
understanding that these reduce to the conventional expression when τ̂ = 1.

For the present hydrodynamic fluxes, in view of the couplings discussed
above, one can write the second entropy as

S(2) = Stot + |τ |
[
S

(2)
0 + S

(2)
1 + S

(2)
2

]
. (5.50)

The total first entropy is

Stot =

∫
drσ0(ε

int(r, t), n(r, t)) +

∮
dr

Er(r, t)

Tr(r)
. (5.51)

The first term is evidently the sub-system entropy, and the second term is just
the reservoir entropy, which is the boundary integral representation of Eq. (4.40).
When optimised with respect to the internal energy density, this sets the sub-
system temperature equal to the reservoir temperature on the boundary of the
sub-system. In the present problem it has been assumed that only energy is
exchangeable between the sub-system and the reservoir.

The second entropy for the scalar fluxes is a mixed parity case. It con-
tains three terms: one quadratic in the flux, one linear in the flux, and one
independent of the flux, One has

S
(2)
0 =

∫
dr

−1

2
Λ−1

0 : {π, ξ̇}2 − 1

2
Λ−1

0 : {π, ξ̇}2

+
τ̂

2T
{π, ξ̇} · Λ−1

0 L0(τ̂ ){−∇ · v, A}. (5.52)

From Eq. (5.43), one can see that the rate of entropy production due to the
scalar part of the viscous pressure tensor is (−1/T )π∇·v, and that part due to
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chemical reactions is (1/T )
∑

α ξ̇αAα. These allow one to identify the analogue
of the generic thermodynamic force Sx in the linear flux term. The second term
in the integrand depends upon the optimum value of the flux, which means that
it depends upon the structure, but not upon the constrained or fluctuating value

of the flux. This term makes S
(2)

0 = 0.
The second entropy for the vector fluxes is a pure parity case, which means

that L1(τ̂ ) = Λ1. Again there are three terms and one has

S
(2)
1 =

∫
dr

−1

2
Λ−1

1 : {J0
E,J0

N}2 − 1

2
Λ−1

1 : {J0

E,J
0

N}2

+
τ̂

2
{J0

E,J0
N} ·

{
∇ 1

T
,

[
−1

T
∇ψ −∇

μ

T

]}
. (5.53)

In an isotropic system, there is no coupling between different Cartesian compo-
nents, and so Λ1 is composed of three identical blocks on the main diagonal.

The second entropy for the traceless second rank tensor fluxes, the traceless
part of the viscous pressure tensor, is also a pure parity case, which means that
L2(τ̂ ) = Λ2. One has

S
(2)
2 =

∫
dr

−1

2
Λ−1

2 : Π∗Π∗ − 1

2
Λ−1

2 : Π
∗
Π
∗ − τ̂

2T
Π∗ : [∇v]sym,∗ . (5.54)

In an isotropic system, there is a single transport constant, and Λ−1
2 : Π∗Π∗ =

λ−1
2 Π∗ : Π∗.

In these three expressions for the τ -dependent parts of the second entropy,
the coarse velocity has been written as an instantaneous flux.

5.3.1 Variational Principle

In the next subsection and section, it will be shown that the usual partial differ-
ential equations of hydrodynamics emerge from the maximisation of the second
entropy with respect to the diffusive fluxes. But it is worth pausing to point out
that the expression for the second entropy, Eq. (5.50) et seq., is a variational
principle for the diffusive fluxes, ξ̇, J0

E, J0
N, and Π, and for the thermodynamic

fields, say εint, n, and v (since any other field can be obtained from these).
Hence, maximising Eq. (5.50) with respect to all of these simultaneously, pro-
vides a novel way to solve a given hydrodynamic problem. One might expect
that in many cases this would have numerical and computational advantages
over the traditional partial differential equation approach.

5.3.2 Flux Optimisation

The equations of hydrodynamics apply only to the most likely fluxes. These
follow by maximising the second entropy with respect to the conductive fluxes.
Functional differentiation with respect to the scalar fluxes gives

δS
(2)
0

δ{π(r), ξ̇(r)}
= −Λ−1

0 {π(r), ξ̇(r)}+
τ̂

2T
Λ−1

0 L0(τ̂ ){−∇ ·v(r), A(r)}. (5.55)
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This vanishes for the most likely scalar fluxes, which are therefore given by

{π(r), ξ̇(r)} =
τ̂

2T
L0(τ̂ ){−∇ · v(r), A(r)}. (5.56)

Here and below, the dependence of the temperature and other field variables
and of the transport matrix on the position has been neglected (unless the
gradient of the field variable is required). Similarly neglected is any possible
time dependence. The equations are expected to apply, provided that any time
or spatial variation is sufficiently slow.

Functional differentiation with respect to the vector fluxes gives

δS
(2)
1

δ{J0
E(r),J0

N(r)}
= −Λ−1

1 {J0
E(r),J0

N(r)}

+
τ̂

2

{
∇ 1

T (r)
,

[
−1

T (r)
∇ψ(r) −∇

μ(r)

T (r)

]}
. (5.57)

The most likely vector fluxes are therefore given by

{J0

E(r),J
0

N(r)} =
τ̂

2
Λ1

{
∇ 1

T (r)
,

[
−1

T (r)
∇ψ(r) −∇

μ(r)

T (r)

]}
. (5.58)

Functional differentiation with respect to the traceless momentum flux tensor
gives

δS
(2)
2

δΠ∗(r)
= −Λ−1

2 Π∗(r) − τ̂

2T
[∇v(r)]sym,∗

. (5.59)

The most likely flux is

Π
∗
(r) = − τ̂

2T
Λ2 [∇v(r)]

sym,∗
. (5.60)

For an isotropic system this reduces to

Π ∗(r) = −2τ̂η [∇v(r)]
∗,sym

, (5.61)

or in component form

Παβ(r) = −τ̂ η

[
∂vα(r)

∂rβ
+

∂vβ(r)

∂rα
− 2

3
δαβ∇ · v(r)

]
. (5.62)

Here η is called the shear viscosity.
When there are no chemical reactions, the most likely value of the scalar

part of the viscous pressure tensor is

π(r) = −τ̂ ηb∇ · v(r), (5.63)

where ηb is called the bulk viscosity, or the extensional viscosity.
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In the absence of diffusion, the most likely value of the heat flux is

J
0

E(r) = −τ̂λ∇T (r), (5.64)

where λ is called the thermal conductivity.
These expressions for the most likely fluxes, together with the conservation

laws and the equilibrium equation of state, are formally equivalent to the equa-
tions of non-linear hydrodynamics.

As mentioned in the introduction to this chapter, the present variational ap-
proach to hydrodynamics is rather similar to the theory of hydrodynamic fluc-
tuations of Landau and Lifshitz, (1959). Fox and Uhlenbeck (1970) gave a more
detailed derivation of those results that used a stochastic equation approach
and Onsager’s reciprocal relations. These two approaches have in common with
the present second entropy theory, that they treat the fluxes as fluctuating or
constrained variables that are independent of the thermodynamic forces; the
linear proportionality assumed by conventional hydrodynamics emerges in the
optimum state. The quadratic forms that appear in the second entropy theory
can be related to time correlation functions, Ch. 2, of the same type as given by
Landau and Lifshitz (1959) for their coefficients, and as given by Fox and Uh-
lenbeck (1970) in the exponent of their transition probability. At this quadratic
level of approximation, the fluctuations in all three approaches are Gaussian in
nature. A number of authors (e.g. Keizer, (1987), Ortiz de Zárate and Sen-
gers, (2006)), have applied this flux fluctuation formulation of hydrodynamics
to experimental measurement and various extensions of the theory.

5.4 Navier-Stokes and Energy Equations

This section uses the conservation laws of §5.1 to recast the hydrodynamic
equations derived above by maximising the second entropy, §5.3.2, into the
more familiar form of the Navier-Stokes and other convective equations. For
simplicity, chemical reactions will be excluded and a single component fluid will
be used.

The number conservation law is

∂n(r, t)

∂t
= −∇ · JN(r, t). (5.65)

Here n(r, t) is the number density, which is related to the mass density by
ρ(r, t) = mn(r, t), where m is the molecular mass, and JN(r, t) = n(r, t)v(r, t)
is the number flux, with v(r, t) being the velocity of the flow.

The energy conservation law is

∂ε(r, t)

∂t
= n(r, t)

∂ψ(r, t)

∂t
−∇ · JE(r, t). (5.66)

Here ψ(r, t) is the external potential, and the energy flux may be written

JE(r, t) = J0
E(r, t) + Jconv

E (r, t) + Jwork
E (r, t)

= J0
E(r, t) + ε(r, t)v(r, t) + P (r, t) · v(r, t). (5.67)
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Here J0
E may be called the diffusive energy flow, or the heat flow, εint = ε −

mnv2/2 − nψ is the internal energy density, and P = pI + Π is the pressure
tensor, p being the thermodynamic pressure, and Π being the viscous pressure
tensor, which can also be called the diffusive momentum flux. For this one-
component system, the diffusive energy flow, J

ψ
E , vanishes because J0

N = 0.
The momentum conservation law is

∂p(r, t)

∂t
= −n(r, t)∇ψ(r, t) −∇ · J

P
(r, t). (5.68)

Recall that the momentum density is p = ρv = mnv. The momentum flux ten-
sor may be identified as just the pressure tensor plus the convective momentum
flux,

J
P
(r, t) = Π(r, t) + p(r, t)I + p(r, t)v(r, t). (5.69)

The phenomenological transport laws for the most likely fluxes in this case
(isotropic system, no chemical reactions, single component) are straightforward
to derive. Here and below it is assumed τ̂ = 1, which means that the equations
refer to the future most likely fluxes. It is also assumed that the transport
coefficients may be taken as constants, and that any time variation of the fluxes
is sufficiently slow that the second entropy treatment is valid.

The most likely value of the scalar part of the viscous pressure tensor is

π(r, t) = −ηb∇ · v(r, t), (5.70)

where ηb is called the bulk (or volume, or extensional) viscosity. For an incom-
pressible fluid, ∇ · v = 0, so that one can set π = 0. For many polymer melts,
an order of magnitude estimate is ηb ≈ 6η.7

In the absence of diffusion, the most likely value of the heat flux is

J
0

E(r, t) = −λ∇T (r, t), (5.71)

where λ is called the thermal conductivity.
The most likely value of the traceless viscous pressure tensor for an isotropic

system reduces to

Π ∗(r, t) = −2η [∇v(r, t)]
∗,sym

, (5.72)

or in component form

Π
∗

αβ(r, t) = −η

[
∂vα(r, t)

∂rβ
+

∂vβ(r, t)

∂rα
− 2

3
δαβ∇ · v(r, t)

]
. (5.73)

Here η is called the shear viscosity. The most likely components of the full
viscous pressure tensor are

Παβ(r, t) = −η

[
∂vα(r, t)

∂rβ
+

∂vβ(r, t)

∂rα

]
+

(
2η

3
− ηb

)
δαβ∇ · v(r, t). (5.74)

7Chatraei, Sh. and Macosko, C. W. (1981), J. Rheology 25, 433.
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The viscous dissipation is defined as

Φ(r, t) ≡ −Π(r, t) : [∇v(r, t)] = −π∇·v(r, t)−Π ∗(r, t) : [∇v(r, t)]∗,sym. (5.75)

Its most likely value is

Φ(r, t) = ηbθ(r, t)2 + 2η

(
[∇v(r, t)]sym − 1

3
θ(r, t)I

)2

=

(
ηb − 2

3
η

)
θ(r, t)2 + 2η[∇v(r, t)]sym : [∇v(r, t)]sym , (5.76)

where θ(r, t) ≡ ∇ · v(r, t), and [∇v(r, t)]sym ≡ [∇v(r, t) + (∇v(r, t))T]/2.
In these expressions, the transport coefficients, formally introduced in §5.3.2,

have been replaced by their more conventional counterparts. This replacement
may involve factors of temperature, the variation of which in space and time is
neglected, as it is in the transport coefficients themselves.

Thermodynamics

In hydrodynamics, the traditional thermodynamic field variables are the tem-
perature, pressure, and velocity. Hence the appropriate free energy to invoke
is the Gibbs free energy, G0(N, p, T ). This is for a sub-system containing N
molecules that can exchange energy and volume with a reservoir of temperature
T and pressure p. Here the subscript 0 emphasises that this is for a system at
rest with no external potential, and hence the energy is the same as the internal
energy.

The pressure derivative of the Gibbs free energy gives the volume,8(
∂G0

∂p

)
N,T

= V , (5.77)

and a particular temperature derivative gives the energy, namely(
∂(G0/T )

∂T−1

)
N,p/T

= E
int

. (5.78)

The second derivatives of the Gibbs free energy give various thermodynamic
coefficients that will be required. The isothermal compressibility is

χT = −V
−1
(

∂V

∂p

)
N,T

= −V
−1
(

∂2G0

∂p2

)
N,T

. (5.79)

For an incompressible fluid, χT = 0. The thermal expansivity gives the relative
change in volume with temperature,

α = V
−1
(

∂V

∂T

)
N,p

. (5.80)

8Attard, P. (2002a), Thermodynamics and Statistical Mechanics: Equilibrium by Entropy

Maximisation, (Academic Press, London).
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The internal enthalpy per unit volume is hint = H int/V = εint + p. The
heat capacity at constant pressure is the rate of change of the enthalpy with
temperature. Per unit volume this is

cp ≡ 1

V

(
∂[E

int
+ pV ]

∂T

)
N,p

=

(
∂εint

∂T

)
p

+ αhint, (5.81)

Rearranging this gives the change of internal energy density with temperature,(
∂εint

∂T

)
p

= cp − αhint, (5.82)

which will be required below. Also required will be its change with pressure,(
∂εint

∂p

)
T

=

(
∂(E

int
/V )

∂p

)
N,T

=
−εint

V

(
∂V

∂p

)
N,T

+
1

V

∂

∂p

(
∂(G0/T )

∂T−1

)
N,p/T

= εintχT +
1

V

∂

∂p

[
G0 − p

(
∂G0

∂p

)
N,T

+
1

T

(
∂G0

∂T−1

)
N,p

]

= εintχT +
1

V

[
V −

(
∂G0

∂p

)
N,T

− p

(
∂2G0

∂p2

)
N,T

+
1

T

∂

∂T−1

(
∂G0

∂p

)
N,T

]

= χThint − αT. (5.83)

Now the convective derivatives for the density, velocity, temperature, and
pressure will be derived. The convective number density derivative is

dn

dt
=

∂n

∂t
+ v · ∇n = −n∇ · v, (5.84)

as follows from the number conservation law, Eq. (5.65). The divergence of the
velocity field is just the relative rate of change of a volume element moving with
the flow. Using the above thermodynamic derivatives, this may be written in
terms of the rates of change of temperature and pressure,

∇ · v =
1

V

dV

dt

=
1

V

(
∂V

∂T

)
N,p

dT

dt
+

1

V

(
∂V

∂p

)
N,T

dp

dt

= α
dT

dt
− χT

dp

dt
. (5.85)
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The convective rate of change of velocity is

mn
dv

dt
=

d(mnv)

dt
− mv

dn

dt

=
dp

dt
+ p∇ · v

=
∂p

∂t
+ v∇ · p + p∇ · v

= −n∇ψ −∇ · [pI + Π + pv] + ∇ · (pv)

= −n∇ψ −∇p −∇ · Π. (5.86)

This expression holds for an arbitrary viscous dissipation tensor. For the most
likely viscous dissipation, this reduces to the Navier-Stokes equation,9

mn(r, t)
dv(r, t)

dt
= −n(r, t)∇ψ(r, t) −∇p(r, t) −∇ · Π(r, t)

= −n(r, t)∇ψ(r, t) −∇p(r, t)

+

(
ηb +

1

3
η

)
∇(∇ · v(r, t)) + η∇2v(r, t). (5.87)

The second equality follows from the expression for the most likely value of
the viscous pressure tensor, Eqs (5.70) and (5.72). The left-hand side of the
Navier-Stokes equation contains a term mnv · ∇v, which is non-linear in the
velocity.

The convective derivative of the internal energy is

dεint

dt
=

d

dt
[ε − nψ − v · p/2]

=
∂ε

∂t
+ v · ∇ε −

[
ψ + mv2/2

] dn

dt
− n

dψ

dt
− mnv · dv

dt

= −∇ ·
[
J0

E + εv + P · v
]
+ v · ∇ε +

[
ψ + mv2/2

]
n∇ · v

− n
∂ψ

∂t
− nv · ∇ψ + v ·

[
n∇ψ + ∇ · P

]
= −n

∂ψ

∂t
−∇ · J0

E − ε∇ · v − P : ∇v + [nψ + v · p/2]∇ · v

= −n
∂ψ

∂t
−∇ · J0

E −
[
εint + p

]
∇ · v − Π : ∇v. (5.88)

Now

dεint

dt
=

(
∂εint

∂T

)
N,p

dT

dt
+

(
∂εint

∂p

)
N,T

dp

dt

=
[
cp − αhint

] dT

dt
+
[
hintχT − αT

] dp

dt
. (5.89)

9Yih, C.-S. (1977), Fluid Mechanics: A Concise Introduction, (West River Press, Ann
Arbor). Drazin P. G. and Reid, W. H. (1981), Hydrodynamic Stability, (Cambridge University
Press, Cambridge).
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Hence one can rearrange the convective derivative of the internal energy density
so that the left-hand side is

dεint

dt
+ hint∇ · v =

[
cp − αhint

] dT

dt
+
[
hintχT − αT

] dp

dt

+ hint

[
α

dT

dt
− χT

dp

dt

]

= cp
dT

dt
− αT

dp

dt
. (5.90)

Finally putting these together gives what may be called the energy equation,

cp
dT (r, t)

dt
−αT (r, t)

dp(r, t)

dt
= −n(r, t)

∂ψ(r, t)

∂t
−∇·J0

E(r, t)+Φ(r, t), (5.91)

where Φ is the viscous dissipation defined above, Eq. (5.75). It is often the case
that the external potential is not explicitly dependent upon time, ∂ψ(r)/∂t = 0.
The right-hand side can be evaluated for the most likely fluxes given above. One
has three fields: temperature T , pressure p, and velocity v, and three equations
that determine them: the divergence of the velocity, Eq. (5.85), the Navier-
Stokes equation, Eq. (5.87), and the energy equation, Eq. (5.91).

These three equations are equivalent to the conventional formulation of
hydrodynamics. The are valid when the spatial and temporal variation of the
system is negligible so that the transport and thermodynamic coefficients can
be treated as constants. Most importantly, they only give the optimum fluxes
for the given fields, and they are not applicable to the thermal fluctuations in
the fluxes about those optimum values, nor to the transient fluxes that occur
in reaching the optimum value. The second entropy formulation of fluctuation
hydrodynamics is more general than the conventional phenomenological hydro-
dynamic equations, as it is applicable to these non-optimum fluxes. Also, it
provides a thermodynamic basis for selecting non-equilibrium states that can-
not be distinguished by hydrodynamics, as will be seen in the following chapter.



Chapter 6

Heat Convection and

Non-Equilibrium Phase

Transitions

This chapter is concerned with pattern formation in non-equilibrium systems,
and with the more general phenomena of non-equilibrium phase transitions.
These are characterised by the second entropy, which, after all, is the entropy of
transitions. That this determines the observed outcome in such non-equilibrium
phenomena is here illustrated using the hydrodynamic equations with added
noise. A complementary theme of the chapter is the quantitative calculation of
single time thermodynamic quantities such as the structural entropy and the
dissipation, and the demonstration that they do not have any direct rôle in
determining non-equilibrium pattern formation.

Rather than a generic treatment of the problem, here a particular non-
equilibrium pattern forming system is studied in order to illustrate concretely
the general ideas. This allows the hydrodynamic and thermodynamic calcula-
tions to be explicitly compared with experimental measurements.

The example chosen is one of the most well-established non-equilibrium phe-
nomena, namely steady convective heat flow. This was first studied by quan-
titative measurement by Bénard in 1900.1 There have been several attempts
to formulate a thermodynamic theory for the occurrence of convection and the
patterns that form, the most well known of which are related to the maximisa-
tion or minimisation of the dissipation, which principle was critically discussed
in §1.2.2. In convection, the dissipation is given by the heat flux, and Malkus
and Veronis2 were possibly the first to assert explicitly that maximising the heat
flux determines the preferred convection pattern. The broad consensus3 from

1Bénard, H. (1900), Rev. Gen. Sci. Pures Appl. 11, 1261.
2Malkus, W. V. R. and Veronis, G. (1958), J. Fluid Mech. 4, 225.
3Getling, A. V. (1998), Rayleigh-Bénard Convection: Structure and Dynamics, (World

Scientific, Singapore).
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subsequent experimental tests is that the idea is inconsistent with the observed
patterns that actually form in convection, which conclusion is quantitatively
confirmed below.

As an alternative to the maximisation of the heat flux, maximisation of the
entropy has been proposed as the thermodynamic principle that characterises
convection. Kita suggested, at least for dilute gases, the maximisation of a type
of non-equilibrium entropy based upon the Boltzmann H-function and an anal-
ysis of the collision integral, and used the approach to predict the location of the
conduction-convection transition.4 Attard proposed maximising the ordinary or
structural entropy as the thermodynamic principle for convection,5 based upon
the reduction condition for the second entropy.6 The calculations and mea-
surements presented in §6.6 provide evidence contrary to these proposals, and
the fundamental reason for the insufficiency of the entropy or free energy in
non-equilibrium systems is discussed at the conclusion of the chapter.

The transition from conduction to convection is one example of a non-
equilibrium phase transition, and it is treated in detail in what follows. Beyond
this, it is the shape and spacing of the convective rolls that represents the non-
equilibrium pattern. Hence the evolution of the patterns of convection and
the transitions between different patterns are rich examples of non-equilibrium
phase transitions. Specifically, this chapter focuses on the transition between
straight rolls of different wavelengths since these have been measured experimen-
tally. By calculating the heat flux and entropy, the two hypotheses described
above are tested against the experimental results. Both the experiments and
the hydrodynamic calculations display multiple stable patterns, from which it
is concluded that in general the primary focus ought be on the transitions be-
tween patterns rather than on single time thermodynamic properties of a non-
equilibrium pattern.

6.1 Hydrodynamic Equations of Convection

6.1.1 Boussinesq Approximation

Hydrodynamic calculations of convective heat flow are generally made in the
so-called Boussinesq approximation. This consists in setting the compressibility
to zero, χT = 0, neglecting the thermal expansivity everywhere except in the
buoyancy force, and neglecting most of the non-linear terms in the convective
equations. In this case the density equation reduces to the vanishing of the
divergence of the velocity field,

∇ · v(r, t) = 0. (6.1)

This means that the most likely value of the scalar part of the viscous pressure
tensor vanishes, π = 0.

4Kita, T. (2006), J. Phys. Soc. Japan 75, 114005 and 124005.
5Attard, P. (2011), AIP Advances 1, 032146.
6Attard, P. (2005a), J. Chem. Phys. 122, 154101.
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Retaining the thermal expansivity, the gravitational potential density is

n(r, t)ψ(r, t) = {n00 − αn00[Ttot(r, t) − T00]}mgz. (6.2)

Here g is the acceleration due to gravity, which acts in the z-direction, and
m is the molecular mass. The subscript tot is appended to the temperature
and pressure to signify total; below these will be split into the conductive part,
signified by the subscript 0, and the convective perturbation, such that Ttot =
T0 +T and ptot = p0 +p. Here and below the subscript 00 denotes the reference
value at the mid-point of the sub-system. Expansions to linear order in the
difference from this reference point are carried out. With this and neglecting
the term quadratic in the velocity, the Navier-Stokes equation becomes

mn00
∂v(r, t)

∂t
= −{n00 − αn00[Ttot(r, t) − T00]}mgẑ −∇ptot(r, t)

+ η∇2v(r, t). (6.3)

Neglecting the viscous dissipation, which is quadratic in the velocity, and
also the thermal expansivity, and using the most likely heat flux, the energy
equation becomes

cp
∂Ttot(r, t)

∂t
+ cpv(r, t) · ∇Ttot(r, t) = λ∇2Ttot(r, t). (6.4)

These three partial differential equations constitute the Boussinesq approxima-
tion that is to be solved for the temperature, pressure, and velocity fields.

6.1.2 Conduction

Although convection and conduction can occur in quite complicated geometries,
here is treated the simplest case of a slab geometry with a temperature gradient
imposed in the z-direction. Convective flow is treated as a perturbation from
the conducting state. In conduction, the velocity field is zero, v(r, t) = 0.

The boundaries of the sub-system are located at z = ±Lz/2, and the tem-
peratures of the reservoirs beyond the boundaries are Tr±. The temperature
difference is ΔT ≡ Tr+ − Tr−. It is assumed that the imposed temperature gra-
dient, ΔT/Lz, is small and that quadratic terms can be neglected. This means
that it does not matter whether one deals with the difference in temperature or
with the difference in inverse temperature. For convection to occur, the lower
reservoir must be hotter than the upper reservoir, ΔT < 0, at least for fluids
with positive expansivity.

Since in conduction the velocity vanishes, and the temperature is steady and
a function of z only, the energy equation reduces to

0 = λ
d2T0(z)

dz2
. (6.5)

The subscript 0 denotes conduction. Hence the temperature field is a linear
function of z that must equal the reservoirs’ temperatures at the boundaries,

T0(z) = T00 +
ΔT

Lz
z, |z| ≤ Lz/2, (6.6)
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with the mid-point temperature being T00 ≡ [Tr+ + Tr−]/2. With this and zero
velocity, the Navier-Stokes equation becomes

0 = −
{

n00 −
αn00ΔT

Lz
z

}
mg − dp0(z)

dz
. (6.7)

Hence the conductive pressure profile is

p0(z) = p00 − n00mgz +
αn00mgΔT

2Lz
z2. (6.8)

For future use, the heat flow per unit area in conduction is

J0
E,0 = −λ

dT0(z)

dz
=

−λΔT

Lz
. (6.9)

The rate of entropy production per unit sub-system volume is

Ṡr/ALz =
J0

E,0

Lz

[
1

Tr+
− 1

Tr−

]
=

λΔ2
T

T 2
00L

2
z

. (6.10)

This is positive and independent of the sign of the temperature difference, as it
ought to be.

6.1.3 Convection

Convection may be regarded as a perturbation on conduction. As mentioned
above the temperature may be written as

Ttot(r, t) = T0(z) + T (r, t), (6.11)

and similarly the pressure,

ptot(r, t) = p0(z) + p(r, t). (6.12)

Since the velocity is zero in conduction, the full velocity field is the same as
the perturbing velocity field, vtot(r, t) = v(r, t). These convective fields depend
upon the Rayleigh number and, in the calculations below, the wave number of
the steady state being characterised, but these will not be shown explicitly.

The full fields satisfy the density, Navier-Stokes, and energy equations. But
since the conductive fields also satisfy these equations, they can be subtracted
from both sides, so that one has

0 = ∇ · v(r), (6.13)

mn00
∂v(r, t)

∂t
= αn00T (r)mgẑ−∇p(r) + η∇2v(r), (6.14)

and

cp
∂T (r, t)

∂t
= −cpv(r) · ∇[T0(z) + T (r)] + λ∇2T (r)

= −cpΔT

Lz
vz(r) − cpv(r) · ∇T (r) + λ∇2T (r). (6.15)
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Since this is a steady state problem, the left-hand sides can be set to zero.
Alternatively, it is sometimes convenient to solve the equations numerically
by time stepping based on any non-zero value. If one regards the convective
perturbation as small, then one sees that the second term on the right-hand
side of the energy equation is non-linear, as it is the product of the convective
temperature and the velocity. This non-linear term fixes the amplitude of the
fields that give the steady state, since without it everything could be multiplied
by a constant to give another solution. There are five equations (the Navier-
Stokes equation is for three components) and five fields, including the three
components of the velocity.

Now use Lz as the unit of length, −ΔT as the unit of temperature, L2
zcp/λ

as the unit of time, and mn00λ
2/L2

zc
2
p as the unit of pressure. Denoting dimen-

sionless quantities with an asterisk, one has

0 = ∇∗ · v∗, (6.16)

∂v∗

∂t∗
= RPT ∗ẑ −∇∗p∗ + P∇∗2v∗, (6.17)

and

∂T ∗

∂t∗
= v∗z − v∗ · ∇∗T ∗ + ∇∗2T ∗. (6.18)

Here the Rayleigh number is

R ≡ −ΔTαgcpmn00L
3
z/λη, (6.19)

and the Prandtl number is

P ≡ ηcp/mn00λ. (6.20)

Here and throughout, cp is the constant pressure heat capacity per unit volume.
One can eliminate the pressure from the Navier-Stokes equations. Set the

left-hand side to zero, differentiate the z-component with respect to y, the y-
component with respect to z, and subtract,

0 = R∂T̃ ∗

∂y∗
+ ∇∗2

[
∂v∗z
∂y∗

−
∂v∗y
∂z∗

]
. (6.21)

The Prandtl number has been factored out. Similarly for the x-component,

0 = R∂T̃ ∗

∂x∗
+ ∇∗2

[
∂v∗z
∂x∗

− ∂v∗x
∂z∗

]
. (6.22)

One now has four equations (these two forms of the momentum equation, the
density equation, and the energy equation), four fields (T ∗, v∗x, v∗z , and v∗z),
and one dimensionless parameter, R. Since everything in these equations is
dimensionless and refers to the convective perturbation, the asterisk will be
dropped later below.
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A numerical scheme to solve these equations can be based on simple time
stepping using the time rate of change of temperature given by the energy
equation, and the solutions of the remaining three differential equations at each
time step. This implicitly assumes rapid relaxation of the velocity at each time
step, ∂v∗/∂t∗ = 0. Such an algorithm gives the physical approach to the steady
state and the transition between steady states.

6.2 Total First Entropy of Convection

Now an expression for the first or structural entropy of a convecting steady
state will be obtained. More precisely, the difference between the first entropy
of a convecting state and the first entropy of the conducting state at the same
Rayleigh number will be obtained. Of course this can also be used to give
the difference between the first entropy of convecting states of different wave
numbers or of different convecting patterns, provided that the comparison is
made at the same Rayleigh number.

The total entropy is the sum of the sub-system entropy and the reservoir
entropy. Here the exact sub-system entropy will be given, and two forms for the
reservoir contribution will be obtained. One reservoir expression is the exact
change in reservoir entropy during the transition from one state to another (e.g.
conduction to convection, or from one convecting state to another). The second
reservoir expression is the so-called static approximation. It gives the difference
in reservoir entropy between a convecting state and the conducting state, and
again it can be used to obtain the difference in reservoir entropy between one
convecting state and another.

The nature of the static approximation for the reservoir entropy was touched
on in Ch. 3 and will be fully explained in Ch. 8 below. There the first entropy
for phase space for a non-equilibrium system will be shown to consist of a static
part, which is the analogue of the usual equilibrium expression, and a dynamic
part, which is a correction to the static reservoir contribution that accounts
for the adiabatic evolution that is unavoidably included. In the macroscopic
description of this chapter, the sub-system entropy is given exactly by the usual
equilibrium expression, which will be obtained explicitly. The reservoir entropy
will be approximated by the static part alone, which is the usual equilibrium
expression for the reservoir entropy.

The change (or difference) in entropy density of the sub-system between
convection, Ttot(r) = T0(z) + T (r), and conduction, T0(z) = T00 + zΔT /Lz,
can be obtained by thermodynamic integration.7 Henceforth this will simply
be called the convective entropy density, the change from conduction being
understood. Assuming, as in the Boussinesq approximation, that the thermal
expansivity and compressibility can be neglected, the convective entropy density

7As mentioned above, the dependence of the temperature field (and of the change in
entropy) on the Rayleigh number and on the wave number of the particular convective state
is not shown explicitly. Also, dimensionless variables are not used in this section.
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of the sub-system is

σs(r) =

∫ εint,1

εint,0

dε′int

∂σ(ε′int)

∂ε′int

=

∫ εint,1

εint,0

dε′int

1

T ′

= cp ln

[
T0(z) + T (r)

T0(z)

]

= cp

[
T (r)

T0(z)
− T (r)2

2T0(z)2
+ . . .

]

= cp

[
T (r)

T00
− zΔT T (r)

LzT 2
00

− T (r)2

2T 2
00

+ O
(
Δ3

T /T 3
00

)]
. (6.23)

This uses the fact that Δεint = cpΔT , where cp is the heat capacity per unit
volume. Since the convective temperature is T (r) ∼ O(ΔT ), the expansion to
quadratic order in the temperature difference is justified.8 This is the local
sub-system entropy density. The global sub-system entropy density is

σs(t) =
1

ALz

∫
dr σs(r, t), (6.24)

where A is the cross-sectional area of the sub-system. For use below during
convective transitions, this has been written as a function of time and invokes
the instantaneous temperature, T (r, t).

Static Reservoir Entropy

The zeroth and first temperatures of the reservoirs are

1

Tr0
=

1

2

[
1

Tr+
+

1

Tr−

]
=

1

T00
+ O

(
Δ2

T /T 2
00

)
, (6.25)

and

1

Tr1
=

1

Lz

[
1

Tr+
− 1

Tr−

]
=

−ΔT

LzT
2
00

+ O
(
Δ3

T /T 3
00

)
, (6.26)

respectively. With these, the static part of the reservoir entropy associated with
the sub-system is

Sr,st =
−ΔE0

Tr0
− ΔE1

Tr1
. (6.27)

Again it is understood that this is the change from conduction. In view of the
definition of the energy moments of the sub-system,

ΔEn =

∫
dr znΔε(r), (6.28)

8This expansion has been checked numerically against the full logarithm and found to be
accurate for ideal straight rolls over the full range of Rayleigh numbers and wave numbers.
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one can instead define and invoke the static convective reservoir entropy density,

σr,st(r) ≡
−Δε(r)

Tr0
− zΔε(r)

Tr1
. (6.29)

What appears here is the change in total energy density, which is composed
of the internal energy density, the gravitational energy density, and the kinetic
energy density,

Δε(r) = Δεint(r) + Δεg(r) + Δεke(r)

= cpT (r) − αmn00gzT (r) +
mn00

2
v(r) · v(r). (6.30)

Accordingly, the change in total entropy density, σtot,st(r) = σs(r) + σr,st(r), is
composed of three analogous terms. The internal energy density contribution is

σint
tot,st(r) ≡ σs(r) −

Δεint(r)

Tr0
− zΔεint(r)

Tr1

= cp

[
T (r)

T00
− zΔT T (r)

LzT 2
00

− T (r)2

2T 2
00

]
− cpT (r)

T00
+

cpzΔTT (r)

LzT 2
00

=
−cp

2T 2
00

T (r)2. (6.31)

This is identical to the equilibrium fluctuation expression for the total entropy
density of a sub-system in equilibrium with a reservoir of temperature T00 when
the local fluctuation in energy is Δεint(r) = cpT (r). It is what one would have
expected and could have been written down directly. The fact that this is always
negative means that a convecting steady state has lower total entropy than the
conducting state, at least as far as the rearrangement of the internal energy in
the convecting system is concerned. This latter observation is not particularly
significant because the result depends upon the static approximation, and so it
does not give the full change in the reservoir entropy during such a transition.

The gravitational contribution is

σg
tot,st(r) ≡ −Δεg(r)

Tr0
− zΔεg(r)

Tr1

=
αmn00gzT (r)

T00
− αmn00gz2ΔT T (r)

LzT 2
00

, (6.32)

and the kinetic energy contribution is

σke
tot,st(r) ≡ −Δεke(r)

Tr0
− zΔεke(r)

Tr1

= −mn00

2T00
v(r) · v(r) +

mn00ΔT z

2LzT 2
00

v(r) · v(r). (6.33)

Below the so-called Boussinesq symmetry will be invoked, which means that the
convective temperature perturbation is anti-symmetric upon reflection through
the centre of a convective roll. Effectively, the temperature is odd in z and
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the velocity squared is even in z. In consequence, when the entropy density is
integrated over the convective volume to obtain the entropy itself, only the first
term on the right-hand side of each of these last two equations contributes.

As mentioned above, density changes have been neglected everywhere except
in the gravitational term, which is consistent with the Boussinesq approxima-
tion. One might expect, and it will be shown explicitly below, that the kinetic
energy contribution is negligible compared to the gravitational contribution.
This is consistent with neglecting the viscous dissipation in the Boussinesq ap-
proximation, which is similarly quadratic in the convective velocity.

The sum of the last three results represent the static approximation to the
convective entropy density (i.e. the difference in entropy between the convective
state and the conductive state). Integrating over the volume of the sub-system,
the global convective entropy density is

σtot,st ≡
1

ALz

∫
dr
[
σint

tot,st(r) + σg
tot,st(r) + σke

tot,st(r)
]
. (6.34)

Change in Reservoir Entropy

In the above result for the difference in entropy between convection and conduc-
tion, it is the reservoir contribution that is approximate, since the sub-system
entropy is exact. As was mentioned in the introduction to this section, one
can obtain exactly the change in reservoir entropy for a transition between two
non-equilibrium states. This is done by integrating over time the heat flow from
one reservoir to the other through the sub-system. The rate of change of the
entropy of the reservoirs is

Ṡr(t) =

∫
A

dxdy

[
1

Tr+
J

0

E(x, y, Lz/2, t) − 1

Tr−
J

0

E(x, y,−Lz/2, t)

]

≈ −LzΔT

T 2
00

∫
A

dxdy J
0

E(x, y, Lz/2, t)

=
−LzΔT λ

T 2
00

∫
A

dxdy
∂T (r, t)

∂z

∣∣∣∣
z=Lz/2

. (6.35)

The first equality is exact, whereas the second equality makes the approxima-
tion that the integrated heat flux at the two boundaries are equal. This is
certainly the case in the steady state, and it is a very good approximation in
the transitions between steady straight roll states that are characterised below.9

Accordingly, the change in total entropy per unit sub-system volume during a
transition over the time interval [t1, t2] is

Δσtot = σs(t2) − σs(t1) +
1

ALz

∫ t2

t1

dt Ṡr(t), (6.36)

where the global sub-system entropy density is given by Eq. (6.24).

9This approximation does not account for any nett total energy change of the sub-system
during a transition. Such nett changes, which lead to an inequality of the heat flux at the two
boundaries, do indeed occur in the gravitational energy and in the kinetic energy, but they
are negligible compared to the total heat flux over the time interval of a transition.
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6.3 Algorithm for Ideal Straight Rolls

This and the following section set out the hydrodynamic equations used for
convection and describes the computer algorithms that were used to solve them.
This section deals with ideal straight rolls (i.e. the rolls are considered straight
and homogeneous in the x-direction), and the next section deals with the cross
roll state (i.e. the combination of straight x- and y-rolls).

The applied thermal gradient and gravity are in the z-direction. The wave-
length is twice the width of an individual roll, Λ = 2Ly, as they come in pairs
of counter-rotating rolls. In this and the following sections, dimensionless vari-
ables are used, including for the Fourier coefficients. Hence Ly = 1 or a ≈ 3.1
corresponds to a circular or square roll.

6.3.1 Hydrodynamic Equations

The hydrodynamic equations for convection were given at the end of §6.1.3.
Setting the x-component of velocity and the x-derivatives to zero, the three
equations for the remaining three fields are

0 =
∂vy(y, z)

∂y
+

∂vz(y, z)

∂z
, (6.37)

∂T (y, z)

∂t
= vz(y, z) − vy(y, z)

∂T (y, z)

∂y
− vz(y, z)

∂T (y, z)

∂z

+
∂2T (y, z)

∂y2
+

∂2T (y, z)

∂z2
, (6.38)

and

0 = R∂T (y, z)

∂y
+ ∇2

[
∂vz(y, z)

∂y
− ∂vy(y, z)

∂z

]

= R∂2T (y, z)

∂y2
+

[
∂2

∂y2
+

∂2

∂z2

]2
vz(y, z). (6.39)

The second equality follows by taking the y-derivative of the first equality and
using the vanishing of the divergence of the velocity. Recall that the Rayleigh
number is R ≡ −αmgn00cpΔT L3

z/λη.

6.3.2 Fourier Expansion

Following Busse,10 a Galerkin method is used that invokes Fourier expansions
of the fields. The temperature field is expanded as

T (y, z) =

L∑
l=0

N∑
n=1

[T s
ln sin 2nπz + T c

ln cos(2n − 1)πz] cos lay. (6.40)

10Busse, F. H. (1967), J. Math. and Phys. 46, 140.
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Here a = π/Ly is the wave number. The form of the z-expansion is chosen to
guarantee the boundary conditions, T (y,±1/2) = 0. For the Boussinesq fluid,
there is mirror plane symmetry between two rolls, T (y, z) = T (−y, z), and point
reflection symmetry within a roll, T (y, z) = −T (Ly − y,−z). These mean that
the even l coefficients of T c

ln and the odd l coefficients of T s
ln must vanish.

The particular solution of the differential equation for the velocity is

vp
z (y, z) =

∑
l,n

[
vps

z,ln sin 2nπz + vpc
z,ln cos(2n − 1)πz

]
cos lay. (6.41)

Clearly,

vps
z,ln =

R(la)2

[(la)2 + (2nπ)2]
2 T s

ln, (6.42)

and

vpc
z,ln =

R(la)2

[(la)2 + ((2n − 1)π)2]
2 T c

ln. (6.43)

The homogeneous solution, which satisfies ∇2∇2vh
z = 0, is

vh
z (y, z) =

L∑
l=1

[As
l sinh laz + Bs

l z cosh laz

+Ac
l cosh laz + Bc

l z sinh laz] cos lay. (6.44)

Because the system is periodic in the horizontal direction, there is a term for
each expansion mode. Writing the velocity as vz = vp

z + vh
z , the four bound-

ary conditions for each mode, vz(y,±1/2) = ∂vz(y,±1/2)/∂z = 0, determine
the four coefficients per mode, As

l , Bs
l Ac

l , and Bc
l . These coefficients have

the Boussinesq symmetry discussed above. The second condition ensures the
vanishing of vy(y,±1/2) when the density equation is applied.

The vertical velocity field is then projected onto the Fourier grid used for
the temperature field using the orthogonality of the trigonometric functions.
Formally one has

vz(y, z) =
L∑

l=1

N∑
n=1

[
vs

z,ln sin 2nπz + vc
z,ln cos(2n − 1)πz

]
cos lay. (6.45)

Due to the Boussinesq symmetry, half the coefficients are zero. The horizontal
velocity may be expanded as

vy(y, z) =
L∑

l=1

N∑
n=1

[
vc

y,ln cos 2nπz + vs
y,ln sin(2n − 1)πz

]
sin lay. (6.46)

The density equation gives

vc
y,ln =

−2nπ

la
vs

z,ln and vs
y,ln =

(2n − 1)π

la
vc

z,ln. (6.47)
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Table 6.1: Measured (silicone oil, P = 930) and computed velocity amplitudes,
(μm/s), for the first three harmonics† at a = 3.117 and two Rayleigh numbers.

Measured� Busse� Present Measured� Present
R = 3416 R = 11, 391

V 1
y 132±4 133 137.6 337±10 355.1

V 2
y 5.3±0.5‡ 5‡ 5.1‡ 13.7±1 13.0

V 3
y 1.5±0.3 - 1.2 19±1 18.3

V 1
z 145±5 138 140.6 340±10 363.0

V 2
z 0 0 0 1.7±2 0

V 3
z 4± 0.4 3.8 3.9 58±4 60.2

†The Vz are at z∗∗ = 0, and the Vy are at z∗ = 0.28.
‡At z∗ = 0.
�Dubois, M. and Bergé, P. (1978), J. Fluid Mech. 85, 641.

The rates of change of the temperature coefficients are obtained from the
non-linear energy equation, Eq. (6.38), again using trigonometric orthogonality.
The left-hand side of this equation is ∂T/∂t, which is non-zero in the approach
to the steady state. Hence one can update the temperature field by simple time
stepping, with the new temperature coefficients obtained by adding a constant
Δt ∼ O(10−4) times the right-hand side to the previous value.

Linear stability analysis reveals that the critical Rayleigh number is Rc =
1708 and the critical wave number is ac = 3.117.11 For a given Rayleigh number
R > Rc, there is a range of wave numbers a that yield steady state solutions.
The wavelength, roll width, and wave number are related by Λ = 2Ly = 2π/a.

The Nusselt number (see §6.3.3) was monitored and used to halt the iterative
procedure when its relative change was less than 10−5. For most of the results
reported below, N = 10 and L = 10. Some tests were carried out with up to
N = 16 and L = 16. By comparison, Busse (1967) used up to L + N = 12.
In general, three- or four- figure agreement was obtained between the present
results and those of Busse for Rayleigh numbers up to 30,000.

The amplitudes of the first three harmonics of the velocity field in convection
have been measured by Dubois and Bergé (1978) for a silicone oil (P = 930)
constrained at the critical wavelength.12 Their results are shown in Table 6.1,
together with their reports of the results of Busse’s calculations, and with the

11Yih, C.-S. (1977), Fluid Mechanics: A Concise Introduction, (West River Press, Ann
Arbor). Drazin P. G. and Reid, W. H. (1981), Hydrodynamic Stability, (Cambridge University
Press, Cambridge).

12The physical parameters of the silicone oil are: temperature T00 = 298K, density
ρ00 = 0.960 g cm−3, kinematic viscosity ν = 1.056 cm2 s−1, thermal expansivity α =
0.96 × 10−3 K−1, thermal conductivity λ = 3.7 × 10−4 cal cm−1 K−1 s−1, specific heat

c†p = 0.337 cal g−1 K−1, and thermal diffusivity κ = 1.14 × 10−3 cm2 s−1. From Table I,
line 1 in Dubois, M. and Bergé, P. (1978), J. Fluid Mech. 85, 641.



6.4. Algorithm for the Cross Roll State 157

results of the present calculations, which should be equivalent to those of Busse
(apart from the non-linear influence of the greater number of modes used here).
There is quite good agreement between all three, which confirms both the valid-
ity of the present computational algorithm and the applicability of the hydro-
dynamic model to the experimental situation.

6.3.3 Nusselt Number

The Nusselt number is the ratio of the total heat flux in convection to that in
conduction at a given Rayleigh number. The heat flux in conduction is just
Fourier’s law, Jcond

E = −λΔT . Since the velocity vanishes at the horizontal
boundaries, the heat flux in convection is purely conductive across these bound-
aries. Integrating over a single convection cell, the Nusselt number is

N =
1

LyJcond
E

∫ 0

−Ly

dy (−λ)
∂T total(y, z)

∂z

∣∣∣∣
z=±1/2

= 1 −
N∑

n=1

T s
0n2nπ(−1)n. (6.48)

The temperature in the integrand is the sum of the conductive temperature field
plus the convective perturbation, Eq. (6.11). The conductive part gives rise to
the first term, 1, and the convective terms involving sin 2nπz and l = 0 give rise
to the remainder.

As mentioned above, for a given Rayleigh number R > Rc, there is a range
of wave numbers a that yield steady state solutions. Hence the Nusselt number
is a function of both, N (R, a).

6.4 Algorithm for the Cross Roll State

6.4.1 Hydrodynamic Equations and Conditions

This section sets out the computational algorithm that is used for cross roll
convection. It is supposed that the system is periodic in the x and y directions,
T (x, y, z) = T (x+mΛx, y +nΛy, z), m, n = ±1,±2, . . . The wavelength is twice
the width of an individual roll, as they come in counter-rotating pairs, Λx = 2Lx

and Λy = 2Ly. The wave number are Λx = 2π/ax, and Λy = 2π/ay.
Above the four hydrodynamic equations for the four fields, (temperature and

three velocity components) were given. Explicitly they are

0 =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
, (6.49)

∂T

∂t
= vz +

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
− vx

∂T

∂x
− vy

∂T

∂y
− vz

∂T

∂z
, (6.50)
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0 = R∂T

∂x
+ ∇2

[
∂vz

∂x
− ∂vx

∂z

]
, (6.51)

and

0 = R∂T

∂y
+ ∇2

[
∂vz

∂y
− ∂vy

∂z

]
. (6.52)

Taking the x derivative of the penultimate equation, the y derivative of the final
equation, using the density equation, and adding them together gives,

0 = R
[

∂2

∂x2
+

∂2

∂y2

]
T +

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]2
vz

≡ R∇2
‖T + ∇2∇2vz. (6.53)

In all these equations, the temperature and velocity fields are all functions of
the position, r = {x, y, z}. In the steady state they are not functions of time,
but in a transition between states they are.

Boundary Conditions

The temperature that appears here is the perturbation due to convection. That
is, the conductive solution has been subtracted from these equations. This
means that the temperature perturbation must vanish at the upper and lower
boundaries,

T (x, y,±1/2) = 0. (6.54)

Since no fluid can cross the boundaries one must also have

vz(x, y,±1/2) = 0. (6.55)

The boundaries are solid walls at which the fluid sticks, so that one also has

vx(x, y,±1/2) = vy(x, y,±1/2) = 0. (6.56)

Since this last equation implies that ∂vx(x, y,±1/2)/∂x = ∂vy(x, y,±1/2)/∂y =
0, the density equation implies that ∂vz(x, y, z)/∂z|z=±1/2 = 0.

Symmetry

The fundamental convection cell, −Lx ≤ x ≤ Lx and −Ly ≤ y ≤ Ly, con-
tains two counter rotating rolls in each direction. Hence there is mirror plane
symmetry at x = 0 and at y = 0. This means that

T (x, y, z) = T (−x, y, z) = T (x,−y, z),

vx(x, y, z) = −vx(−x, y, z) = vx(x,−y, z),

vy(x, y, z) = vy(−x, y, z) = −vy(x,−y, z),

vz(x, y, z) = vz(−x, y, z) = vz(x,−y, z). (6.57)
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These mean that the expansion for the temperature must be even in the lateral
coordinates, and so must consist of terms like Tqp(z) cos(qaxx) cos(payy), q and
p being non-negative integers. A similar expansion holds for vz. Obviously for
vx and vy the respective cosine is replaced by a sine.

The Boussinesq symmetry refers to the reflection symmetry within a roll.
For r = {x, y, z}, define r† = {Lx − x, Ly − y,−z}. One must have

T (r) = −T (r†), and v(r) = −v(r†). (6.58)

These basically say that the convective temperature perturbation at the top of
an up draught must be equal and opposite to that at the bottom of a down
draught. It may be confirmed that the hydrodynamic equations in Boussinesq
approximation given above satisfy this symmetry.

6.4.2 Fourier Expansion

In view of the Boussinesq symmetry and the facts that cos(qax(Lx − x)) =
(−1)q cos(qaxx) and cos(pay(Ly − y)) = (−1)p cos(payy), one sees that Tqp(z)
must be an odd function of z if q+p is even, and it must be an even function of z
if q+p is odd. Since T (x, y,±1/2) = 0, and since sin(2nπz) and cos((2n+1)πz)
vanish at z = ±1/2, the expansion for the temperature is

T (r) =

Q∑
q=0

P∑
p=0

N∑
n=0

Tqpn cos qaxx cos payy

{
sin 2nπz, q + p even,
cos 2n′πz, q + p odd,

(6.59)

where n′ ≡ (2n + 1)/2, and Tqp0 = 0 if q + p is even. The vertical component of
velocity has a similar expansion

vz(r) =

Q∑
q=0

P∑
p=0

N∑
n=0

vz
qpn cos qaxx cos payy

{
sin 2nπz, q + p even,
cos 2n′πz, q + p odd.

(6.60)

The x component of velocity has the expansion

vx(r) =

Q∑
q=0

P∑
p=0

N∑
n=0

vx
qpn sin qaxx cos payy

{
cos 2n′πz, q + p even,
sin 2nπz, q + p odd,

(6.61)

with vx
0pn = 0. Similarly

vy(r) =

Q∑
q=0

P∑
p=0

N∑
n=0

vy
qpn cos qaxx sin payy

{
cos 2n′πz, q + p even,
sin 2nπz, q + p odd,

(6.62)

with vy
q0n = 0. These latter two expansions arise from the Boussinesq symmetry

and the vanishing of the velocity at z = ±1/2.
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z-Component of the Velocity

Inserting the expansions for the temperature and the z-component of the ve-
locity into Eq. (6.53) and setting the coefficients of each term to zero gives the
particular solution

vzp
qpn =

R[(qax)2 + (pay)2]

[(qax)2 + (pay)2 + M2
n]2

Tqpn (6.63)

where

Mn ≡
{

2nπ, q + p even,
(2n + 1)π, q + p odd.

(6.64)

Note the distinction between the superscript p, for particular, and the subscript
p, an integer index.

The homogeneous solution satisfies ∇2∇2vh
z (r) = 0. It has the expansion

vh
z (r) =

Q∑
q=0

P∑
p=0

cos qaxx cos payy

{
f zs

qp(z), q + p even,
f zc

qp(z), q + p odd.
(6.65)

Here it may be readily verified that the odd homogeneous solution is

f zs
qp(z) = Aqp sinh(αqpz) + Bqpz cosh(αqpz), (6.66)

and that the even homogeneous solution is

f zc
qp(z) = Aqp cosh(αqpz) + Bqpz sinh(αqpz), (6.67)

with

αqp =
√

(qax)2 + (pay)2. (6.68)

Even and odd in this context refer to the parity with respect to z.
With vz(r) = vp

z (r)+vh
z (r), the four boundary conditions, vz(x, y,±1/2) = 0

and ∂vz(x, y, z)/∂z|z=±1/2 = 0, determine the coefficients Aqp and Bqp in the
even and odd cases. It is straightforward to use the orthogonality properties of
the trigonometric functions to obtain the Fourier coefficients, vz

qpn.

x- and y-Components of the Velocity

The lateral components of the velocity can be written in the form

vx(r) =

Q∑
q=0

P∑
p=0

fx
qp(z) sin qaxx cos payy, (6.69)

and

vy(r) =

Q∑
q=0

P∑
p=0

fy
qp(z) cos qaxx sin payy. (6.70)
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In view of Eqs (6.51) and (6.52), one has

fx
qp(z) = qaxfqp(z), and fy

qp(z) = payfqp(z). (6.71)

Inserting these into the density equation, ∇ ·v(r) = 0, and equating the lateral
coefficients term by term yields

fqp(z) =
−1

(qax)2 + (pay)2

N∑
n=1

vz
qpn

{
(2nπ) cos(2nπz), q + p even,
(−2n′π) sin(2n′πz), q + p odd.

(6.72)

The boundary condition v(x, y,±1/2) = 0 is automatically satisfied, having
already been invoked in the solution of the z-component of the velocity. These
solutions for the horizontal velocity can now be projected onto the original z-
expansions, Eq. (6.61) and Eq. (6.62).

6.5 Algorithm for Convective Transitions

The preceding two sections gave numerical procedures for the straight roll steady
state and the cross roll state, respectively. For each such steady state, these al-
low single time quantities such as the temperature and velocity fields, the heat
flow (the Nusselt number, Eq. (6.48) in the case of straight rolls, or its ob-
vious generalisation for cross rolls), and the static part of the total entropy,
Eq. (6.34), to be determined. However, since the algorithms have been formu-
lated to give the evolution in time of the state of the system, they can also be
used to characterise transitions, either from the conducting state to a convecting
steady straight roll state, or from one steady straight roll state to another. This
procedure is now described.

The second entropy is the entropy associated with the transition between two
states over a given time interval, and hence it is the appropriate entropy that
determines the non-equilibrium phase transitions just mentioned. By definition,
the second entropy of two states is the logarithm of the weight of phase space
points that begin in the initial macrostate and end in the final macrostate after
the given time. Maximising the second entropy over the microstates in the given
initial macrostate gives the most likely target macrostate. Assuming that the
macrostates represent distinct phases, when the most likely target macrostate
is different to the initial macrostate, a phase transition is said to have occurred.

One can avoid the explicit calculation and maximisation of the second en-
tropy by simply choosing microstates within the initial macrostate at random
and allowing the system to evolve from these for the specified time interval.
(The meaning of ‘at random’ is discussed below.) Since the second entropy is
exceedingly sharply peaked, any such random point will almost certainly evolve
to the most likely state, and will remain there if it is a stable state.

Three transition algorithms were used, two based upon the ideal straight roll
analysis and one based upon the cross roll analysis. In the first ideal straight
roll case, a wave number a typically in the neutrally stable range [2, 10] was
chosen, with L ≈ N ≈ 10, and the algorithm proceeded using the equations
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of §6.3.13 The initial point was chosen as a small non-zero value in some low
order modes, for example T s

0,1 = T c
1,1 = 10−3. No changes to the results were

observed using other starting points. The algorithm converged to a final steady
state that represented ideal straight roll convection parallel to the y-axis of
wavelength Λ = 2π/a. Most of the power was in the fundamental mode a, with
the next most prominent mode being 3a. In this type of calculation the fixed
wave number determines the final steady state. It is most useful for obtaining
thermodynamic properties as a function of the steady state wave number, for
example, the heat flux, the static part of the entropy, and the velocity fields.
This calculation was used to obtain the results given in Table 6.1 on p. 156.

In the second type of straight roll calculation, a small wave number was cho-
sen as the fundamental, a ≈ 0.2–0.5, and a large number of modes were used,
L ≈ 60–100 and N ≈ 10. A number of different initial states were tested includ-
ing uniform distributions as well as Gaussian distributions of the temperature
coefficients. It was found that the system converged to a straight roll steady
state that was an odd harmonic of the small wave number, a = (2l + 1)a. (The
odd harmonic is demanded by the Boussinesq symmetry.) The final mode was
identified from the power spectrum.

This second type of calculation modeled the conduction to straight roll con-
vection transition. Whereas the first calculation tells the possible straight roll
steady states at a given Rayleigh number, the second calculation tells the most
likely straight roll steady state that results from a transition directly from the
conducting state at a given Rayleigh number. It is important to note that this
does not refer to the most likely state, but rather to the most likely transition
from the conducting state.

This last point is worth repeating: often for non-equilibrium systems, one
cannot speak of the most likely phase, but only of the optimum transition from
the current phase.

The cross roll algorithm described in §6.4 was used to model the cross roll
transition from a steady straight roll state with wave number ay to an orthog-
onal straight roll state with wave number ax. As in the first form of the first
algorithm, ay was fixed typically in the range [2, 10], with P = 6 and N = 6,
which gave an adequate description of the straight rolls in comparison with the
L = N = 10 calculations reported in §6.3. A small x-wave number, ax ≈ 0.2–
0.5, and a large number of modes, Q ≈ 60–100 were used. For the initial state, a
steady straight roll state of wave number ay generated by the first algorithm was
used. In most cases, the value chosen for the initial wave number lay toward one
of the extremities of the range of stable wave numbers for the Rayleigh number
in the expectation of a transition to an intermediate wave number. The steady
state temperature field was perturbed by adding an independent random num-
ber to each Tqpn (white noise). The amplitude of the noise was proportional to
the square root of the total power in the initial steady state. Typically, following
the addition of the perturbation, the total power in the y-modes increased by

13This wave number a becomes ay in the cross roll algorithm below, and L becomes P . The
converged output from this algorithm is used as the initial input to the cross roll algorithm,
with noise added.
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Figure 6.1: Components of the convective entropy density (log scale) at
R = 5000. The solid curve is the gravitational contribution, Eq. (6.32), the
long dashed curve is the negative of the kinetic energy contribution, Eq. (6.33),
and the short dashed curve is the negative of the internal energy contribution,
Eq. (6.31). The dotted curve is the sub-system entropy, Eq. (6.24). The crosses
mark the maximum of each curve.

about 10%, and the total power in the x-modes was twice as great as that in the
y-modes, with ≈ 15 times as many x-modes as y-modes. A cross roll transition
usually occurred to ideal straight rolls in the x-direction, with ax = (2q+1)ax ≈
3–4.5. In some cases the computational burden was reduced by only allowing
fundamental modes within a window about the likely outcome.

6.6 Convection Theory and Experiment

In this section the results of the convection calculations are presented using the
material properties for a typical silicone oil (see footnote 12 on p. 156). Figure
6.1 shows the three contributions to the convective entropy density at R = 5000.
This is the difference in entropy between convection and conduction calculated
using the static part of the reservoir entropy, as described in §6.2. The figure
also shows the sub-system entropy density (i.e. the difference in the sub-system
entropy between the convecting state and the conducting state). All of the wave
numbers in this and the following figures correspond to hydrodynamic steady
states, with the low wave number end of the curves signifying the limit to the
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Figure 6.2: Change in entropy density during a straight roll transition from
conduction at R = 5000. The solid curves are for a = 3, the dashed curves
are for a = 2, and the dotted curves are for a = 4. In the main figure, the
curves are the change in the total entropy density, Eq. (6.36). In the inset, the
lower three curves are the internal entropy part of the static convection entropy,
Eq. (6.31), the upper three curves are the sub-system entropy, Eq. (6.24), and
the horizontal line is a guide to the eye.

steady state ideal straight roll solutions to the Boussinesq equations. These
are so-called neutrally stable states; the steady state wave numbers beyond the
central region may be unstable to perturbations, such as in the case of the cross
roll transitions discussed further below.

It can be seen that the entropy due to the convective temperature field itself,
the internal energy contribution Eq. (6.31), is about six orders of magnitude
greater than the entropy directly due to gravity, which in turn is about two
orders of magnitude greater than the entropy due to the kinetic energy. These
results are typical for the whole range of Rayleigh numbers. Hence due to this
dominance it makes no difference whether one discusses the full static form of
the convective entropy or just the internal energy contribution. The sub-system
entropy itself, Eq. (6.24), is comparable in magnitude to the static convective
entropy, but it is positive. It decreases in magnitude approaching the limits of
the range of steady state solutions and actually becomes negative at the low
wave number end in most cases.

The static convective entropy difference, which, as shown in Fig. 6.1, is
dominated by the internal energy, is negative. One should not conclude from this
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Figure 6.3: Sub-system entropy density for ideal straight roll convection for
wave numbers in the region of neutral stability, for Rayleigh numbers from 2000
(bottom) to 6000 (top), in steps of 1000. The dashed curve shows the maxima.

that the convecting state is thermodynamically unfavorable, since this would
contradict the hydrodynamic calculations, which show that the convecting states
are stable and arise spontaneously from the conducting state with the initial
perturbation. It can be seen in Fig. 6.2 that the change in the total entropy
density, Eq. (6.36), during a straight roll transition is positive. This contrasts
with the static part of the entropy difference, Eq. (6.31), which is negative
throughout the transition. The difference in the sub-system entropy, Eq. (6.24),
is mainly positive, but not during the entire transition. (The initial data for
a = 2 in the inset, which can only just be resolved on the scale of the figure,
is negative.) The entropy change of the reservoirs completely dominates the
change in entropy of the total system during the transition. It is always found
that the change in the total entropy density is positive at each stage of the
conduction–convection transition. This means that there is indeed consistency
between hydrodynamic stability and the Second Law of Thermodynamics.

Figure 6.3 shows the difference in the sub-system entropy between convec-
tion and conduction, Eq. (6.24), for ideal straight rolls as a function of wave
number for several Rayleigh numbers. Steady state straight roll solutions could
be obtained in the range 1708 ≤ R � 55, 000, with the range of neutral stabil-
ity increasing with increasing Rayleigh number. It can be seen that at a given
wave number, the sub-system entropy density increases with increasing Rayleigh
number, and that it approaches zero toward the ends of the stable range. The
linear stability analysis of the hydrodynamic equations predicts that the con-
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Figure 6.4: Nusselt number as a function of wave number, for Rayleigh numbers
from 2000 (bottom) to 8000 (top), in steps of 1000. The maxima are shown by
the dashed curve.

vective transition occurs at Rc = 1708 and ac = 3.117 (see Yih, 1977, or Drazin
and Reid, 1981). As the critical Rayleigh number is approached from above
along the critical wave number, the sub-system entropy density approaches zero
from above. Apart from the low wave number end of the steady state range, the
change in sub-system entropy density from conduction was found to be positive.
As mentioned in connection with Fig. 6.2, the sub-system entropy density was
not always positive during the approach to the steady state, and it was also
negative in many stable states toward the low wave number end of the range.

It can be seen in Fig. 6.3 that the first and the second derivatives of the
sub-system convective entropy density vanish at the critical wave number and
critical Rayleigh number. This is analogous to behaviour in equilibrium systems
where entropy derivatives vanish at the critical point. In convection, it is known
that the hydrodynamic fluctuations diverge at the convective instability.14

Figure 6.4 shows the Nusselt number for various Rayleigh numbers as a
function of wave number over the region of neutral stability. There is a well-
defined wave number of maximum heat flux at each Rayleigh number, and this
increases with increasing Rayleigh number.

Experimentally measured wave numbers for straight roll states (data from
Fig. 7, Busse and Whitehead, 1971) are compared in Fig. 6.5 to the calculated

14See Ortiz de Zárate, J. M. and Sengers, J. V. (2001), Physica A 300, 25, and references
therein.
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Figure 6.5: The final wave number following a spontaneous cross roll transition
as a function of Rayleigh number (log scale). The open symbols are measured
data [Busse F. H. and Whitehead, J. A. (1971), J. Fluid Mech. 47, 305], and
the closed circles and triangles are cross roll calculations (P = N = 6, Q =100–
150, ax = 0.1–0.2, error bars give the standard deviation, with the data shifted
horizontally by ±5%). The initial constrained state had a large wave number
(triangles), a medium wave number (crosses), or a small wave number (circles).
The closed squares (L = 100 and ay = 0.2) and closed diamonds (L = 150 and
ay = 0.1) are the calculated conduction–convection transition. The solid and
dashed curves give the calculated wave number of maximum Nusselt number
and sub-system entropy density, Eq. (6.24), respectively.

wave numbers for maximum entropy and Nusselt number, and also to the wave
number averaged over calculated cross roll transitions. The experiments were
performed by initially constraining the system in a straight roll convecting state
with a wave number specified by means of a periodic temperature perturbation
(obtained with an intense light source and shadow mask). Upon removal of the
perturbation, there often occurred a spontaneous transition via an intermediate
cross roll state to an orthogonal straight roll state whose wave number is shown
in the figure. Only final states that are entirely or predominantly straight rolls
are analysed here. The majority of the measurements of Busse and Whitehead
(1971) either did not result in a spontaneous transition, or else did not have
a final straight roll state, or else had too many defects, and so could not be
analysed. Almost all other measurements in the literature of the convective
wavelength could not be analysed for similar reasons.
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Busse and Whitehead (1971) classified the initial wave number as small,
medium, or large, as indicated by the symbols in Fig. 6.5. The experimental
measurements indicate that the wave number can both increase and decrease in
a spontaneous transition, depending upon the initial constrained wave number
and Rayleigh number. There are barriers to changing the straight roll wave
number since continuous evolution of the wave number was not observed, and
once the orthogonal wave number is established in the intermediate cross roll
state, it remains as the wave number of the final straight roll state. Consistent
with the calculations, there is a certain width or scatter in the measured final
wave number at each Rayleigh number, which suggests that it depends upon
the initial state or the actual destabilising perturbation.

The experimental data is compared in the figure with the calculated wave
numbers that gives the maximum heat flux and the maximum sub-system con-
vective entropy at each Rayleigh number. There is no real agreement between
the observed final wave numbers and the wave number that maximises the heat
flux or the sub-system entropy. There is some similarity in the observed and
calculated wave numbers in that they tend to increase with increasing Rayleigh
number. This similarity is no more than qualitative. These data provide evi-
dence that neither the heat flux nor the sub-system entropy is maximised in the
non-equilibrium state. Since the static part of the entropy difference is negative,
one can also conclude that it does not determine the non-equilibrium state.

Some results of the cross roll transition algorithm described in §6.5 are also
shown in Fig. 6.5. Both small, ay = 2.2–2.4, and large, ay = 4.3–6.0, wave num-
ber initial states were used, with white noise added as an initial perturbation.
The number of independent trials for each initial wave number was 5–13. Each
calculation was terminated when it was judged that no further transition would
occur, generally on the basis that the power in the maximal x-mode was clearly
dominant. The logarithm of the number of transitions observed from a given
initial wave number to a given final wave number is directly related to the second
entropy of the transition. It can be seen in Fig. 6.5 that there is quantitative
agreement between the calculated and measured final wave numbers.

In addition to the cross roll transition, Fig. 6.5 also shows the average fi-
nal wave number for the conduction–convection transition whose calculation
was described in §6.5. White noise was used as a perturbation to initiate the
transition. The average final wave number appeared insensitive to the wave
number step (ay = 0.1 or 0.2), although the standard deviation was smaller for
the smaller step. It was found that in most cases the system converged to a
straight roll steady state that was an odd harmonic of the small wave number,
a = (2l + 1)a, as demanded by the Boussinesq symmetry. Beyond R � 20, 000,
ideal straight rolls did not result, or at least there was not a single clearly dom-
inant wave number. (Some such Bloch states are included in the averages for
R = 15, 000 in Fig. 6.5.) It can be seen that the wave number resulting from
the direct conduction–convection transition is larger than that resulting from a
cross roll transition.

These results show that the two types of phase transition, conduction–
convection and cross roll, differ significantly even though both result in the same



6.6. Convection Theory and Experiment 169

0 06

0.08

0.1

0.12

0.14

Po
w

er

0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time, t

Figure 6.6: The calculated modal power during a cross roll transition (R = 5000,
ay = 1.7, ax = 3.41, ax = 0.31, Q = 80, and P = N = 6). The solid, dashed,
and dotted curves are the three x-modes with highest power, and the dash-
dotted curve is the total power in the y-modes.

type of final state, namely ideal straight rolls. At a given Rayleigh number, the
ideal straight roll wave number depends upon whether it results directly from
conduction, or whether it results from a cross roll transition (and, in the latter
case, it depends on the initial wave number, as shown in Fig. 6.8 on p. 171).
One can conclude from this that a single time variational quantity whose opti-
misation determines the favored non-equilibrium pattern either does not exist,
or else has negligible influence compared to the barriers between the multiple
possible patterns. This is likely to be a general feature of non-equilibrium sys-
tems, and instead of seeking ‘the’ optimum pattern or phase, one should focus
on the optimum transition from a given phase.

The reason that the total first entropy does not determine the optimum
convective pattern is that the non-equilibrium heat flow really represents the
regression of a fluctuation of the total system. This means that one needs the
conditional probability (equivalently, the conditional second entropy) for the
initial constraint of reservoir temperature difference, rather than the uncondi-
tional probability (equivalently, the total first entropy) that would apply if the
convective pattern represented a fluctuation from the equilibrium state of the
sub-system or of the total system (i.e. no reservoir temperature difference).

The transition between two orthogonal straight roll convective states via the
cross roll intermediate state, as described in §§6.4 and 6.5, can be monitored



170 6. Heat Convection and Non-Equilibrium Phase Transitions

4.E+16

6.E+16

8.E+16

ns
it

y,
 Δ

σ
to

t(t
)L

z3 /
k B

1.8m
be

r

0.E+00

2.E+16

0 0.01 0.02 0.03 0.04 0.05

E
nt

ro
py

 D
en

Time, t

1.4

1.6

0 0.05 0.1

N
us

se
lt 

N
um

Time, t

Figure 6.7: Change in entropy density during the cross roll transition of the pre-
ceding figure. The solid curve is the change in total entropy density, Eq. (6.36),
the dashed curve is the change in the internal entropy part of the static convec-
tion entropy, Eq. (6.31), and the dotted curve is the change in the sub-system
entropy, Eq. (6.24). The inset shows the Nusselt number.

by the evolution of the power in the various modes, as shown in Fig. 6.6. In
this case the system was initially in a convecting straight roll steady state with
ay = 1.7, near the lower end of stable states, and at t = 0 white noise was added
to all the modes. This increased the total power in the y-modes by about 10%,
and created almost twice as much power in the x-modes as in the y-modes,
spread over thirteen times as many modes. The power in the x-mode q was
defined as Pxq ≡

∑
n T 2

q0n, and the total power in the x-modes was defined as
Px ≡

∑
q Pxq, and similarly for the y-modes.

The origin of the perturbations that occur in the experiments is unclear. It
is possible that noise originates from mechanical vibrations or from temperature
inhomogeneities and water flow in the heat baths, in which cases white noise
would likely be appropriate. Although the perturbation is small on the scale
of the convective temperature, it is large on molecular scales, and so treating
it as a thermodynamic fluctuation (i.e. weighting it by the exponential of the
entropy) would be problematic.

Figure 6.6 shows that the power in the x-modes grows over time at the
expense of the initially stable y-modes. By about t ≈ 0.6 the y-rolls have
disappeared, and by about t ≈ 1.5 a steady straight roll convecting state has
been established with ax = 3.41 = 11 × 0.31. The Nusselt number at t = 1.88
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Figure 6.8: The calculated final wave number ax as a function of the initial
wave number ay for cross roll transitions at R = 10, 000 (Q = N = 6, P = 100,
and ax = 0.2). The symbols signify the most likely final wave number averaged
over 6–12 trials, and the vertical bars show the standard error on the mean.
The vertical dashed lines bound the region of stable wave numbers for which no
transition occurred.

was N = 2.110, which compares well with N = 2.107 calculated using the ideal
straight roll algorithm of §6.3 for R = 5000 and a = 3.4. It can be concluded
from the figure that a cross roll transition from one straight roll state to another
has occurred. It may be called spontaneous in the sense that no constraint was
imposed on the final state (other than that it be an odd integer multiple of the
wave number step) or indeed on whether any transition would occur at all.

Figure 6.7 shows the evolution of the total entropy during a cross roll tran-
sition. It can be seen that the total entropy monotonically increases in time. It
can also be seen that the change in the static part of the convective entropy and
the change in the sub-system entropy are positive during the transition. The
dissipation, which is the rate of change of the reservoir entropy, is proportional
to the Nusselt number. Although the Nusselt number is higher for the final
state than for the initial state, it can be seen from the inset that it does not
increase monotonically during the transition.

Figure 6.8 shows the final wave numbers calculated from a series of cross roll
transitions for different initial wave numbers at a Rayleigh number of 10,000.15

15Since only cross roll transitions were permitted in the computations, their domain is
broader here than in the experiments where other transitions can supersede them.
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The most likely final wave number for any one trial is the wave number that,
out of all possible wave numbers lax, has the most power after a transition has
occurred, ax = (2l + 1)ax. This varies between trials, and it is the average
of these that is plotted for each initial wave number. It can be seen that the
final wave number depends upon the initial wave number. One aspect of this
dependence is the existence of a region of stable initial wave numbers for which
no transition was observed (6 wave numbers spanning this region were tested,
with 4–12 trials in each case). A second aspect is the systematic increase in
final wave number with decreasing initial wave number for large initial wave
numbers. One can possibly make out the opposite trend for small initial wave
numbers. This variation of the final wave number is statistically significant. It
is possible that at least part of the scatter of the experimental data in Fig. 6.5
can be attributed to a similar dependence on the initial wave number.

Figure 6.8 brings the focus to the transitions rather than the states. For a
given Rayleigh number and initial wave number, distinct final states (i.e. distinct
transitions) occur with non-negligible probability (not shown). For example, in
the case of R = 10, 000 and ay = 5.4, 4 distinct transitions actually occurred
in 9 trials, (ax = 3.4 occurred 4 times, ax = 3.0 occurred 3 times, ax = 2.6
occurred once, and ax = 3.8 occurred once). The existence of distinct final
states from which no further transitions occur signifies that patterns with a
given wave number are locally stable and that there are barriers to further
transitions, which is consistent with the experimental observations.

At a given Rayleigh number, it is less meaningful to speak of the average wave
number for ideal straight roll convection than it is to speak of the average wave
number following a transition from a given steady state. This particular point
was already made in connection with Fig. 6.5, where the distinction between
the wave number resulting from a conduction–convection transition and from
a cross roll transition was discussed. Even this is a severe simplification of the
full convective transition phenomenon, since the final wave number of the cross
roll transition depends upon the initial wave number.

Beyond heat convection, this point is true in general: for non-equilibrium
phase transitions and pattern formation, it is more useful to focus on the con-
ditional transitions between states rather than on the states themselves. By
definition, patterns in non-equilibrium systems are locally stable with barriers
inhibiting transitions between them. Under these circumstances any single time
variational principle for the pattern structure, if it exists, would have limited
utility. The same situation occurs for some difficult static problems, such as
protein structure or glass formation, where the state of global entropy maxi-
mum is not related directly to the state that actually occurs. This focus on the
transitions between non-equilibrium phases in the general case is consistent with
the conclusion for heat convection drawn from Figs 6.5 and 6.8, namely that
single time thermodynamic functions, such as the entropy or the rate of entropy
production, are insufficient to characterise the observed non-equilibrium state.



Chapter 7

Equilibrium Statistical

Mechanics

The equilibrium and non-equilibrium thermodynamics that have been presented
in the preceding chapters were justified and derived on the basis of the statistical
nature of entropy. Once the equivalence of entropy, probability, and weight has
been accepted, then all of the axioms of thermodynamics follow. One can accept
Boltzmann’s interpretation of the statistical nature of entropy in a qualitative
sense, without having to quantify exactly the number or weight of molecular
configurations in a macrostate. The cost of this is that thermodynamic parame-
ters such as the heat capacity or the thermal conductivity can only be obtained
by experimental measurement, and not from any first principles calculation.

The task of statistical mechanics is to provide a way of quantifying the en-
tropy from the nature of the interactions of the molecules that comprise the
system. This is equivalent to obtaining the probability distribution of the
molecules. Since all thermodynamic parameters can be written as functions
of the molecular configuration, the average value of the thermodynamic param-
eters of the system can then be obtained.

This chapter gives an account of classical equilibrium statistical mechan-
ics, and the following chapter extends the analysis to the non-equilibrium case.
First, phase space is introduced as representing the microstates of the system,
and Hamilton’s equations of motion are given. A very important result is then
established, namely that the phase space probability density for an isolated
system is uniform on an energy hypersurface. From this is derived the Maxwell-
Boltzmann distribution for a sub-system of a heat reservoir, which is the canon-
ical equilibrium system. This presentation of relatively well-known results for
canonical equilibrium occupies §§7.1–7.3.

In §7.4 and the following sections, time is introduced into the canonical
equilibrium system in the form of the transition probability and the evolution
equations. The nature of the dissipation in the stochastic equations of motion
of the sub-system is derived from the second entropy, and it is shown that the
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fluctuation dissipation theorem ensures that the Maxwell-Boltzmann distribu-
tion is stationary. The Fokker-Planck equation, §7.4.5, and Liouville’s theorem,
§7.5.3, are discussed for this canonical equilibrium case, as well as the trajectory
probability and time correlation functions, §7.7.

7.1 Hamilton’s Equations of Motion

The fundamental definition of entropy given in §1.4 was based upon set theory,
in which the notions of macrostates and microstates were defined. In order to
quantify the entropy, the first task is to identify the appropriate microstates for
a system composed of molecules.

The microstates must have the property that they form a complete set (at
any time the system is in a microstate), that they are disjoint (at any time
the system is in only one microstate), and that they are indivisible. The last
property of indivisibility is to be interpreted as meaning that the microstates
are the finest level of description that is going to be used to characterise the
system. Whilst internal sub-division of the microstates into smaller states may
be possible physically, one has taken the decision not to do so explicitly, but
to rather incorporate such internal configurations into the internal entropy or
weight of the microstates themselves.

For a system of N molecules, the microstates are generally taken to be phase
space, Γ ≡ {qN ,pN}, where qi is the position of molecule i, and pi is its mo-
mentum. At a given time t the system has a specific molecular configuration,
Γ(t), and so phase space satisfies the first two requirements for a set of micro-
states. Evidently, the rotational configurations of non-spherical molecules have
been ignored here, as well as the configurations of the individual electrons or
nucleons of each atom, as well as any structural rearrangements in the case of
a macromolecule.1 Obviously one should have reason to believe that it is not
necessary for the problem at hand to take into account these internal configu-
rations explicitly. As well, and as will become clearer below, it is often the case
that Γ represents the phase space of a sub-system of a larger system, and the
molecular configurations of the reservoir external to the sub-system are also not
represented explicitly. All of these ‘internal’ and ‘external’ configurations that
comprise a phase space microstate can be incorporated into the internal entropy
or weight of each phase space point.

Phase space is not the only possible choice for the microstates of the system.
One could for example choose instead the space of molecular positions and
velocities. However, it turns out that the phase space representation of an
isolated system has certain properties that simplify the probability distribution.

1Most of the following analysis is readily generalised to the case that Γ includes some or
other of these internal coordinates. The present choice of position and momentum coordinates
represents a compromise that develops statistical mechanics at the molecular level, whilst
keeping the notation and concepts simple enough that the basic principles are not obscured.
Experience shows that this level of description is sufficient for quantitatively accurate results
in a diverse range of applications.
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The time development of an isolated system is governed by Hamilton’s equa-
tions. These are equivalent to Newton’s equations of motion, but they are more
convenient because they are first order equations, and they offer a relatively
simple and transparent path for the derivation of a number of results. The
Hamiltonian H(Γ) is the total energy of the system, and is generally the sum
of the kinetic energy of the molecules and their potential energy. In the non-
equilibrium case the potential energy may be explicitly time dependent, but this
will not be considered at this stage.

The derivatives of the Hamiltonian give the rate of change of the configura-
tion,

q̇0
i =

∂H(Γ)

∂pi
, and ṗ0

i =
−∂H(Γ)

∂qi
. (7.1)

Here and throughout, a vector derivative represents an equation for each compo-
nent of the vector. The superscript 0 has been used to emphasise the adiabatic
motion. The trajectory through phase space may be denoted Γ0(t|Γ0, 0), or
more simply Γ0(t|Γ0), which is the configuration of the system at time t given
that it was at Γ0 at time t = 0.

An isolated system has evolution fixed by Hamilton’s equations of motion.
There are no non-Hamiltonian terms, and there are no stochastic terms. The
time evolution of any function of phase space is similarly determined by the
Hamiltonian, and only by the Hamiltonian.

An isolated system, which at present is the main concern, has fixed energy.
This means that energy must be conserved during the Hamiltonian evolution of
the system. One can confirm that this is indeed true since one has

dH(Γ)

dt
= Γ̇0 · ∂H(Γ)

∂Γ

=

N∑
i=1

[
ṗ0

i ·
∂H(Γ)

∂pi
+ q̇0

i ·
∂H(Γ)

∂qi

]

=

N∑
i=1

[
ṗ0

i · q̇0
i − q̇0

i · ṗ0
i

]
= 0. (7.2)

In §§ 3.7.3 and 3.7.5 the Fokker-Planck equation and Liouville’s theorem
were derived, and both involved the compressibility of the deterministic part
of the equations of motion, ∇ · Γ̇det. (The derivation given at the time was
applied to a Brownian particle and was given in terms of a variable x, but it
was mentioned that the results held with x interpreted quite generally.) In the
present case of an isolated system, the deterministic velocity is given by Hamil-
ton’s equations, Γ̇det = Γ̇0. A Hamiltonian trajectory is incompressible, which
is readily shown by invoking the divergence operator in phase space and the
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Hamiltonian expressions for the rates of change of the positions and momenta,

∇ · Γ̇0 =
N∑

i=1

∑
α=x,y,z

[
∂ṗ0

iα

∂piα
+

∂q̇0
iα

∂qiα

]

=
N∑

i=1

∑
α=x,y,z

[
−∂2H(Γ)

∂piα∂qiα
+

∂2H(Γ)

∂qiα∂piα

]

= 0. (7.3)

7.1.1 Classical versus Quantum Statistical Mechanics

A small digression is in order here to address the choice of classical over quan-
tum mechanics. Although the ultimate theory of matter and motion is quan-
tum, when there is a sufficiently large superposition of wave functions the be-
haviour tends to the classical limit. This means that larger atoms composed of
many electrons and nucleons behave classically. The cut-off in practical terms
is around about the argon atom, where the quantum correction to classical
statistical mechanics for the liquid state is on the order of a few per cent.2

Smaller objects than argon, such as hydrogen, helium, electrons, or photons,
require quantum statistical mechanics. For larger atoms or molecules, classical
statistical mechanics suffices.

The interaction potential between atoms, whether intermolecular or intra-
molecular, is predominantly due to their electrons, and this should be obtained
by quantum calculations or by experimental measurement or fit. However, once
the interaction potential has been obtained, it can be used in the classical equa-
tions of motion.

The two most common intermolecular potentials for atoms are the hard
sphere and the Lennard-Jones pair potentials. Both of these have a short-
range repulsion, which models the Fermi exclusion of the outermost electrons as
the atoms come together. The Lennard-Jones potential has in addition a long
range r−6 attractive tail, which arises from the correlated fluctuations of the
electrons of each atom (induced dipole–induced dipole), and whose magnitude is
proportional to the square of their polarisability, which can be obtained quantum
mechanically or by fitting. Some molecules have in addition a nett charge or a
permanent dipole moment, and the electrostatic potential due to these is purely
classical.

7.2 Probability Density of an Isolated System

There are essentially three ways of establishing the probability density for phase
space of an isolated system.3 The first is to simply postulate it, which is the
traditional approach to the subject, and this is called the ergodic hypothesis.

2Barker J. A. and Klein, M. L. (1973), Phys. Rev. B 7, 4707.
3Attard, P. (2002a), Thermodynamics and Statistical Mechanics: Equilibrium by Entropy

Maximisation, (Academic Press, London).
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The second is to derive it by relating a phase space average to a time average.
And the third way is to derive it by analysing the evolution of the probability
density on a trajectory. Each of these three approaches are now successively
described.

7.2.1 Ergodic Hypothesis

As just mentioned, the traditional way of presenting statistical mechanics begins
with the Ergodic Hypothesis. This consists of two postulates:

• all points of the same energy in the phase space of an isolated system are
connected by a single trajectory,

• points in phase space of equal energy are equally likely.

If phase space comprised isolated regions, contrary to the first postulate,
then a time average over a trajectory would yield different answers depending
upon which basin it began in. Non-ergodic systems, which include glasses,
annealed systems, or biological and other macromolecules, are problematic if
these disconnected equal energy regions of phase space have measurably different
properties. In this work it is assumed that the region of phase space covered by
a trajectory in the relevant time interval, is representative of all regions of phase
space with the same energy. In this sense a time integral over this accessible
part of phase space is the same as an integral over all regions of phase space
with the same energy. With the possible exception of the non-ergodic systems
just mentioned, experience shows that this is a realistic practical assumption
for actual physical systems.

The second postulate of equal a priori energy states is in many ways more
important because it determines the fundamental weight that is to be given
to phase space. The probability distribution and the entropy, not only of an
isolated system but also for sub-systems of reservoirs, are quantitatively depen-
dent upon this assumption. Because this is so important, in the following two
sections a proof of the postulate is offered that depends upon a deeper axiom,
namely that the probability density is uniform in time.

7.2.2 Time, Volume, and Surface Averages

The macrostates of classical statistical mechanics represent the values of exper-
imental observables, and these in general are functions of phase space, f(Γ).
These could be the energy, the pressure, the number of molecules, the pair dis-
tribution function, etc. Generally it is the average value of the phase function
that is needed, and this requires the probability density.

Confining attention to an isolated system, there are three different ways of
obtaining the average. The first and possibly most well known is the temporal
average. This is the average of the phase space function along a trajectory in
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time, and it is written as

〈f〉s =

∫ s

0

dt ℘(t)f(Γ0(t|Γ0))

=
1

s

∫ s

0

dt f(Γ0(t|Γ0)). (7.4)

Here s is some time interval that is long compared to molecular time scales.4

The trajectory Γ0(t|Γ0) gives the position of the system at time t starting from
Γ0 at time t = 0. The superscript zero signifies that this is the Hamiltonian
or adiabatic trajectory that is applicable to an isolated system. In this case
the average is independent of the starting position of the trajectory, although
obviously it does depend upon the energy of the isolated system, E0 ≡ H(Γ0).

The second equality follows assuming a uniform probability in time, ℘(t) =
1/s. This is a fundamental axiom: the weight of a state is linearly proportional
to the time the system spends in the state. In consequence a time average is an
unweighted average.

The second average is to take the phase space average of the function. This
requires the conditional probability density, ℘(Γ|E0). It depends upon the fixed
energy E0, since the isolated system must have energy within dE of E0. This
density gives the probability that the system will be found within dΓ of Γ. The
average of the phase function is just the integral over phase space weighted by
the probability density,

〈f〉Γ =

∫
dΓ℘(Γ|E0)f(Γ). (7.5)

The probability density can be defined as the temporal average of a Dirac δ-
function over the trajectory,

℘(Γ1|E0) =
1

s

∫ s

0

dt δ(Γ0(t|Γ0) − Γ1). (7.6)

Direct substitution and interchange of the order of integration shows that phase
and time averages are equivalent, 〈f〉Γ = 〈f〉s.

The third average invokes a surface average. Because of the fixed energy
of an isolated system, the trajectory does not cover all of phase space but is
confined to the (6N − 1)-dimensional hypersurface H(Γ) = E0. In view of
this one can define a coordinate system for the surface, γ(Γ). The relationship
is one-to-one, so that one also has Γ(γ, E0). The trajectory can be written
γ0(t|γ0) = γ(Γ0(t|Γ0)). The surface probability density is again defined as the
temporal average of a δ-function,

℘(E)(γ1) =
1

s

∫ s

0

dt δ(γ0(t|γ0) − γ1). (7.7)

4See the discussion above of the first postulate of the ergodic hyopothesis, namely that
the time interval has to be long enough that the trajectory covers a representative portion of
phase space.
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In terms of this the surface average is

〈f〉
γ

=

∮
E0

dγ ℘(E)(γ)f(Γ(γ, E0)), (7.8)

and again one may confirm the equivalence of surface and time averages, 〈f〉
γ

=
〈f〉s. Here the integral is over the energy hypersurface of thickness dE to which
the isolated system is constrained, and dγ is the element of area.

The element of phase space volume is related to the element of hypersurface
area by

dΓ = dγ dn = dγ dE/|∇H(Γ)|, (7.9)

where dn is the differential length of the normal to the energy hypersurface.
The generalised gradient is ∇ ≡ ∂/∂Γ. Where the energy gradient is steep,
the volume of phase space associated with the element of area is small, because
adjacent hypersurfaces crowd together. From this equation one sees that the
distance between two energy hypersurfaces is not constant in phase space.

The phase space probability density is related to the surface probability
density by the usual transformation of probability densities,

℘(Γ|E0) = ℘(E)(γ)

∣∣∣∣dγ

dΓ

∣∣∣∣ , |H(Γ) − E0| < dE

= ℘(E)(γ)
|∇H(Γ)|

dE
, |H(Γ) − E0| < dE

= ℘(E)(γ) |∇H(Γ)| δ(H(Γ) − E0), (7.10)

where γ = γ(Γ). In the final equality, the limit dE → 0 has been taken, which
gives the δ-function.

It is straightforward to verify the equality of surface and phase space aver-
ages,

〈f〉Γ =

∫
dΓ℘(Γ|E)f(Γ)

=

∫
dγ dE

|∇H(Γ)| |∇H(Γ)| δ(H(Γ) − E)℘(E)(γ)f(Γ)

=

∮
E0

dγ ℘(E)(γ)f(Γ(γ, E))

= 〈f〉
γ

. (7.11)

Hence one can see that temporal, phase space, and hypersurface averages are
equivalent, and hence that this formulation of classical statistical mechanics is
internally consistent.

The characteristic function may be defined from the ratio of the surface and
the phase space probability densities given above,

χ(Γ, E0) ≡ |∇H(Γ)| δ(H(Γ) − E0). (7.12)
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This is the area density of the hypersurface in phase space. Hence the area of
the energy hypersurface is

A(E0) =

∮
E0

dγ

=

∫
dΓ |∇H(Γ)| δ(H(Γ) − E0) =

∫
dΓχ(Γ, E0). (7.13)

The equality of these follows by direct substitution of the volume and area
elements given above.

The above results have been cast in what might be called the natural repre-
sentation, namely in terms of the energy hypersurface, based upon the constancy
of the energy. However, any function of the energy, say g(E), is also a constant
of the motion, and there is no real reason to single out the energy hypersurface
as the preferred surface.5 This means that the results should be invariant to the
representation. One can verify that this is so from the characteristic function,

χ(Γ, E0) = |∇H(Γ)| δ(H(Γ) − E0)

= |∇gH(Γ)| δ(gH(Γ) − G0). (7.14)

Here gH(Γ) ≡ g(H(Γ)) and G0 ≡ g(E0). The final equality demonstrates that
the characteristic function is invariant with respect to the representation of
the hypersurface. On physical grounds this is an essential requirement of the
formulation of the theory. The following results are given in the ‘natural’ energy
representation, but they are unchanged in any other representation.

7.2.3 Energy Uniformity

The probability density on the hypersurface is now obtained explicitly from the
uniform temporal probability density, ℘(t) = 1/s. This is then transformed to
the probability density in phase space using the characteristic function defined
above.

The probability density on the hypersurface follows from the usual rules for
the transformation of probability densities,

℘(E)(γ) = ℘(t)

∣∣∣∣ dt

dγ

∣∣∣∣ ∝ 1

|γ̇0| . (7.15)

This assumes that the experimental time scale s is short compared to the system
recurrence time, so that the trajectory only passes within dγ of γ once. It
also assumes that s is long enough so that it covers a representative selection
of points on the hypersurface. The physical interpretation follows from the
temporal representation, Eq. (7.7). The integral over the δ-function gives the
total time that is spent in the neighbourhood of γ, namely tγ = dγ/|γ̇0|. The
probability of being in the area element dγ is proportional to this. Dividing by

5Arguments based upon linear additivity do give energy a preferred rôle in statistical
mechanics, but these are not relevant at this stage of the development of the theory.
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the area element gives the above expression for the probability density. Since the
velocity of the trajectory is not a constant of the motion, one can immediately
conclude from this result that the surface probability density is not uniform on
the surface.

In general terms it is more convenient to operate with the phase space proba-
bility density rather than the hypersurface probability density. Using the above
result for the latter, Eq. (7.15), and the conversion rule Eq. (7.10), the phase
space probability density is

℘(Γ|E) ∝ |∇H(Γ)|
|γ̇0|

1

dE
, |H(Γ) − E| < dE

∝ |∇H(Γ)|
|Γ̇0|

δ(H(Γ) − E). (7.16)

(Here and henceforth the initial energy E0 has been more simply written E.)
This has the physical interpretation that the probability density is propor-
tional to the time that the system spends in an elementary cell, which re-
mains tγ , as given above, (since |Γ̇0| = |γ̇0| because |γ1 − γ2| = |Γ(γ1, E) −
Γ(γ2, E)| = |Γ1 − Γ2|), and it is inversely proportional to the volume element
dΓ = dγdE/ |∇H(Γ)|.6

For the present physical problem of an isolated system that evolves according
to Hamilton’s equations of motion, the phase space probability density takes on
a remarkably simple form. First one can introduce a normalising factor, the
partition function or total weight, Z ′(E), so that the proportionality in the
above expression may be replaced by an equality,

℘(Γ|E) =
|∇H(Γ)|
|Γ̇0|Z ′(E)

δ(H(Γ) − E). (7.17)

Now in the space of canonical positions and momenta, one has for a Hamiltonian
system,7

|∇H(Γ)|2 =
N∑

i=1

∂H
∂qi

· ∂H
∂qi

+
∂H
∂pi

· ∂H
∂pi

=
N∑

i=1

ṗ0
i · ṗ0

i + q̇0
i · q̇0

i

= |Γ̇0|2. (7.18)

6Hamilton’s equations of motion have not been assumed in deriving this result, although
it has been assumed that H(Γ) is a constant of the motion. One can possibly imagine some
system that evolves under arbitrary equations of motion, with H(Γ) representing some con-
served variable. In such a case, these two desiderata could be taken as the self-evident axioms
that determine the probability density of such a non-Hamiltonian system.

7On physical grounds these measures of length are improper because they add quantities
with different dimensions. Hence a metric element really ought to appear in these sums. This
will change the value of the length of the gradient and of the speed of the trajectory, but it
will make no difference to the final conclusion that the two are equal.
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The equality of these is a remarkable coincidence, and is a unique feature of
Hamilton’s equations of motion.

With this result, the numerator and the denominator cancel leaving a par-
ticularly simple expression for the probability density in phase space,

℘(Γ|E, N, V ) =
δ(H(Γ) − E)

Z ′(E, N, V )
. (7.19)

For completeness, the volume V and number of molecules N of the system have
also been signified here.

One can conclude from this result that phase space points with the same
energy are equally likely. This is not the same as saying that the probability
density of an isolated system is uniform in phase space, since the δ-function
is highly nonuniform (but see §7.2.6 below for phase space itself). One might
interpret this as saying that the phase space probability density is uniform
on the energy hypersurface, provided that one keeps in mind that the surface
probability density itself is non-uniform on the energy hypersurface, due to the
fact that it varies in inverse proportion to the variation in the trajectory speed.

Using the explicit results for the probability densities, the average of a func-
tion of phase space for an isolated Hamiltonian system of energy E is

〈f(Γ)〉 =
1

Z ′(E, N, V )

∫
dΓ f(Γ)δ(H(Γ) − E)

=
1

Z ′(E, N, V )

∮
E

dγ

|γ̇|f(Γ(γ, E)). (7.20)

This version of the partition function is (but see also below),

Z ′(E, N, V ) =

∫
dΓ δ(H(Γ) − E) =

∮
E

dγ

|γ̇0| . (7.21)

7.2.4 Trajectory Uniformity

In Ch. 1, Eq. (1.28), a conservation law for weight was given,
∑

j ω(j, i|τ) = ω(i),
which says that the microstate transition weight distributes the original weight
of microstate i amongst all the target microstates j. This conservation law will
now be used to give an alternative demonstration that phase space points of
equal energy have equal probability.

Let Γ0(t|Γ0) be the position in phase space at time t of a system that was
at Γ0 at time t = 0. The system is isolated and this trajectory is determined by
Hamilton’s equations of motion, as signified by the superscript 0. Let ℘0(Γ) be
the initial phase space probability density at t = 0, and let ℘(Γ, t) be the phase
space probability density at time t that evolves from this initial density. The
first task is to show that ℘(Γ|t) is constant following the trajectory, and the
second task is to show that this implies that the probability density is uniform
on the trajectory.
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The total rate of change of the probability density is

d℘(Γ, t)

dt
=

∂℘(Γ, t)

∂t
+ Γ̇0 · ∇℘(Γ, t). (7.22)

This is just the definition of the total derivative. Note that in contrast to the
analysis in §3.7, there are no stochastic terms here, because the equations of
motion of an isolated system are completely determined by Hamilton’s equa-
tions.

Because of the deterministic nature of the Hamiltonian trajectory, the con-
ditional transition probability is formally ℘(Γ2|Γ1, t21) = δ(Γ2 − Γ0(t21|Γ1)).
This means that∫

dΓ2 ℘(Γ2, t2;Γ1, t1) =

∫
dΓ2 δ(Γ2 − Γ0(t21|Γ1))℘(Γ1, t1)

= ℘(Γ1, t1). (7.23)

This is the just the conservation law for probability, Eq. (1.28). The conservation
law implies that there exists a probability flux, Γ̇0℘(Γ, t), which is just the
adiabatic limit of the probability flux discussed in §3.7.5. With this the rate
of change of probability density at a fixed position is given by the negative
divergence of this flux,

∂℘(Γ, t)

∂t
= −∇ · [Γ̇0∇℘(Γ, t)]. (7.24)

Since phase space is incompressible under Hamilton’s equations of motion, ∇ ·
Γ̇0 = 0, (§7.1), one therefore has

∂℘(Γ, t)

∂t
= −Γ̇0 · ∇℘(Γ, t), (7.25)

from which it follows that the total time derivative of a probability density in
an isolated system vanishes,

d℘(Γ, t)

dt
= 0. (7.26)

This says that the phase space probability density is constant, moving along
with a trajectory.

The physical interpretation of this is as follows. The incompressibility of
phase space under Hamilton’s equations of motion implies that volume is pre-
served during its evolution. Hamiltonian trajectories do not cross, and so the
evolution of a volume is well defined: trajectories initially inside the boundary
remain inside, and those outside remain outside. The conservation law for prob-
ability implies therefore that the weight inside the volume remains inside the
volume, and since the volume itself is constant, this means that the probability
density is constant following a trajectory.

An equivalent argument was originally given by Boltzmann. Consider two
regions of phase space the second of which evolved from the first after a time
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Figure 7.1: A volume of phase space, its evolution, and a single trajectory
passing through them.

τ (Fig. 7.1). The regions have different shapes but the same volume. Consider
a trajectory passing through these volumes, now regarded as fixed regions of
phase space. Let tA and tB be the times it entered and left the original volume,
and let tC and tD be the times it entered and left the evolved volume. Since
the boundary of the second region evolves from the boundary of the first region
after time τ , one must have tC − tA = tD − tB = τ . This implies that the
trajectory spent an equal amount of time in the two regions, tB − tA = tD − tC .
Since the probability of a region of phase space is linearly proportional to the
time a system spends in it, it follows that evolved volumes of phase space lying
on a single trajectory are equally likely.

These arguments show that the probability density is constant following a
trajectory, ℘(Γ0(t1|Γ0), t1) = ℘(Γ0(t2|Γ0), t2). To prove from this that the
probability is uniform on the trajectory, ℘(Γ0(t1|Γ0), t) = ℘(Γ0(t2|Γ0), t), one
simply notes that for a system in equilibrium, the partial temporal derivative
of the probability density must vanish,

∂℘(Γ, t)

∂t
= 0. (7.27)

Since the probability density also moves along the trajectory, this implies that
the probability density must be uniform along the trajectory,

℘(Γ0(t|Γ0), t) = ℘0(Γ0), all t. (7.28)

Taking into account the first postulate that forms the ergodic hypothesis—all
points with the same energy lie on a single trajectory—this is equivalent to
Eq. (7.19): phase space points with the same energy are equally likely.

7.2.5 Partition Function and Entropy

The partition function, Z ′(E, N, V ), which normalises the probability density,
represents the total weight of the isolated system, and its logarithm is the total
entropy. The mathematical formulation of entropy discussed in §1.4 invokes
sums over distinct states. In the present phase space, the particles are indis-
tinguishable, which means that if two particles are swapped, then the system
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remains in the same microstate. For example, with γ ≡ {q,p}, the microstate
Γ1 ≡ {γ′, γ′′, γ3, . . . ,γN} and the microstate Γ2 ≡ {γ′′, γ′, γ3, . . . ,γN} are
physically identical and cannot be counted as distinct microstates. Hence inte-
grals over phase space, including the partition function, should be reduced by a
factor of N ! to count only distinct states.8 This becomes important for systems
with variable numbers of particles and for the number derivative of the entropy.

The probability density should have the dimensions of inverse phase space
volume. Also, the partition function should be dimensionless so that its log-
arithm may be properly taken to give the total entropy. Planck’s constant,
h = 6.63 × 10−34 J s, has the dimensions of momentum times length, and one
can define a convenient measure of phase space volume as Δ ≡ h3N . One also
needs to cancel the dimensions of inverse energy of the δ-function by introducing
an energy measure ΔE.

These two considerations lead to the final expression for the phase space
probability density of an isolated system,

℘(Γ|E, V, N) =
ΔEδ(H(Γ) − E)

h3NN ! Z(E, V, N)
. (7.29)

Normalisation of this is ensured by the dimensionless partition function,

Z(E, V, N) =
ΔE

h3NN !

∫
dΓ δ(H(Γ) − E) . (7.30)

The energy constant ΔE represents the width of the energy hypersurface.
The δ-function is really a coarse grained top hat function. The numerical value
of ΔE has no physical consequences. It turns out that the partition function
is an exponentially varying function of the energy, and so ΔE could even vary
slowly with energy without measurable consequence. It is a convenience rather
than a necessity to introduce the energy constant explicitly.

Using Planck’s constant to give the correct dimensions of phase space might
suggest a quantum mechanical justification for it. However, this is not the case;
there is nothing in classical mechanics that demands the existence of quantum
mechanics, and the present development of statistical mechanics is purely clas-
sical. The value chosen for the constant has no physical consequences, which
means that one could proceed by setting it to unity if one wanted.9

The entropy of the isolated system is the logarithm of its total weight,

S(E, N, V ) = kB ln Z(E, N, V )

= kB ln
ΔE

h3NN !

∫
dΓ δ(H(Γ) − E). (7.31)

8For example, for three particles on a line, and f(x1, x2, x3) unchanged by permutation of
the arguments,

∫
dx1

∫
x2>x1

dx2
∫

x3>x2
dx3 f(x1, x2, x3) =

∫
dx3 f(x1, x2, x3)/3!, where the

first integral is over distinct states and the second integral is over all states.
9Below, sub-systems that can exchange a conserved variable (e.g. energy, number, or vol-

ume) with a reservoir will be treated. For such an exchangeable parameter A, one can always
define the probability density or partition function with an arbitrary factor of ΔA exp λAA,
with no physical consequences.
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The derivatives of this give the various thermodynamic properties. For ex-
ample, the temperature of the isolated system is given by ∂S(E, N, V )/∂E =
1/T (E, N, V ).

7.2.6 Internal Entropy of Phase Space Points

In the next section the Maxwell-Boltzmann distribution is derived, which is the
probability density for the phase space of a sub-system of a thermal reservoir.
In order to obtain the correct result, the internal entropy of points in phase
space is required.

The energy weight density, which is the total weight per unit energy, is
ω(E, N, V ) = Z(E, N, V )/ΔE . This may also be written as the integral over
the weight density of phase space, ω(Γ), namely

ω(E, N, V ) =

∫
dΓω(Γ)δ(H(Γ) − E). (7.32)

From these two and the expression for the partition function, one concludes that
unconditional phase space has uniform weight density,

ω(Γ) =
1

h3NN !
. (7.33)

This weight density enables the definition of the entropy of a point in phase
space,

S(Γ) = kB ln [ω(Γ)ΔΓ] . (7.34)

In terms of these the unconditional phase space probability density is

℘(Γ) =
ω(Γ)

Z ′′
=

eS(Γ)/kB

ΔΓZ ′′
. (7.35)

The arbitrary volume element ΔΓ again has no physical consequence, even if it
is taken to vary with Γ. Where it appears explicitly in the probability density
cancels its implicit appearance in the definition of the entropy, as the first equal-
ity shows. It is included here so that the logarithm is taken of a dimensionless
number and so that the probability density has explicitly the correct dimensions.
Also, it ensures that the entropy is invariant with respect to transformations of
phase space. For convenience, one could take it to be constant, or even set it
equal to N !h3N .

7.3 Canonical Equilibrium System

7.3.1 Maxwell-Boltzmann Distribution

In this section the total isolated system will be taken to consist of a sub-system
labelled s and a thermal reservoir labelled r. The total energy Et = Es + Er is
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fixed, but the individual energy fluctuates due to exchange across the thermal
boundary between the two systems. The total Hamiltonian is the sum of the
Hamiltonian of each system, Ht = Hs+Hr, which assumes that the interactions
across the boundary are relatively negligible. The particles are confined to
their respective volumes, so that the phase integrals permute particles within
each system but not between each system. This means that the correction for
counting distinct states is Ns!Nr! rather than (Ns + Nr)!.

The total weight or partition function when sub-system s has energy Es is

Z(Es|E, Vs, Ns, Vr, Nr)

=
Δ2

E

h3Nsh3Nr

∫
dΓs

Ns!

∫
dΓr

Nr!
δ(Es −Hs) δ(Et −Ht)

=
Δ2

E

h3Nsh3Nr

∫
dΓs

Ns!
δ(Es −Hs)

∫
dΓr

Nr!
δ(Et − Es −Hr)

= Z(Es, Ns, Vs)Z(Et − Es, Nr, Vr). (7.36)

The total weight is the product of the weights of the two systems in their
respective states. Taking the logarithm of this gives the total entropy as the
sum of the individual entropies,

S(Es|Et, Vs, Ns, Vr, Nr) = S(Es, Ns, Vs) + S(Et − Es, Nr, Vr)

= S(Es, Ns, Vs) −
Es

Tr
+ const. (7.37)

In the second equality, the second system has been taken to be a reservoir in-
finitely larger than the sub-system, and a Taylor expansion has been performed
about the total energy Et, neglecting higher-order terms that scale as powers
of Es/Et. The constant S(Et, Nr, Vr) is independent of the sub-system s and
will henceforth be neglected. The quantity −Es/Tr will be called the reservoir
entropy, although it would be more precise to call it the sub-system dependent
part of the reservoir entropy. The second equality uses the definition of temper-
ature, namely that its inverse is the energy derivative of the entropy. Henceforth
the subscripts s and r can be dropped because the reservoir only enters through
its temperature, and all other quantities refer to the sub-system.

The probability for the sub-system to have a particular energy is the expo-
nential of the constrained total entropy,

℘(E|N, V, T ) =
1

ΔEZ(N, V, T )
eS(E,N,V )/kBe−E/kBT . (7.38)

The final factor is called the Boltzmann factor. This signifies the fact that an
isothermal system, which is a system that can exchange energy with a heat
reservoir, has probability proportional to the exponential of the negative of
its energy divided by temperature. This exponent is just the state-dependent
reservoir entropy. Obviously there is a second factor here, the exponential of the
internal entropy of the sub-system in the state (see below). The normalising,
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dimensionless partition function is10

Z(N, V, T ) =
1

ΔE

∫
dE eS(E,N,V )/kBe−E/kBT

=
1

N !h3N

∫
dE e−E/kBT

∫
dΓ δ(H(Γ) − E)

=
1

N !h3N

∫
dΓ e−H(Γ)/kBT , (7.39)

where the final line follows upon interchanging the order of integration.

The most important probability density for an isothermal system is that for
the sub-system phase space. This can be obtained from the energy probability
density,

℘(Γ|N, V, T ) =

∫
dE ℘(Γ|E, N, V )℘(E|N, V, T )

=

∫
dE

ΔEδ(H(Γ) − E)

N !h3NZ(E, N, V )

eS(E,N,V )/kBe−E/kBT

ΔEZ(N, V, T )

=
e−H(Γ)/kBT

N !h3NZ(N, V, T )
. (7.40)

The first equality is a standard application of the laws of probability;11 the first
probability is for an isolated sub-system with energy E, which is independent of
the reservoir temperature. The partition function in the denominator and the
entropy in the exponent cancel because S(E, N, V ) = kB ln Z(E, N, V ). Finally,
the Dirac δ is used to undo the integration. This phase space probability density
has the desired dimensions and is correctly normalised.

This result is the most common form of the Maxwell-Boltzmann distribution.
The lack of internal entropy in this form compared to Eq. (7.38) results from
the fact that points in phase space have equal weight density, Eq. (7.33). The
exponent is the sub-system part of the reservoir entropy, and this Maxwell-
Boltzmann distribution can be simply interpreted as the exponential of the
total entropy of a sub-system phase point for a sub-system in contact with a
thermal reservoir.

7.3.2 Helmholtz Free Energy

In general there are two contributions to the total entropy (that of the reservoir
and that of the sub-system), and there are three types of total entropy, which
correspond to statistical mechanics, fluctuation theory, and thermodynamics,
respectively. These, and the corresponding Helmholtz free energies, are now

10Note that Z(E,N, V ) and Z(N, V, T ) are two completely different functions; here and
throughout the form of the arguments is used to indicate the type of the function.

11One has ℘(a|c) =
∑

b ℘(ab|c) =
∑

b ℘(a|bc)℘(b|c) =
∑

b ℘(a|b)℘(b|c), the final equality
holding if and only if b ∩ c = b. In this case the temperature of the reservoir T (the c) is
irrelevant when the sub-system energy E1 (the b) is specified.
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derived for the canonical equilibrium system of a sub-system and a thermal
reservoir.

The total entropy is the sum of that of the reservoir and that of the sub-
system,

St(N, V, T ) = Sr(N, V, T ) + Ss(N, V, T ). (7.41)

This may be evaluated explicitly by writing

St(N, V, T ) = kB ln Z(N, V, T ) (7.42)

= kB

∫
dΓ℘(Γ|N, V, T ) ln Z(N, V, T )

= kB

∫
dΓ℘(Γ|N, V, T )

[
ln

e−βH(Γ)

N !h3N
− ln ℘(Γ|N, V, T )

]

=
−〈H〉T

T
− kB

∫
dΓ℘(Γ|N, V, T ) ln

[
N !h3N℘(Γ|N, V, T )

]
.

This is the unconstrained total entropy, by which is meant it is the sum total
of the weights over all the states. The first term on the right-hand side of the
final equality is evidently the average reservoir entropy, (c.f. Eq. (7.37) above),

Sr(N, V, T ) =
−〈H〉T

T
. (7.43)

Hence the remaining term is the sub-system entropy,

Ss(N, V, T ) = −kB

∫
dΓ℘(Γ|N, V, T ) ln

[
N !h3N℘(Γ|N, V, T )

]
. (7.44)

In Ch. 1, Eq. (1.22), the total entropy was written as the average internal entropy
of the macrostate minus the average logarithm of the probability. In the present
case the phase space microstates of the isolated sub-system are all equally likely,
and hence they have no internal entropy as such. However, when the sub-system
is in contact with the heat reservoir there is an entropy associated with each
microstate due to the loss of energy from the reservoir.

The general definition of a free energy is that it is minus the temperature
times the total entropy.12 For an isothermal system it is called the Helmholtz
free energy and in statistical mechanics this is

FSM(N, V, T ) = −TSt(N, V, T )

= −kBT ln Z(N, V, T )

= 〈H〉T − TSs(N, V, T ). (7.45)

This is the unconstrained free energy. This is a characteristically statistical
mechanical result, with the averages of phase functions appearing.

12This definition—the free energy is minus the temperature times the total entropy—is
completely general and applies to all systems, not just isothermal systems, and not just
equilibrium systems. Hence maximising the total entropy is mathematically equivalent to
minimising the free energy. Generally it is the constrained quantities that are extremised.
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The second type of entropy is the constrained entropy. This is the total
entropy when the sub-system is constrained to have energy E,

St(E|N, V, T ) =
−E

T
+ Ss(E, N, V ). (7.46)

The first term on the right-hand side is the sub-system dependent reservoir
entropy, and the second term is the sub-system entropy, both evaluated in the
macrostate E (i.e. when the sub-system has energy E). The corresponding
free energy is the constrained Helmholtz free energy, which is just minus the
temperature times this,

F (E|N, V, T ) = E − TSs(E, N, V ). (7.47)

The constrained free energy, like the constrained total entropy, has four inde-
pendent variables as arguments. These constrained functions are appropriate
for fluctuation theory, since the probability of the sub-system to have energy E
is proportional to their exponential.

The final type of entropy is the maximal constrained entropy. The most likely
value of the sub-system energy, E(N, V, T ), maximises the total constrained
entropy,

∂St(E|N, V, T )

∂E

∣∣∣∣
E=E

= 0. (7.48)

Equivalently, it minimises the constrained Helmholtz free energy. Direct sub-
stitution shows that this optimal energy is the one that makes the sub-system
temperature equal to the reservoir temperature, Ts(E, N, V ) = T . The maximal
constrained total entropy is the constrained total entropy evaluated at this most
likely energy,

St(E|N, V, T ) =
−E

T
+ Ss(E, N, V ). (7.49)

The corresponding free energy is the Helmholtz free energy that one finds in
thermodynamics texts,

FTD(N, V, T ) = E − TSs(E, N, V ). (7.50)

In general the average energy of the sub-system can be replaced by the most
likely energy,

〈H〉T ≈ E(N, V, T ). (7.51)

The three types of total entropy and the corresponding Helmholtz free en-
ergies are summarised in Table 7.1. In these and all other cases, the free energy
is minus the temperature times the total entropy. As a general rule, thermody-
namics always refers to the most likely state, which is approximately the same
as the average state, whereas statistical mechanics refers to the sum over states.
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Table 7.1: The canonical total entropies and Helmholtz free energies

Entropy Free Energy Formula

unconstrained St(N, V, T ) FSM(N, V, T ) = −kBT ln Z(N, V, T )
constrained St(E|N, V, T ) F (E|N, V, T ) = E − TSs(E, N, V )
max. constrained St(E|N, V, T ) FTD(N, V, T ) = E − TSs(E, N, V )

The three total entropies are ordered such that

St(N, V, T ) > St(E|N, V, T ) ≥ St(E|N, V, T ). (7.52)

The first inequality follows because the unconstrained total entropy is a sum
of the weights of all the states, including the weight of the maximal state,
which is the middle term. If fluctuations are negligible, which they are in the
thermodynamic limit, then St(N, V, T ) ≈ St(E|N, V, T ), which justifies using
the same notation, F (N, V, T ), for both the statistical mechanical and for the
thermodynamic Helmholtz free energy. This equivalence of the thermodynamic
and statistical mechanical pictures may be shown explicitly by evaluating the
total unconstrained entropy in fluctuation approximation

−TSt(N, V, T )

= −kBT ln Z(N, V, T )

= −kBT ln

∫
dE

1

ΔE
e−E/kBT eSs(E,N,V )/kB

≈ −kBT ln

[
e−E/kBT eS(E,N,V )/kB

∫
dE

ΔE
eSEE(E−E)2/2kB

]

= E − TS(E, N, V ) +
kBT

2
ln

−2πkB

Δ2
ESEE

. (7.53)

The second derivative of the sub-system entropy, SEE(E, N, V ), is related to the
heat capacity. The right-hand side is the thermodynamic Helmholtz free energy
with a logarithmic correction that for macroscopic systems may be neglected.
That is, in the thermodynamic limit, V → ∞, E/V → const., N/V → const.,
the logarithmic correction is relatively negligible compared to the first two
terms, which scale with the volume. One concludes from this explicit result
that FSM(N, V, T ) = FTD(N, V, T ) with negligible error in the thermodynamic
limit.
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The temperature derivative of the total unconstrained entropy is

∂St(N, V, T )

∂T
= kB

∂ ln Z(N, V, T )

∂T

=
kB

Z(N, V, T )

∂

∂T

∫
dE

1

ΔE
e−E/kBT eSs(E,N,V )/kB

=
kB

Z(N, V, T )

1

kBT 2

∫
dE

E

ΔE
e−E/kBT eSs(E,N,V )/kB

=
1

T 2
〈E〉T . (7.54)

This is an example of a general result: derivatives of the total unconstrained
entropy (equivalently, the logarithm of the partition function) yield average
values. The corresponding thermodynamic quantity is

∂[−FTD(N, V, T )/T ]

∂T
=

∂

∂T

[
−E

T
+ Ss(E, N, V )

]
N,V

= −E
∂T−1

∂T
+

(
∂E

∂T

)
N,V

∂St(E|N, V, T )

∂E

∣∣∣∣
E=E

=
E

T 2
. (7.55)

Notice how the variational nature of the constrained total entropy made the
second term of the right-hand side of the second equality vanish. This is a
significant advantage of the present variational formulation that holds for all
systems, not just the present canonical isothermal one. The second general
result that is embodied here is that derivatives of the thermodynamic free energy
yield most likely values. The equality of average values and most likely values
confirms the equivalence of the statistical mechanical and the thermodynamic
pictures, 〈E〉T ≈ E.

7.3.3 Probability Distribution for Other Systems

Table 7.2 summarises the thermodynamic potentials, sometimes called free
energies, of the most common thermodynamic systems. The partial deriva-
tives of the free energies are given by the coefficients in the total differen-
tial. In the table, p is pressure and μ is chemical potential. The over-line
on the free energies indicates the minimal or thermodynamic value, for example
F ≡ F (E|N, V, T ) = FTD(N, V, T ).

The free energies in the table can be used to obtain the reservoir entropy and
hence the probability density for phase space for the common thermodynamic
systems. One simply multiplies the free energy by −1/T to obtain the total
entropy, subtracts the sub-system entropy S(E, N, V ) to obtain the reservoir
entropy, and replaces the energy by the Hamiltonian, E ⇒ H(Γ).

For the case of an isobaric system, this gives for the reservoir entropy

Sr(Γ, V |N, p, T ) =
−H(Γ)

T
− pV T, (7.56)
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Table 7.2: Summary of the common thermodynamic systems†

System Constrained potential Equilibrium potential
Parameters Differential

Isolated – Entropy, S
N , V , E TdS = dE + pdV − μdN

Isothermal F = E − TS(E, V, N) Helmholtz, F
E|N, V, T dF = −SdT − pdV + μdN

Open Ω = E − TS(E, V, N)− μN Grand, Ω
N, E|μ, V, T dΩ = −SdT − pdV − Ndμ

Isobaric G = E − TS(E, V, N) + pV Gibbs, G
E, V |N, p, T dG = −SdT + V dp + μdN

Isenthalpic Φ = −TS(H − pV, V, N) Φ
V |N, H, p; T TdΦ/T = −dH + V dp + μdN

+Φ TdT/T 2

Isentropic H = E(S, V, N) + pV Enthalpy, H

V |N, S, p dH = V dp + μdN + TdS
†From Attard (2002a), Ch. 3.

and for the probability density

℘(Γ, V |N, p, T ) =
e−βH(Γ)e−βpV

N !h3NΔVZ(N, p, T )
, (7.57)

where ΔV is an arbitrary constant with the dimensions of volume. This is the
probability density for a sub-system that can exchange energy and volume with
a reservoir of constant pressure and temperature. The Hamiltonian is generally
a function of the volume, since it usually includes potential energy terms that
represent the walls of the sub-system, and this must be taken into account in
assessing the volume probability.

Another common system is the grand system, which can exchange particles
and energy with a reservoir of constant temperature and chemical potential.
For a multi-component system, N ≡ {N1, N2, . . . , NM}, with reservoir chemical
potentials μ ≡ {μ1, μ2, . . . , μM}, the reservoir entropy is

Sr(Γ, N |μ, V, T ) =
−H(Γ)

T
+

N · μ
T

, (7.58)
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and the probability density is

℘(Γ, N |μ, V, T ) =
e−βH(Γ)eβN·μ∏

α [Nα!h3Nα ] Z(μ, V, T )
. (7.59)

Again the Hamiltonian is a function of number, and its change as particles
are exchanged with the reservoir must be taken into account for the number
probability density.

7.3.4 Equipartition Theorem

The Hamiltonian is the total energy of the isolated system, and can be written
as the sum of the kinetic energy and the potential energy, H(Γ) = K(pN ) +
U(qN ). In the simplest case, the kinetic energy is the usual quadratic form of
the momenta,

K(pN ) =
1

2m

N∑
i=1

pi · pi. (7.60)

This assumes that all of the molecules have the same mass m.

The separability of the momentum and position coordinates, and also the
quadratic form for the kinetic energy enables a factorisation of the partition
function integrals, from which several simple analytic results can be obtained.
One example is the equipartition theorem, which follows from the average kinetic
energy,

〈K〉T =

∫
dΓ℘(Γ|N, V, T )

∑
i

p2
i /2m

=
1

2m

∑
i

∫
dpN

∫
dqN e−K(pN )/kBT e−U(qN )/kBT p2

i∫
dpN

∫
dqN e−K(pN )/kBT e−U(qN )/kBT

=
1

2m

∑
i

∫
dpi e−pi·pi/2mkBT p2

i∫
dpi e−pi·pi/2mkBT

=
1

2m

∑
i

3mkBT =
3NkBT

2
. (7.61)

Colloquially, there is said to be half a kBT per quadratic term in the Hamil-
tonian. This is called the equipartition theorem. The average kinetic energy
is often used to measure the temperature of a sub-system, including the local
temperature in a non-equilibrium system.13

A generalised equipartition theorem was discussed in §3.7.4. In the present
canonical equilibrium case, the entropy is S(Γ) = −H(Γ)/T . With x ≡ piα,

13There are other phase functions whose average gives the temperature. Rugh, H. H. (1997),
Phys. Rev. Lett. 78, 772. Attard, (2002a), §§7.2.5–6.
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Eq. (3.108) becomes

0 =

〈(
∂S(Γ)

kB∂piα

)2
〉

+

〈
∂2S(Γ)

kB∂p2
iα

〉
=
〈
(−βpiα/m)

2
〉
Γ
− β/m. (7.62)

That is,
〈
p2

iα

〉
= mkBT , in agreement with the equipartition theorem as con-

ventionally derived here.

7.4 Transition Probability

7.4.1 Stochastic Equations of Motion

The aim of this section is to obtain an explicit expression for the transition
probability for the canonical equilibrium system. In order to abbreviate the
notation, number N and volume V will not be shown explicitly, and use will
be made of the inverse temperature β ≡ 1/kBT . Also the factor N !h3N will
be incorporated into the partition function, so that the Maxwell-Boltzmann
probability distribution reads

℘MB(Γ|β) =
e−βH(Γ)

Z(β)
=

eSr(Γ)/kB

Z(β)
. (7.63)

Here the exponent has been written as the reservoir entropy, which in this
canonical equilibrium case is of course Sr(Γ) = −H(Γ)/T . This is done to
foreshadow the general non-equilibrium results that will be given in the following
chapter. The partition function is the total weight (modulo the scale factors),
and it normalises the probability distribution,

Z(β) =

∫
dΓ e−βH(Γ). (7.64)

Finally, a point in the sub-system phase space is denoted Γ ≡ {qN ,pN} ≡
{Γq,Γp}. The momentum components, Γp, will play a central rôle in the second
entropy for the transition probability.

The evolution of the probability distribution is described by the uncondi-
tional transition probability, ℘(Γ2, t2;Γ1, t1) = ℘(Γ2,Γ1), where the time ar-
guments are suppressed in the second form if there is no ambiguity. This
gives the probability that the sub-system is in the state Γ2 at t2 and Γ1 at
t1. Accordingly, the order of the arguments is unimportant, ℘(Γ2, t2;Γ1, t1) =
℘(Γ1, t1;Γ2, t2). This says nothing about the reversibility of the transition prob-
ability, which will be discussed in §7.6 below. The relationship between the con-
ditional and unconditional transition probabilities is of course ℘(Γ2, t2;Γ1, t1) =
℘(Γ2, t2|Γ1, t1)℘(Γ1, t1). Again for brevity, the conditional transition probabil-
ity may be written ℘(Γ2|Γ1, t21). The normalisation gives the evolution of the
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probability density,

℘(Γ2, t2) =

∫
dΓ1 ℘(Γ2, t2;Γ1, t1)

=

∫
dΓ1 ℘(Γ2, t2|Γ1, t1)℘(Γ1, t1). (7.65)

The transition probability for the canonical equilibrium system must be such
that the Maxwell-Boltzmann distribution is stationary under its action,

℘MB(Γ2|β) =

∫
dΓ1 ℘(Γ2|Γ1, t21)℘MB(Γ1|β). (7.66)

This provides an important constraint and test of the transition probability.

The stochastic dissipative equations of motion give the trajectory of the sub-
system through its phase space, and also the evolution of phase functions such
as the probability density. In an infinitesimal time step Δt, the change in the
location in phase space is given by Hamilton’s equations for the isolated sub-
system, which is the adiabatic part, plus a stochastic perturbation that is due
to the thermal reservoir. (See §7.4.3 below for a more formal derivation of the
equations of motion from mixed parity fluctuation theory.) For the transition

Γ1
Δt→ Γ2, Δt ≡ t2 − t1, one has

Γ2 = Γ1 + ΔtΓ̇
0 + R, Δt = t2 − t1, (7.67)

where Γ̇0 is the adiabatic velocity of the isolated sub-system, which is given by
Hamilton’s equations of motion, Eq. (7.1). The reservoir force, R, is stochastic
in nature, and is drawn from the probability distribution ℘(R|Γ1, Δt), which
is in essence the same as the conditional transition probability, ℘(Γ2|Γ1, Δt).
(Strictly speaking, it is R/Δt that is the force, but this semantic point is not
observed here.) It will turn out that the probability distribution for the random
force will depend upon the magnitude of the time step via the variance, σ ∝ |Δt|,
but not upon its direction. The random force is taken to apply to Γ1 at the
beginning of the time step.

It is important to note that the equations of motion represent a conditional
transition. These equations can be either forward or backward in time. The
forward equations give where the system will probably go to in the future. The
backward equations give where the system probably came from in the past; they
do not imply that time physically runs backwards. If Δt > 0, then Eq. (7.67)

represents a forward transition. The backward transition is Γ2
−Δt→ Γ1, Δt ≡

t2 − t1 > 0, and the stochastic equations of motion are

Γ1 = Γ2 − ΔtΓ̇
0 + R, Δt = t2 − t1. (7.68)

The reservoir force is drawn from the probability distribution ℘(R|Γ2,−Δt).
Notice how the time step changed signs between the two equations, but the
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stochastic force did not.14 This means that if one wants to rearrange Eq. (7.67)
so that Γ1 appears on the left-hand side, one has to make a decision whether the
R that appears has a specific fixed value, in which case it changes sign when
taken to the other side, or whether it is a random variable chosen from the
appropriate probability distribution and so it appears with unchanged sign, as
in Eq. (7.68). The probability distribution for the random force will be given in
terms of the second entropy below. It will turn out that there is a single most
likely value R that does not depend upon the sign of the time step. This makes
the stochastic dissipative equations of motion irreversible (see §7.4.4).

In this book the notion of reversibility will be discussed in the context either
of the conjugate system with velocities reversed, or of calculating the trajectory
leading up to the current point, as in the backwards version of the equations of
motion. Phrases such as ‘reversing time’ or ‘time running backwards’ will be
avoided, as they tend to confuse the two aspects of reversibility, and in any case
they imply behaviour that is at odds with the actual progress of time in the
physical universe.

The reservoir perturbation is stochastic in nature and comprises a dissipa-
tive term and a fluctuation term. They may be written R = R + R̃, where the
over-line indicates the most likely perturbation (the dissipation), and the tilde
indicates a random variable of mean zero (the fluctuation). In this book, the
force of zero mean, R̃, will usually be referred to as ‘the’ random or stochas-
tic force, even though strictly speaking the full reservoir force, R, is random.
The deterministic part of the equations of motion comprises the adiabatic term
plus the dissipative term, which is the most likely reservoir perturbation. It

is denoted ΔΓdet ≡ ΔtΓ̇
0 + R. The transition Γ1

Δt→ Γ2, can be equivalently
written

Γ2 = Γ1 + ΔΓdet + R̃. (7.69)

The reservoir perturbation R is a real force, by which is meant that it acts
on momentum components only. The reason for this is that the position is
essentially the time integral of the momentum, and since the reservoir force
acting on the momentum is O(Δt), its influence on the position is O(Δ2

t ), which
can be neglected for an infinitesimal time step. This will be justified more
formally in the mixed parity derivation of the stochastic equations of motion
that follows in §7.4.3. The fact that the reservoir perturbation is a real force
means that only the momentum components of phase space are directly affected
by the stochastic forces, and the forward transition can be equivalently written

Γq2 = Γq1 + ΔtΓ̇
0
q,

Γp2 = Γp1 + ΔtΓ̇
0
p + R. (7.70)

14It is possible to define a separate forward and backward random force, R±, that formally
enters the equations of motion with different signs for the forward and reverse cases, and that
has separate probability distributions. It is mathematically equivalent to the present approach
and it only changes the appearance rather than the substance of the results.
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In component form, with i ∈ [1, N ] and α ∈ {x, y, z}, these are

q2,iα = q1,iα + Δtq̇
0
iα,

p2,iα = p2,iα + Δtṗ
0
iα + Riα. (7.71)

7.4.2 Second Entropy

The conditional probabilities that give the distribution of the random reservoir
force R will now be determined from the second entropy. (See §7.4.3 below for
a more formal derivation of the second entropy from mixed parity fluctuation
theory.) Maximising this will give the functional form of the dissipative force,
and will relate its magnitude to the variance of the fluctuations; this is the
molecular origin of the fluctuation dissipation theorem.

The transition in the position Γq1
Δt→ Γq2, is determined by Hamilton’s

equations and is independent of the reservoir and hence of the second entropy.15

It is the transition in the momentum states Γp1
Δt→ Γp2, that is determined by

the second entropy. This is a case of a pure parity transition, since Γp is the
collection of momentum macrostates, each of which has odd parity.

In the pure parity case, the thermodynamic driving force is the gradient of
the total entropy, and the second entropy contains a term that is equal to half
the rate of total entropy production (c.f. §2.4.3, Eq. (2.50)). In the present
case of phase space microstates, the total entropy is the same as the reservoir
entropy, because the weight of phase space points is uniform, Eq. (7.33).

In the most general case one would have a 3N × 3N transport matrix that
determined the variance of the stochastic forces. However, one can assume that
the forces are uncorrelated with each other,〈

R̃iα

〉
= 0, and

〈
R̃iαR̃jγ

〉
= σδijδαγ . (7.72)

These hold for both the forward and the backward forces.16 Here the variance
σ has been chosen to be the same for each molecule and for each component,
which makes the transport matrix proportional to the identity matrix. This
simplification is not essential to the theory, as is discussed further below. One
can also assume that the random forces are uncorrelated at successive times.

In general terms, the second entropy consists of four terms: the first entropy,
a quadratic term in the fluxes, a linear term in the fluxes that equals half the rate
of total first entropy production, and a term constant with respect to the fluxes
that ensures that the reduction condition is satisfied (c.f. §2.4.3, Eq. (2.50)). In

15If one used a non-infinitesimal time step, then Γq2 would not be determined solely by

the Hamiltonian velocity Γ̇
0
q(Γ), but by an integral of the trajectory over the interval that

includes the stochastic contributions from the reservoir. In this case one would need the
second entropy for the full phase space Γ, which is not a pure parity case. It may also be that
this is a non-Markov case.

16One must have σ ∝ |Δt|, as is clearer in the mixed parity analysis, §7.4.3, where σ =
|Δt|kBΛpp, with Λ independent of the time step because it is the coefficient of |Δt|−1 in the
small time expansion of the fluctuation matrices for the second entropy.
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the current presentation, the flux is the pure parity R (momentum components
only); see §7.4.3 below for a more rigorous mixed parity derivation. Also, the
total entropy is the same as the reservoir entropy (apart from the immaterial
uniform sub-system entropy). The second entropy, like the transition probabil-
ity, is symmetric in the two arguments. But as mentioned above, the forward
and the backward reservoir forces are drawn from the respective conditional
transition probabilities, and it remains to show that these do not depend upon
the sign of the time step.

First consider the transition Γ1
Δt→ Γ2. This will be called the original

transition, in order to distinguish it from the reverse transition that is treated
next. It is not necessary to specify the sign of the time step. The conditional
second entropy for the original transition is

S(2)(Γ2|Γ1, Δt)

=
−kB

2σ
R · R +

1

2
[Sr(Γ2) − Sr(Γ1)] + C(Γ1) + D(Γq2,Γq1, Δt)

=
−kB

2σ
R · R +

1

2
R · ∇pSr(Γ1)

+
kB

2σ
R ·R − 1

2
R · ∇pSr(Γ1) + D(Γq2,Γq1, Δt)

=
−kB

2σ
R̃ · R̃ + D(Γq2,Γq1, Δt). (7.73)

The function D(Γq2,Γq1, Δt) ≡ −(kB/2α)
[
Γq2 − Γq1 − ΔtΓ̇

0
q

]2
, α → 0, gives a

δ-function for the adiabatic development of the position coordinates. The not-
ation ∇p means the momentum components of the gradient operator (i.e. the
∂/∂piα), which arises because the stochastic force only has momentum compo-
nents. The term R · ∇pSr(Γ)/2 is half the total entropy produced in the time
step since the adiabatic evolution does not produce any entropy (points on an
adiabatic trajectory are equally likely). The function C(Γ1), which is constant
with respect to Γ2, is required to make the conditional second entropy vanish
at the most likely value, Γ2(Γ1), equivalently, R(Γ1, Δt). This vanishing is
equivalent to the reduction condition, as is now shown.

The unconditional second entropy is the conditional second entropy plus the
entropy of the conditioning state,

S(2)(Γ2,Γ1|Δt) = S(2)(Γ2|Γ1, Δt) + Sr(Γ1). (7.74)

The vanishing of the conditional second entropy in the most likely state means
that the unconditional second entropy satisfies the reduction condition, namely
that the value of the second entropy in the most likely future state equals the
entropy of the current state,

S(2)(Γ2,Γ1|Δt) = Sr(Γ1). (7.75)
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The probability distribution for the stochastic forward reservoir force is pro-
portional to the exponential of the conditional second entropy, ℘(R|Γ1, Δt) ∝
exp S(2)(Γ2|Γ1, Δt)/kB. Using the fact that at constant Γ1, dΓp2 = dR, the
derivative of either the conditional or unconditional second entropy with respect
to Γp2 is

∂S(2)(Γ2,Γ1|Δt)

∂Γp2
=

−kB

σ
R +

1

2
∇pSr(Γ1). (7.76)

This vanishes at the most likely force,

R(Γ) =
σ

2kB
∇pSr(Γ). (7.77)

To leading-order, it does not matter whether the gradient of the reservoir en-
tropy is evaluated at Γ1 or Γ2. Note that this depends upon the magnitude of
the time step (via the variance, σ ∝ |Δt|), but not upon its sign.

A similar analysis can be performed for the reverse transition, Γ2
−Δt→ Γ1.

The second entropy conditioned upon what is now the initial point of the tran-
sition is

S(2)(Γ1|Γ2,−Δt)

=
−kB

2σ
R · R +

1

2
[Sr(Γ1) − Sr(Γ2)] + C ′(Γ2) + D(Γq1,Γq2,−Δt)

=
−kB

2σ
R · R +

1

2
R · ∇pSr(Γ2)

+
kB

2σ
R ·R − 1

2
R · ∇pSr(Γ2) + D(Γq1,Γq2,−Δt)

=
−kB

2σ
R̃ · R̃ + D(Γq1,Γq2,−Δt). (7.78)

Note that it is half the change in first entropy for this reverse transition that ap-
pears here (final state minus initial state, irrespective of time order). The proba-
bility distribution for the reservoir force is again proportional to the exponential
of the conditional second entropy, ℘(R|Γ2,−Δt) ∝ exp S(2)(Γ1|Γ2,−Δt)/kB.
Using the fact that at constant Γ2, dΓp1 = dR, the derivative of this condi-
tional second entropy is

∂S(2)(Γ1|Γ2,−Δt)

∂Γp1
=

−kB

σ
R +

1

2
∇pSr(Γ2). (7.79)

This vanishes at the most likely backward force,

R(Γ) =
σ

2kB
∇pSr(Γ). (7.80)

Again, it does not matter to leading-order whether this is evaluated at the
initial or final point of the transition. This is the same as the most likely force
for the original transition, Eq. (7.77). One can conclude that the probability
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distribution for the random forces is independent of the sign of the time step.
This gives rise to irreversibility in the equations of motion, as is discussed below.

As for the original transition, the unconditional second entropy is related
to the conditional second entropy for the reverse transition by S(2)(Γ2,Γ1|Δt)
= S(2)(Γ1|Γ2,−Δt) + Sr(Γ2), and it satisfies the reduction condition on the
most likely initial state,

S(2)(Γ2,Γ1|Δt) = Sr(Γ2). (7.81)

In view of these results the unconditional second entropy can be written in a
form symmetric in the two states involved in the transition. In both transitions,
the stochastic equations of motion show that half the change in entropy plus the
entropy of the initial state is equal to the average entropy of the two states,17

1

2
[Sr(Γ1) + Sr(Γ2)] =

1

2
R · ∇pSr(Γ1) + Sr(Γ1) + O(Δ2

t )

=
1

2
R · ∇pSr(Γ2) + Sr(Γ2) + O(Δ2

t ). (7.82)

Hence the unconditional second entropy may be written

S(2)(Γ2,Γ1|Δt) =
−kB

2σ
R · R +

1

2
[Sr(Γ1) + Sr(Γ2)] + D(Γq2,Γq1, Δt)

+
kB

2σ
R(Γ) · R(Γ) − 1

2
R(Γ) · ∇pSr(Γ)

=
−kB

2σ
R · R +

1

2
[Sr(Γ1) + Sr(Γ2)] + D(Γq2,Γq1, Δt)

− kB

2σ
R(Γ) · R(Γ). (7.83)

See §7.4.3 below for an alternative derivation of this result. Maximising this
with respect to Γ1 or Γ2 yields the most likely values given above. The terms
involving R(Γ) and ∇pSr(Γ) can be held constant during the differentiation
as they contribute terms O(Δt) that are negligible compared to the remaining
terms that are O(Δ0

t ).
The reservoir entropy for the canonical equilibrium system is Sr(Γ) = −H(Γ)

/T . Hence the most likely forces in this case are

R(Γ) =
σ

2kB
∇pSr(Γ) =

−σ

2kBT
∇pH(Γ) =

−σ

2mkBT
Γp. (7.84)

In component form this is

Riα =
−σ

2kBT

∂H(Γ)

∂piα
=

−σ

2mkBT
piα. (7.85)

This has the form of a friction or drag force, f = −μ±v with coefficient μ± =
±σ/2kBT |Δt|. (It is Riα/Δt that is the force; μ+ refers to the case Δt > 0 and

17The quadratic term in this Taylor expansion, RR : ∇p∇pSr/2, is negligible compared to
the quadratic term in the second entropy, (−kB/2σ)R · R, because σ ∝ |Δt|.
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μ− refers to the case Δt < 0). Note that for the most likely backward force,
which gives the most likely previous state, Δt < 0, the coefficient μ is negative.
This is correct and will be discussed further below under irreversibility.

With this result the stochastic, dissipative equations of motion in a canonical

equilibrium system for the transition Γ1
Δt→ Γ2 become

q2,iα = q1,iα + Δtq̇
0
iα,

p2,iα = p1,iα + Δtṗ
0
iα − σ

2mkBT
piα + R̃iα, (7.86)

with R̃iα a random variable of mean zero and variance σ. This holds for positive
or negative values of the time step. Positive values give the future evolution of
the system, and negative values allow the past history of the system to be ob-
tained, both in a probabilistic sense. It is important to note that the dissipative
force does not depend upon the sign of the time step.

The stochastic, dissipative equations of motion are just Langevin’s equa-
tion for Brownian motion (c.f. Ch. 3), but applied to molecules. The term
−σpiα/2mkBT represents the dissipation, and the term R̃iα represents the fluc-
tuations. The magnitude of both are determined by the variance. One sees
therefore that this is the form of the fluctuation dissipation theorem that is
appropriate for the canonical equilibrium system.

Both terms are essential for the correct treatment of the canonical equilib-
rium system; the common procedure that sets the fluctuation term to zero and
that treats the dissipative term as a thermostat that determines the tempera-
ture via the equipartition theorem violates the fluctuation dissipation theorem.
One cannot have dissipation without fluctuation.

Just as important is the origin of the functional form of the dissipative force,
f = −μv. Originally, in the context of Brownian motion, Langevin postulated
the dissipative force with this functional form as arising from Stokes’ hydro-
dynamic drag force. The present derivation based upon the second entropy
shows that the result is much more general, since it arises from the gradient
of the first entropy. The notion that hydrodynamics and Stokes’ drag operate
at the present molecular level is unrealistic. The real origin of the dissipative
term in the stochastic equations of motion (Brownian, molecular, and even
hydrodynamics itself) lies in the second entropy, and the present statistical
mechanical derivation of these stochastic equations of motion for molecules is
significant in this regard. One concludes that dissipation is a general statistical
phenomenon rather than a particular hydrodynamic result.

Finally, the variance above was taken to be the same for each molecule and
for each component of direction. There is nothing that determines the magni-
tude of the variance per se, except that it should scale with the time step. (For a
mathematical derivation of this, see Eq. (7.91) et seq., where the reservoir terms
comprise the time step times a transport matrix that is independent of the time
step; the variance is σ = |Δt|kBΛpp. For a numerical exploration of this point,
see the computer simulation of heat flow discussed in Chs 9 and 11.) One could
have individual variances, provided of course that the fluctuation dissipation
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theorem was satisfied in each case, Riα = −σiαpiα/2mkBT . Optimising the
variance for each component of a mixture may have computational advantages.

7.4.3 Mixed Parity Derivation of the Second Entropy and

the Equations of Motion

It is worthwhile giving an alternative, more formal, derivation of the second
entropy and the stochastic equations of motion based upon the results for fluc-
tuations of mixed parity, §2.5.1, as exemplified in the analysis of driven Brow-
nian motion, §3.6.3. Let Γ1 ≡ Γ(t) denote the phase space point at time t, and
denote the adjacent point by Γ2 ≡ Γ(t+Δt), with conditional most likely value

Γ2 ≡ Γ(t + Δt|Γ1, t). With the coarse velocity
◦

Γ≡ [Γ2 − Γ1]/Δt, the second
entropy for mixed parity fluctuations, Eq. (2.92), is

S(2)(Γ2,Γ1|Δt) = Sr(Γ1) −
1

2|Δt|
Λ−1 : [Γ2 − Γ1]

2 − 1

2|Δt|
Λ−1 : [Γ2 − Γ1]

2

+ [Γ2 − Γ1] ·
[
1

2
− t̂Λ−1Θ

]
∇Sr(Γ1) + O(Δ2

t ), (7.87)

where t̂ ≡ sign(Δt). Compared to Eq. (2.92), the fluctuation expression for the
entropy, S : x2/2 has been replaced by the entropy itself, Sr(Γ), and the related
thermodynamic force, Sx, has been replaced by the entropy gradient, ∇Sr(Γ).
Such terms arose from the results that A0 + B0 = S/2 and A′0 + B′0 = Λ−1ΘS.
Also, one can identify the symmetric transport matrix with the variance by
making the replacement |Δt|Λ ⇒ k−1

B σI. In the case of phase space the total
entropy is the same as the reservoir entropy, because phase space points are
microstates and have no internal entropy.

Now group together the same parity components, Γ = {Γq,Γp}. Since the
transport matrix Λ, like the entropy matrix S, only couples variables of the
same parity, in this grouped representation it is block diagonal, with non-zero
sub-matrices Λqq, and Λpp, which are symmetric. The antisymmetric trans-
port matrix Θ only couples variables of opposite parity, and so in this grouped
representation it is block adiagonal, with non-zero sub-matrices Θqp = −ΘT

pq.
Accordingly the second entropy may be written more explicitly as

S(2)(Γ2,Γ1|Δt)

= Sr(Γ1) −
1

2|Δt|
Λ−1

qq : [Γ2q − Γ1q]2 − 1

2|Δt|
Λ−1

pp : [Γ2p − Γ1p]2

− 1

2|Δt|
Λ−1

qq : [Γ2q − Γ1q]
2 − 1

2|Δt|
Λ−1

pp : [Γ2p − Γ1p]2

+
1

2
[Γ2q − Γ1q] · ∇qSr(Γ1) +

1

2
[Γ2p − Γ1p] · ∇pSr(Γ1) (7.88)

− t̂[Γ2q − Γ1q] · Λ−1
qq Θqp∇pSr(Γ1) − t̂[Γ2p − Γ1p] · Λ−1

pp Θpq∇qSr(Γ1).
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Maximising this, the conditional most likely adjacent configuration is

Γ2q = Γ1q − ΔtΘqp∇pSr(Γ) +
|Δt|
2

Λqq∇qSr(Γ) + O(Δ2
t ),

Γ2p = Γ1p − ΔtΘpq∇qSr(Γ) +
|Δt|
2

Λpp∇pSr(Γ) + O(Δ2
t ). (7.89)

Here and below Γ can be replaced by either Γ1 or by Γ2 since this does not
change the results to the exhibited order. In view of the analysis of §3.6.3,
the terms proportional to Δt contain the adiabatic development, and the terms
proportional to |Δt| are the most likely reservoir force (c.f. Eq. (3.66) and the
associated discussion). In view of the stochastic equations of motion given
above, Eq. (7.67), one may suppose that the adiabatic development dominates
the terms proportional to Δt, and that any other contribution to this term is
negligible. Since Γ̇0

q = ∂H(Γ)/∂Γp and Γ̇0
p = −∂H(Γ)/∂Γq, and since Sr(Γ) =

−H(Γ)/T , these mean that

Θqp = T I, and Θpq = −T I, (7.90)

where I is the identity matrix. These obviously satisfy the requirement that
Θqp = −ΘT

pq. With these, the conditional most likely next configuration is

Γ2q = Γ1q + ΔtΓ̇
0
q +

|Δt|
2

Λqq∇qSr(Γ),

Γ2p = Γ1p + ΔtΓ̇
0
p +

|Δt|
2

Λpp∇pSr(Γ). (7.91)

To put this in the form of Eq. (7.70), one notes that the reservoir contribution
to the position evolution is negligible, |Δt|Λqq∇qSr(Γ)/2 ∼ O(Δ2

t ). This must
be the case because the reservoir contribution to the evolution of the position
coordinates must come from the integral over the time interval of the reser-
voir contribution to the evolution of the momentum coordinates, which is itself
O(Δt). This is consistent with what was found for driven Brownian motion,
where the reservoir contribution to the position evolution was explicitly shown
to be O(Δ2

t ), Eq. (3.65). The remaining term can be identified as the most
likely reservoir force R ≡ |Δt|Λpp∇pSr(Γ)/2. Finally, adding the stochastic

contribution to this, R = R + R̃, one recovers Eq. (7.70).
With these identifications, the second entropy is now

S(2)(Γ2,Γ1|Δt)

= Sr(Γ1) −
1

2|Δt|
Λ−1

qq : [Γ2q − Γ1q]
2 − 1

2|Δt|
Λ−1

pp : [Γ2p − Γ1p]2

− 1

2|Δt|
Λ−1

qq : [Γ2q − Γ1q]2 − 1

2|Δt|
Λ−1

pp : [Γ2p − Γ1p]2

+
1

2
[Γ2q − Γ1q] · ∇qSr(Γ) +

1

2
[Γ2p − Γ1p] · ∇pSr(Γ)

+ t̂[Γ2q − Γ1q] · Λ−1
qq Γ̇0

q + t̂[Γ2p − Γ1p] · Λ−1
pp Γ̇0

p + O(Δ2
t ). (7.92)
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Since Λqq∇qSr(Γ) ∼ O(Δt), in the limit of an infinitesimal time step, then
Λ−1

qq ∼ O(Δ−1
t ). This means that the terms involving Λ−1

qq must make a δ-
function for the adiabatic development of the position coordinates, which is the
D(Γ1q,Γ2q, Δt) of Eq. (7.73) and Eq. (7.83). Also, the term involving Γ2p is
just a constant, C(Γ1), which has an analogue in each of those equations, that
ensures that the reduction condition is satisfied. Hence one has

S(2)(Γ2,Γ1|Δt) = Sr(Γ1) −
1

2|Δt|
Λ−1

pp : [Γ2p − Γ1p]2

+
1

2
[Γ2q − Γ1q] · ∇qSr(Γ) +

1

2
[Γ2p − Γ1p] · ∇pSr(Γ)

+ t̂[Γ2p − Γ1p] · Λ−1
pp Γ̇0

p + D(Γ2q,Γ1q, Δt) + C ′(Γ1)

= Sr(Γ1) −
1

2|Δt|
Λ−1

pp : [Γ2p − Γ1p − ΔtΓ̇
0
p]2

+
1

2
[Sr(Γ2) − Sr(Γ1)] + D(Γ2q,Γ1q, Δt) + C(Γ1)

=
−1

2|Δt|
Λ−1

pp : R2 +
1

2
[Sr(Γ2) + Sr(Γ1)] + D(Γ2q,Γ1q, Δt)

− 1

2|Δt|
Λ−1

pp : R
2

+ O(Δ2
t ). (7.93)

The second equality uses the fact that the terms involving the gradient of the
entropy represent the change in the total entropy over the transition. Also the
two terms involving Λ−1

pp in the first equality have been combined in the second

equality and the resultant extra term involving |Δt|Λ−1
pp : Γ̇0

pΓ̇
0
p/2 has been

incorporated into the constant C(Γ1). In the final equality, R = Γ2p − Γ1p −
ΔtΓ̇

0
p. With |Δt|−1Λ−1

pp = (kB/σ)I, one can see that this final expression is
identical to Eq. (7.83).

Note that

1

2
[Sr(Γ2) − Sr(Γ1)] =

1

2
R · ∇pSr(Γ), (7.94)

because in this case Hamilton’s equations of motion cause the adiabatic evolu-
tion to vanish, τ Γ̇0 · ∇Sr(Γ) = (−τ/T )Γ̇0 · ∇H(Γ) = 0. This result is in fact
more general than the present canonical equilibrium case or the identification of
the adiabatic terms in the equations of motion. Replacing the adiabatic velocity
by the more fundamental antisymmetric transport matrix, Γ̇0 ⇒ −Θ∇Sr(Γ),
one has

[∇Sr(Γ)] · Γ̇0 = −[∇Sr(Γ)] · Θ∇Sr(Γ) = 0. (7.95)

(A symmetric double scalar product of an antisymmetric matrix always vanishes,
as can be seen by taking the transpose.)

7.4.4 Irreversibility and Dissipation

The fact that the reservoir force is independent of the sign of the time step means
that the most likely trajectory is irreversible. To show this, consider Γ2 as the
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future point of two distinct transitions that have Γ1 and Γ3 as the respective
previous points. Let Γ1 be the initial point for which Γ2 is the most likely

future point; this is the forward transition Γ1
Δt→ Γ2, or Γ2 = Γ1 + ΔtΓ̇

0 + R.
And let Γ3 be the most likely prior point of Γ2; this is the backward transition

Γ2
−Δt→ Γ3, or Γ3 = Γ2 − ΔtΓ̇

0 + R. Since the most likely forces are the same
in both transitions, one can conclude that Γ2 is the most likely destination of
Γ1, but Γ3, not Γ1, is the most likely prior point of Γ2. The difference between
these two prior states is

Γ3 − Γ1 =
[
Γ2 − ΔtΓ̇

0 + R
]
−
[
Γ2 − ΔtΓ̇

0 − R
]

= 2R = σ∇pSr(Γ)/kB. (7.96)

Notice that in rearranging the expression for Γ1, the most likely force R is
treated as a specific value rather than as a stochastic variable. Under Hamilton’s
equations, there would be a unique initial point and the right-hand side would
be zero. That this is non-zero indicates that the trajectory is irreversible. The
irreversibility is proportional to the magnitude of the gradient in the reservoir
entropy. This means that the closer the system is to the equilibrium state, the
more reversible is the trajectory, and vice versa. This matter will be discussed
further in §7.6.2 below.

For the fixed values of Γ3, Γ1, and R∗ ≡ R, the backward transition Γ2
−Δt→

Γ3 is much more likely than the forward transition Γ3
Δt→ Γ2. The value of

the random force in the forward transition is obviously R = −R∗, which is
equal and opposite to the value that gives the most likely forward transition.

Similarly, the forward transition Γ1
Δt→ Γ2, with random force again R∗ ≡ R, is

much more likely than the backward transition Γ2
−Δt→ Γ1, which again requires

a random force in the opposite direction to the most likely one, R = −R∗. One
must have ℘(Γ3|Γ2,−Δt) � ℘(Γ2|Γ3, Δt), and ℘(Γ2|Γ1, Δt) � ℘(Γ1|Γ2,−Δt).
The two likely transitions have about the same probability, and the two unlikely
transitions are also approximately equally probable, so that conditioned on the
future point Γ2, one has ℘(Γ3|Γ2,−Δt) � ℘(Γ1|Γ2,−Δt). Given Γ2 as the
current point, this says that it is much more likely that the system came from
Γ3 than from Γ1, even though Γ2 is the most likely destination of Γ1. The
relative likelihoods depend upon the magnitude of ∇pSr(Γ). A physical analogy
of the situation is depicted in the following chapter in Fig. 8.1, on p. 267. A
sketch of typical phase trajectories is given in Fig. 7.4 on p. 222.

Now the change in entropy for the two transitions forward in time is obtained
(again fixing the values of all the points and the forces). For the most likely

forward transition, Γ1
Δt→ Γ2, the change in entropy in the transition to the most

likely state is

Sr(Γ2) − Sr(Γ1) = R(Γ, t) · ∇pSr(Γ)

=
σ

2kB
∇pSr(Γ) · ∇pSr(Γ). (7.97)
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This is positive or zero, which means that the reservoir entropy increases in the
most likely forward transition.

For the most likely backward transition, Γ2
−Δt→ Γ3, the change in entropy

in the transition from the most likely state is

Sr(Γ2) − Sr(Γ3) = −R(Γ) · ∇pSr(Γ)

=
−σ

2kB
∇pSr(Γ) · ∇pSr(Γ). (7.98)

This is negative or zero, which says that the entropy decreases on the transition
from the most likely prior point. These make sense because the most likely
state for a transition will usually have the highest entropy of all states in the
neighbourhood. These two results are consistent with what was deduced from
fluctuation theory in §2.4.6.

7.4.5 The Fokker-Planck Equation and Stationarity of the

Equilibrium Probability

For the transition Γ1
Δt→ Γ2, with corresponding equations of motion Γ2 =

Γ1 + ΔtΓ̇
0 + R, the conditional transition probability is

℘(Γ2|Γ1, Δt) =
1

Z(2)(Γ1)
eS(2)(Γ2|Γ1,Δt). (7.99)

The conditional second entropy for this transition is given by Eq. (7.73). With
this, the normalising partition function is

Z(2)(Γ1) =

∫
dΓp2 dΓq2 e(−1/2σ)R̃·R̃+D(Γq2,Γq1,Δt)/kB

= (2πα)3N/2(2πσ)3N/2, (7.100)

since R̃ ≡ Γp2−Γp1−ΔtΓ̇
0
p(Γ1)−R(Γ1). The partition function is independent

of the initial point of the transition, Γ1.

Suppose that the system is in some transient state corresponding to an
arbitrary probability distribution ℘(Γ, t). With the transition as above, Γ2 =
Γ1 + ΔtΓ̇

0 + R, and defining Γ2(Γ1) ≡ Γ1 + ΔtΓ̇
0(Γ1) + R(Γ1), so that dΓ2 =

dΓ1 [1 + ∇p · R], the evolution of ℘(Γ, t) under the action of the conditional
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transition probability for the canonical equilibrium system given above is

℘(Γ2, t2) =

∫
dΓ1 ℘(Γ2|Γ1, Δt)℘(Γ1, t1)

=
1

Z(2)

∫
dΓp1 dΓq1 e−[Γ2−Γ2(Γ1)]2/2σeD(Γq2,Γq1,Δt)℘(Γ1, t1)

=
1

(2πσ)3N/2

∫
dΓ2 [1 −∇p ·R]e−[Γ2−Γ2(Γ1)]

2/2σ

× ℘(Γ2 − ΔtΓ̇
0 −R, t1)

=
1

(2πσ)3N/2

∫
dΓ2 [1 −∇p ·R]e−[Γ2−Γ2(Γ1)]

2/2σ

×
{

℘(Γ2, t1) +
[
Γ2 − Γ2 − ΔtΓ̇

0 −R
]
· ∇℘(Γ2, t1)

+
1

2

[
Γ2 − Γ2 − ΔtΓ̇

0 −R
]2

: ∇∇℘(Γ2, t1)

}

= [1 −∇p ·R(Γ2)]
{
℘(Γ2, t1) −

[
ΔtΓ̇

0 + R
]
· ∇℘(Γ2, t1)

+
σ

2
∇2

p℘(Γ2, t1)
}

+ O(Δ2
t ). (7.101)

The integral has been evaluated by expanding the probability distribution about
the peak of the Gaussian. Discarding terms quadratic in the time step, and
rearranging gives the partial time derivative of the probability density,

∂℘(Γ, t)

∂t
=

−1

Δt

[
∇p · R(Γ)

]
℘(Γ, t) −

[
Γ̇0 +

1

Δt
R

]
· ∇℘(Γ, t)

+
σ

2Δt
∇2

p℘(Γ, t). (7.102)

This is a general expression for the evolution of any phase space density under
the stochastic equations of motion. It is in fact the Fokker-Planck equation.
This equation was already derived in the specific case of Brownian notion, §3.7.3,
Eq. (3.103). Note that the most likely force R and the variance σ depend upon
the magnitude of the time step but not upon its sign. Hence the right-hand side
differs for the forward (Δt > 0) and backward (Δt < 0) derivatives. This is a
general property of stochastic equations of motion and differs from an ordinary
derivative which is insensitive to the direction in which it is taken.

The canonical equilibrium probability density, the Maxwell-Boltzmann prob-
ability distribution, is stationary under the action of this transition probability
(equivalently, these stochastic equations of motion). Using

℘MB(Γ) =
1

Z(β)
eSr(Γ)/kB =

1

Z(β)
e−βH(Γ), (7.103)

and

R =
σ

2kB
∇pSr(Γ) =

−βσ

2m
Γp, (7.104)
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the three terms on the right-hand side of Eq. (7.102) are

−1

Δt

[
∇p · R(Γ)

]
℘MB(Γ) =

βσ

2mΔt
[∇p · Γp]℘MB(Γ)

=
3Nβσ

2mΔt
℘MB(Γ), (7.105)

−
[
Γ̇0 +

1

Δt
R

]
· ∇℘MB(Γ)

= β[Γ̇0 · ∇H(Γ)]℘MB(Γ) +
β

Δt
[R · ∇pH(Γ)]℘MB(Γ)

= 0 − β2σ

2m2Δt
Γp · Γp℘MB(Γ)

=
−β2σ

2m2Δt

∑
i,α

p2
iα ℘MB(Γ), (7.106)

and
σ

2Δt
∇2

p℘MB(Γ)

=
−βσ

2Δt
∇2

pH(Γ)℘MB(Γ) +
β2σ

2Δt
[∇pH(Γ)] · [∇pH(Γ)] ℘MB(Γ)

=
−3Nβσ

2mΔt
℘MB(Γ) +

β2σ

2m2Δt

∑
i,α

p2
iα ℘MB(Γ). (7.107)

Adding these together, Eq. (7.102) shows that the partial time derivative van-
ishes exactly

∂℘MB(Γ)

∂t
= 0. (7.108)

Obviously one could have obtained this result by inspection, since the Maxwell-
Boltzmann probability density does not depend explicitly upon time. The real
point of the exercise is to show the consistency between the second entropy
transition probability and the Maxwell-Boltzmann probability density. It also
confirms the Fokker-Planck equation, Eq. (7.102).

It is important to note that all terms were required to obtain the exact cancel-
lation that made the Maxwell-Boltzmann distribution stationary. However, it is
a reasonable approximation to neglect the stochastic term, (σ/2Δt)∇2

p℘(Γ, t).
This was discussed in Ch. 3 in the specific case of Brownian motion, for ex-
ample the equality of the full and deterministic derivatives of the probability,
Eq. (3.94), the generalised equipartition theorem, §3.7.4, and the justification
for Liouville’s theorem, §3.7.5. The equipartition argument is quite general, and
in the present canonical equilibrium case one has explicitly∫

dΓ
σ

2Δt
∇2

p℘MB(Γ) =

∫
dΓ℘MB(Γ)

⎧⎨
⎩−3Nβσ

2mΔt
+

β2σ

2m2Δt

∑
i,α

p2
iα

⎫⎬
⎭

= 0. (7.109)
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If one ignores fluctuations, then in the thermodynamic limit the equipartition
theorem may be taken to apply at each point in phase space (c.f. §§3.7.4 and
3.7.5). More precisely, this is true on the likely points of phase space so that
weighted by the probability distribution to a reasonable approximation one may
take ∑

i,α

p2
iα ℘MB(Γ) ≈ 3NmkBT℘MB(Γ). (7.110)

Hence to this level of approximation one may neglect the stochastic term for
any probability distribution yielding the equipartition theorem, ∇2

p℘(Γ, t) ≈ 0.
Under these circumstances, the deterministic equations of motion that keep
R = (−βσ/2m)Γp and neglect the stochastic term R̃ = 0, will preserve the
Maxwell-Boltzmann distribution, at least on those points of phase space that
satisfy the equipartition theorem.

Finally, the convective or deterministic time derivative of the Maxwell-
Boltzmann distribution is non-zero,

ddet℘MB(Γ)

dt
≡ ∂℘MB(Γ)

∂t
+

[
Γ̇0 +

1

Δt
R

]
· ∇℘MB(Γ)

=
β2σ

2m2Δt

∑
i,α

p2
iα ℘MB(Γ)

≈ 3Nβσ

2mΔt
℘MB(Γ). (7.111)

This monotonic increase of the probability density (for the forward time deriva-
tive) is, in the expression for the partial derivative, cancelled by the decrease
due to the expansion of the phase space volume (assuming the validity of the
equipartition theorem at each point).

7.5 Evolution in Phase Space

7.5.1 Various Phase Functions

The rate of change of a phase function is obtained from the change during the

transition Γ1
Δt→ Γ2, Γ2 = Γ1 + ΔtΓ̇

0 + R, Δt ≡ t2 − t1,

df(Γ, t)

dt
=

1

Δt

[
f(Γ1 + ΔtΓ̇

0 + R, t1 + Δt) − f(Γ1, t1)
]

= ḟ0(Γ, t) +
1

Δt
R · ∇pf(Γ, t) +

1

2Δt
RR : ∇p∇pf(Γ, t).

(7.112)

Since the probability distribution for the random force depends upon the magni-
tude but not the sign of the time step, the rate of change of a function is different
for the forward derivative, Δt > 0, and the backward derivative Δt < 0; see the
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discussion of reversibility, §7.4.4 above and §7.6.2 below. In this the adiabatic
derivative is

ḟ0(Γ, t) =
∂f(Γ, t)

∂t
+ Γ̇0 · ∇f(Γ, t). (7.113)

Averaged over the stochastic forces the total time derivative is〈
df(Γ, t)

dt

〉
R̃

= ḟ0(Γ, t) +
1

Δt
R · ∇pf(Γ, t) +

σ

2Δt
∇2

pf(Γ, t)

= ḟ0(Γ, t) +
σ

2kBΔt
∇pSr(Γ) · ∇pf(Γ, t) +

σ

2Δt
∇2

pf(Γ, t)

= ḟ0(Γ, t) − βσ

2mΔt
Γp · ∇pf(Γ, t) +

σ

2Δt
∇2

pf(Γ, t). (7.114)

Note that σ/|Δt| ∼ O(1) and that β = 1/kBT . The average over the stochastic
forces is often assumed implicitly and the angled brackets are not shown. Also,
this total time derivative is also called the convective derivative, the material
derivative, or the hydrodynamic derivative, and may also be denoted ḟ(Γ, t).

One can define the deterministic derivative, as the rate of change on the
most likely trajectory in the absence of stochastic forces. It is

ḟdet(Γ, t) ≡ ḟ0(Γ, t) +
1

Δt
R · ∇pf(Γ, t). (7.115)

Again because the most likely random force depends upon the magnitude but
not the sign of the time step, the forward and backward deterministic derivatives
have different values. This is equal to the total time derivative if, and only if,
the term arising from the stochastic forces, ∇2

pf , is negligible.
The evolution of several useful phase space functions may be obtained from

this. For a position coordinate, f(Γ, t) ≡ qiα, one obtains〈
dqiα

dt

〉
R̃

= q̇0
iα (7.116)

and for a momentum coordinate, f(Γ, t) ≡ piα, one obtains〈
dpiα

dt

〉
R̃

= ṗ0
iα − βσ

2mΔt
piα. (7.117)

These of course could have been obtained directly by averaging the stochastic
equations of motion.

Taking f(Γ, t) ≡ Sr(Γ) = −H(Γ)/T , the average of the total rate of change
of the reservoir entropy is〈

dSr(Γ)

dt

〉
R̃

=
βσ

2m2ΔtT

∑
i,α

p2
iα − σ

2ΔtT

∑
i,α

m−1

=
σ

2mΔtT

⎡
⎣ β

m

∑
i,α

p2
iα − 3N

⎤
⎦ . (7.118)
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The adiabatic term vanishes because energy is conserved on a Hamiltonian tra-
jectory, Γ̇0 ·∇H(Γ) = 0, and hence only the dissipative term and the fluctuation
term contribute to this. In view of the equipartition theorem, the average over
phase space vanishes,∫

dΓ℘MB(Γ|β)

〈
dSr(Γ)

dt

〉
R̃

= 0. (7.119)

This result is what one would expect, because in an equilibrium system there
should be no nett change of the reservoir entropy with time, even though the
reservoir entropy may increase or decrease at individual points in the sub-system
phase space. In fact, in the thermodynamic limit, N → ∞, fluctuations are
relatively negligible, so that the instantaneous value of the kinetic energy can
be taken to be the same as the average value,

∑
i,α p2

iα/2m = 3NkBT/2. That
is, the bracketed term can be set to zero with negligible error, and one can
conclude that the reservoir entropy is a constant of the motion at every point
in phase space that has non-negligible probability.

For an arbitrary or transient probability distribution, f(Γ, t) ≡ ℘(Γ, t), and
using the result for the partial time derivative obtained with the canonical equi-
librium conditional transition probability, Eq. (7.102), the total rate of change
averaged over the stochastic forces, Eq. (7.114), becomes〈

d℘(Γ, t)

dt

〉
R̃

=
∂℘(Γ, t)

∂t
+

[
Γ̇0 +

1

Δt
R

]
· ∇℘(Γ, t) +

σ

2Δt
∇2

p℘(Γ, t)

=
−1

Δt

[
∇p ·R(Γ)

]
℘(Γ, t) +

σ

Δt
∇2

p℘(Γ, t). (7.120)

Notice how the stochastic term on the right-hand side contributes in addition
to the compressibility. Applying this to the Maxwell-Boltzmann distribution,
℘MB(Γ|β) = Z−1 exp[−βH(Γ)], and using the result for the compressibility,
Eq. (7.105), this becomes〈

d℘MB(Γ|β)

dt

〉
R̃

=
3Nβσ

2mΔt
℘MB(Γ|β) +

σ

Δt

[
β2∇pH(Γ) · ∇pH(Γ)

− β∇2
pH(Γ)

]
℘MB(Γ|β)

=
3Nβσ

2mΔt
℘MB(Γ|β) +

⎡
⎣ β2σ

m2Δt

∑
i,α

p2
iα − 3Nβσ

mΔt

⎤
⎦℘MB(Γ|β)

≈ 3Nβσ

2mΔt
℘MB(Γ|β). (7.121)

As discussed above, the last approximation holds in the thermodynamic limit
when fluctuations are negligible and the equipartition theorem can be taken to
hold at each point in phase space of non-negligible probability. In this case, the
stochastic contribution to the evolution is negligible and the total time derivative
of the probability density is the same as the deterministic derivative, Eq. (7.111).
This cancellation of the stochastic term was discussed in the context of the
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generalised equipartition theorem, §3.7.4, and of Liouville’s theorem in §3.7.5.
Irrespective of the approximation, one has the exact result for the integral of
the total time derivative of the probability density over phase space,∫

dΓ

〈
d℘MB(Γ|β)

dt

〉
R̃

=
3Nβσ

2mΔt
. (7.122)

In this case the cancellation of the stochastic term is exact, and the non-zero
result stems entirely from the dissipative contribution to the evolution of the
Maxwell-Boltzmann distribution.

It is worth comparing this result to the result for the reservoir entropy,
Eq. (7.119), the vanishing in which case resulted from the cancellation of the
stochastic with the deterministic terms. The deterministic derivative alone is∫

dΓ℘MB(Γ|β)Ṡdet
r (Γ)/kB =

∫
dΓ ℘̇det

MB(Γ|β) =
3Nβσ

2mΔt
, (7.123)

whereas∫
dΓ℘MB(Γ|β)

〈
dSr(Γ)

kBdt

〉
R̃

�=
∫

dΓ

〈
d℘MB(Γ|β)

dt

〉
R̃

. (7.124)

This is an example of the general principle that the chain rule of differentiation
holds for the deterministic time derivative, but not for the total time derivative
that includes the stochastic contribution because the latter arises from a second
derivative.

Now the compressibility of the equations of motion is discussed. Using the
result for the compressibility, Eq. (7.105), and assuming the validity of the
equipartition theorem at each point, β

∑
i,α p2

iα/m ≈ 3N , the total time deriva-
tive of the Maxwell-Boltzmann distribution, Eq. (7.121), can be written〈

d℘MB(Γ|β)

dt

〉
R̃

≈ 3Nβσ

2mΔt
℘MB(Γ|β) =

−1

Δt

[
∇p · R

]
℘MB(Γ|β). (7.125)

This says that the total rate of change of the probability density is related to the
negative of the divergence of the deterministic part of the equations of motion.

A related result may be derived in an alternative fashion based upon the
normalisation of the probability. Let Γ′ = Γ + ΔΓdet = Γ + ΔtΓ̇

0 + R be the
deterministic evolution. For an arbitrary normalised probability density, one
has

1 =

∫
dΓ′ ℘(Γ′, t)

=

∫
dΓ
[
1 + ∇p · R

] {
℘(Γ, t) +

[
ΔtΓ̇

0 + R
]
· ∇℘(Γ, t)

}
. (7.126)

Clearly the two terms linear in the time step must cancel, which gives∫
dΓ
[
ΔtΓ̇

0 + R
]
· ∇℘(Γ, t) = −

∫
dΓ℘(Γ, t)∇p · R. (7.127)
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Inserting the Maxwell-Boltzmann distribution, one sees that this is an identity
equivalent to the equipartition theorem. Since the adiabatic derivative of the
Maxwell-Boltzmann distribution vanishes, ℘̇0

MB(Γ|β) = 0, the integrand on the
left-hand side is just its deterministic derivative. Assuming that fluctuations
are negligible and that this holds at each point in phase space, this says

℘̇det
MB(Γ|β) ≈

〈
d℘MB(Γ|β)

dt

〉
R̃

≈ −1

Δt
℘MB(Γ|β)∇p ·R(Γ). (7.128)

This is the same as Eq. (7.125). This says that the deterministic derivative
of the Maxwell-Boltzmann distribution on the most likely trajectory neglecting
stochastic forces is equal to the full derivative averaged over the stochastic forces.
This result, which is more general than the present canonical equilibrium sys-
tem, will be compared to Liouville’s theorem for non-Hamiltonian deterministic
equations of motion below.

7.5.2 Compressibility

The compressibility of the equations of motion does not have a straightforward
physical interpretation, as distinct from the mathematical interpretation of the
rate of change of a volume element. It is clear that

∇ · ΔΓdet = ∇p ·R =
σ

2kB
∇2

pSr(Γ). (7.129)

The first equality is general; the second equality assumes that the deterministic
non-Hamiltonian force is derived from the reservoir entropy, as mandated by
maximisation of the second entropy. On the left-hand side is the divergence of
the deterministic part of the equations of motion, which have the interpretation
of the most likely reservoir perturbation, the dissipative force. From the second
entropy, this divergence of the dissipation is the Laplacian of the reservoir en-
tropy, which is related to the fluctuation part of the reservoir perturbation. That
these two are so linked is another manifestation of the fluctuation dissipation
theorem.

One sometimes sees in the literature an attempt to interpret the compress-
ibility in terms of either the entropy production of the sub-system or else the
entropy production of the reservoir. Neither of these is correct and it is instruc-
tive to examine the arguments to see why they are flawed. One argument begins
by asserting that the sub-system entropy of a point in its phase space is the log-
arithm of a volume associated with that point, Ss(Γ, t) = kB ln vs(Γ, t). The
argument continues by asserting that therefore the rate of change of the sub-
system entropy is the logarithmic derivative of the sub-system volume, which is
just the compressibility,

Ṡs(Γ, t)/kB =
v̇s(Γ, t)

vs(Γ, t)
=

1

Δt
∇ · Γdet, (err.) (7.130)
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The second argument says that the total volume associated with a point in
the sub-system phase space, Γ, is the product of the sub-system volume and the
reservoir volume, vtot(Γ, t) = vs(Γ, t)vr(Γ, t). Since the total system is isolated
and evolves adiabatically according to Hamilton’s equations, the total volume
is a constant of the motion, v̇tot(Γ, t) = 0. Taking the reservoir entropy to be
the logarithm of its volume, Sr(Γ, t) = kB ln vr(Γ, t), this would imply that the
rate of entropy production of the reservoir is

Ṡr(Γ, t)/kB =
v̇r(Γ, t)

vr(Γ, t)
=

−v̇s(Γ, t)

vs(Γ, t)
=

−1

Δt
∇ · Γdet, (err.) (7.131)

Although it is certainly correct that the compressibility is equal to the rel-
ative rate of change of a sub-system volume, it is not correct that it equals
either the rate of sub-system entropy production, or the negative of the rate of
reservoir entropy production. The problem with the first argument, Eq. (7.130),
is the assumption that entropy is proportional to the logarithm of the volume
associated with each point in the isolated systems phase space. Equation (7.33)
shows that the weight density is constant and uniform in phase space, and hence
the entropy of a volume of phase space is simply that volume times the logarithm
of the weight density. It is true that the argument of the logarithm includes
an arbitrary volume scale (c.f. ΔΓ in Eq. (7.34)), but there would of course be
no point in choosing a scale that changed with time or position in phase space.
One might speculate that the motivation for asserting that the entropy is the
logarithm of an evolving volume comes from using the ℘ ln℘ expression for part
of the entropy discussed in Ch. 1, Eq. (1.23), together with a conservation law
for ensemble members in a volume of the sort discussed in Ch. 3, §3.7.5.

The problems with the second argument are similar. There is no fundamen-
tal justification for asserting that the entropy is the logarithm of a volume in
the total phase space. Moreover, whilst it is true that the volume of the total
phase space does not change during the adiabatic (Hamiltonian) evolution of
the isolated total system, it is not necessarily true that the postulated determin-
istic equations of motion for the projected sub-system phase space preserve this
property. In fact, the concept of the evolution of a sub-system volume is not
well defined, at least not in the physically realistic case of stochastic dissipative
equations of motion.

The notion of the evolution of a projected volume requires careful thought.
A projected volume can break up, and conversely it can merge with other pro-
jected volumes, as is sketched in Fig. 7.2. This occurs because the principle
that trajectories cannot cross that results from Hamilton’s equations for an iso-
lated system does not hold in the case of projection onto a sub-system. Some
effects of the projection operation are sketched in Fig. 7.3. In the projected
sub-space, trajectories can cross, be created, and be destroyed.18 These cross-
ing, separation, and union points are a manifestation of the stochastic part

18Points of creation and destruction of trajectories in the projected sub-space occur in pairs.
If one follows a trajectory from a unification point, one will eventually reach a bifurcation
point from which the two original trajectories emerge. The single trajectory between these
two points in the sub-space corresponds to the coincidence of two separate trajectories in the
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Figure 7.2: The energy hypersurface in the phase space of the total system and
the projection of parts of it onto the sub-system. The left-hand sketch shows
two disjoint volumes of the total system that project onto a single volume of the
sub-system. The right-hand sketch shows that over time the projected volume
is not constant and becomes disconnected.

of the sub-space trajectory, since they preclude the one-to-one determinism of
Hamilton’s equations for the full phase space. The concept of the evolution of
a volume of the projected phase space is meaningless, because trajectories that
were originally in the interior of the volume can cross the evolving boundary
and end up exterior to the volume. Because trajectories can be created and de-
stroyed at different points, the change in the number of trajectories interior to
a fixed volume is not given by the flux in the number across the fixed boundary
to that volume. In other words, the probability flux is not equal to the velocity
times the probability density, J℘ �= Γ̇det℘(Γ, t), but rather one has to include
the additional contribution to the flux due to the stochastic terms that result
from the projection operation (c.f. Eq. (3.111)).

It is emphasised that this is the real behaviour of a physical sub-system. It
would of course be possible to develop artificial deterministic equations of motion
in which the trajectories do not cross, and are neither created nor destroyed.
However, this is not what happens in the real world, which suggests that such
equations would likely have other unphysical consequences.

7.5.3 Liouville’s Theorem

Liouville’s theorem was given as the deterministic limit of the Fokker-Planck
equation in §3.7.5. An alternative but ultimately equivalent derivation can
be given for phase space. The deterministic Hamiltonian or non-Hamiltonian

total space. Hence there is a global conservation law for trajectories in the sub-space that is
reflected in the global normalisation of the probability density.
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Figure 7.3: A trajectory in the full three-dimensional space (left), and its pro-
jection onto a two-dimensional sub-space (right). Note that the full trajectory
does not cross itself, and is not created or destroyed (not counting the beginning
(A) and end (F)), whereas the projection shows two points where trajectories
cross (D and E), one point where two trajectories unite to become one trajectory
(B), and one point where a single trajectory bifurcates into two trajectories (C).

equations of motion, with the original sub-system phase space point at time t1
being Γ1, give the next point on the trajectory at time t2 = t1 + Δt, this being
Γ2 = Γ1 + ΔΓdet. The deterministic force is the most likely force, ΔΓdet =
ΔtΓ̇

0(Γ1) + R(Γ1). The corresponding conditional transition probability is
δ(Γ2 − Γ1 − ΔΓdet), and the next probability density is

℘(Γ2, t2) =

∫
dΓ1 δ(Γ2 − Γ1 − ΔΓdet)℘(Γ1, t1)

= ℘(Γ2 − ΔΓdet, t1)

∣∣∣∣ dΓ1

d [Γ1 + ΔΓdet]

∣∣∣∣
Γ2

= ℘(Γ2, t1) − ΔΓdet · ∇℘(Γ2, t1)

−∇ · ΔΓdet℘(Γ2, t1) + O(Δ2
t ). (7.132)

This gives the deterministic derivative as

℘̇det(Γ, t) ≡ ∂℘(Γ, t)

∂t
+

1

Δt
ΔΓdet · ∇℘(Γ, t)

=
−1

Δt

[
∇ · ΔΓdet

]
℘(Γ, t)

=
−1

Δt

[
∇ ·R

]
℘(Γ, t). (7.133)

The final equality follows from the incompressibility of Hamilton’s equations,
∇ · Γ̇0 = 0. This is the non-Hamiltonian form of Liouville’s theorem, in which
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the deterministic time derivative is interpreted as the total time derivative. For
a Hamiltonian trajectory of an isolated system, R = 0, the equation is for-
mally correct. More generally, it is the same as the Fokker-Planck equation
(7.102) with the stochastic term neglected. As discussed in the general case in
the context of the generalised equipartition theorem, §3.7.4, and more particu-
larly above for the canonical equilibrium system with the Maxwell-Boltzmann
distribution, Eq. (7.109) and following, it is justifiable to neglect the stochastic
contribution to the evolution of the probability density. This, however, does not
justify the use of deterministic non-Hamiltonian equations of motion in general.

The conditional transition probability, δ(Γ2−Γ1−ΔΓdet), based upon deter-
ministic non-Hamiltonian equations of motion, says in essence that trajectories
are conserved, and that they do not cross each other. This is compatible with,
and has the same status as, the ensemble interpretation of probability in which
the number of members is conserved during the evolution of the ensemble.19

In general neither are compatible with stochastic equations of motion, in which
trajectories may cross, be created, or be destroyed, as was discussed in con-
nection with Figs 7.2 and 7.3. It is only in the case of the evolution of the
probability density that deterministic non-Hamiltonian equations of motion can
possibly be valid as an approximation, as in Eqs (7.125) and (7.128), and even
then the non-Hamiltonian term must have a specific form. More generally, the
stochastic terms do not cancel for the evolution of any other phase function,
and it is likely that adding arbitrary non-Hamiltonian terms to the equations
of motion and discarding the stochastic terms will have unintended, unphysical
consequences.

7.6 Reversibility

The concept of time reversibility is fundamental to mechanics and to non-
equilibrium theory. In statistical mechanics three types of reversibility occur:
there is a probabilistic reversibility, which is rather trivial, there is a mechanical
reversibility that involves the conjugate trajectory, and there is a mathemati-
cal reversibility that involves retracing a trajectory. The latter two are quite
important in equilibrium and non-equilibrium theory.

The first of these, probabilistic, is manifest in the joint probability function,
where the order of the arguments is irrelevant,

℘(Γ2, t2;Γ2, t1) = ℘(Γ2, t1;Γ2, t2). (7.134)

In words, this is the probability that the sub-system is in the microstate Γ2

at time t2 and that it is in the microstate Γ1 at time t1. The conjunction
‘and’ obviously makes the order of the states in the argument of the probability
irrelevant.20 This symmetry rule does not depend upon the physical nature of

19The conservation law for weight during a transition, Eq. (1.28), and the related reduction
condition for the weight of joint states, Eq. (1.12), both of which follow from the general laws
of probability, are global conditions that hold for a sum over a complete set of states. They
do not represent a local conservation law, as assumed in Liouville’s theorem.

20A state here is the combination of the phase space point and the time, {Γ, t}.
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a trajectory. One can define the signed time interval Δt ≡ t2 − t1 and write
℘(Γ2, t2;Γ2, t1) ≡ ℘(Γ2|Γ1, Δt)℘(Γ1, t1). With this conditional probability the
symmetry rule reads

℘(Γ2|Γ1, Δt)℘(Γ1, t1) = ℘(Γ1|Γ2,−Δt)℘(Γ2, t2). (7.135)

Again, this is just a consequence of the definitions of probability that give two
equivalent ways of writing the probability that Γ2 occurs a time Δt after Γ1. One
should not confuse −Δt with the unphysical concept of time running backwards.

7.6.1 Isolated System

The remaining two types of reversibility are related to the mechanical or physical
reversibility that comes from Hamilton’s equations. In common parlance, the
Hamiltonian trajectory is said to retrace its course if time is reversed. This can
be a rather confusing picture, because it involves two distinct concepts. There
is the concept of conjugacy, the second type of reversibility mentioned above, in
which all the momenta are reversed but time is calculated forward. And there
is the third type of reversibility mentioned above, namely that of retracing
the trajectory, where the momenta remain the same but time is calculated
backwards, as was briefly discussed in §7.4.1 on p. 197.

The conjugate phase space point has all its momenta reversed: with Γ =
{q3N , p3N}, then the conjugate point is Γ† = {q3N , (−p)3N}. Now Hamilton’s
equations show that the velocity at the conjugate phase point is the negative of
the conjugate of the velocity of the original phase point,

Γ̇0(Γ†) = −
[
Γ̇0(Γ)

]†
. (7.136)

This can be shown directly using the fact that the Hamiltonian is an even
function of the momenta, H(Γ†) = H(Γ). Hence

q̇0
iα(Γ†) =

∂H(Γ†)

∂p†iα
= −∂H(Γ)

∂piα
= −q̇0

iα(Γ) = −[q̇0
iα(Γ)]†, (7.137)

and

ṗ0
iα(Γ†) = −∂H(Γ†)

∂q†iα
= −∂H(Γ)

∂qiα
= ṗ0

iα(Γ) = −[ṗ0
iα(Γ)]†. (7.138)

Note that the phase space velocity Γ̇ obeys the same conjugacy rule as phase
space itself, namely if Γ̇ = {Γ̇q, Γ̇p}, then [Γ̇]† = {Γ̇q,−Γ̇p}.

The nature of an isolated system embodied by this property of Hamilton’s

equations, Γ̇0(Γ†) = −
[
Γ̇0(Γ)

]†
, means that a Hamiltonian transition is re-

versible in the sense that if

Γ2 = Γ1 + ΔtΓ̇
0(Γ), (7.139)
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then

Γ
†
1 = Γ

†
2 + ΔtΓ̇

0(Γ†). (7.140)

This says that if Γ2 is the transition point of Γ1 going forward in time, then Γ
†
1

is the transition point of Γ
†
2, also going forward in time. (The argument of the

velocity can be evaluated at either phase space point to the exhibited order in
the time step.) Integrating this along a trajectory gives

Γ2 = Γ0(t2|Γ1, t1) ⇔ Γ
†
1 = Γ0(t2|Γ†2, t1). (7.141)

This is the sense in which a Hamiltonian system is time reversible.
The conditional transition probability for the isolated system is just

℘0(Γ2|Γ1, Δt) = δ(Γ2 − Γ1 − ΔtΓ̇
0
1). (7.142)

Since there is a one-to-one relationship between the forward and backward tran-
sition, one must have δ(Γ2−Γ1−ΔtΓ̇

0(Γ)) = δ(Γ†1−Γ
†
2−ΔtΓ̇

0(Γ†)), and hence

℘0(Γ2|Γ1, Δt) = ℘0(Γ
†
1|Γ

†
2, Δt). (7.143)

This says that reversing the velocities gives the reverse transition going forward
in time. A corollary is that Hamilton’s equations show that

℘0(Γ2|Γ1, Δt) �= ℘0(Γ1|Γ2, Δt). (7.144)

The third type of reversibility, namely reversing time but leaving the mo-
menta unchanged, holds rather trivially for Hamilton’s equations simply by
swapping terms on the two sides of the original form of Hamilton’s equations,
Eq. (7.139),

Γ1 = Γ2 − ΔtΓ̇
0(Γ). (7.145)

This has the form of Hamilton’s equations but with a negative time step. It
enables the trajectory to be retraced in time. Hamilton’s equations of motion
are reversible in this third sense in that Γ′ = Γ0(t|Γ) ⇔ Γ = Γ0(−t|Γ′). In
terms of conditional probability this corresponds to

℘0(Γ2|Γ1, Δt) = ℘0(Γ1|Γ2,−Δt), (7.146)

which is essentially the same as is demanded by the laws of probability in the
case that the probability density is unchanged during adiabatic evolution.

7.6.2 Canonical Equilibrium System

Now focus on the canonical equilibrium system. Since the Hamiltonian has even
parity, the Maxwell-Boltzmann distribution is insensitive to the direction of the
momenta,

℘MB(Γ†) = ℘MB(Γ). (7.147)
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In the first instance, take the conditional transition probability to be the adi-
abatic one given above, ℘0(Γ2|Γ1, Δt).

21 Because energy is conserved in an

adiabatic transition, one has H(Γ1) = H(Γ2) = H(Γ†2), and hence ℘MB(Γ1) =

℘MB(Γ2) = ℘MB(Γ†2). Accordingly the unconditional transition probability sat-
isfies

℘0(Γ2|Γ1, Δt)℘MB(Γ1) = ℘0(Γ
†
1|Γ

†
2, Δt)℘MB(Γ†2). (7.148)

This says that for the canonical equilibrium system, the unconditional forward
transition is equally likely to occur as the reverse conjugate transition (in the
case that the reservoir perturbations are so negligible as to justify using the
adiabatic transition probability).

In contrast to the Hamiltonian reversibility, Eq. (7.136), the most likely
stochastic perturbation of the equations of motion is not reversible. With the
most likely reservoir forces being,

Rq ≡ 0, and Rp =
σ∇pSr(Γ)

2kB
=

−σβ

2m
Γp, (7.149)

it follows that

R(Γ†) = −R(Γ) =
[
R(Γ)

]†
. (7.150)

This is exactly opposite to the behaviour of the Hamiltonian contribution to the
deterministic trajectory. This means that in the presence of perturbations from
the reservoir, the trajectory passing through a conjugate point is no longer the
conjugate of the original trajectory. That is if

Γ2 = Γ1 + ΔtΓ̇
0(Γ) + R(Γ), (7.151)

then

Γ
†
1 �= Γ

†
2 + ΔtΓ̇

0(Γ†) + R(Γ†). (7.152)

This is one sense (violating the second type of reversibility) that thermodynamic
systems are irreversible.

For the third type of reversibility, the time step is negated, Δt ⇒ −Δt. As
mentioned briefly in §7.4.1 on p. 197, and in more detail in §7.4.4, the most
likely pre-transition point of Γ2,

Γ3 = Γ2 − ΔtΓ̇
0(Γ) + R(Γ), Δt > 0, (7.153)

21The correct conditional transition probability is the second entropy form given earlier
in the chapter, from which is derived the stochastic dissipative equations of motion. The
adiabatic transition probability based on Hamilton’s equations of motion is equivalent to
setting the variance to zero, σ = 0, so that both the stochastic terms and the dissipative
terms vanish leaving only the adiabatic part of the equations of motion. Since the Maxwell-
Boltzmann distribution is stationary under the stochastic dissipative equations of motion, it
remains stationary in the adiabatic limit, as may be confirmed explicitly from the constancy
of the Hamiltonian.
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Figure 7.4: The most likely trajectory Γ(t′|Γ, t) (solid curve), passing through Γ

(circle) at time t, the most likely trajectory, Γ(t′|Γ1, t1) (dotted curve), passing
through Γ1 (square) at the earlier time t1 < t, and the most likely trajectory,
Γ(t′|Γ2, t2) (dashed curve), passing through Γ2 (diamond) at the later time
t2 > t.

does not equal Γ1. As shown in Eq. (7.96), to linear order in the time step, the
difference between these is

Γ3 − Γ1 = 2R(Γ). (7.154)

This irreversibility is a direct consequence of the time symmetry of the regression
of fluctuations: most likely the system came from equilibrium and most likely it
is going to equilibrium. In terms of the most likely trajectory, the fact that Γ2

lies on the trajectory originating at Γ1, Γ2 = Γ(t2|Γ1, t1), does not imply that
Γ1 lies on the trajectory originating at Γ2, Γ1 �= Γ(t1|Γ2, t2) (going backwards
in time). In other words, one cannot speak of the most likely trajectory; one
can only speak of the most likely trajectory that originates at a given point
at a given time. Figure 7.4 sketches the situation that can occur for projected
trajectories.

Although the stochastic, dissipative trajectory is not individually reversible
under the conjugation operation, or under reversing the time step, it is reversible
when both of these are combined. Consider the most likely next point for the

transition Γ1
Δt→ Γ2,

Γ2 = Γ1 + ΔtΓ̇
0(Γ) + R(Γ), (7.155)

where to linear order in the time step, it is immaterial whether the argument Γ

is set equal to Γ1 or to Γ2. Taking the conjugate of this yields

Γ
†
2 = Γ

†
1 + Δt

[
Γ̇0(Γ)

]†
+
[
R(Γ)

]†
= Γ

†
1 − ΔtΓ̇

0(Γ†) + R(Γ†). (7.156)

The last equality is just the stochastic dissipative equations of motion going

backward in time, Γ
†
1
−Δt→ Γ

†
2. That is, if Γ2 is the most likely post-transition

point of Γ1, then Γ
†
2 is the most likely pre-transition point of Γ

†
1. Integrating
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Γf 

Γi 

Γi
†

Γf
† 

Γ(t|Γi
†,tf) 

Γ(t|Γi,ti) 

Figure 7.5: A forward most likely trajectory, (top), and its backward conjugate,
(bottom), for ti ≤ t ≤ tf . The arrow in each case signifies the positive time
direction.

this one sees that the reverse of a trajectory is its conjugate, namely if Γf =
Γ(tf |Γi, ti), then Γ

†
f = Γ(ti|Γ†i , tf). For tf ≤ ti, the first is the end point of a

backward trajectory from the initial point Γi, and the second is the end point of
a forward trajectory from the initial point Γ

†
i . This reversibility is sketched in

Fig. 7.5. Note that due to irreversibility, Γi �= Γ(ti|Γf , tf) (forward trajectory),

and Γ
†
i �= Γ(tf |Γ†f , ti) (backward trajectory). Reversibility only holds on the

conjugate trajectory travelling in the opposite time direction.
It remains to prove that for the canonical equilibrium system, it is equally

likely to observe the unconditional forward transition as it is to observe the
unconditional backward conjugate transition. This was proved above using the
adiabatic transition probability, Eq. (7.148), but now the full stochastic dissi-
pative transition probability is used.

The two preceding numbered equations give the most likely transition (for-
ward), and its conjugate backward transition. The corresponding stochastic
forward transition is

Γ2 = Γ1 + ΔtΓ̇
0(Γ) + R(Γ), (7.157)

which has conjugate

Γ
†
2 = Γ

†
1 + Δt

[
Γ̇0(Γ)

]†
+ [R(Γ)]

†

= Γ
†
1 − ΔtΓ̇

0(Γ†) + R(Γ†). (7.158)

The latter represents the conjugate backward stochastic transition. The second
entropies that correspond to these must be equal

S(2)(Γ2, t2;Γ1, t1) = S(2)(Γ†2, t1;Γ
†
1, t2), (7.159)
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with Δt ≡ t2 − t1. Explicitly this follows from the expression for the uncondi-
tional second entropy, Eq. (7.83),

S(2)(Γ2,Γ1|Δt)

=
−kB

2σ
R · R +

1

2
[Sr(Γ1) + Sr(Γ2)] + D(Γq2,Γq1, Δt)

+
kB

2σ
R(Γ) ·R(Γ) − 1

2
R(Γ) · ∇pSr(Γ)

=
−kB

2σ
R · R +

1

2

[
Sr(Γ

†
1) + Sr(Γ

†
2)
]

+ D(Γ†q1,Γ
†
q2, Δt)

+
kB

2σ
R(Γ†) ·R(Γ†) − 1

2
R(Γ†) · ∇pSr(Γ

†)

= S(2)(Γ†1,Γ
†
2|Δt). (7.160)

In the first and subsequent equalities, terms that are O(Δt) can be equally well
evaluated at Γ1 or Γ2, which is simply signified by Γ. In the second equality, the
facts have been used that the reservoir entropy has even parity, Sr(Γ

†) = Sr(Γ),
that the most likely reservoir force has odd parity, R(Γ†) = −R(Γ), and that
the momentum gradient of the entropy has odd parity, ∇pSr(Γ

†) = −∇pSr(Γ).
Since the second entropy gives the unconditional transition probability, this

is equivalent to

℘(Γ2,Γ1|Δt) = ℘(Γ†1,Γ
†
2|Δt). (7.161)

In more verbose notation, this is ℘(Γ2, t2;Γ1, t1) = ℘(Γ†2, t1;Γ
†
1, t2). This com-

pletes the proof that in the canonical equilibrium system, the forward transition
is as unconditionally likely to occur as the conjugate backward transition. This
generalises the reversibility shown in Fig. 7.5 from a most likely trajectory to
an arbitrary trajectory.

With Δt = t2 − t1, the left-hand side may be written as a conditional prob-
ability,

℘(Γ2,Γ1|Δt) = ℘(Γ2|Γ1, Δt)℘MB(Γ1) = ℘(Γ1|Γ2,−Δt)℘MB(Γ2). (7.162)

And similarly for the right-hand side,

℘(Γ†1,Γ
†
2|Δt) = ℘(Γ†1|Γ

†
2, Δt)℘MB(Γ†2) = ℘(Γ†2|Γ

†
1,−Δt)℘MB(Γ†1). (7.163)

Equating the forward and backward transitions conditioned on Γ1 and Γ
†
1,

and using the fact that ℘MB(Γ1) = ℘MB(Γ†1), these imply

℘(Γ2|Γ1, Δt) = ℘(Γ†2|Γ
†
1,−Δt). (7.164)

This says that the forward transition for one state to another is as likely as the
backward transition from that state with the velocities reversed.

The two forward transitions may also be equated to each other. Rearrang-
ing both sides shows that the conditional transition probabilities are in inverse
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Table 7.3: Possible transitions between two neighbouring points, Γ1 and Γ2

Γ1
Δt→ Γ2 Γ2 = Γ1 + ΔtΓ̇

0(Γ) + R(Γ) ℘(Γ2|Γ1, Δt)

Γ†1
−Δt→ Γ†2 Γ†2 = Γ†1 − ΔtΓ̇

0(Γ†) + R(Γ†) = ℘(Γ†2|Γ
†
1,−Δt)

Γ2
−Δt→ Γ1 Γ1 = Γ2 − ΔtΓ̇

0(Γ) + R(Γ) ℘(Γ1|Γ2,−Δt)

Γ†2
Δt→ Γ†1 Γ†1 = Γ†2 + ΔtΓ̇

0(Γ†) + R(Γ†) = ℘(Γ†1|Γ
†
2, Δt)

Γ1
−Δt→ Γ2 Γ2 = Γ1 − ΔtΓ̇

0(Γ) + R(Γ) ℘(Γ2|Γ1,−Δt)

Γ†1
Δt→ Γ†2 Γ†2 = Γ†1 + ΔtΓ̇

0(Γ†) + R(Γ†) = ℘(Γ†2|Γ
†
1, Δt)

Γ2
Δt→ Γ1 Γ1 = Γ2 + ΔtΓ̇

0(Γ) + R(Γ) ℘(Γ1|Γ2, Δt)

Γ†2
−Δt→ Γ†1 Γ†1 = Γ†2 − ΔtΓ̇

0(Γ†) + R(Γ†) = ℘(Γ†1|Γ
†
2,−Δt)

proportion to the probability of the initial state,

℘MB(Γ1)

℘MB(Γ†2)
=

℘MB(Γ1)

℘MB(Γ2)
=

℘(Γ†1|Γ
†
2, Δt)

℘(Γ2|Γ1, Δt)
. (7.165)

The interpretation is that conditional transitions to a more probable state are
more likely than conditional transitions to a less probable state. The generic
version of this result based on the axioms of probability was given as Eq. (1.37).
This is essentially the phase space version of the relationship between Boltz-
mann’s statistical entropy and Clausius’ Second Law of Thermodynamics, as
was discussed in §§1.1 and 1.4.4.

Table 7.3 shows all the possible transitions between two neighbouring points
in phase space. There are eight transitions that stem from three binary choices:
choose either Γ1 or else Γ2 as the initial point of the transition, choose either a
forward transition or else a backward transition, and choose either the original
points or else their conjugates. Of these there are two distinct sets of equivalent
adiabatic transitions, R = 0, as grouped in the upper and lower halves of
the table. There are four distinct sets of stochastic transitions, and these are
grouped into pairs of equivalent transitions, as shown by the equality of the
conditional probabilities, Eq. (7.164).

This completes the discussion of reversibility in equilibrium systems. Whilst
time does not run backwards in the physical universe, it is still legitimate to
enquire from whence the system came. This corresponds to the mathematical
calculation of the prior trajectory, which is formulated as a conditional transition
probability with a negative time step.
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7.7 Trajectory Probability and Time Correla-

tion Functions

7.7.1 Trajectory Probability

This section obtains the probability of a trajectory in phase space for a canonical
equilibrium system, and analyses its properties and consequences. Consider a
sub-system and a thermal reservoir of temperature T , and let Γ(t) denote the
position in the sub-system phase space at time t. Consider a time interval
t ∈ [0, tf ] that is discretised into f + 1 uniformly spaced nodes, Δt ≡ tf/f , so
that tn = nΔt, n = 0, 1, . . . , f . Denote a particular trajectory by an (f + 1)-
component vector, Γ ≡ {Γ0,Γ1, . . . ,Γf}, where the value of the trajectory at
the nodes is written Γn ≡ Γ(tn).

The probability of a particular trajectory is

℘(Γ) = ℘MB(Γ0)

f∏
n=1

℘(Γn|Γn−1, Δt), (7.166)

where the conditional transition probability is

℘(Γn|Γn−1, Δt) =
1

ξ
e−R̃n−1·R̃n−1/2σδ

(
Γq,n − Γq,n−1 − ΔtΓ̇

0
q(Γn−1)

)
, (7.167)

with the stochastic part of the force being

R̃n−1 ≡ Γp,n − Γp,n−1 − ΔtΓ̇
0
p(Γn−1) − R(Γn−1). (7.168)

Note the Markovian nature of the trajectory probability, which holds for a small
enough time step Δt.

Although this is an explicit expression for the trajectory probability, there
is an alternative way of proceeding. One can generate a trajectory by the
stochastic, dissipative equations of motion, Eq. (7.70) or Eq. (7.86). That is

Γq,n+1 = Γq,n + ΔtΓ̇
0
q(Γn),

Γp,n+1 = Γp,n + ΔtΓ̇
0
p(Γn) + Rn, n = 0, 1, . . . f − 1. (7.169)

Here the random reservoir force at tn is Rn ≡ R(Γn)+ R̃n, with the dissipative
or most likely force being R(Γ) = σ∇pSr(Γ)/2kB = −βσΓp/2m, and the fluctu-

ation force R̃n being a 3N -component vector of independent Gaussian random
variables of mean zero and variance σ. The initial point Γ0 ≡ Γ(t0) is normally
chosen from the Maxwell-Boltzmann distribution. Suppose that one generates
a large number of trajectories, say M , in this way, Γm, m = 1, 2, . . . , M . Hence
Γmn ≡ Γm(tn) is the nth phase space point on the mth trajectory. With this
the trajectory probability is

℘(Γ) =
1

M

M∑
m=1

δ(Γ − Γm) =
1

M

M∑
m=1

f∏
n=0

δ(Γ(tn) − Γm(tn)). (7.170)
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7.7.2 Equilibrium Averages

The canonical average of a phase function, g(Γ), is usually written as an integral
over phase space weighted by the Maxwell-Boltzmann distribution

〈g(Γ)〉 =

∫
dΓ℘MB(Γ)g(Γ). (7.171)

However it can also be written as an unweighted average over one of the trajec-
tories that has been generated by the stochastic, dissipative equations of motion,

〈g(Γ)〉 =
1

f + 1

f∑
n=0

g(Γm(tn)). (7.172)

This is a time average. This can further be averaged over all M trajectories,
in which case it is readily shown that this is formally equivalent to an average
over the trajectory probability

〈g(Γ)〉 =

∫
dΓ0 . . . dΓf ℘(Γ)

1

f + 1

f∑
n=0

g(Γn)

=
1

f + 1

f∑
n=0

∫
dΓ0 . . .dΓf g(Γn)

1

M

M∑
m=1

δ(Γ− Γm)

=
1

M(f + 1)

M∑
m=1

f∑
n=0

g(Γm(tn)). (7.173)

7.7.3 Time Correlation Functions

The time correlation function for the canonical equilibrium system can be ob-
tained as an average over the trajectory probability. For the simplest case of
two phase functions, g(Γ) and h(Γ), their correlation function is

Cgh(tf ) ≡ 〈g(tf )h(0)〉

=
1

M

M∑
m=1

g(Γmf )h(Γm0)

=
1

M

M∑
m=1

∫
dΓ0 ℘MB(Γ0)g(Γmf )h(Γ0), (7.174)

where t0 = 0. The right-hand side of the first equality is a common but
rather loose notation for the time correlation function. In the second equality,
Γmf ≡ Γm(tf |Γm0, 0) is the end point of one of the M trajectories generated by
the stochastic dissipative equations of motion, starting from Γm0 ≡ Γm(t0) that
has been chosen independently for each m from the Maxwell-Boltzmann distri-
bution. In the third equality, all these stochastic, dissipative trajectories start
from the same Γ0, and then a weighted average over phase space is performed.
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The importance of an average over the M independent trajectories must be
emphasised.22 Ordinarily one cannot obtain the time correlation function from
a single trajectory because of the stochastic nature of the equations of motion
(but see Eq. (7.178) below). There is no such thing as ‘the’ trajectory. In
general it is not a good approximation to evaluate the time correlation function
solely on the most likely trajectory, which is the same as the trajectory averaged
over the stochastic forces, because this would be equivalent to asserting that the
average of a function of the trajectory is equal to the function of the average
trajectory.

One has the symmetry

Cgh(tf ) = Chg(−tf ). (7.175)

This follows from the time homogeneity of an equilibrium system,

〈g(tf )h(0)〉 = 〈g(0)h(−tf)〉 = 〈h(−tf )g(0)〉 . (7.176)

The time correlation function can also be written as an average over the
trajectory probability,

Cgh(tf ) =

∫
dΓ0 . . . dΓf ℘(Γ)g(Γf )h(Γ0). (7.177)

This can be confirmed by substitution of the δ-function representation. It is
straightforward to extend these expressions for the time correlation function
beyond the pair level. Because the equations of motion generate points ac-
cording to the trajectory probability, the time correlation function can also be
obtained as a simple average over the points of a single stochastic dissipative
trajectory, Γ(t),

Cgh(tn) =
1

L

L∑
i=1

g(Γ(ti + tn))h(Γ(ti)), (7.178)

where the ti are a set of nodes, most simply equally spaced. This is just the
time average given above, Eq. (7.172).

van Hove Function

The number density has phase space representation

ρ(r, t) =

N∑
i=1

δ(r − ri(t)), (7.179)

22The averages referred to in this paragraph are over the stochastic forces for the subsequent
trajectory for fixed initial point Γ0 or Γm0. One cannot obtain the time correlation function
from a single trajectory always starting from this initial point. However, if one uses the time
homogeneity of an equilibrium system, one can perform an average by moving the time interval
over the single trajectory, Eq. (7.178).
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where ri is the position of molecule i. The integral of this is
∫

dr ρ(r, t) = N .
Hence for a homogenous system, ρ ≡ N/V .

The density-density correlation function, may be obtained from the time
correlation formalism above by taking g ≡ ρ(r′ + r, t) and f ≡ ρ(r′, 0). This is
usually written,

G(r, r′, t) ≡ N−1 〈ρ(r′ + r, t)ρ(r′, 0)〉 . (7.180)

This is the probability of finding a molecule at r′ at time t = 0 and a molecule
displaced from r′ by r at a time t later. The second molecule may be the same
as or different to the first.

For a homogenous system only the displacement is relevant, and this may
be integrated over the volume to obtain the van Hove function,

G(r, t) =

∫
dr′G(r, r′, t)

=

∫
dr′

1

N

〈
N∑

i=1

N∑
j=1

δ(r′ + r− ri(t))δ(r
′ − rj(0))

〉

=
1

N

N∑
i=1

N∑
j=1

〈
δ(r + rj(0) − ri(t))

〉
. (7.181)

This is equivalent to G(r, t) = V G(r,0, t) = ρ−1 〈ρ(r, t)ρ(0, 0)〉 .
The self part of this gives the correlation or movement of the same molecule,

Gs(r, t) =
1

N

N∑
i=1

〈
δ(r + ri(0) − ri(t))

〉
, (7.182)

which is essentially the probability that a molecule moves r in time t. The
distinct part gives the correlation of different molecules

Gd(r, t) =
1

N

N∑
i=1

N∑
j=1

(i�=j)
〈
δ(r + ri(0) − ri(t))

〉
. (7.183)

At large distances and at large times the molecules are uncorrelated, so that
one has limr→∞Gd(r, t) = limt→∞Gd(r, t) = ρ.

7.7.4 Reversibility

In §7.6.2, the reversibility of the most likely trajectory was discussed (see Fig. 7.5
on p. 223). Unlike an adiabatic trajectory, the most likely stochastic dissipative
trajectory is irreversible under the individual operations of velocity conjugation
and time reversal. It is however reversible under their combination. A similar
situation holds more generally for the stochastic dissipative trajectory.

Suppose one has a specific trajectory Γ(t), on a time interval of length |ti−tf |,
with end points Γi and Γf . To be definite, take tf ≥ ti, in which case ti → tf is a
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forward transition, and tf → ti is a backward transition. In the adiabatic case,
the reversibility of the equations of motion gives four equivalent transitions,

Γi → Γf , ti → tf , Γf → Γi, tf → ti,

Γ
†
f → Γ

†
i , ti → tf , Γ

†
i → Γ

†
f , tf → ti. (7.184)

For the case of stochastic dissipative equations of motion, reversibility gives only
two equivalent transitions, namely

Γi → Γf , ti → tf , and Γ
†
i → Γ

†
f , tf → ti. (7.185)

The first is the forward transition, and the second is the backward transition of
the conjugate points. These equivalences were enumerated for an infinitesimal
time step in Table 7.3 on p. 225.

In terms of notation, on the conjugate trajectory, the subscript of the phase
space point is not the same as the subscript of the time point. In view of this now
a trajectory is denoted by {Γ, t} ≡ {Γ0, t0; Γ1, t1; . . . ;Γf , tf}. The conjugate of
a phase point on the trajectory is Γ†n = {qN , (−p)N}, and the conjugate time
point is defined as t†n = t0 + tf − tn = tf−n. With these the conjugate backward

trajectory is {Γ†, t†} ≡ {Γ†0, tf ;Γ†1, tf−1; . . . ;Γ
†
f , t0}.

In this discrete vector notation, the order of the elements is important,
since whether a trajectory is forward or backward is signified by whether the
time arguments increase or decrease. Furthermore, the first position argument
signifies the initial or known point of the trajectory, the others being determined
from this by the stochastic dissipative equations of motion.

In the continuous case, the original trajectory may be written Γ(t|Γ0, t0),
t ∈ [t0, tf ]. Often, t0 = 0. The backward conjugate trajectory in the continuous

case may be denoted Γ‡(t|Γ0, t0) ≡ Γ(t|Γ†0, tf ) = [Γ(t0 + tf − t|Γ0, t0)]
†
, t ∈

[t0, tf ]. For brevity, these two will sometimes be written simply Γ(t) and Γ‡(t),
the initial point {Γ0, t0} being understood.

Reversibility of the stochastic dissipative equations of motion implies that

℘(Γf |Γi, Δt) = ℘(Γ†f |Γ
†
i ,−Δt). (7.186)

This is just Eq. (7.164). For adjacent points on a trajectory,

℘(Γn, tn|Γn−1, tn−1) = ℘(Γn|Γn−1, Δt) = ℘(Γ†n|Γ
†
n−1,−Δt). (7.187)

This assumes equally spaced nodes and time homogeneity of an equilibrium
system.

Using this, the probability for the conjugate backward trajectory to occur
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in the canonical equilibrium system is

℘({Γ†, t†}) = ℘MB(Γ†0)

f∏
n=1

℘(Γ†n, t†n|Γ
†
n−1, t

†
n−1)

= ℘MB(Γ†0)

f∏
n=1

℘(Γ†n|Γ
†
n−1,−Δt)

= ℘MB(Γ0)

f∏
n=1

℘(Γn|Γn−1, Δt)

= ℘({Γ, t}). (7.188)

Here the nodes have been taken to be equally spaced, Δt = tn − tn−1. This
says that, for the canonical equilibrium system, one is just as likely to observe a
forward trajectory as its backwards twin, where backwards means the conjugate
trajectory with the momenta reversed. This is the generalisation of the single
time step result given above as Eq. (7.161).

Suppose that the phase functions are of pure parity, g(Γ†) = εgg(Γ) and
h(Γ†) = εhh(Γ). The parity signature is ε = 1 for an even parity function, and
ε = −1 for an odd parity function. Then the time correlation function has the
property

Cgh(tf ) =

∫
dΓ0 . . .dΓf ℘({Γ, t})g(Γf )h(Γ0)

=

∫
dΓ†0 . . .dΓ†f ℘({Γ†, t†})εgg(Γ†f )εhh(Γ†0)

= εgεhCgh(−tf ). (7.189)

The second equality uses the facts that dΓ = dΓ†, and ℘({Γ, t}) = ℘({Γ†, t†}),
and the final equality uses the fact that the Γ†n are dummy variables of inte-
gration, and the fact that time is reversed on the conjugate backward trajec-
tory. Whereas the symmetry Eq. (7.175) arises from time homogeneity of an
equilibrium system, the present symmetry arises from microscopic conjugate
reversibility in the canonical equilibrium system.

For the canonical equilibrium system, there is no preferred direction in time.
One way of seeing this is to examine the change in entropy on a trajectory,
which is formally

ΔSr(Γ) = Sr(Γf ) − Sr(Γ0). (7.190)

The change in entropy is defined as ΔSr ≡ Sr(tf )−Sr(t0), so that by definition,
the probability for a change over an interval obeys the symmetry ℘(ΔSr|tf −
t0) = ℘(−ΔSr|t0 − tf ). But from the properties of the conjugate reverse trajec-
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tory one has

℘(ΔSr|tf − t0) =

∫
dΓ0 . . .dΓf ℘({Γ, t})δ(ΔSr − Sr(Γf ) + Sr(Γ0))

=

∫
dΓ†0 . . .dΓ†f ℘({Γ†, t†})δ

(
ΔSr − Sr(Γ

†
f ) + Sr(Γ

†
0)
)

= ℘(ΔSr|t0 − tf )

= ℘(−ΔSr|tf − t0). (7.191)

Recall that Γ‡(t|Γ0, t0) ≡ Γ(t|Γ†0, tf ). This says that one is just as likely to see
the entropy increase over an interval as to decrease. This obviously must be the
case for an equilibrium system that undergoes fluctuations.



Chapter 8

Non-Equilibrium Statistical

Mechanics

This chapter sets out the theory of non-equilibrium statistical mechanics. It
extends the classical phase space formulation of the preceding chapter for the
canonical equilibrium case to the case of time dependent systems. The goal is
to derive an explicit expression for the reservoir entropy associated with each
point in the sub-system phase space, Sr(Γ, t), and hence the probability density,
℘(Γ, t), and to elucidate their properties.

There are two generic non-equilibrium systems: a sub-system with an en-
ergy or material flux due to a thermodynamic gradient imposed by spatially
separated reservoirs, and mechanical motion due to a time varying external po-
tential. Respective examples of these are the steady heat flow treated at the
thermodynamic level in Chs 4 and 6, and the driven Brownian motion treated at
the fluctuation level in Ch. 3. The generic molecular-level results of the present
chapter will be applied to these two cases in the two following chapters. In
this chapter the theory of non-equilibrium statistical mechanics is developed in
a general fashion that largely avoids the details of specific systems, although
initially the approach is motivated and illustrated by using a time dependent
Hamiltonian for a mechanical non-equilibrium system.

8.1 General Considerations

It was shown in the preceding chapter that points in the phase space of an
isolated system have equal weight (energy unspecified). This sub-system weight
is a property of the sub-system itself, and is unaffected by either adding a time
varying external potential to the Hamiltonian, or an external thermodynamic
gradient. Such external terms do affect the probability density via their effect
on the reservoir entropy, and so formally one may write for the non-equilibrium

233
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probability density

℘(Γ, t) =
eSr(Γ,t)/kB

h3NN !Z ′(t)
=

eSr(Γ,t)/kB

Z(t)
. (8.1)

Here Γ ≡ {Γq,Γp} ≡ {qN ,pN} denotes a point in the phase space of the sub-
system. In the second equality, the N ! factor that accounts for distinct states,
and the h3N factor for the uniform weight of the sub-system phase space, have
been incorporated into the partition function Z. The non-trivial task is to
obtain an explicit expression for the reservoir entropy for the non-equilibrium
system, Sr(Γ, t). A rather general formulation of the reservoir entropy can be
obtained before having to particularise to specific examples of non-equilibrium
systems in the following chapters.

The single defining characteristic of a non-equilibrium system is that there
is a preferred direction of time, namely that of entropy increase. Reversing the
direction of time is equivalent to reversing the molecular velocities, the conjuga-
tion operation defined earlier, Γ† ≡ {Γq,−Γp} ≡ {qN , (−p)N}. From this one
can immediately conclude that for the non-equilibrium system the probability
density is not invariant with respect to conjugation

℘(Γ, t) �= ℘(Γ†, t). (8.2)

This has far reaching consequences, an important one of which can be estab-
lished immediately. Consider a sub-system that is acted upon by a time varying
external potential and that is in thermal contact with a reservoir of temperature
T . The Hamiltonian of the sub-system is

H(Γ, t) = Hbare(Γ) + U ext(Γq, t). (8.3)

The kinetic energy of the bare system is quadratic in the velocities, and the
external potential acts on the position coordinates and is independent of the
velocities. These mean that the full sub-system Hamiltonian is unchanged upon
velocity reversal,

H(Γ, t) = H(Γ†, t). (8.4)

One can immediately conclude from this and Eq. (8.2) that the non-equilibrium
probability distribution cannot have Maxwell-Boltzmann form,

℘(Γ, t) �= 1

Z(t)
e−βH(Γ,t). (8.5)

From this example, it is clear that the sub-system dependent part of the
reservoir entropy cannot simply be written as the negative of the current sub-
system energy divided by the reservoir temperature. Nevertheless the concept
of the reservoir entropy is quite well defined. In fact in this example, using
Γ ≡ {Γ(t′)}, t ≥ t′ ≥ 0, to denote the actual trajectory followed by the sub-
system up to the present time, the change in the total energy is just the work
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done on the trajectory,

W (Γ) ≡ ΔEtot(Γ) =

∫ t

0

dt′
∂U ext(Γq(t

′), t′)

∂t′
. (8.6)

This follows because Γ̇total ·∇totalHtotal = 0, the total system being isolated and
therefore evolving via Hamilton’s equations of motion. With this the reservoir
entropy is1

Sr(Γ) =
Er(Γ)

T
=

W (Γ) − Es(Γ)

T
. (8.7)

The reservoir entropy therefore depends upon the work done on the trajectory
leading up to the current point in phase space. This in turn is sensitive to the
molecular velocities: the work done up to the present point is different to the
work done on a trajectory leading up to the conjugate point.

This formal expression for the reservoir entropy is a candidate for the non-
equilibrium probability, and one is tempted to write

℘(Γ, t) =
1

Z(t)
eSr(Γ)/kB , (err.) (8.8)

But this is not satisfactory because on the left-hand side appears just a single
point in the sub-system phase space, and on the right-hand side appears a
specific trajectory leading up to this point. This raises two questions: how to
determine the trajectories leading to a given point at a given time, and from
these, how to determine the unique trajectory and hence the unique reservoir
entropy associated with each point, Sr(Γ, t).

8.2 Reservoir Entropy

8.2.1 Trajectory Entropy

In the canonical equilibrium case, the total energy, Etot = H(Γ) + Er(Γ, t), was
constant with respect to both the sub-system phase space point Γ and time t.
Hence the reservoir entropy could be written

Sr(Γ, t) = Sr(Er(Γ, t)) = Sr(Etot −H(Γ)) = Sr(Etot)−
H(Γ)

T
, (equil.) (8.9)

Since the first term on the right-hand side of the final equality is constant
with respect to points in phase space it can be neglected (or, more precisely,

1 Strictly speaking these are the change in the reservoir entropy, the change in the reservoir
energy, and the change in the sub-system energy from the initial point on the trajectory.
However, here and below it is assumed that the time interval is long enough such that Γ(0) is
uncorrelated with Γ(t). This means that any functions of the initial point are constant with
respect to the current point and time and can be incorporated into the normalising partition
function.



236 8. Non-Equilibrium Statistical Mechanics

incorporated into the partition function). Exponentiating this, one immediately
obtains the Maxwell-Boltzmann distribution.

For a mechanical non-equilibrium system with time dependent external po-
tential of the form given in Eq. (8.3), H(Γ, t) = Hbare(Γ) + U ext(Γq, t), the
total energy is no longer fixed, but depends upon the work done, which in
turn depends upon the specific trajectory leading up to the present point,
ΔEtot(Γ) ≡ W (Γ), Eq. (8.6). The integrand of that equation is just the adia-
batic rate of change of the sub-system energy,

Ḣ0(Γ, t) ≡ ∂H(Γ, t)

∂t
+ Γ̇0 · ∇H(Γ, t) =

∂U ext(Γq, t)

∂t
. (8.10)

With the sub-system energy of the trajectory equal to the energy of the final
point of the trajectory, Es(Γ) = H(Γ, t), one can rewrite the change in reservoir
entropy on a particular trajectory as

Sr(Γ) =
W (Γ) − Es(Γ)

T

=
−H(Γ, t)

T
+

1

T

∫ t

0

dt′ Ḣ0(Γ(t′), t′)

≡ Sr,st(Γ, t) + Sr,dyn(Γ). (8.11)

Again these are strictly the change from the initial time, but the initial values,
including the initial sub-system energy H(Γ(0), 0), are not shown (see footnote 1
on p. 235). In the final equality the static reservoir entropy has been defined,
which could also be called the instantaneous reservoir entropy, or the equilibrium
expression for the reservoir entropy,

Sr,st(Γ, t) =
−H(Γ, t)

T
. (8.12)

This is defined as the entropy given by the usual equilibrium formula for the
entropy. The specifically non-equilibrium part of the reservoir entropy, which
could be called the dynamic part of the reservoir entropy, is defined as

Sr,dyn(Γ) ≡ −
∫ t

0

dt′ Ṡ0
r,st(Γ(t′), t′) =

1

T

∫ t

0

dt′ Ḣ0(Γ(t′), t′). (8.13)

This represents what remains after invoking the instantaneous reservoir entropy,
and it should not be interpreted as having the physical meaning of some non-
equilibrium entropy. To be sure, this term vanishes for an equilibrium system,
but in fact it represents no more than a correction for a double counting in the
expression for the static entropy when it is applied to a non-equilibrium system.

To see this, Sr,st(Γ, t) is based upon the total change in the sub-system
energy from the initial time, and this contains contributions from the adiabatic
motion of the sub-system and contributions from the reservoir perturbation.
The reservoir entropy changes only when the reservoir energy changes, and, by
energy conservation, these are the reservoir induced changes in the sub-system
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energy. Hence adding the term Sr,dyn(Γ) corresponds to removing the adiabatic
change from the total change in sub-system energy leaving only the reservoir
induced change.

The notation Ṡ0
r,st(Γ, t), represents the adiabatic rate of change of the static

part of the reservoir entropy. It should be clear that the reservoir entropy
itself is unaffected by the adiabatic evolution of the sub-system. Nevertheless,
the static part of the reservoir entropy generally involves sub-system quantities
that do evolve adiabatically, and their effects have to be subtracted.

Although the present result has been derived for a mechanical non-equili-
brium system, the concepts and indeed notation carry over for thermodynamic
non-equilibrium systems. The remarks in the preceding paragraph provide the
interpretation and mathematical definition of the change in the dynamic part
of the reservoir entropy in such cases. In most of what follows in this chapter,
including the following section, the reservoir entropy is to be interpreted in a
generic sense.

8.2.2 Reduction to the Point Entropy

The reduction condition on the second entropy was established in Ch. 1 (e.g.
Eq. (1.46)), and was used in the presentation of fluctuation theory in Ch. 2
(e.g. Eqs (2.19) and (2.41)). The reduction condition was used to derive the
non-equilibrium probability distribution for driven Brownian motion in §§3.6
and 3.6.3. In this section the reduction condition is used to derive the non-
equilibrium probability distribution for the general case.

The reduction condition states that the value of the second entropy at the
most likely value of one of the points gives the first entropy of the remaining
point. Equivalently, the maximum value of the second entropy with respect to
one of the points equals the first entropy of the remaining point. The generalisa-
tion of this to the third and higher-order entropies is obvious: each maximisation
reduces the order of the entropy by one. For the path entropy, maximisation
with respect to all points but one, reduces it to the first entropy of the remaining
point. For the present problem, since the most likely trajectory maximises the
trajectory entropy, the reduction condition yields the entropy of the final point,

Sr(Γ, t) = Sr(Γ), Γ ≡
{
Γ(t′|Γ, t)

}
, t′ ≤ t. (8.14)

Because one is dealing with the sub-system phase space, the reservoir entropy
is the same as the total entropy.

In almost all cases below, the most likely trajectory means the most likely
backward trajectory passing through Γ at time t, Γ ≡ {Γ(t′|Γ, t)}, t′ ≤ t.
It is necessary to distinguish the forward and backward trajectories due to
the irreversibility of the stochastic dissipative equations of motion, as will be
discussed below (see also §§7.4.4 and 7.6.2 above).

Putting these together, the reservoir entropy for a point in the sub-system
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phase space is formally

Sr(Γ, t) = Sr,st(Γ, t) + Sr,dyn(Γ, t)

≡ Sr,st(Γ, t) −
∫ t

0

dt′ Ṡ0
r,st(Γ(t′|Γ, t), t′). (8.15)

The constant term −Sr,st(Γ(0|Γ, t), 0) has been neglected (see footnote 1 on
p. 235). This result for the reservoir entropy holds for both mechanical non-
equilibrium systems and for thermodynamic non-equilibrium systems. The
recipe for the most likely trajectory will be derived below.

This result can be rewritten by once more including the neglected constant
term, and noting that the difference between the final and the initial value of the
static part of the reservoir entropy is just the integral of its total time derivative,
so the change in reservoir entropy over the time interval is

Sr(Γ, t) − Sr(Γ(0), 0) = Sr,st(Γ, t) − Sr,st(Γ(0), 0) −
∫ t

0

dt′ Ṡ0
r,st(Γ(t′|Γ, t), t′)

=

∫ t

0

dt′
[
Ṡ−r,st(Γ(t′|Γ, t), t′) − Ṡ0

r,st(Γ(t′|Γ, t), t′)
]
.(8.16)

Here Ṡ−r,st is the total time derivative of the static part of the reservoir entropy;
due to irreversibility, it is necessary to signify it as the backward derivative.
In this form one can see explicitly that subtracting the adiabatic contribution
isolates the change in entropy due solely to the reservoir.

The integrand of the dynamic part of the reservoir entropy, Eq. (8.15), the
adiabatic rate of change of the static part of the reservoir entropy, has asymp-
tote,2

Ṡ0
r,st(Γ(t′|Γ, t), t) → Ṡ0

r,st(t
′), |t′ − t| → ∞. (8.17)

The concept behind this result is generally applicable: in the future or in the
past, with overwhelming probability, the system lies closer to the most likely
value of any phase function than it does at the present time,

∣∣f(Γ(t′|Γ, t), t) − f(t′)
∣∣∣∣f(Γ, t) − f(t)

∣∣ → 0, |t′ − t| → ∞. (8.18)

This asymptote justifies the phrase ‘reservoir entropy’ rather than ‘change in
reservoir entropy’, since they manifest the fact that the integrand of the dynamic
part of the reservoir entropy tends to a value independent of the current point
in phase space at the lower limit of the integral.

2Here and below f(t) ≡ f(Γ(t), t) is used to denote the most likely value of a given phase
function at time t.



8.2. Reservoir Entropy 239

8.2.3 Fluctuation Form for the Reservoir Entropy

A complementary expression for the reservoir entropy associated with each point
in the sub-system phase space may be obtained from fluctuation theory. As dis-
cussed in §3.6.3 on driven Brownian motion, the entropy of fluctuations about
the most likely non-equilibrium state is the same as the entropy of fluctuations
in the equilibrium system. Accordingly, let Γ(t) = 〈Γ(t)〉 be the most likely
configuration of the sub-system at time t. This depends upon the initial config-
uration, and will be taken to be unique. Let γ ≡ Γ−Γ(t) be the fluctuation or
the departure from the most likely point.

The static part of the reservoir entropy for the system of interest will be
assumed known. For example, for the canonical mechanical non-equilibrium
system it is

Sr,st(Γ, t) = −H(Γ, t)/T, (8.19)

where H(Γ, t) is the Hamiltonian or total energy of the sub-system, and T is
the temperature of the reservoir. For a steady heat flow, which is the canonical
thermodynamic non-equilibrium system, it is

Sr,st(Γ, t) =
−E0(Γ, t)

T0
− E1(Γ, t)

T1
, (8.20)

where En(Γ, t) is the n-th moment of the sub-system energy, and Tn is the n-th
temperature of the reservoirs (see Ch. 4).

The static part of the reservoir entropy may be characterised by its properties
at the most likely configuration. Define

S(t) ≡ Sr,st(Γ(t), t),

S′(t) ≡ ∇Sr,st(Γ(t), t), and

S′′(t) ≡ ∇∇Sr,st(Γ(t), t). (8.21)

For brevity, the time dependence of these will usually not be exhibited. The fact
that these depend upon Γ(t) makes the theory non-linear (see the discussion in
§3.6.3 on p. 78). In terms of these, the value of the static part of the reservoir
entropy for the current configuration is3

Sr,st(Γ, t) = S(t) + S′(t) · γ +
1

2
S′′(t) : γ2 + O(γ3). (8.22)

Also, because dΓ = dγ, its gradient is obviously

∇Sr,st(Γ, t) = S ′(t) + S ′′(t)γ + O(γ2). (8.23)

The non-trivial axiom is that the fluctuation matrix is the same in the equi-
librium system as in the non-equilibrium system. This axiom was used to de-
rive the results for driven Brownian motion in §3.6.3. This means that the

3Recall the convention used throughout that the square of a vector, a2, denotes either the
dyadic product aa, or else the scalar product a · a, depending on the context, and similarly
for the product of vectors ab.
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non-equilibrium entropy can be expressed in terms of the fluctuations,

Sr(Γ, t) = Sr(t) +
1

2
S′′(t) : γ2 + O(γ3). (8.24)

Here Sr(t) is a time dependent constant in phase space that will be shown in
Eq. (8.127) below to be equal to the reservoir entropy most likely produced to
date. This constant term could be neglected (i.e. incorporated into the partition
function) as far as the probability distribution is concerned, but it is better to
retain it explicitly as it has a quite definite physical interpretation, and it does
affect the various time derivatives and their interpretation. The simplicity of this
form for the reservoir entropy is a little misleading since it cannot be evaluated
without knowing the most likely configuration Γ(t).

Expanding the formal expression obtained in the preceding section in powers
of the fluctuation, one has

Sr(Γ, t) = Sr,st(Γ, t) + Sr,dyn(Γ, t)

= S(t) + S ′(t) · γ +
1

2
S ′′(t) : γ2 + O(γ3) + Sr,dyn(Γ, t). (8.25)

Equating this with the fluctuation expression, one concludes that the dynamic
part of the reservoir entropy has the expansion

Sr,dyn(Γ, t) = Sr(t) − S(t) − S′(t) · γ + O(γ3). (8.26)

This means that ∇Sr,dyn(Γ, t) = −∇Sr,st(Γ(t), t) + O(γ2), which is a time
dependent constant in phase space. Also Sr(t) − S(t) = Sr,dyn(t), which makes
sense.

8.3 Transitions and Motion in Phase Space

8.3.1 Foundations for Time Dependent Weight

In the Prologue, §§1.4.2–1.4.4, the laws of probability and the relationship be-
tween probability, weight, and entropy were established in a generic fashion
based on set theory. That analysis invoked weights that were independent of
time, and so was most appropriate for an equilibrium system (although the mat-
erial on transitions is a valid approach to treating steady state non-equilibrium
systems). With some relatively minor modifications, that generic analysis can
be given for time dependent weights, which is most important for transitions and
the second entropy in the non-equilibrium case that is treated in this chapter.

In the time dependent case, denote the microstate weight by ω(i, t), the
macrostate weight by ω(α, t) =

∑
i∈α ω(i, t), and the total weight by W (t) =∑

i ω(i, t) =
∑

α ω(α, t). The entropies are as usual S(i, t) = kB ln ω(i, t),
S(α, t) = kB ln ω(α, t), and S(t) = kB ln W (t). Again as usual the probabilities
are ℘(i, t) = ω(i, t)/W (t) = exp[S(i, t)/kB]/W (t) and ℘(α, t) = ω(α, t)/W (t) =
exp[S(α, t)/kB]/W (t). So far these are formally identical to the results for the
time independent case.
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Now consider the macrostate transition {α, t} → {β, t′}, and let its weight
be ω(β, t′; α, t). (The following results also hold for microstates, which case will
not be dealt with separately.) This is a physical transition and so t′ > t. This
time order carries all the information about the actual transition, since from
statistical symmetry the order of the arguments is unimportant, ω(β, t′; α, t) =
ω(α, t; β, t′). This is the weight attached to the system being in the macrostate
α at time t and in the macrostate β at time t′.4

In the time independent case, two related reduction conditions were estab-
lished, namely that for the weight of the system being simultaneously in the two
macrostates, Eq. (1.12),

∑
β ω(α, β) = ω(α), and that for the transition between

two macrostates, Eq. (1.30),
∑

β ω(α, β|τ) = ω(α), and
∑

α ω(α, β|τ) = ω(β).
The reduction condition for the transition can be interpreted as a conservation
law for weight. Since these rules stem from the disjoint complete nature of the
macrostates, a similar rule must hold for the time dependent case, with a mod-
ification due to the fact that the total weight is not conserved but now changes
with time, W (t). In this case the reduction law incorporates a scaling based
upon the time dependence of the total weight,5

∑
β

ω(β, t′; α, t) =

√
W (t′)

W (t)
ω(α, t). (8.27)

With this the total weight of the transition is∑
αβ

ω(β, t′; α, t) =
√

W (t′)W (t). (8.28)

One sees that the total weight of the transition is the geometric mean of the
total weights at the two terminal times. Compared to the time independent
case of §1.4.4, there is now a modified conservation law for weight, namely that
the weight of the initial state α is now scaled and distributed amongst all the
target states β. This scaling has to occur at each transition if the weights of the
states and the total weight change with time. This reduction condition given
above for the sum over the target macrostates also holds for the sum over initial
states,

∑
α

ω(β, t′; α, t) =

√
W (t)

W (t′)
ω(β, t′). (8.29)

4The unconditional weight ω(β, t′; α, t) or probability ℘(β, t′; α, t) always refers to the phys-
ical transition: α → β if t′ > t, or β → α if t > t′. The conditional probability ℘(β, t′|α, t)
refers to the mathematical transition α 
→ β; this is a forward transition if t′ > t and it is a
backward transition if t > t′. See also the discussion in §8.4 on p. 262.

5The most general case is to write
∑

β ω(β, t′; α, t) = f(t′ , t)ω(α, t) and consequently∑
α,β ω(β, t′; α, t) = f(t′, t)W (t). Demanding that this second result be symmetric in the

two times leads to f(t′, t) = W (t′)μW (t)μ−1. Finally, demanding in the time indepen-
dent case that the right-hand side of the second result be W fixes μ = 1/2, which gives

f(t′, t) =
√

W (t′)/W (t), as used in the text.
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This may be interpreted as saying that all the weight in β must come from
somewhere, after scaling. It is emphasised that these two reduction laws are
required for the consistency of the laws of probability and lead directly to Bayes’
theorem.

Using the total transition weight as the normalising factor, the unconditional
transition probability is

℘(β, t′; α, t) =
ω(β, t′; α, t)√
W (t′)W (t)

. (8.30)

With this the conditional transition probability is

℘(β, t′|α, t) =
℘(β, t′; α, t)

℘(α, t)

=
ω(β, t′; α, t)

ω(α, t)

√
W (t)

W (t′)

=
ω(β, t′; α, t)∑
β ω(β, t′; α, t)

. (8.31)

The second entropy is defined as the logarithm of the transition weight,
S(2)(β, t′; α, t) = kB ln ω(β, t′; α, t), and with it the transition probability is

℘(β, t′; α, t) =
eS(2)(β,t′;α,t)/kB√

W (t′)W (t)
. (8.32)

Accordingly the conditional transition probability is

℘(β, t′|α, t) =

√
W (t)

W (t′)
e[S

(2)(β,t′;α,t)−S(α,t)]/kB ≡ eS(2)(β,t′|α,t)/kB . (8.33)

The definition of the conditional second entropy,

S(2)(β, t′|α, t) ≡ S(2)(β, t′; α, t) − S(α, t) + [S(t) − S(t′)]/2, (8.34)

is rather arbitrary, and the final constant term could just as easily be retained
explicitly as a normalisation factor for the conditional probability. Even though
these results refer to the physical transition α → β, t′ > t, they remain valid for
the so-called reverse transition, namely the conditional probability that prior to
the current state β, the system was in the state α,

℘(α, t|β, t′) =
℘(β, t′; α, t)

℘(β, t′)

=

√
W (t′)

W (t)
e[S

(2)(β,t′;α,t)−S(β,t′)]/kB

= eS(2)(α,t|β,t′)/kB . (8.35)
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Note that this is the conditional probability that the system was in the state α
at time t, given that it is currently in the state β at time t′ > t. This is often
still called a conditional transition probability, but it should be kept in mind
that in this case the transition is conditioned on the future state, not the past
state.

The important reduction condition is modified slightly from the time inde-
pendent case of §1.4.4. The most likely target state β ≡ β(t′|α, t) is the state
that maximises the second entropy,

∂S(2)(β, t′; α, t)

∂β

∣∣∣∣
β=β

= 0. (8.36)

The entropy of the initial state α is related to the maximal value of the second
entropy via the reduction condition

S(α, t) = kB ln ω(α, t)

= kB ln

⎡
⎣
√

W (t)

W (t′)

∑
β

ω(β, t′; α, t)

⎤
⎦

≈ kB ln

[√
W (t)

W (t′)
ω(β, t′; α, t)

]

= S(2)(β, t′; α, t) + [S(t) − S(t′)]/2. (8.37)

The third approximation follows because in physical systems the probability
distributions are sharply peaked, and hence the logarithm of a sum over states
is approximately equal to the logarithm of the largest term in the sum. This
means that this reduction condition for the most likely state is valid when
fluctuations are relatively negligible. This is more conveniently written

S(2)(β, t′; α, t) = S(α, t) + [S(t′) − S(t)]/2. (8.38)

A similar reduction condition holds for the most likely prior state,

S(2)(β, t′;α, t) = S(β, t′) + [S(t) − S(t′)]/2, (8.39)

where α ≡ α(t|β, t′). Recall that due to statistical symmetry the order of the
arguments in the second entropy is irrelevant. Compared to the time indepen-
dent case of §1.4.4, where the maximal value of the second entropy reduces
simply to the first or ordinary entropy, Eq. (1.46), one sees that for the present
time varying non-equilibrium system, the maximal value of the second entropy
reduces to the first entropy plus half the difference in the total entropy of the
two states.
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8.3.2 Fluctuation Form of the Second Entropy

The most general quadratic form for the second entropy for the fluctuations is

S(2)(Γ2, t2;Γ1, t1) =
1

2
A : γ2γ2 + B : γ2γ1 +

1

2
C : γ1γ1

+
1

2

[
Sr(t2) + Sr(t1)

]
. (8.40)

Here the coefficients are a function of the two times, and will be written A(t21, t),
B(t21, t), and C(t21, t), where t ≡ (t2 + t1)/2 and t21 ≡ t2− t1 = −t12. Usually t
will not be shown explicitly. The final time dependent constant term arises from
Eq. (8.28), where it was shown that for time dependent weights, the transition
weight is normalised to the geometric mean of the two terminal states.6 Because
the coefficients are second derivatives, A and C are symmetric matrices. Because
S(2)(Γ2, t2;Γ1, t1) = S(2)(Γ1, t1;Γ2, t2),

7 one must have

A(t21) = C(t12) and B(t21) = B(t12)
T. (8.41)

This may be termed the statistical symmetry requirement. It also holds for
equilibrium fluctuations, where it is equivalent to the requirement of time ho-
mogeneity, Eq. (2.64). With this result almost all of the analysis for mixed
parity equilibrium fluctuations given in §2.5 holds, the exception being those
results that depend upon macroscopic reversibility, which cannot be invoked in
the present non-equilibrium case.

Specifically, the small time expansions given in §2.5.2, Eqs (2.83) and (2.84),
rely only upon statistical symmetry and therefore they also hold in the present
case,

A(τ, t) =
−1

|τ | Λ(t)−1 + A0(t) + τ̂A′0(t) + O(τ) (8.42)

and

B(τ, t) =
1

|τ |Λ(t)−1 + B0(t) + τ̂B′0(t) + O(τ), (8.43)

with Λ(t), A0(t), A′0(t), and B0(t) being symmetric, and B′0(t) being antisym-
metric.

6 Here and throughout, the entropy at time t is taken to equal the most likely value, Sr(t).
This neglects the contribution to the entropy from the fluctuations about the most likely
value, which is the integral over the quadratic terms.

7In the general theory of probability, the joint probability is symmetric in its arguments:
℘(a, b) = ℘(b, a). In non-equilibrium statistical mechanics, the unconditional transition prob-
ability preserves this symmetry property, ℘(Γ2, t2;Γ1, t1) = ℘(Γ1, t1;Γ2, t2). The probability
of the system being in the state Γ1 at t1 and in the state Γ2 at t2 corresponds unambiguously
to the unconditional probability of the transition from the earlier state to the later state. This
physical transition forward in time nevertheless leads to two possible conditional transitions:
where the system is likely to go to, and where the system has likely come from. See the
distinction between the physical transition → and the mathematical transition 
→ discussed
in §8.4 on p. 262 and in footnotes 4 and 14 on pp 241 and 266.
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Maximising the second entropy with respect to γ2, one obtains the condi-
tional most likely state as

γ2 = −A(t21)
−1B(t21)γ1

= γ1 + t21Λ[A′0 + B′0]γ1 + |t21|Λ[A0 + B0]γ1 + O(t221). (8.44)

In view of the generic result, Eq. (8.38), the reduction condition is

S(2)(Γ2, t2;Γ1, t1) = S(Γ1, t1) +
1

2

[
Sr(t2) − Sr(t1)

]
=

1

2
S′′(t1) : γ1γ1 +

1

2

[
Sr(t1) + Sr(t2)

]
. (8.45)

It is clear that the final constant term here is equal to that in Eq. (8.40). From
the coefficient of the quadratic term one deduces that

C(t21, t) − B(t21, t)
TA(t21, t)

−1B(t21, t) = S ′′(t1). (8.46)

These may be compared to the most likely state conditioned on γ2,

γ1 = −C(t21)
−1B(t21)

Tγ2

= γ2 − t21Λ[A′0 + B′0]γ2 + |t21|Λ[A0 + B0]γ2 + O(t221), (8.47)

where the symmetry requirements, Eq. (8.41), have been used. The reduction
condition, S(2)(Γ2, t2;Γ1, t1) = S(Γ2, t2)+

[
S(t1) − S(t2)

]
/2, in this case yields

A(t21, t) − B(t21, t)C(t21, t)
−1B(t21, t)

T = S ′′(t2). (8.48)

It should be noted that this equation is entirely equivalent to the previous
reduction condition, Eq. (8.46), and it can be obtained directly by interchanging
t2 and t1 and using the symmetry rules, Eq. (8.41).

From the reduction condition an important relationship between some of the
second entropy fluctuation coefficients and the first entropy fluctuation coeffi-
cient can be obtained. Expanding the left-hand side of Eq. (8.46) yields

LHS =
−1

|t21|
Λ−1 + A0 − t̂A′0 +

[
1

|t21|
Λ−1 + B0 − t̂B′0

]
× {I + t21Λ[A′0 + B′0] + |t21|Λ[A0 + B0]} + O(t21)

= A0 − t̂A′0 + t̂[A′0 + B′0] + [A0 + B0] + B0 − t̂B′0 + O(t21)

= 2[A0(t) + B0(t)] + O(t21). (8.49)

The right-hand side is

S′′(t1) = S′′(t) − t21
2

dS′′(t)

dt
. (8.50)

Hence

A0(t) + B0(t) =
1

2
S′′(t). (8.51)
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With this the reservoir part of the most likely change in state in Eq. (8.44) that
will be used frequently below is

Rγ(Γ, t, t21) ≡ |t21|Λ(t) [A0(t) + B0(t)] γ

=
|t21|
2

Λ(t)S′′(t)γ

=
|t21|
2

Λ(t)∇Sr(Γ, t). (8.52)

It is convenient to rewrite the second entropy into several equivalent forms
using the small time expansions for the coefficients. For this the preceding result
will be used, as well as a result to be derived below in Eqs (8.63), (8.73), and
(8.84), namely

[A′0 + B′0]γ = −Λ−1ΦS′′γ ⇒ −Λ−1Φ0S′′γ = Λ−1γ̇0. (8.53)

All of these coefficients are possibly functions of time, S′′(t) = S ′′(Γ(t), t), etc.,
and γ̇0 is the adiabatic velocity of the fluctuation. With these, the second
entropy, Eq. (8.40), may be rewritten as in Eq. (2.92),

S(2)(Γ2, t2;Γ1, t1)

=
−1

2|t21|
Λ−1 : [γ2 − γ1]

2
+ [γ2 − γ1] ·

[
1

2
S′′ − t̂21Λ

−1Φ0S ′′
]

γ1

+
1

2
S′′ : γ1γ1 +

1

2

[
Sr(t1) + Sr(t2)

]
− 1

2|t21|
Λ−1 : [γ2 − γ1]

2

=
−Λ−1

2|t21|
: [γ2 − γ1]

2
+

γ2 − γ1

2
· ∇Sr(Γ1, t1) + t̂21 [γ2 − γ1] · Λ−1γ̇0

1

+ Sr(Γ1, t1) +
1

2

[
Sr(t2) − Sr(t1)

]
− 1

2|t21|
Λ−1 : [γ2 − γ1]

2

=
−Λ−1

2|t21|
: [γ2 − γ2]

2
+ Sr(Γ1, t1) +

1

2

[
Sr(t2) − Sr(t1)

]
+ O(γ2t21).

(8.54)

Because terms linear in t21 have been neglected in the expansions of the co-
efficients, this expression for the second entropy neglects terms O(γ2t21). As
mentioned in footnote 6 on p. 244, it also neglects terms that arise from the
normalisation of the Gaussian fluctuations; in view of Eq. (8.28), strictly speak-
ing one should subtract from this expression for the second entropy a term
[kB/2] ln

(
|2πkB|t21|Λ(t)||2πkBS′′(t)−1|

)
, but this is negligible in comparison

with Sr(t). This is written in the form of a transition from Γ1, so that it
can be maximised with respect to Γ2, (but see next). In Eq. (8.84) below it will
be shown that the only part of the transport matrix that needs to be retained
is the block Λpp.

The original form of the second entropy is symmetric in the two termini of
the transition. It can be written in the form of the reverse transition by inter-
changing the subscripts 1 and 2. Even though the above form is written from
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the point of view as the transition from Γ1, it is equally valid as representing
the transition from Γ2 to the exhibited order in the time interval. One way
to see this is to maximise it with respect to Γ1. The derivative of the second
equality in Eq. (8.54) is

∂S(2)(Γ2, t2;Γ1, t1)

∂Γ1
=

1

|t21|
Λ−1 : [γ2 − γ1] −

1

2
∇Sr(Γ1, t1)

− t̂21Λ
−1γ̇0

1 + ∇Sr(Γ1, t) + O(t21), (8.55)

where the derivatives of ∇Sr(Γ1, t1), γ̇0(Γ1, t1), and γ2(t21|Γ1) have been ne-
glected because they occur in terms that are O(t21). Setting this to zero gives
an expression for γ1 that is the same Eq. (8.47).

The symmetry can also be seen directly since one has

S(2)(Γ2, t2;Γ1, t1)

=
−1

2|t21|
Λ−1 : [γ2 − γ2]

2
+ Sr(Γ1, t1) +

1

2

[
Sr(t2) − Sr(t1)

]
+ O(γ2t21)

=
−1

2|t21|
Λ−1 :

[
γ1 − γ1 − |t21|ΛS′′{γ1 + γ2}/2

]2
+

1

2
S′′ : γ2

1 +
1

2

[
Sr(t2) + Sr(t1)

]
+ O(γ2t21)

=
−1

2|t21|
Λ−1 : [γ1 − γ1]

2
+

1

2
[γ1 − γ1] · S′′{γ1 + γ2}

+
1

2
S′′ : γ2

1 +
1

2

[
Sr(t2) + Sr(t1)

]
+ O(γ2t21)

=
−1

2|t21|
Λ−1 : [γ1 − γ1]

2
+ Sr(Γ2, t2) +

1

2

[
Sr(t1) − Sr(t2)

]
+ O(γ2t21)

= S(2)(Γ1, t1;Γ2, t2). (8.56)

The second equality neglects the difference in the adiabatic evolution, t21{γ̇0
2 −

γ̇0
1} as this contributes terms O(γ2t21). The penultimate equality uses the fact

that γ1 − γ1 = γ2 − γ1 + O(γ2t21).

8.3.3 Time Correlation Function

The time correlation function for the fluctuations is

Q(t2, t1) ≡ k−1
B 〈γ2 γ1〉t2,t1

= k−1
B

∫
dΓ2 dΓ1 ℘(2)(Γ2, t2;Γ1, t1)γ2 γ1. (8.57)

The subscript ti means that the average is taken over dΓi. From statistical
symmetry, one must have

Q(t2, t1) = Q(t1, t2)
T. (8.58)

The quadratic form of the second entropy makes the transition probability
Gaussian, and so one can reduce the two time average to a single time average
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by replacing the mean by the mode. This can be done in two ways, both of
which must yield the same result, as is now shown. First one can invoke the
most likely state conditioned on γ1,

Q(t2, t1) = k−1
B 〈[(γ2 − γ2) + γ2] γ1〉t2,t1

= k−1
B 〈γ2 γ1〉t2,t1

= k−1
B

〈[
−A−1Bγ1

]
γ1

〉
t1

= A(t21)
−1B(t21)S′′(t1)

−1. (8.59)

The second equality follows because 〈γ2 − γ2〉t2 = 0. A similar argument that
invokes the most likely state conditioned on γ2 gives

Q(t2, t1) = k−1
B 〈γ2 γ1〉t2,t1

= S ′′(t2)
−1B(t21)C(t21)

−1. (8.60)

Interchanging t1 and t2 in this gives

Q(t1, t2) = S ′′(t1)
−1B(t12)C(t12)

−1

= S ′′(t1)
−1B(t21)

TA(t21)
−1

= Q(t2, t1)
T, (8.61)

which is consistent with the above symmetry requirement, Eq. (8.58).
These expressions for the time correlation function are formally exact for

any time interval, but they do invoke the fluctuation approximation for S(2) to
quadratic order. Inserting the small time expansion into Eq. (8.59) one obtains

Q(t2, t1) = −
[
I + t21Λ[A′0 + B′0] +

|t21|
2

ΛS′′ + O(t221)

]
S ′′(t1)

−1

= −S ′′(t)−1 +
t21
2

dS′′(t)−1

dt
− t21Λ[A′0 + B′0]S

′′(t)−1

− |t21|
2

Λ + O(t221). (8.62)

One can define the coefficient of t21 as Θ(t) ≡ Φ(t) + θ(t), with

Φ(t) ≡ −Λ(t)[A′0(t) + B′0(t)]S
′′(t)−1, (8.63)

which has transpose Φ(t)T = −S ′′(t)−1[A′0(t) − B′0(t)]Λ(t), and

θ(t) ≡ dS ′′(t)−1

2dt
=

−1

2
S′′(t)−1Ṡ ′′(t)S′′(t)−1, (8.64)

which is symmetric. The condition that Q(t2, t1) = Q(t1, t2)
T means that Θ(t)

must be an antisymmetric matrix, Θ(t) = −Θ(t)T. Hence the symmetric part
of Φ(t) must cancel with θ(t),

1

2

[
Φ(t) + Φ(t)T

]
= −θ(t) = −dS′′(t)−1

2dt
. (8.65)
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Evidently the symmetric component of Φ is half the rate of change of the inverse
of S′′(t). For many systems this matrix is independent of time, in which case Φ
itself is an antisymmetric matrix. In such systems Φ and Θ are the same matrix,
and are the analogue of the antisymmetric matrix Θ used in the mixed parity
fluctuation analysis of §2.5.2. That analysis was for an equilibrium system,
which is of course homogeneous in time, and so in that case θ = 0. Other
examples of non-equilibrium systems that are homogeneous in time are the
particular model of driven Brownian motion of Ch. 3, and the steady state
system of Ch. 4.

With this notation the time correlation function becomes

Q(t21; t) = −S′′(t)−1 + t21Θ(t) − |t21|
2

Λ(t) + O(t221). (8.66)

Further properties of the coefficient Θ are derived in the following section.

8.3.4 Stochastic, Dissipative Equations of Motion

The stochastic equation corresponding to the expansion of the coefficients of the
second entropy is

γ2 = γ2 + R̃

= γ1 + t21Λ[A′0 + B′0]γ1 + |t21|Λ[A0 + B0]γ1 + R̃ + O(t221)

= γ1 − t21ΦS′′γ1 +
1

2
|t21|ΛS ′′γ1 + R̃ + O(t221), (8.67)

with the most likely part having been given in Eq. (8.52), and the variance of
the random force being〈

R̃R̃
〉

t
= |t21|kBΛ(t). (8.68)

This follows because when the second entropy is rewritten in terms of the depar-
ture from the most likely state, Eq. (8.54), the leading-order of the coefficient
matrix is −Λ−1/2|t21|.

One sees immediately two consequences of the fluctuation dissipation the-
orem for the non-equilibrium system. First, that the magnitude of the fluctu-
ations is linearly proportional to the magnitude of the dissipation, both being
determined by Λ, the leading-order coefficient of the second entropy expansion.
Second, that it is the gradient in the entropy that drives the evolution, since
S′′(t)γ = ∇Sr(Γ, t) + O(γ2).

One also sees that one can write the most likely value of the stochastic
equations of motion as

γ2 = −Q(t21, t)∇Sr(Γ1, t1). (8.69)

Even though the expansion of γ2 and Q(t21, t) differ by θ(t) due to the difference
between Θ(t) and Φ(t), this difference is cancelled by transforming the gradient
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from t1 to t. To see this, take the right-hand side of the above across to the
left-hand side and expand both terms

γ2 + Q(t21, t)∇Sr(Γ1, t1) =

{
γ1 − t21ΦS′′γ1 +

1

2
|t21|ΛS′′γ1

}

+

{
−S′′(t)−1 + t21Θ − |t21|

2
Λ

}
S′′(t1)γ1

= t21θS′′(t)γ1 −
t12
2

S′′(t)−1 dS′′(t)

dt
γ1

= 0 + O(t221). (8.70)

Adiabatic Velocity

The adiabatic velocity of the fluctuation is defined as γ̇0 ≡ Γ̇0(Γ, t) − Γ̇0(t),

where Γ̇0(t) ≡ Γ̇0(Γ(t), t). This must be included in the above stochastic equa-
tions of motion via the term Φ∇Sr, since this is the only term proportional
to t21. To elucidate the relationship between the two, one requires the Taylor
expansion of the adiabatic velocity,

γ̇0 ≡ Γ̇0(Γ, t) − Γ̇0(Γ(t), t) = γ · ∇Γ̇0(t) + O(γ2). (8.71)

The most likely gradient of the adiabatic velocity that appears here is the
dyadic matrix,

∇Γ̇0(t) =

(
∂Γ̇0

q/∂Γq ∂Γ̇0
p/∂Γq

∂Γ̇0
q/∂Γp ∂Γ̇0

p/∂Γp

)
Γ(t)

=

(
0 −H′′qq(t)

H′′pp(t) 0

)
. (8.72)

Splitting the coefficient of t21 into an adiabatic part and a reservoir part,
Φ ≡ Φ0 + Φr, the adiabatic velocity must be given by

γ̇0 = −Φ0S′′γ + O(γ2) = −Φ0∇Sr(Γ, t) + O(γ2). (8.73)

Like the Taylor expansion, this is a linear function of the fluctuation. Multi-
plying on the right by γ and taking the average one must have

Φ0 = k−1
B

〈
γ̇0γ

〉
t
. (8.74)

From either this or directly, one can see that Φ0 = −[∇Γ̇0(t)]TS′′(t)−1.

Since S′′ is block diagonal and ∇Γ̇0 is block adiagonal, then Φ0 must be block
adiagonal,

Φ0 =

(
0 Φ0

qp

Φ0
pq 0

)
, (8.75)
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with {
Φ0

qp

}
ij

= k−1
B

〈
γ̇0

qi γpj

〉
Γ

= k−1
B

∑
k

∂2H(Γ, t)

∂pi∂pk

∣∣∣∣
Γ(t)

〈γpk γpj〉Γ

= −
∑

k

{
H′′(t)

}
pi,pk

{
S′′(t)−1

}
pk,pj

, (8.76)

and {
Φ0

pq

}
ij

= k−1
B

〈
γ̇0

pi γqj

〉
Γ

= −k−1
B

∑
k

∂2H(Γ, t)

∂qi∂qk

∣∣∣∣
Γ(t)

〈γqk γqj〉Γ

=
∑

k

{
H′′(t)

}
qi,qk

{
S′′(t)−1

}
qk,qj

. (8.77)

In summary, one has

Φ0
qq = Φ0

pp = 0, (8.78)

and

Φ0
qp = −H′′pp S ′′pp

−1
, and Φ0

pq = H′′qq S′′qq

−1
. (8.79)

In general it is Θ(t), not Φ(t), that is antisymmetric. However in the case
that θ(t) = 0, which occurs for systems homogeneous in time, then these are
identical and Φ(t) is antisymmetric. In such a case one has Φ0

qp = −Φ0,T
pq , and

one must have the condition

S′′qq

−1H′′qq = H′′pp S′′pp

−1
. (8.80)

It is of interest to show explicitly that this result holds identically in certain
systems.

For mechanical non-equilibrium systems, S ′′(t) = −H′′(t)/T . Hence one can
immediately conclude that in this case the equality does in fact hold, and one
has the explicit result that Φ0

qp(t) = T I. The case of driven Brownian motion

treated in Ch. 3 was homogeneous in time in the sense that Ṡ′′(t) = 0. However
if, for example, either the mass of the Brownian particle or the curvature of the

harmonic potential were time dependent, then Ṡ′′(t) �= 0, and Φ(t) would not
be antisymmetric. Nevertheless even in this case Eq. (8.80) would still hold and
Φ0(t) would be antisymmetric.

Equation (8.80) also appears to hold for thermodynamic non-equilibrium
systems, as is demonstrated by the following argument for the case of steady

heat flow that was treated in Ch. 4. In this steady state case Ṡ′′(t) = 0 and Φ(t)
must be antisymmetric, and from the above analysis Eq. (8.80) must be true.
To show this directly one notes that the only non-zero entries in S ′′ and H′′



252 8. Non-Equilibrium Statistical Mechanics

are those representing molecules that are close together. In the case that the
applied thermodynamic gradient from the reservoirs is a temperature gradient,
this means that both molecules feel the same local applied temperature. For
two such interacting molecules, say i and j, this component of the entropy
is S′′ij/kB = −∇i∇j [β0E0;ij + β1E1;ij ] = −∇i∇j [β(zi)H] = −β(zi)∇i∇jH =
−β(zj)∇i∇jH. In bringing the temperature outside the gradient operators,
second-order terms, ∇∇T and (∇T )2, have been neglected.8 Hence one can
write S′′(t)/kB = −β(t)H′′(t) = −H′′(t)β(t), where the β matrix is diagonal
with the inverse temperature down the diagonal. This shows explicitly that
Eq. (8.80) holds in the case of an applied temperature gradient, and that in this

case one has Φ0
qp(t) = k−1

B β
−1

.
Thus Eq. (8.80) has just been shown explicitly to hold in general for me-

chanical non-equilibrium systems, and also for the particular thermodynamic
non-equilibrium system that consists of an applied temperature gradient. Rea-
soning by induction, one might conclude that it is generally valid. If this is
indeed the case, then Φ0(t) is an antisymmetric matrix. This means that if θ(t)
is non-zero, then it must be part of Θr(t), and it must cancel with the symmetric
part of Φr(t).

Before returning to the equations of motion, there is an important result
that one can draw from this representation of the adiabatic velocity and the
antisymmetric nature of Φ0, namely

γ̇0 · ∇Sr(Γ, t) = −
[
Φ0∇Sr(Γ, t) + O(γ2)

]
· ∇Sr(Γ, t) = 0 + O(γ3). (8.81)

This follows from the general property of an antisymmetric matrix, namely that
the symmetric double scalar product must vanish.

Position and Momentum Form of the Equations of Motion

In view of the above, the stochastic equation for the evolution of the fluctuation
is

γ2 = γ1 + t21γ̇
0 − t21Φ

r∇Sr +
1

2
|t21|Λ∇Sr + R̃ + O(t221). (8.82)

Here, to linear order in the time step, all terms that are multiplied by the
time step, including the adiabatic velocity, γ̇0(Γ, t), the gradient in the entropy,
∇Sr(Γ, t) = S ′′(t)γ, and the two coefficients of the reservoir perturbation, Φr(t),
and Λ(t), can be evaluated at either terminus of the transition.

This may be written in terms of the position and momentum components,

γ2q = γ1q + t21γ̇
0
q + O(t221),

γ2p = γ1p + t21γ̇
0
p − t21Φ

r
pqS

′′
qqγq − t21Φ

r
ppS′′ppγ1p +

1

2
|t21|ΛppS′′ppγp

+ R̃p + O(t221). (8.83)

8With f(t) ≡ f(Γ(t), t), one has S′′r /kB = −(βH)′′ = −β′′H− 2β′H′ − β H′′ = −β H′′ +

O(β′′, β′
2
). This uses the fact that H′ = O(β′), since H′ = (β−1βH)′ = −β

−1
β′H −

β
−1

S′r/kB, the second contribution vanishing since S′r = 0 by the definition of Γ(t).
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There is no reservoir perturbation to the position evolution at the linear order
in the time step. This is because the position is essentially the integral of the
momentum over the time step, and so the reservoir perturbation to the position
evolution comes from integrating the reservoir perturbation to the momentum
evolution, which gives terms O(Δ2

t ) that can be neglected. Since Λ is symmetric,
the fact that |t21|Λqp ∼ O(t221), means that |t21|Λpq ∼ O(t221), and so it may
also be neglected. (If Φ(t) were antisymmetric due to θ(t) = 0, one could neglect
Φr

pq(t) for the same reason.) This is why only the adiabatic term contributes to
the evolution of the position coordinates in the equations of motion, and why
the stochastic part of the reservoir force, R̃p, has only momentum components.

The equations of motion contain two types of terms, namely the reversible
terms that are proportional to t21, and the irreversible terms that are propor-
tional to |t21|. The transition is dominated by the adiabatic term, which is the
term due directly to the interactions between the molecules of the sub-system.
The forces from the reservoir are a perturbation on the adiabatic evolution.
One can argue that of the two contributions to the reversible evolution, Φr(t)
can be neglected compared with the adiabatic contribution. One cannot make
a similar argument to neglect Λ(t) because irreversibility is essential for the
correct statistical properties of the non-equilibrium system, and this is the only
irreversible term.

A second argument for neglecting Φr(t) but retaining Λ(t) is that both terms
represent the thermodynamic driving force down the entropy gradient to the op-
timum state. Since to leading-order a fluctuation is as likely to be returning
to the optimum state as it is to be coming from the optimum state, then the
thermodynamic driving force must be dominated by the time symmetric irre-
versible term, |t21|Λ(t). This second argument only holds for infinitesimal time
steps, since on longer time scales the regression need not be symmetric.

A third argument for neglecting Φr(t) is based upon the fact that the position
variables are essentially ‘slave’ variables, in the sense that changes in them
are fully determined by the integral of the momentum variables over the time
step, γ′q − γq = Δtγp/m, where m is the mass in the simplest case. (This is
also equal to Δtγ̇

0
q , but that is not directly relevant for what follows.) Since

once the deterministic adiabatic contributions have been accounted for, only
the statistical fluctuations of the momentum variables remain, and it is the pure
parity fluctuation theory of §2.3 that is more relevant to the present results than
the mixed parity theory of §2.5. Because of the symmetry of the second entropy
in the pure parity case, the reservoir force is linearly proportional to |t21|, and
there are no reservoir terms that depend upon t21.

Of course over longer time scales the reversible non-adiabatic evolution must
be non-negligible, due to the cumulative effects of the reversible adiabatic and
the irreversible reservoir terms on the evolution of the sub-system. It is only to
linear order in the time step that Φr(t) is arguably negligible.9

9Stochastic equations of motion equivalent to Φr(t) = 0, and Λ(t) �= 0 have been suc-
cessfully tested with molecular dynamics computer simulations for the cases of equilibrium
systems, driven Brownian motion, and steady heat flow, [Attard, P. (2009b), Annu. Rep. Prog.
Chem., Sect. C 105, 63]. It may or may not be significant that these three systems have in
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Accepting the above arguments for neglecting Φr(t), the stochastic dissi-
pative equations of motion written in terms of the position and momentum
components, are

γ2q = γ1q + t21γ̇
0
q + O(t221),

γ2p = γ1p + t21γ̇
0
p + Rγp + R̃p + O(t221). (8.84)

Recall that γ ≡ Γ − Γ(t), γ̇0 ≡ Γ̇0 − Γ̇0(t), and Γ̇0(t) ≡ Γ̇0(Γ(t), t). The total
reservoir force for the fluctuation will be written Rγ = Rγ +R̃. As in Eq. (8.52)
the most likely part of this is

Rγ(Γ, t, Δt) ≡
1

2
|Δt|Λpp(t)S′′pp(t)γp =

1

2
|Δt|Λpp(t)∇pSr(Γ, t), (8.85)

where the time step is Δt = t21 in this particular case. In the fluctuation
approximation, contributions to this that are O(γ2) have been neglected.

Transport Matrix

The entropy and transport matrices depend upon time, Λ(t) ≡ Λ(Γ(t), t) etc.
This is where non-linearity enters the theory (see the discussion in §3.6.3 on
p. 78). For brevity, the time dependence of the matrices will often be suppressed.
As just discussed, only the momentum components occur, and in most cases one
can take the symmetric transport matrix to be diagonal,

Λpp(t) =
σ(t)

kB|Δt|
Ipp, (8.86)

with the scalar σ being the variance of the reservoir force, and Ipp being the
momentum block of the identity matrix. This is the simplest and most im-
portant case. It is straightforward to generalise this, for example, to a multi-
component system with a different variance σα for each species. To obtain
the most general case from the results below, simply make the replacements
σ(t)a ⇒ kB|Δt|Λpp(t)a, and σ(t)a · b ⇒ kB|Δt|Λpp(t) : ab, where a and b are
the momentum components of phase space vectors. Although it is possible to
choose a variance dependent upon time, σ(t) ≡ σ(Γ(t), t), generally this will not
be shown.

The variance σ (equivalently, Λ) represents the strength of the reservoir per-
turbation in the equations of motion. Since the reservoir is an idealisation of
reality, to a large extent the numerical value of the variance can be freely cho-
sen.10 In particular, it is not a molecular property and it is not directly deter-
mined by the Hamiltonian or thermodynamic state of the sub-system. Provided

common θ(t) = 0.
10Since Λ is the coefficient matrix in the expansion in powers of the time step of the time

correlation function (equivalently, the second entropy fluctuation matrices), it must be in-
dependent of the time step. Hence the above definition of the variance means that it can
be freely chosen provided that it is linearly proportional to the magnitude of the time step,
σ ∝ |Δt|.
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that the fluctuation dissipation theorem is satisfied, reasonable results can be
obtained for quite a wide range of values of σ. Reasonable means that the trans-
port, temperature, and other thermodynamic properties of the sub-system are
insensitive to the precise choice of σ.

With this simplest form for the variance, the most likely reservoir force for
the fluctuation is given by

Rγ(Γ, t, Δt) =
|Δt|
2

Λpp(t)∇pSr(Γ, t)

⇒ σ

2kB
∇pSr(Γ, t)

=
σ

2kB
S ′′pp(t)γp

=
σ

2kB

[
∇pSr,st(Γ, t) − S′p(t)

]
. (8.87)

The final equality follows from Eq. (8.23). This says that the most likely reser-
voir force for the fluctuations depends upon the magnitude but not the sign of
the time step. As mentioned following the presentation of the second entropy

above, the fluctuations have variance
〈
R̃R̃

〉
R̃

= kB|Δt|Λpp(t) ⇒ σIpp. This is

the molecular-level, non-equilibrium version of the fluctuation dissipation theo-
rem.

Configuration Evolution

Transforming the stochastic dissipative equations of motion for fluctuations to
those for the actual configuration yields

Γ2q = Γ1q + t21Γ̇
0
q(Γ, t) + O(t221),

Γ2p = Γ1p + t21Γ̇
0
p(Γ, t) + R(Γ, t, t21) + O(t221). (8.88)

The relation between the actual reservoir force, R, which appears here, and
the reservoir force for the fluctuation, Rγ , which was used above, will be given
shortly. For brevity, the equations of motion will often be written

Γ2 = Γ1 + t21Γ̇
0(Γ, t) + R(Γ, t, t21) + O(t221), (8.89)

with the understanding that the reservoir perturbation has momentum compo-
nents only. The reverse transition is

Γ1 = Γ2 + t12Γ̇
0(Γ, t) + R(Γ, t, t12) + O(t221). (8.90)

The apparent algebraic inconsistency between these last two equations (the
latter is not related to the former by transferring terms from one side to the
other, R(Γ, t, t21) �= −R(Γ, t, t12)) arises because R is a stochastic variable.11

11Alternatively, one could explicitly signify the stochastic nature of the variable by writing
Γ2 = Γ1 + t21Γ̇

0 +R, with the reservoir perturbation distributed according to ℘(R|Γ, t, t21).
With this notation it is clear that one does not change the sign of the stochastic variable
when writing the reverse transition: Γ1 = Γ2 + t12Γ̇

0 + R, ℘(R|Γ, t, t12). In particular,
℘(R|Γ, t, t21) �= ℘(−R|Γ, t, t12).
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It reflects the irreversibility of the equations of motion (see §8.4.2 below). The
reservoir force for the actual configuration, R(Γ, t, Δt), is a linear function of
both Δt and |Δt|, as will now be shown. This force is characterised by a
probability distribution, ℘(R|Γ, t, Δt), and can be written as the sum of its
most likely value and its stochastic value, R = R + R̃. (The reservoir force has
momentum components only.)

The stochastic part of the force R̃ is the same for the actual coordinates and
for the fluctuations R̃ ≡ R̃γ . It is linearly proportional to |Δt| and is related
to the most likely force by the fluctuation dissipation theorem, as was shown
above.

One has the reservoir force for fluctuations and the reservoir force acting on
the actual coordinates. From the equations of motion, the most likely values of
these are related by

R(Γ, t, Δt) ≡ Γ(t + Δt|Γ, t) − Γ− ΔtΓ̇
0(Γ, t)

= γ(t + Δt|Γ, t) + Γ(t + Δt) − γ − Γ(t)

− Δt

[
γ̇0(Γ, t) + Γ̇0(t)

]
= Rγ(Γ, t, Δt) + Δt

[
Γ̇(t) − Γ̇0(t)

]
. (8.91)

Here one sees explicitly that the actual reservoir force, R, depends upon the
sign of the time step, unlike the reservoir force for the fluctuation, Rγ , which is
proportional to |Δt| (when Φr(t) is neglected). As mentioned in the preceding
paragraph, the stochastic part of the reservoir force, R̃, is the same for the
evolution both of the actual configuration and of the fluctuation.

The most likely trajectory Γ(t) is calculated forward in time. Hence

Γ̇(t) − Γ̇0(t) =
1

Δt
R(Γ(t), t, Δt), Δt > 0

≡ 1

|Δt|
R(t, |Δt|). (8.92)

An explicit expression for R(t, |Δt|) will be derived in Eq. (8.126) below. Only
the momentum components of this are non-zero because, as discussed above,
the reservoir perturbation does not affect the evolution of the position to linear

order in the time step. In particular, Γ̇q(t) = Γ̇0
q(t). With this Eq. (8.91) is

more simply written,

R(Γ, t, Δt) = Rγ(Γ, t, |Δt|) + t̂R(t, |Δt|), (8.93)

where t̂ ≡ sign(Δt). If the system is in the optimum state (i.e. the fluctuation is
zero), then the most likely value of the reservoir force on the fluctuation is also
zero, Rγ(Γ(t), t, |Δt|) = 0. Hence one sees that R(Γ(t), t, Δt) is linearly propor-

tional to Δt (whereas R(t, |Δt|) is defined such that it is linearly proportional
to |Δt|).
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Using Eq. (8.91) and the final equality in Eq. (8.87), the most likely actual
reservoir force is

R(Γ, t, Δt) = Rγ(Γ, t, Δt) + Δt

[
Γ̇p(t) − Γ̇0

p(t)
]

=
σ

2kB
∇pSr,st(Γ, t) − σ

2kB
S′p(t) + t̂Γp(t)

=
σ

2kB
∇pSr,st(Γ, t) +

σ

2kB

(
t̂ − 1

)
S ′p(t), (8.94)

where t̂ ≡ sign(Δt), Γ̇0(t) ≡ Γ̇0(Γ(t), t), and only momentum components ap-

pear (because Γ̇q(t) = Γ̇0
q(t)). It is not until Eq. (8.126) below that the final

equality will be justified. This contains a phase space dependent term, which
is proportional to the gradient of the static part of the reservoir entropy, and
a constant term (i.e. independent of phase space) that depends upon time and
upon the direction of the time step.

The important qualitative difference between the most likely value of the
actual reservoir force, R, and the most likely value of the reservoir force acting
on the fluctuation, Rγ , is that the latter does not depend upon the sign of the
time step and is linearly proportional to |Δt| only, Rγ(Γ, t, Δt) ∝ |Δt|. As
argued in the justification for the neglect of Φr(t) leading to Eq. (8.84), the
reason for this is the time symmetry of the fluctuation: the regression of a
fluctuation to the optimum state is statistically identical to its progression from

the optimum state.

There is a pleasing symmetry in the reservoir forces. The most likely reser-
voir force on the fluctuation is

Rγ =
σ

2kB
∇pSr(Γ, t). (8.95)

In comparison, the most likely reservoir force on the configuration going forward
in time is

R =
σ

2kB
∇pSr,st(Γ, t), Δt > 0. (8.96)

Since in general an explicit expression for Sr,st(Γ, t) is available from purely
equilibrium considerations, and since it can be evaluated at the current point
in phase space with no reference to the prior history of the system, this is a
powerful result that allows the trajectory of the sub-system in terms of its actual
phase space coordinates to be calculated going forward in time. In essence this
is a molecular dissipative force, and it is of the usual drag or friction form
such as used in the Langevin equation. The result has been justified purely
on statistical grounds without reference to any macroscopic hydrodynamic or
friction considerations.
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8.3.5 Transition Probability and Fokker-Planck Equation

The transition probability is just the exponential of the second entropy. Using
the expansion, Eq. (8.54), it is explicitly

℘(Γ2, t2;Γ1, t1) =
1

Z(2)(t2, t1)
eS(2)(Γ2,t2;Γ1,t1)/kB (8.97)

=
e−Λ−1:[γ2−γ2]

2/2kB|t21|

|2πkBt21Λ|1/2

e[Sr(Γ1,t1)+{Sr(t2)−Sr(t1)}/2]/kB

Z(2)′(t2, t1)

=
e−Λ−1

pp :[γ2p−γ2p]
2
/2kB|t21|

|2πkBt21Λpp|1/2
δ(Γ2q − Γq1 − t21Γ̇

0
q)℘(Γ1, t1),

where Z(2)′(t2, t1) ≡ Z(t1)e
{Sr(t2)−Sr(t1)}/2kB . The determinant of the trans-

port matrix normalises the Gaussian. In the final equality, the limit Λqq → 0 has
been taken, which gives a δ-function for the adiabatic evolution of the position
coordinates. As above, one often makes the replacement |t21|Λpp ⇒ k−1

B σIpp.

It is evident from the final form of the unconditional transition probability
that it obeys the standard reduction condition,∫

dΓ2 ℘(Γ2, t2;Γ1, t1) = ℘(Γ1, t1). (8.98)

From the symmetry of the second entropy, one has an analogous result for the
integral over Γ1,∫

dΓ1 ℘(Γ2, t2;Γ1, t1) = ℘(Γ2, t2). (8.99)

One can conclude from these that the transition probability based upon the
second entropy preserves the non-equilibrium probability density.

The Fokker-Planck equation was derived in the canonical equilibrium case
as Eq. (7.102). It was also derived in the specific case of Brownian motion,
Eq. (3.103). In the present non-equilibrium case, it can be written in terms of
the actual coordinate,

∂℘(Γ, t)

∂t
=

−1

Δt

[
∇p · R(Γ, t)

]
℘(Γ, t) −

[
Γ̇0 +

1

Δt
R

]
· ∇℘(Γ, t)

+
σ

2Δt
∇2

p℘(Γ, t), (8.100)

or, equivalently, in terms of the fluctuation,

∂℘(γ, t)

∂t
=

−1

Δt

[
∇p · Rγ(γ, t)

]
℘(γ, t) −

[
γ̇0 +

1

Δt
Rγ

]
· ∇℘(γ, t)

+
σ

2Δt
∇2

p℘(γ, t). (8.101)
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Using the fluctuation form, the first term on the right-hand side yields

−1

Δt
∇p ·Rγ(γ, t) =

−t̂

2
TR
{
Λpp(t)S′′pp(t)

}
⇒ −σ

2kBΔt
TR
{
S′′pp(t)

}
=

−σ

2kBΔt
∇2

pSr(Γ, t). (8.102)

The second term on the right-hand side yields

−1

kB

[
γ̇0 +

1

Δt
Rγ

]
· ∇Sr(Γ, t) =

−σ

2k2
BΔt

∇pSr(Γ, t) · ∇pSr(Γ, t), (8.103)

since γ̇0 ·∇Sr(Γ, t) = 0, Eq. (8.81). The final term on the right-hand side yields

σ(t)

2kBΔt

{
∇2

pSr(Γ, t) + k−1
B [∇pSr(Γ, t)] · [∇pSr(Γ, t)]

}
. (8.104)

Adding these three together the right-hand side is

RHS = ℘(γ, t)

[
−σ

2kBΔt
∇2

pSr(Γ, t) − σ

2k2
BΔt

∇pSr(Γ, t) · ∇pSr(Γ, t)

+
σ(t)

2kBΔt

{
∇2

pSr(Γ, t) + k−1
B [∇pSr(Γ, t)] · [∇pSr(Γ, t)]

}]
= 0. (8.105)

The left-hand side is

∂℘(γ, t)

∂t
=

{
−Ż(t)

Z(t)
+

∂Sr(γ, t)

kB∂t

}
℘(γ, t)

=

{
−Ż(t)

Z(t)
+ k−1

B Ṡr(t)

}
℘(γ, t)

= 0. (8.106)

This follows because the factor in the numerator of expSr(t)/kB cancels with
the same factor in the partition function (see also the first equality in Eq. (8.139)
below).12 That these agree confirms the Fokker-Planck equation for the exact
non-equilibrium probability density in fluctuation form.

Using the Fokker-Planck equation written in terms of the actual coordinates,
because R only differs from Rγ by a constant, the first term on the right-hand

12In deriving that result the time dependence of S′′(t) was neglected. If this were included

one would have [Ṡ′′ : γ
2/2kB]℘ + (1/2)℘TR(Ṡ′′ S′′

−1
). Invoking the equipartition theorem,

γ
2 ⇒

〈
γ

2
〉

= −kBS′′
−1

, this is on average zero. Even without the equipartition theorem,
the individual terms here are of zeroth order in the volume, compared with the other terms
in the Fokker-Planck equation that are linear in the volume, and hence this contribution is
relatively negligible in the thermodynamic limit.
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side is unchanged. The third term on the right-hand side is the same in both
representations. The second term on the right-hand side yields

−1

kB

[
Γ̇0 +

1

Δt
R

]
· ∇Sr(Γ, t)

=
−1

kB

[
Γ̇0(t) +

1

Δt
Rγ +

dΓ(t)

dt
− Γ̇0(t)

]
· ∇Sr(Γ, t)

=
−σ

2k2
BΔt

∇pSr(Γ, t) · ∇pSr(Γ, t) − dΓ(t)

kBdt
· ∇Sr(Γ, t). (8.107)

The first term in the brackets on the right-hand side of the first equality follows
from Eq. (8.81), and the remaining terms follow from Eq. (8.94). Compared
with the second term on the right-hand side of the fluctuation form, the final
term is new. Now since (dγ)Γ = −(dΓ(t)/dt)dt, the left-hand side is

∂℘(Γ, t)

∂t
=

∂℘(γ, t)

∂t
− dΓ(t)

dt
· ∇℘(Γ, t)

=
−dΓ(t)

kBdt
· [∇Sr(Γ, t)]℘(Γ, t). (8.108)

This differs from the left-hand side of the fluctuation form of the Fokker-Planck
equation by exactly the same amount as the right-hand side differs. Hence one
can conclude that the Fokker-Planck equation is also consistent with the exact
non-equilibrium probability density in configuration form.

8.3.6 Most Likely Force with Constraints

The reservoir formalism is an abstraction and idealisation of reality. It provides
a convenient way of focusing in molecular detail on the part of the system of
primary interest, the sub-system, and of incorporating the more distant parts,
the reservoir, in a probabilistic sense that requires only the values of a few
macroscopic thermodynamic parameters.

In the case of a thermodynamic non-equilibrium system, the reservoir pro-
vides a thermodynamic gradient acting on the sub-system, and a source and
sink for the material flux through the sub-system. This may be called boundary
driven flow, since the direct interaction between the sub-system and the reser-
voirs only occurs over a region of molecular width at the boundaries. Similarly
for a mechanical non-equilibrium system, the reservoir provides a sink for the
heat dissipated by the work done on the sub-system, and this heat is transferred
at the boundaries.

In the idealisation that is the reservoir formulation of non-equilibrium statis-
tical mechanics, the direct interaction between the sub-system and the reservoir
is represented by the stochastic reservoir force R, which is applied equally to all
the molecules in the sub-system, not just those at the boundaries. It obviously
simplifies the equations considerably not to have to apply a differential force
that depends upon the location of the molecules, the recipe for which is likely
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to be ad hoc and specific to each system. However, this does raise the question
of whether artifacts might be introduced by this invocation of bulk rather than
boundary stochastic forces.

One quantity that often occurs in thermodynamic non-equilibrium systems is
the adiabatic rate of change of the static part of the reservoir entropy, Ṡ0

r,st(Γ, t).
As will be shown in later chapters, the autocorrelation function of this gives the
hydrodynamic transport coefficients via the Green-Kubo formulae. The time
correlation function represents the adiabatic relaxation of the static part of the
reservoir entropy. This adiabatic relaxation represents an ordered flux, and
there is reason to believe that this order can be significantly perturbed by the
stochastic forces from the reservoir when these are applied throughout the sub-
system in the idealised reservoir formalism, as distinct from their application
only at the boundaries in a real system.

One way of circumventing this problem is to minimise the perturbation of
the adiabatic flux by the stochastic reservoir forces. This can be done by con-
straining the latter to be orthogonal to the gradient of the adiabatic flux,

R · ∇pṠ0
r,st(Γ, t) = 0. (8.109)

The Lagrange multiplier technique can be used to maximise the second entropy
subject to this constraint. The result is

R =
σ

2kB

[
∇pSr,st(Γ, t) + (t̂ − 1)S ′p(t)

]
+

μσ

2kB
∇pṠ0

r,st(Γ, t). (8.110)

The Lagrange multiplier is evidently given by

μ(Γ, t) =
−
[
∇pSr,st + (t̂ − 1)S′p

]
· ∇pṠ0

r,st

∇pṠ0
r,st · ∇pṠ0

r,st

. (8.111)

Except for S′p(t) ≡ ∇pSr,st(Γ(t), t), everything on the right-hand side is evalu-
ated at (Γ, t).

Most Likely Force for Mechanical Work

For the case of mechanical work, an explicit expression for the most likely
reservoir force is readily obtained. As was shown above in §8.2.1, the equi-
librium or static part of the reservoir entropy was proportional to the Hamil-
tonian, Sr,st(Γ, t) = −βH(Γ, t), where β = 1/kBT and Γ is a point in the
sub-system phase space. It was also shown, in §8.1, that the mechanical work
term arose from a time dependent external potential that depended only on the
position coordinates, so that the sub-system Hamiltonian could be written as
H(Γ, t) = Hbare(Γ)+Uext(Γq, t). Hence the adiabatic derivative of the Hamilto-

nian was independent of the momenta, Ḣ0(Γ, t) = ∂U ext(Γq, t)/∂t. From these
results it follows that the momentum gradient of the adiabatic flux vanishes,

∇pṠ0
r,st(Γ, t) = 0. (8.112)
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This means that the constraint discussed above is automatically satisfied, R ·
∇pṠ0

r,st(Γ, t) = 0.

The most likely reservoir force in the case of mechanical work is explicitly
R = (σ/2kB)∇pSr,st(Γ, t) = (−βσ/2)∇pH(Γ, t), Δt > 0. In component form
this is

Riα =
−βσ

2

∂H(Γ, t)

∂piα
=

−βσ

2mi
piα, Δt > 0. (8.113)

This has the same functional form as in the equilibrium case, namely it appears
as a friction or drag force, with the coefficient related to the strength of the
stochastic perturbations by the generalised fluctuation dissipation theorem.

8.4 Changes in Entropy and Time Derivatives

There is a difference between the meanings of the words ‘transition’ and ‘change’
as occurs in the physical universe and as used in mathematics. A physical
transition only occurs forward in time, and physical change means the future
value minus the past value. A mathematical transition can be either forward
or backward in time, and mathematical change means the final state minus the
initial state.

To be clear on this point, consider two states x1 and x2 at the respec-
tive times t1 < t2. A physical transition is always from the past to the fu-
ture, x1 → x2, whereas a mathematical transition can be either forwards,
x1 �→ x2, or backwards, x2 �→ x1, in time. The use of the symbol �→ to de-
note a mathematical transition reflects the conditional probabilities ℘(x2|x1)
and ℘(x1|x2) where they most often occur. In this example the physical change
is Δf = f(x2, t2)−f(x1, t1), irrespective of the type of mathematical transition,
whereas mathematical change is Δf = f(x2, t2)−f(x1, t1) for the forward tran-
sition x1 �→ x2 and it is Δf = f(x1, t1) − f(x2, t2) for the backward transition
x2 �→ x1. Hence for a forward transition, physical change and mathematical
change are the same, whereas for a backward transition they are equal and
opposite.

It ought to be clear that there is nothing unphysical about the mathematical
concept of a backward transition. The question ‘where did the system come
from?’ is perfectly legitimate. The most likely answer to that question is the
backward mathematical transition, x1 ≡ x(t1|x2, t2). This is used in answering
the question ‘what is the most likely physical change in reaching the current
state?’, namely Δf = f(x2, t2) − f(x1, t1).

8.4.1 Change in Entropy

One has to distinguish between the change in entropy due to a transition, �ΔSr,
and the difference in entropy between the end points of a transition, ΔSr. In
general these are not equal, but for one particular case they are equal, as detailed
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below. Both change and difference in this subsection is defined as the physical
quantity, namely the future minus the past.

For the physical transition Γ1
Δt→ Γ2, Δt > 0, the end points are related by

Γ2 = Γ1 + ΔtΓ̇
0 + R, and the change in entropy is

�ΔSr = Sr(Γ2, t2|Γ1, t1) − Sr(Γ1, t1)

= R · ∇Sr,st(Γ, t), (8.114)

with R = R + R̃. The justification for this result is that the reservoir entropy
can only change via exchange of a conserved variable with the sub-system. The
reservoir force in the stochastic dissipative equations of motion is the mechanism
by which this exchange occurs.13 In general, the static part of the reservoir
entropy is defined from such conservation laws.

For the same general physical transition, Γ1
Δt→ Γ2, Δt ≡ t21 > 0, one

can again write Γ2 = Γ1 + ΔtΓ̇
0 + R(Δt). Going forward in time, the Taylor

expansion of the expression for the reservoir entropy derived in the preceding
sections gives the difference in entropy,

ΔSr ≡ Sr(Γ2, t2) − Sr(Γ1, t1)

= ΔtṠ
0
r (Γ, t) + R(Δt) · ∇pSr(Γ, t) (8.115)

= Δt

[
Ṡ0

r,st(Γ, t) + Ṡ0
r,dyn(Γ, t)

]
+ R(Δt) · ∇p [Sr,st(Γ, t) + Sr,dyn(Γ, t)] .

The quadratic term is not required here because the primary interest is in the
entropy difference for a particular reservoir force, rather than the average en-
tropy difference. The adiabatic evolution here and below is always

Ṡ0
r (Γ, t) ≡

(
∂Sr(Γ, t)

∂t

)
Γ

+ Γ̇0 · ∇Sr(Γ, t)

=

(
∂Sr(Γ, t)

∂t

)
γ

+ γ̇0 · ∇Sr(Γ, t) −
[
dΓ(t)

dt
− Γ̇0(t)

]
· ∇Sr(Γ, t)

=

(
∂Sr(Γ, t)

∂t

)
γ

− 1

|Δt|
R(t, |Δt|) · ∇Sr(Γ, t) + O(γ3). (8.116)

The final equality uses Eqs (8.81) and (8.92) (see also Eq. (8.126) below).

In general, for an arbitrary physical transition Γ1
Δt→ Γ2, Δt > 0, the change

in entropy is not equal to the difference in entropy,

�ΔSr �= ΔSr, R = Γ2 − Γ1 − ΔtΓ̇
0 (arbitrary). (8.117)

However, for the particular case that the initial point of the transition is the
most likely prior point of Γ2,

Γ1 = Γ(t1|Γ2, t2)

= Γ2 − ΔtΓ̇
0 + R(−Δt), Δt ≡ t2 − t1 > 0, (8.118)

13This is in essence Newton’s third law, which in turn is the basis of the First Law of
Thermodynamics.
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the difference in entropy is by design equal to the physical change in entropy
for the transition. Formally the latter is given by Eq. (8.114),

�ΔSr = Sr(Γ2, t2|Γ1, t1) − Sr(Γ1, t1) = R(−Δt) · ∇Sr,st(Γ, t). (8.119)

For the change in entropy, one evaluates the Taylor expansion from the
formal expression given above, Sr(Γ, t) = Sr,st(Γ, t) + Sr,dyn(Γ, t). Because
the dynamic part of the reservoir entropy, Eq. (8.15), is an integral over the
backward most likely trajectory, by the fundamental theorem of calculus

ΔSr,dyn ≡ Sr,dyn(Γ2, t2) − Sr,dyn(Γ1, t1) = −ΔtṠ
0
r,st(Γ, t). (8.120)

With this

ΔSr ≡ Sr(Γ2, t1) − Sr(Γ1, t1)

= ΔSr,st − ΔSr,dyn

= ΔtṠ
0
r,st(Γ, t) + R(−Δt) · ∇pSr,st(Γ, t) − ΔtṠ

0
r,st(Γ, t)

= R(−Δt) · ∇pSr,st(Γ, t)

= �ΔSr, Γ1 �→ Γ2, Δt ≡ t2 − t1 > 0. (8.121)

This equality of the change in entropy and the difference in entropy on the most
likely backward transition will play a central rôle in a number of the results
below.

The Taylor expansion of the change in the dynamic part of the reservoir
entropy on the most likely backward transition is

ΔSr,dyn = ΔtṠ
0
r,dyn(Γ, t)+R(−Δt) ·∇Sr,dyn(Γ, t)+O(Δ2

t ), Δt > 0. (8.122)

Equating this to Eq. (8.120) and adding together the two adiabatic derivatives,
one deduces that the adiabatic rate of change of the reservoir entropy is

Ṡ0
r (Γ, t) =

−1

Δt
R(−Δt) · ∇Sr,dyn(Γ, t), Δt > 0,

=
−σ

2kB|Δt|
[
∇pSr,st(Γ, t) − 2S′p(t)

]
· S′p(t). (8.123)

The second equality invokes Eqs (8.26) and (8.94) above, the latter of which
invokes Eq. (8.126) below. The first equality was deduced for Δt > 0, but
the final result is independent of the sign of the time step. In fact, because
σ ∝ |Δt|, one can see that the final result is independent of both the sign and the
magnitude of the time step. It ought to be stressed that this is the mathematical
expression for the adiabatic rate of change of the most likely estimate of the
reservoir entropy, Sr(Γ, t) = Sr,st(Γ, t) + Sr,dyn(Γ, t). It is not simply related
to the rate of change of the actual reservoir entropy on a trajectory; it is more
closely related to the difference rather than the change in reservoir entropy, as
distinguished above.

It remains to obtain an explicit expression for two time dependent constants

used above, namely R(t) and c(t). The quantity R(t), which was introduced
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just before Eq. (8.93), is the most likely reservoir force acting on the actual
coordinates on the most likely trajectory going forward in time. The quantity
c(t) is the configuration independent part of the fluctuation form for the reservoir
entropy, Sr(Γ, t) = c(t) + S′′(t)γ2/2, which first appeared back in Eq. (8.24).
This was assumed without proof in that equation and in all subsequent equations
to represent the most likely value of the reservoir entropy, and it was denoted
Sr(t). Here it will finally be proven that c(t) = Sr(t).

The desired results follow from the condition ΔSr(Γ, t) = �ΔSr(Γ, t), Δt < 0,
which is Eq. (8.121). Using the fluctuation form for the reservoir entropy, the
left-hand side of Eq. (8.121) is

ΔSr(Γ, t) = −|Δt|
(

∂Sr(Γ, t)

∂t

)
γ

− |Δt|γ̇0 · ∇Sr(Γ, t) + Rγ · ∇Sr(Γ, t)

= −|Δt|ċ(t) −O(γ3) +
|Δt|
2

γp · S′′ppΛppS′′γp + O(γ3)

= −|Δt|ċ(t) + O(γ2). (8.124)

This uses Sr(Γ, t) = c(t) + S′′(t)γ2/2, which is Eq. (8.24), γ̇0 · ∇Sr(Γ, t) =
O(γ3), which is Eq. (8.81), and Rγ = (|Δt|/2)Λpp(t)S ′′pp(t)γ + O(γ2), which is
Eq. (8.87). The right-hand side of Eq. (8.121) is

�ΔSr(Γ, t)

= R · ∇Sr,st(Γ, t), Δt < 0

=

[
|Δt|
2

ΛppS′′ppγp + O(γ2) − R

]
·
[
S′p + S′′ppγp + O(γ2)

]
= −R · S ′p +

|Δt|
2

S′p · ΛppS′′ppγp −R · S′′ppγp + O(γ2). (8.125)

This uses R = Rγ + t̂R, which is Eq. (8.93), and ∇Sr,st(Γ, t) = S′(t)+S′′(t)γ +
O(γ2), which is Eq. (8.23).

Equating these two term by term, the coefficients of γ1 yield

R(t, |Δt|) =
|Δt|
2

Λpp(t)S ′p(t). (8.126)

This result was used to give an explicit expression for the reservoir force acting
on the actual coordinates, Eq. (8.94) above. Equating the coefficients of γ0

yields

ċ(t) =
1

|Δt|
R(t, |Δt|) · S′p(t)

=
1

2
S′p(t) · Λpp(t)S′p(t). (8.127)

The right-hand side of the first equality is the definition of the forward rate of

reservoir entropy production on the most likely trajectory, Ṡr(t). This finally
justifies the identification c(t) ≡ Sr(t), which was first introduced in Eq. (8.24).
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The second equality, which follows from the preceding expression for R, shows
that the most likely forward rate of reservoir entropy production is positive
(because Λ must be positive definite in order for the second entropy to be
negative and for the transition probability to be well defined). No information
can be extracted from the second-order terms, γ2, because these have not been
carried through on the right-hand side.

8.4.2 Irreversibility and Dissipation

As in the equilibrium case, §§7.4.4 and 7.6.2, in a non-equilibrium system the
most likely trajectory is irreversible. Let Γ1 at t1 be a terminal state. There
are two future states of interest at t2 > t1: the forward transition, (Γ1, t1) �→
(Γ2, t2), and the backward transition, (Γ′2, t2) �→ (Γ1, t1).

14 For the forward
transition, the most likely future state is Γ2 = Γ(t2|Γ1, t1) = Γ1+ΔtΓ̇

0+R(Δt),
Δt ≡ t2 − t1 > 0. For the the backward transition, there is the state Γ′2 of
which Γ1 is the most likely preceding state, Γ1 = Γ(t1|Γ′2, t2), or, equivalently,
Γ1 = Γ′2 − ΔtΓ̇

0 + R(−Δt), Δt ≡ t2 − t1 > 0. Note that it is the same most
likely force that appears in both cases, except that part of it depends upon the
sign of the time step. The difference between these two future states is

Γ2 − Γ′2 = Γ1 + ΔtΓ̇
0 + R(Δt) −

[
Γ1 + ΔtΓ̇

0 − R(−Δt)
]

= Rγ + Δt
dΓ(t)

dt
− ΔtΓ̇0(t) +

[
Rγ − Δt

dΓ(t)

dt
+ ΔtΓ̇0(t)

]
= 2Rγ

= σk−1
B ∇pSr(Γ, t) + O(Δ2

t ). (8.128)

The irreversibility of the most likely trajectory is manifest in the fact that
Γ2 �= Γ′2. The irreversibility is proportional to the magnitude of the gradient of
the reservoir entropy. This means that the closer the system is to the optimum
state, the more reversible is the trajectory, and vice versa.

The mathematical transition (Γ1, t1) �→ (Γ2, t2) is much more likely than
its reverse (Γ2, t2) �→ (Γ1, t1), because the former uses the most likely force,
R(Δt), whereas the latter uses its opposite, −R(Δt), which by definition must
be quite unlikely. Hence ℘(Γ2, t2|Γ1, t1) � ℘(Γ1, t1|Γ2, t2). For the same reason
℘(Γ1, t1|Γ′2, t2) � ℘(Γ′2, t2|Γ1, t1). The two most likely transitions have about
the same likelihood, and the two unlikely transitions are about equally unlikely.
Hence conditioned on the current point Γ1, the probabilities of the two future
points are related such that ℘(Γ2, t2|Γ1, t1) � ℘(Γ′2, t2|Γ1, t1). This says that
given the current point Γ1, it is much more likely that the system will go to
Γ2 than it will go to Γ′2 even though Γ1 is the most likely prior state of Γ′2. A

14As mentioned above, in footnote 4 on p. 241 and in §8.4 on p. 262, the notation a 
→ b
is used to denote the mathematical transition conditioned on the state a at time ta, corre-
sponding to ℘(b, tb|a, ta), irrespective of which is the past state and which is the future state.
If tb > ta it is called a forward transition, and if tb < ta it is called a backward or reverse
transition. The notation a → b is used to denote the physical transition for tb > ta.
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1 

Figure 8.1: Idyllic waterfall. A rock 2′ is splashed by a small amount of water
that most likely came from 1. Most of the water from 1 goes to 2.

physical analogy of the situation is depicted in Fig. 8.1. A sketch of the phase
trajectories is given in Fig. 7.4 on p. 222.

Now the change in entropy for the most likely next state, (Γ1, t1) → (Γ2, t2),
will be compared to that for the transition from the most likely previous state,
(Γ1, t1) → (Γ′2, t2). (Note these are both physical transitions. Note also that
change is defined as future minus past.) Using Γ2 = Γ1 + ΔtΓ̇

0 + R(Δt), the
change in entropy in the transition to the most likely state is

�ΔSr(Γ1 → Γ2) = R(Γ, t, Δt) · ∇pSr,st(Γ, t)

=
σ

2kB
∇pSr,st(Γ, t) · ∇pSr,st(Γ, t). (8.129)

This uses Eq. (8.94), R = (σ/2kB)[∇pSr,st(Γ, t)+ (t̂−1)S′p(t)], the second term
vanishing in this case since Δt > 0. The change in entropy is non-negative,
which means that the entropy increases in the most likely forward transition.

Using Γ1 = Γ′2 − ΔtΓ̇
0 + R(−Δt), the change in entropy in the transition

from the most likely prior state is

�ΔSr(Γ1 → Γ′2) = −R(Γ, t,−Δt) · ∇pSr,st(Γ, t)

=
−σ

2kB

[
∇pSr,st(Γ, t) − 2S′p(t)

]
· ∇pSr,st(Γ, t). (8.130)

Most likely this is positive (since ∇pSr,st(Γ(t), t) = S′p(t)), but it can be negative
depending upon the fluctuation from the optimum state. In the most likely state,

Γ1 = Γ(t), both expressions are equal to �ΔSr = σS′p(t) · S′p(t)/2kB, which is

positive. (This in fact is the maximum value of �ΔSr(Γ1 → Γ′2).)
These two results for the non-equilibrium system are the same as in the equi-

librium case, §7.4.4, and are consistent with what was deduced from fluctuation
theory in §2.4.6. In those cases there was no term Sr(t).
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8.4.3 Various Time Derivatives

In this section, various results for the time derivatives of the entropy, probability
density, and partition function are given. This is done to illustrate various
techniques for obtaining such derivatives, and also to show the physical content
of the theory.

In general the expressions derived below will hold for both positive and neg-
ative time steps, unless explicitly stated otherwise. Hence change will generally
be used in the mathematical sense (final state minus initial state), as discussed
in §8.4 on p. 262.

General Expressions

The rate of change of a phase function, f(Γ, t), for a transition (Γ1, t1) �→
(Γ2, t2) characterised by the stochastic equations of motion, Γ2 = Γ1+ΔtΓ̇

0+R,
Δt ≡ t2 − t1, is the same as in the equilibrium case, Eq. (7.112),

df(Γ, t)

dt
= ḟ0(Γ, t) +

1

Δt
R · ∇pf(Γ, t) +

1

2Δt
RR : ∇p∇pf(Γ, t).

(8.131)

The superscript 0 denotes the total adiabatic change,

ḟ0(Γ, t) =
∂f(Γ, t)

∂t
+ Γ̇0 · ∇f(Γ, t). (8.132)

Averaged over the stochastic forces the total derivative is15〈
df(Γ, t)

dt

〉
R̃

= ḟ0(Γ, t) +
1

Δt
R · ∇pf(Γ, t) +

σ

2Δt
∇2

pf(Γ, t). (8.133)

The rate of change on a most likely transition is

ḟ(Γ, t) = ḟ0(Γ, t) +
1

Δt
R · ∇pf(Γ, t), (8.134)

since RR ∼ O(Δ2
t ). Note that this is not the most likely rate of change.

Partition Function

The probability density is simply the exponential of the reservoir entropy

℘(Γ, t) =
eSr(Γ,t)/kB

Z(t)
, (8.135)

which is normalised to unity by the partition function

Z(t) =

∫
dΓ eSr(Γ,t)/kB . (8.136)

15Here and below an average over the stochastic forces is denoted by the subscript R̃.
Averages over phase space, which occur most commonly in what follows, have no subscript.
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Taking the time derivative of this shows that

Ż(t)

Z(t)
=

∫
dΓ℘(Γ, t)

∂Sr(Γ, t)

kB∂t
≡
〈

∂Sr(Γ, t)

kB∂t

〉
. (8.137)

Since, Stotal(t) = kB ln Z(t), this is essentially the rate of change of the uncon-
strained total entropy.

Using the fluctuation form for the reservoir entropy, Eq. (8.24), one also has

Z(t) =

∫
dγ e[Sr(t)+S′′(t):γγ/2]/kB

= eSr(t)/kB

√∣∣2πkBS ′′(t)−1
∣∣. (8.138)

The exponential term dominates this. According to Eq. (8.127), Sr(t) represents
the total entropy produced in the reservoir to date. Hence the logarithmic
derivative of the partition function is (neglecting the variation of the second
factor),

Ż(t)

Z(t)
=

Ṡr(t)

kB
=

σ

2k2
B|Δt|

S′p(t) · S′p(t). (8.139)

Invoking the adiabatic development, Γ0 ≡ Γ + ΔtΓ̇
0, one also has

Z(t) =

∫
dΓ eSr(Γ,t)/kB

=

∫
dΓ0 e[Sr(Γ0,t)−ΔtΓ̇

0·∇Sr(Γ0,t)]/kB

=

∫
dΓ0 eSr(Γ0,t)/kB

[
1 − ΔtΓ̇

0 · ∇Sr(Γ0, t)/kB + O(Δ2
t )
]
.(8.140)

From the definition of the partition function the excess must vanish, which
shows that〈

Γ̇0(Γ, t) · ∇Sr(Γ, t)
〉

= 0. (8.141)

This together with Eq. (8.137) shows that
〈
Ṡ0

r (Γ, t)
〉

= kBŻ(t)/Z(t).

Writing the left-hand side of Eq. (8.141) as
〈
[γ̇0(Γ, t) + Γ̇0(t)] · ∇Sr(Γ, t)

〉
,

and noting that 〈∇Sr(Γ, t)〉 = ∇Sr(t) = 0, one sees that it is equivalent to〈
γ̇0(Γ, t) · ∇Sr(Γ, t)

〉
= 0. (8.142)

This is consistent with, but weaker than, Eq. (8.81). Using
〈
γ̇0(Γ, t)

〉
= γ̇0(t) ∝

γ(t) = 0, and ∇Sr(Γ, t) = ∇Sr,st(Γ, t) − S′(t), this is also equivalent to〈
Γ̇0(Γ, t) · ∇Sr,st(Γ, t)

〉
= Γ̇0(t) · S′(t). (8.143)
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Probability Density

Using the result established above that the average of the adiabatic evolution
of the reservoir entropy is equal to the logarithmic derivative of the partition

function,
〈
Ṡ0

r (Γ, t)
〉

= kBŻ(t)/Z(t), one sees that the adiabatic derivative of

the non-equilibrium probability density vanishes when integrated over phase
space,

∫
dΓ ℘̇0(Γ, t) =

∫
dΓ

[
−Ż(t)

Z(t)
+

Ṡ0
r (Γ, t)

kB

]
℘(Γ, t) = 0. (8.144)

The total rate of change of the non-equilibrium probability density on a
transition is

d℘(Γ, t)

dt
= ℘̇0(Γ, t) +

℘(Γ, t)

kBΔt

{
R · ∇pSr(Γ, t) +

1

2
RR : ∇p∇pSr(Γ, t)

+
1

2kB
[R · ∇pSr(Γ, t)]

2

}
. (8.145)

The derivative for the most likely backward transition is

℘̇(Γ, t) =
−Ż(t)

Z(t)
℘(Γ, t) +

ddetSr(Γ, t)

kBdt
℘(Γ, t)

=
−Ż(t)

Z(t)
℘(Γ, t) +

1

kBΔt
R · [∇pSr,st(Γ, t)]℘(Γ, t), Δt < 0

=
−σ

2k2
B|Δt|

S ′p(t) · S′p(t)℘(Γ, t)

− σ

2k2
B|Δt|

[
∇pSr,st(Γ, t) − 2S′p(t)

]
· [∇pSr,st(Γ, t)]℘(Γ, t)

= − σ

2k2
B|Δt|

γp · S′′pp S′′ppγp. (8.146)

Actually, since the final equality uses the fluctuation expression, Eq. (8.23),
∇Sr,st(Γ, t) = S′(t)+ S′′(t)γ +O(γ2), which has neglected terms O(γ2), this is
technically zero.

Averaged over the stochastic forces the full derivative is〈
d℘(Γ, t)

dt

〉
R̃

=
−Ż(t)

Z(t)
℘(Γ, t) +

ddetSr(Γ, t)

kBdt
℘(Γ, t) +

℘(Γ, t)

k2
BΔt

×
{

σ

2
∇2

pSr(Γ, t) +
σ

2kB
[∇pSr(Γ, t)]

2

}

=
−Ż(t)

Z(t)
℘(Γ, t) +

1

kBΔt
R · [∇pSr,st(Γ, t)]℘(Γ, t)

+
℘(Γ, t)

k2
BΔt

{
σ

2
∇2

pSr(Γ, t) +
σ

2kB
[∇pSr(Γ, t)]

2

}
,

Δt < 0. (8.147)
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The second equality holds for Δt < 0. Recall that the transport matrix has been
taken as Λpp = (σ/kB|Δt|)Ipp. The rate of change on the most likely trajectory
neglects the embraced term. Integrating the derivative over phase space yields

−|Δt|
∫

dΓ

〈
d℘(Γ, t)

dt

〉
R̃

=
|Δt|Ż(t)

Z(t)
+ k−1

B

〈
R(Γ, t,−|Δt|) · ∇pSr,st(Γ, t)

〉
+

σ

2kB

〈
∇2

pSr(Γ, t)
〉

+
σ

2k2
B

〈[∇pSr(Γ, t)] · [∇pSr(Γ, t)]〉

=
|Δt|Ż(t)

Z(t)
+ k−1

B

〈
R(Γ, t,−|Δt|) · ∇pSr,st(Γ, t)

〉
=

σ

2k2
B

〈∇pSr,st(Γ, t) · ∇pSr,st(Γ, t)〉 − σ

2k2
B

S′p(t)
2, (8.148)

since Δt < 0. Using the fluctuation expression, Eq. (8.23), ∇Sr,st(Γ, t) = S′(t)+
S′′(t)γ+O(γ2), one has 〈∇pSr,st(Γ, t) · ∇pSr,st(Γ, t)〉

Γ
= S′(t)·S′(t)+O(S ′′(t)),

so that to leading-order this vanishes. The second equality, in which the stochas-
tic terms cancel, follows from the generalised equipartition theorem, (see §3.7.4,
Eq. (3.108)),〈

∇2
pSr(Γ, t)

〉
= −k−1

B 〈[∇pSr(Γ, t)] · [∇pSr(Γ, t)]〉 . (8.149)

Actually the more general form of this, which follows from
∫

dΓ∇p∇p℘(Γ, t) =
0, is

〈∇p∇pSr(Γ, t)〉 = −k−1
B 〈[∇pSr(Γ, t)][∇pSr(Γ, t)]〉 . (8.150)

This means that the cancellation in the above result occurs also for the general
Λpp(t), not just when there is a single variance.

Denoting the previous, Δt < 0, most likely point by a prime, Γ′ = Γ +
ΔtΓ̇

0 + R, the normalisation condition yields

1 =

∫
dΓ′ ℘(Γ′, t + Δt)

=

∫
dΓ
[
1 + ∇p · R(Γ, t)

]

×
[
℘(Γ, t) − ΔtŻ(t)

Z(t)
℘(Γ, t) +

℘(Γ, t)

kB
R · ∇pSr,st(Γ, t)

]
. (8.151)

The excess terms must cancel each other. In general one must have

〈
∇p · R(Γ, t)

〉
=
〈
∇p · Rγ(Γ, t)

〉
=

ΔtŻ(t)

Z(t)
− Δt

〈
ddetSr(Γ, t)

kBdt

〉
, (8.152)

where the first equality follows because the difference between R and Rγ de-
pends upon time only.
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Table 8.1: Various changes in entropy and other selected results

∇Sr,st(Γ, t) = S′(t) + S′′(t)γ + O(γ2) (8.23)
∇Sr,dyn(Γ, t) = −S′(t) + O(γ2) (8.26)

�ΔSr = R · ∇Sr,st(Γ, t) (8.114)

ΔSr = ΔtṠ
0
r (Γ, t) + R · ∇pSr(Γ, t) (8.115)

= �ΔSr, R = R(−Δt), Δt > 0 (8.121)

Ṡ0
r (Γ, t) = −σ

[
∇pSr,st(Γ, t) − 2S′p(t)

]
· S′p(t)/2kB|Δt| (8.123)

Ṡr(t) = σS′p(t) · S′p(t)/2kB|Δt| (8.127)

Rγ(Γ, t) = σ∇pSr(Γ, t)/2kB (8.87)
R(Γ, t) = σ

[
∇pSr,st(Γ, t) +

(
t̂ − 1

)
S′p(t)

]
/2kB (8.94)

Ż(t)/Z(t) = 〈∂Sr(Γ, t)/kB∂t〉 (8.137)

= k−1
B Ṡr(t) (8.139)

Since Rγ(Γ, t) = σS′′pp(t)γp/2kB, the left-hand side is

∇p ·R(Γ, t) = ∇p · Rγ(Γ, t) =
σ

2kB
TR(S ′′pp(t)), (8.153)

where TR means trace.

For the backward derivative, the right-hand side of the penultimate equation
is

RHS =
ΔtŻ(t)

Z(t)
− k−1

B

〈
R(Γ, t) · ∇pSr,st(Γ, t)

〉
, Δt < 0.

=
−|Δt|Ż(t)

Z(t)
− σ

2k2
B

〈∇pSr,st(Γ, t) · ∇pSr,st(Γ, t)〉

+
σ

k2
B

〈
S′p(t) · ∇pSr,st(Γ, t)

〉
=

σ

2k2
B

S′p(t)2 − σ

2k2
B

〈∇pSr,st(Γ, t) · ∇pSr,st(Γ, t)〉

=
σ

2kB
TR(S′′pp(t)). (8.154)

This agrees with the direct result for the left-hand side. This result can be used
to rearrange Eq. (8.148).

The different changes in entropy that have been derived above are shown in
Table 8.1.
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8.4.4 Steady State System

Non-equilibrium systems can be sub-divided into two main types: mechanical
and thermodynamic. The most common example of the first type is that of
mechanical work being performed on a sub-system in contact with a thermal
reservoir. In such a case the sub-system Hamiltonian has an explicit time depen-
dence, Eq. (8.3). Most generally the arbitrary time variation of the sub-system
Hamiltonian gives rise to a transient non-equilibrium system.

The second type of non-equilibrium system is that in which a constant
thermodynamic gradient is applied to the sub-system by reservoirs on either
side. The reservoirs have different values of a field variable, and they can ex-
change the conjugate extensive variable with the sub-system. Typically the
reservoirs are so large that the values of their field variables are constant in
time. As a result, a steady flux flows between the reservoirs and through the
sub-system, while the sub-system itself is macroscopically constant in time. This
is a thermodynamic steady state system. Mechanical non-equilibrium systems
can also be steady state systems. Conversely, it is also possible to create a
transient thermodynamic non-equilibrium system.

Since the sub-system is macroscopically constant, a steady state system can
be defined as a system in which the probability density is explicitly independent
of time,

∂℘ss(Γ, t)

∂t
= 0. (8.155)

Here, as above, Γ denotes a point in the sub-system phase space. In view of
the fact that this is independent of time, one can write ℘ss(Γ). This in essence
defines a steady state system as one that is homogeneous in time. The time
scales must be small enough that the accumulated flux between the reservoirs
does not measurably change their field variables.

The case of a Brownian particle trapped by an external potential in uniform
motion, §3.6.3, is not a steady state system by this criterion. However, a variable
transformation to the frame of reference of the trap, x̃ = {x − b(t), ẋ}, can be
used as the basis of a steady state formulation. In the fluctuation variable,
the non-equilibrium probability density, Eq. (3.90), has vanishing partial time
derivative.

From the usual definition, ℘ss(Γ, t) = eSr(Γ,t)/kB/Zss(t), it follows that for a
steady state system,

∂Sr(Γ, t)

∂t
=

kBŻ(t)

Z(t)
= Ṡr(t). (8.156)

This is consistent with, but much stronger than, the result in the general non-
equilibrium case, Eq. (8.137), since it says that the partial derivative is constant
throughout phase space.

The preceding result implies that

Sr,st(Γ, t) = Sr,st(Γ) + tċst, and Sr,dyn(Γ, t) = Sr,dyn(Γ) + tċdyn, (8.157)
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with ċst + ċdyn = kBŻ(t)/Z(t) = Ṡr(t). The form of Sr,st(Γ, t) is fixed by the
fact that the structure of a steady state system is constant in time, and so any
time dependence of the static part of the reservoir entropy is uniform in phase
space.

In view of the time independence of a steady state system, the most likely
adiabatic rate of change of the equilibrium part of the reservoir entropy must
be a constant in time, and hence the asymptote of the integrand of the dynamic
part of the reservoir entropy, is

Ṡ0
r,st(Γ(t′|Γ, t), t′) → Ṡ0

r,st, |t − t′| → ∞. (8.158)

Since a steady state system is macroscopically constant in time, it must be
homogeneous in time. In particular the most likely trajectory must satisfy

Γ(t′|Γ, t) = Γ(t′ + t′′|Γ, t + t′′), (8.159)

for an arbitrary time shift t′′. In view of this the dynamic part of the reservoir
entropy at the adjacent time step is related to that at the current time step by

Sr,dyn(Γ, t + Δt)

= −
∫ t+Δt

0

dt′ Ṡ0
r,st(Γ(t′|Γ, t + Δt), t

′)

= −
∫ t+Δt

0

dt′
[
Ṡ0

r,st(Γ(t′ − Δt|Γ, t)) + ċst

]

= −(t + Δt)ċst −
∫ t

−Δt

dt′′ Ṡ0
r,st(Γ(t′′|Γ, t))

= −(t + Δt)ċst + [Sr,dyn(Γ, t) + tċst] − ΔtṠ
0
r,st(Γ(0|Γ, t))

= −(t + Δt)ċst + [Sr,dyn(Γ, t) + tċst] − Δt

[
Ṡ0

r,st − ċst

]
= Sr,dyn(Γ, t) − ΔtṠ

0
r,st. (8.160)

This means that for a steady state system,

∂Sr,dyn(Γ, t)

∂t
= −Ṡ0

r,st. (8.161)

Hence ċdyn = −Ṡ0
r,st, and ċst = Ṡ0

r,st + Ṡr(t).

The most likely backward rate of change of the dynamic part of the reservoir

entropy is Ṡ−r,dyn(Γ, t) = −Ṡ0
r,st(Γ, t). Hence

[
Γ̇0 +

R(Δt)

Δt

]
· ∇Sr,dyn(Γ, t) = Ṡ0

r,st − Ṡ0
r,st(Γ, t), Δt < 0. (8.162)
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8.5 Odd Projection of the Dynamic Reservoir

Entropy

In this section the odd projection of the dynamic part of the reservoir entropy
is analysed for the general non-equilibrium case. There are three reasons for
focusing on the odd projection. First, in many important cases only the odd
projection of the dynamic part of the reservoir entropy is required. Examples
include the average of various fluxes that are typically required to obtain the
linear transport coefficients via the Green-Kubo relations (e.g. Eq. (9.90) below),
and the ratio of the non-equilibrium probability density to its conjugate. Second,
there are computational advantages in evaluating the odd projection, which
include the fact that the integrand is short-ranged, and the fact that adiabatic
trajectories rather than stochastic dissipative trajectories can be used. Third,
there is reason to believe that the even projection of the dynamic part of the
reservoir entropy is relatively negligible, and that the odd projection is the
only part of the reservoir entropy that is essential to the dynamic part of the
probability density. An explicit calculation involving an odd projection for
steady heat flow is given in §9.5.3 below.

As discussed at the beginning of this chapter, §8.1, a non-equilibrium system
is characterised by a probability distribution that is sensitive to the direction of
time, which is to say that it must depend upon the molecular velocities, not just
their speeds. For a sub-system phase space point Γ = {qN ,pN}, the conjugate
phase space point is the one with the velocities reversed, Γ† = {qN , (−p)N}.
Accordingly one must have

℘(Γ, t) �= ℘(Γ†, t). (8.163)

The static part of the reservoir entropy necessarily has even parity, Sr,st(Γ, t) =
Sr,st(Γ

†, t), which implies that

Sr,dyn(Γ, t) �= Sr,dyn(Γ†, t). (8.164)

The argument that the odd projection is dominant goes like this. One can
always formally separate a function into even and odd parity projections. Hence
in the case of the dynamic part of the reservoir entropy, one can write

Sr,dyn(Γ, t) = Seven
r,dyn(Γ, t) + Sodd

r,dyn(Γ, t), (8.165)

where the even projection is

Seven
r,dyn(Γ, t) ≡ 1

2

[
Sr,dyn(Γ, t) + Sr,dyn(Γ

†, t)
]
, (8.166)

and the odd projection is

Sodd
r,dyn(Γ, t) ≡ 1

2

[
Sr,dyn(Γ, t) − Sr,dyn(Γ

†, t)
]
. (8.167)

One expects that in general it is the equilibrium part of the reservoir entropy
that dominates the non-equilibrium probability distribution. This is because
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this part contains the molecular interactions of the sub-system via H(Γ, t), which
in turn determines the instantaneous structure. The specifically non-equilibrium
parts of the system are generally a perturbation about the equilibrium structure.
Hence one expects that the equilibrium part of the reservoir entropy dominates
the even projection of the dynamic part of the reservoir entropy,

Sr,st(Γ, t) � Seven
r,dyn(Γ, t). (8.168)

One cannot say the same for the odd parity part because the static part of
the reservoir entropy has zero odd parity projection. The arrow of time is crucial
for a non-equilibrium system, and the odd parity projection of the dynamic part
of the reservoir entropy is the only part of the expression for the non-equilibrium
probability density that is sensitive to the direction of time. One concludes that
one need only retain, and that one must retain, the odd parity projection of the
dynamic part of the reservoir entropy. Hence it is at least a good approximation,
and it may even be exact in the thermodynamic limit, to write

Sr(Γ, t) ≈ Sr,st(Γ, t) + Sodd
r,dyn(Γ, t). (8.169)

Of course when the time dependent part of the system is truly a perturbation,
this argument is formally exact.

Now the properties of the odd projection are analysed. Recall that the
dynamic part of the reservoir entropy was defined in Eq. (8.15),

Sr,dyn(Γ, t) = −
∫ t

0

dt′ Ṡ0
r,st(Γ(t′|Γ, t), t′), (8.170)

where Ṡ0
r,st(Γ, t) = ∂Sr,st(Γ, t)/∂t + Γ̇0 · ∇Sr,st(Γ, t) is the adiabatic rate of

change of the static part of the reservoir entropy, and Γ(t′|Γ, t) is the most
likely backward trajectory from the point Γ at time t > 0. The time t is
assumed large enough so that there is no correlation between the current point
Γ and the initial point Γ(0|Γ, t), which is to say that the integrand is assumed
to reach its asymptotic value before the integral reaches its lower limit.

The odd projection of the dynamic part of the reservoir entropy is

Sodd
r,dyn(Γ, t) ≡ 1

2

[
Sodd

r,dyn(Γ, t) − Sodd
r,dyn(Γ†, t)

]
(8.171)

=
−1

2

∫ t

0

dt′
[
Ṡ0

r,st(Γ(t′|Γ, t), t′) − Ṡ0
r,st(Γ(t′|Γ†, t), t′)

]

≈ −1

2

∫ t

0

dt′
[
Ṡ0,odd

r,st (Γ(t′|Γ, t), t′) − Ṡ0,odd
r,st (Γ(t′|Γ†, t), t′)

]
.

The finally approximation invokes the projections of the adiabatic rate of change
of the static part of the reservoir entropy,

Ṡ0,even
r,st (Γ, t) ≡ ∂Sr,st(Γ, t)

∂t
, and Ṡ0,odd

r,st (Γ, t) ≡ Γ̇0 · ∇Sr,st(Γ, t). (8.172)



8.5. Odd Projection of the Dynamic Reservoir Entropy 277

These follow because Sr,st(Γ, t) is of even parity. For a steady state system, there

is no explicit time dependence, so that one has Sr,st(Γ), and hence Ṡ0,even
r,st (Γ) =

0. Hence the final approximation in Eq. (8.171) is exact for a steady state
system. It is also a good approximation for a mechanical non-equilibrium system
with a time dependent Hamiltonian. This is because the trajectories starting
from Γ and from Γ† tend to their respective starting points as t′ → t, and
because Ṡ0,even

r,st tends to an asymptote independent of the starting point as
t′ → 0, as will be discussed shortly. Hence the even contribution to the integrand
of Sodd

r,dyn(Γ, t) vanishes at the two limits of the integral,

Ṡ0,even
r,st (Γ(t′|Γ, t), t′) − Ṡ0,even

r,st (Γ(t′|Γ†, t), t′)⎧⎨
⎩ → Ṡ0,even

r,st (Γ, t′) − Ṡ0,even
r,st (Γ†, t′) = 0, t′ → t,

→ Ṡ0,even
r,st (t′) − Ṡ0,even

r,st (t′) = 0, t′ → 0.

(8.173)

Since this vanishes at the two limits of the integral, it is reasonable to neglect it
entirely compared to the integration of the odd projection. This point will be
invoked in obtaining the final result.

In view of the definition of the odd projection of the dynamic part of the
reservoir entropy, one is motivated to analyse also the forward trajectory, as
well as the trajectories from the conjugate phase space point. Hence one defines

S±(Γ, t) ≡ ∓
∫ t±t

t

dt′ Ṡ0
r,st(Γ(t′|Γ, t), t′), (8.174)

and also

S†±(Γ, t) ≡ S±(Γ†, t) = ∓
∫ t±t

t

dt′ Ṡ0
r,st(Γ(t′|Γ†, t), t′). (8.175)

In terms of these, the odd projection of the dynamic part of the reservoir entropy
is Sodd

r,dyn(Γ, t) = [S−(Γ, t) − S†−(Γ, t)]/2.
The above definitions invoke the future t′ > t. In the general non-equilibrium

case of a time dependent Hamiltonian, one has to extend the past definition
into the future by defining an extended system with Hamiltonian H̃(Γ, t′; t) =
H(Γ, 2t − t′) for t′ > t. This extended Hamiltonian is an even function of time
about the current time t. In many cases, including an equilibrium system, a
steady state system, and a harmonic system, the extended system is identical
to the original system. In what follows below all future quantities t′ > t refer
to the extended system.

Figure 8.2 sketches the time evolution of the adiabatic rate of change of
the equilibrium part of the reservoir entropy along both actual and adiabatic
trajectories. The limit on the integrals should be chosen to be sufficiently large
for the integrand to reach its asymptotic value,

Ṡ0
r,st(Γ(t′|Γ, t), t′) → Ṡ0

r,st(t
′; t), |t′ − t| → ∞. (8.176)
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Γ†

Γ

t' 

Sr,st 
0 

Figure 8.2: Sketch of Ṡ0
r,st, moving forward and backward in time from a phase

space point and from its conjugate. The solid curves are actual trajectories,
the dotted curves are adiabatic trajectories, and the dashed line and curve
are the respective asymptotes for the two trajectories. The constancy of the
asymptotes means that a steady state system has been implicitly assumed, and
that the time scales are long enough to reach the asymptote, but short enough
such that |t′Ṡ0

r,st| � |Sr,st|.

This asymptote arises from the fact that with overwhelming probability the
system came from its most likely value in the past (and will return there in the
future), independent of the current phase space point of the sub-system. The
dependence of the asymptote on the current time only occurs for the future, t′ >
t, and arises because the extended Hamiltonian is an even function of time about
the current time. For a steady state system, the asymptote is independent of t′,
and for a mechanical non-equilibrium system with time dependent Hamiltonian,
it is approximately an even function of t′ about t.

The asymptotic behaviour on the adiabatic trajectory is somewhat different
from that on the most likely stochastic, dissipative trajectory. One has

Ṡ0
r,st(Γ

0(t′|Γ, t), t′) ∼ sign(t′ − t) Ṡ0
r,st(t

′; t), |t′ − t| ∼ τrelax. (8.177)

Here τrelax is a relaxation time that is long enough for the system to reach
its asymptote, but not so long that the structure has changed significantly,
|τrelaxṠ

0
r,st| � |Sr,st|. (One does not need to impose this condition for the

stochastic, dissipative trajectory, because the interactions with the reservoir
maintain the structure of the sub-system.) For an isolated system, the struc-
ture represents a fluctuation, and Ṡ0

r,st represents its regression, which must be
an odd function of time, at least for a steady state system. For t′ > 0, the
adiabatic asymptote and the actual asymptote approximately coincide, which
is just Onsager’s regression hypothesis.

The integrand of the dynamic part of the reservoir entropy, is approximately
an even function of t′− t (at least it is on long enough time scales). This follows
because a fluctuation in the most likely flux is as equally likely to be returning
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to the optimum state as it is to be coming from the optimum state. It therefore
follows that

S+(Γ, t) ≈ S−(Γ, t), and S†+(Γ, t) ≈ S†−(Γ, t). (8.178)

For t′ > t, the most likely trajectory in the presence of the reservoir approx-
imately coincides with the adiabatic trajectory, Γ(t′|Γ, t) ≈ Γ0(t′|Γ, t), t′ > t.
(This is not true for t′ < t.) Hence it follows that

S+(Γ, t) ≈ S0
+(Γ, t), and S†+(Γ, t) ≈ S†,0+ (Γ, t). (8.179)

This is essentially Onsager’s regression hypothesis. Here the dynamic part of
the reservoir entropy calculated on an adiabatic trajectory is denoted by a su-
perscript 0.

The adiabatic past trajectories may be converted to future trajectories. Be-
cause of the time reversibility of Hamilton’s equations of motion and the ex-
tended system Hamiltonian, one has the exact result16

Γ0(t′|Γ†, t) = Γ0(2t − t′|Γ, t)†. (8.180)

The simplification that results from these three results and Eq. (8.171) is
that, to a good approximation, the odd projection of the dynamic part of the
reservoir entropy depends only upon the adiabatic trajectories,

Sodd
r,dyn(Γ, t) =

−1

2

∫ t

0

dt′
[
Ṡ0

r,st(Γ(t′|Γ, t), t′) − Ṡ0
r,st(Γ(t′|Γ†, t), t′)

]

≈ −1

2

∫ 2t

t

dt′
[
Ṡ0

r,st(Γ(t′|Γ, t), t′) − Ṡ0
r,st(Γ(t′|Γ†, t), t′)

]

≈ −1

2

∫ 2t

t

dt′
[
Ṡ0

r,st(Γ
0(t′|Γ, t), t′) − Ṡ0

r,st(Γ
0(t′|Γ†, t), t′)

]

=
−1

2

∫ t

0

dt′
[
Ṡ0

r,st(Γ
0(t′|Γ†, t)†, t′) − Ṡ0

r,st(Γ
0(t′|Γ, t)†, t′)

]

≈ −1

2

∫ t

0

dt′
[
−Ṡ0

r,st(Γ
0(t′|Γ†, t), t′) + Ṡ0

r,st(Γ
0(t′|Γ, t), t′)

]
≡ Sodd;0

r,dyn (Γ, t). (8.181)

The first equality is the definition. The second equality invokes the fact that
the most likely trajectory is approximately even. The third equality invokes the
fact that the most likely trajectory and the adiabatic trajectory approximate
each other in the future (the regression hypothesis). The fourth equality invokes
the reversibility of the adiabatic trajectory in the extended system. The fifth

16One does not have an equivalent result for the stochastic, dissipative trajectory,
Γ(t′|Γ†, t) �= Γ(2t − t′|Γ, t)†, because the dissipative force depends upon the current value
of the static part of the reservoir entropy, and this differs on the two trajectories after large
enough times. This is in contrast with the transitions in Table 7.3 on p. 225, which hold only
for an infinitesimal time interval.
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equality invokes the fact that the even parity projection of the integrand is
negligible, as discussed in deriving Eq. (8.171). (That derivation also holds
for adiabatic trajectories.) These various equalities are sketched in Fig. 8.2.
The penultimate equality can also be rewritten as an integral from 0 to 2t,
although the present final expression has the advantage that it does not invoke
the extended system. The final expression can also be integrated exactly, at
least formally, but so far this has not appeared to be useful. One could subtract
the asymptotes explicitly in the integrand (either because they are constant
in phase space, or else because they integrate to zero), which shows explicitly
that the integrand is short-ranged and that therefore Sodd

r,dyn does not scale with
t. Amongst other things this means that the lower limit of the integral could
be replaced by t − τ , for some fixed time interval. This is an important and
useful property when it comes to numerically computing the dynamic part of
the reservoir entropy.

This completes the full argument. It says that in some circumstances the odd
projection of the dynamic part of the reservoir entropy is either dominant or is
all that is required. Further it says that the odd projection of the dynamic part
of the reservoir entropy may be evaluated on the past adiabatic trajectories.
It should be emphasised that this adiabatic replacement is essential in order
to derive the Green-Kubo theory from the present theory for non-equilibrium
statistical mechanics. An explicit example of this is given for the thermal con-
ductivity in §9.5 below, and it is shown in §9.5.3 that an odd projection of
the dynamic part of the reservoir entropy gives the leading-order contribution
for steady heat flow. The odd projection is also discussed for driven Brownian
motion in §11.2.3.

8.6 Path Entropy and Transitions

8.6.1 Path Entropy

The change in entropy for the transition Γ1 → Γ2 was given above as Eq. (8.114),

�ΔSr(Γ2, t2;Γ1, t1) ≡ Sr(Γ2, t2|Γ1, t1) − Sr(Γ1, t1)

= R2 · ∇Sr,st(Γ, t)

=
[
Γ2 − Γ1 − t21Γ̇

0
]
· ∇Sr,st(Γ, t) (8.182)

=
[
Sr,st(Γ2, t2) − Sr,st(Γ1, t1) − t21Ṡ

0
r,st(Γ, t)

]
.

To obtain the final equality, the partial time derivative, ∂Sr,st(Γ, t)/∂t, has been
added and subtracted. Here and below this will be taken to be the physical or
forward transition, t21 ≡ t2 − t1 > 0. This change in entropy was distinguished
from the entropy difference, ΔSr ≡ Sr(Γ2, t2) − Sr(Γ1, t1). The two are equal
on the most likely backward transition, but this fact is not required here. The
reservoir force that appears here is the sum of the most likely force (the deter-
ministic part), and the stochastic or random force, R = R+ R̃, and it gives the
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departure from the adiabatic evolution, R2 = Γ2 −Γ1 − t21Γ̇
0. The most likely

force is given by Eq. (8.94),

R2 ≡ R(Γ, t, t21) =
|t21|
2

Λpp

[
∇pSr,st(Γ, t) +

[
t̂21 − 1

]
S′p(t)

]
, (8.183)

where only momentum components appear (because Λqq ∼ O(t21)). Recall that
one interchange Λpp ⇔ σIpp/kB|Δt|. For the present case, t̂21 ≡ sign(t21) = 1,
and so only the first term contributes, R2 = |t21|Λpp∇pSr,st(Γ, t)/2.

The second entropy for this transition was given above in Eq. (8.54) as a
quadratic in the stochastic force,

S(2)(Γ2, t2;Γ1, t1) =
−1

2|t21|
Λ−1

pp : R̃2R̃2 + Sr(Γ1, t1) +
1

2

[
Sr(t2) − Sr(t1)

]
.

(8.184)

As mentioned in footnote 6 on p. 244, compared to Eq. (8.28) this neglects
terms that arise from the normalisation of the Gaussian fluctuations. Writing
the random part of the force as R̃2 = R2 −R2, the conditional second entropy
as defined in Eq. (8.34) is

S(2)(Γ2, t2|Γ1, t1)

≡ S(2)(Γ2, t2;Γ1, t1) − Sr(Γ1, t1) −
1

2

[
Sr(t2) − Sr(t1)

]
=

−1

2|t21|
Λ−1

pp : R̃2R̃2

=
−1

2|t21|
Λ−1

pp :
[
R2 − R2

]2
=

−1

2|t21|
Λ−1

pp :
[
R2

2 + R
2

2

]
+

1

|t21|
R2 · Λ−1

pp R2

=
−1

2|t21|
Λ−1

pp :
[
R2

2 + R
2

2

]
+

1

2
R2 · ∇pSr,st(Γ, t)

=
−1

2|t21|
Λ−1

pp :
[
R2

2 + R
2

2

]
+

1

2
�ΔSr(Γ2, t2;Γ1, t1). (8.185)

It can be seen that the conditional second entropy scales with the size of the
time step. The final equality utilises the change in entropy on a transition,
Eq. (8.182). Note the distinction between this the conditional second entropy
and the conditional reservoir entropy used in Eq. (8.182). The reason for trans-
forming from the second equality to the final form is to exhibit explicitly the
even and odd terms with respect to the conjugacy operation (see below).

The conditional transition probability is

℘(Γ2, t2|Γ1, t1) ≡
1

Z(t2, t1)
eS(2)(Γ2,t2|Γ1,t1)/kB , (8.186)
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with the normalising partition function being

Z(t2, t1) =

∫
dΓ2 eS(2)(Γ2,t2|Γ1,t1)/kB

=

∫
dΓ2 e−Λ−1

pp :R̃2R̃2/2|t21|kB

=
∣∣∣2π|t21|kBΛpp(t)

∣∣∣1/2

. (8.187)

The reason that one has to explicitly normalise this expression for the condi-
tional probability compared to the generic expression, Eq. (8.28), is because
here the fluctuation contributions have been neglected in using the most likely
value of the entropy (c.f. footnote 6 on p. 244). The unconditional transition
probability is ℘(Γ2, t2;Γ1, t1) = ℘(Γ2, t2|Γ1, t1) ℘(Γ1, t1).

Now consider a particular trajectory of the sub-system, Γ, on the interval
t ∈ [t0, tf ]. As in §8.1, use the notation Γ to denote this particular trajectory,
in order to distinguish it from Γ(t), which generally means a particular point
in phase space at a particular time. The notation f(Γ) denotes a functional of
the whole trajectory. Discretise the interval, tn = t0 + nΔt, n ∈ [0, f ], with
Γn ≡ Γ(tn), and Δt ≡ [tf − t0]/f > 0. In the discrete representation, Γ is an
(f + 1)-component vector.

The change in entropy for this trajectory is

�ΔSr(Γ) =

f∑
n=1

[Sr(Γn, tn|Γn−1, tn−1) − Sr(Γn−1, tn−1)]

=

f∑
n=1

[
Sr,st(Γn, tn) − Sr,st(Γn−1, tn−1) − ΔtṠ

0
r,st(Γn−1, tn−1)

]

= Sr,st(Γf , tf ) − Sr,st(Γ0, t0) −
∫ tf

t0

dt′ Ṡ0
r,st(Γ(t′), t′)

≡ Sr,st(Γf , tf ) − Sr,st(Γ0, t0) + Sr,dyn(Γ). (8.188)

The final equality defines the dynamic part of the reservoir entropy for the
actual trajectory.

The Markov-type nature of this expression for the change in entropy implies
that the reservoir has no memory at this level. This is entirely appropriate for
these molecular-level transitions because Hamilton’s equations themselves are
Markovian. The time scales of the reservoir and the sub-system are the same at
the level of phase space. It is only when one integrates out fast modes, in, for
example Brownian dynamics, that one has to include non-Markovian memory
effects that correspond to the time integration of the reservoir and solvent phase
space coordinates. (See, for example, Ch. 10 and §11.3.)

For a sufficiently long trajectory,

�ΔSr(Γ) ≈
[
Sr(tf ) − Sr(t0)

]
+ Sr,dyn(Γ). (8.189)
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The part of the difference in the reservoir entropies of the end points that scales
with |tf − t0| is the most likely part. Hence both terms on the right-hand side
scale with the length of the trajectory.

Note that this, the change in entropy for the trajectory, is not equal to the
difference in the reservoir entropy of the end points of the total transition,

ΔSr = Sr(Γf , tf ) − Sr(Γ0, t0) (8.190)

= Sr,st(Γf , tf ) − Sr,st(Γ0, t0) + Sr,dyn(Γf , tf ) − Sr,dyn(Γ0, t0)

= Sr,st(Γf , tf ) − Sr,st(Γ0, t0) −
∫ tf

t0

dt′ Ṡ0
r,st(Γ(t′|Γf , tf ), t′).

The distinction is that in the former it is the actual trajectory rather than the
most likely trajectory that appears in the integrand, ΔSr �= �ΔSr[Γ].

The trajectory entropy conditioned upon the starting point is just the sum
of the conditional second entropy, Eq. (8.185), for each transition,

S(Γ|Γ0, t0)

=

f∑
n=1

S(2)(Γn, tn|Γn−1, tn−1)

=

f∑
n=1

{
−1

2|Δt|
Λ−1

pp :
[
R2

n + R
2

n

]
+

1

2
�ΔSr(Γn, tn;Γn−1, tn−1)

}

=
1

2
�ΔSr(Γ) − 1

2|Δt|

f∑
n=1

Λ−1
pp :

[
R2

n + R
2

n

]
. (8.191)

Recall that Rn ≡ Γn − Γn−1 − ΔtΓ̇
0 is the total reservoir perturbation for

that transition, with the adiabatic velocity being evaluated at either end of the
interval. Note that there is a certain arbitrariness in whether constant terms
are included here or else in the normalising partition function.

The probability of the trajectory given the starting point Γ0 is just the
product of the conditional pair transition probabilities. Writing this in terms of
the fluctuation force it is

℘(Γ|Γ0, t0) =

f∏
n=1

℘(Γn, tn|Γn−1, tn−1)

=

f∏
n=1

eS(2)(Γn,tn|Γn−1,tn−1)/kB

Z(tn, tn−1)

=

f∏
n=1

Θσ(R̃n)

|2πΔtkBΛpp(tn)|1/2
, (8.192)

where the Gaussian probability distribution without normalisation is

Θσ(R̃n) ≡ e−Λpp(tn)−1:R̃2
n/2ΔtkB . (8.193)
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(The subscript σ is used to remind the reader that Λpp is usually replaced by
σIpp/kB|Δt|.) This can also be written as the exponential of the trajectory
entropy (as can be seen from the second equality),

℘(Γ|Γ0, t0) =
1

Z[t]
eS(Γ|Γ0,t0)/kB

= e[Sr,st(Γf ,tf )−Sr,st(Γ0,t0)]/2kBeSr,dyn(Γ)/2kB

×
f∏

n=1

Θσ(Rn)Θσ(Rn)

|2πΔtkBΛpp(tn)|1/2
. (8.194)

Note that the arguments of the Gaussian distributions are the actual reservoir
force, Rn = Γn − Γn−1 − ΔtΓ̇

0, and the most like value of the actual reservoir
force, Rn = ΔtΛpp(tn)∇pSst(Γn, tn), with Δt > 0, and the right-hand side
being evaluated at either terminal of the time step. The above two expressions
for ℘(Γ|Γ0, t0) are exactly equal to each other.

Usually the initial state is distributed according to the non-equilibrium prob-
ability distribution found above, and the unconditional trajectory probability
is just ℘(Γ) ≡ ℘(Γ|Γ0, t0)℘(Γ0, t0). It is sometimes convenient to assume in-
stead that the initial state is distributed according to the static probability,
℘st(Γ0, t0) = eSr,st(Γ0,t0)/kB/Zst(t0). In this case the unconditional trajectory
probability is

℘st(Γ) ≡ ℘(Γ|Γ0, t0)℘st(Γ0, t0)

=
1

Zst(t0)
e[Sr,st(Γf ,tf )+Sr,st(Γ0,t0)]/2kBeSr,dyn(Γ)/2kB

×
f∏

n=1

Θσ(Rn)Θσ(Rn)

|2πΔtkBΛpp(tn)|1/2
. (8.195)

For a long enough trajectory the actual distribution of the initial state makes
negligible difference to the trajectory probability.

Conjugate Trajectory

Now consider the conjugate system that is characterised by the Hamiltonian
H̃(Γ, t) = H(Γ, t0 + tf − t), t ∈ [t0, tf ], where H(Γ, t) is the possibly time de-
pendent Hamiltonian of the original system. Consider the conjugate trajectory
in this conjugate system, Γ̃, which is defined such that Γ̃(t) ≡ Γ(t0 + tf − t)†,

t ∈ [t0, tf ], or, equivalently, Γ̃n = Γ
†
f−n. Recall that if Γ(t) = {q(t)N ,p(t)N},

then Γ(t)† = {q(t)N , (−p(t))N}. It is important to note that time proceeds in
the positive direction for the conjugate system, Δt > 0. The initial point of the
conjugate trajectory is the conjugate of the final point of the original trajectory,
Γ̃0 = Γ

†
f , and the final point of the conjugate trajectory is the conjugate of the

initial point of the original trajectory, Γ̃f = Γ
†
0.

Because the static entropy has even parity, it has the same value at the
corresponding points on the two trajectories, S̃r,st(Γ̃(t), t) = Sr,st(Γ(t0 + tf −
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t)†, t0 + tf − t) = Sr,st(Γ(t0 + tf − t), t0 + tf − t). It is necessary to designate

the entropy of the conjugate system with a tilde because it is a function of H̃.
The adiabatic rate of change of the static part of the entropy in the conjugate
system is the negative of that at the corresponding point in the original system,

˙̃S0
r,st(Γ̃(t), t) = −Ṡ0

r,st(Γ(t0 + tf − t), t0 + tf − t). (8.196)

This follows because the partial time derivative of the static part of the entropy is
proportional to the partial time derivative of the Hamiltonian, and this is equal
and opposite at the respective points on the two trajectories by definition of the
Hamiltonian of the conjugate system. Also the operator Γ̇0 · ∇ is an odd parity
operator, and since Sr,st has even parity, this term is also equal and opposite
at the respective points. It important to note that invoking a conjugate system
with Hamiltonian defined as above was essential to this result. The specific
results which follow only hold for such a conjugate system.

It should be mentioned that in some cases the conjugate system is the same
as the original. The most obvious such case is when the Hamiltonian does
not explicitly depend upon time, such as for an equilibrium system, or for a
thermodynamic steady state system. Another example is when the Hamiltonian
is harmonic with time dependence of the form cos 2πlt/(t0+tf ), with l an integer.

The conditional probability of the conjugate trajectory given the starting
point Γ̃0 = Γ

†
f is

℘(Γ̃|Γ̃0; H̃)

= e[S̃r,st(Γ̃f ,tf )−S̃r,st(Γ̃0,t0)]/2kBeS̃r,dyn(Γ̃)/2kB

f∏
n=1

Θσ(Rconj
n )Θσ(R

conj

n )

|2πΔtkBΛ̃pp(tn)|1/2

= e[Sr,st(Γ0,t0)−Sr,st(Γf ,tf )]/2kBe−Sr,dyn(Γ)/2kB

f∏
n=1

Θσ(Rn)Θσ(Rn)

|2πΔtkBΛpp(tn)|1/2
.

(8.197)

The final equality follows from three results. First, since the adiabatic rate of

change of the static part of the entropy satisfies ˙̃S0
r,st(Γ̃(t), t) = −Ṡ0

r,st(Γ(t0 +
tf − t), t0 + tf − t), the dynamic part of the entropy on the conjugate trajectory
is the negative of that on the original trajectory,

S̃r,dyn(Γ̃) = −
∫ tf

t0

dt′ ˙̃S0
r,st(Γ̃(t′), t′)

=

∫ tf

t0

dt′ Ṡ0
r,st(Γ(t0 + tf − t′), t0 + tf − t′)

=

∫ tf

t0

dt′′ Ṡ0
r,st(Γ(t′′), t′′)

= −Sr,dyn(Γ). (8.198)
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Second, the actual reservoir force on the conjugate trajectory is essentially the
negative conjugate of the actual reservoir force on the original trajectory,

Rconj
n = Γ̃n − Γ̃n−1 − Δt

˙̃
Γ0(Γ̃n−1, tn−1)

= Γ
†
f−n − Γ

†
f−n+1 − ΔtΓ̇

0(Γ†f−n+1, tf−n+1)

= Γ
†
f−n − Γ

†
f−n+1 + ΔtΓ̇

0(Γf−n+1, tf−n+1)
†

= −R
†
f−n+1. (8.199)

Hence the Gaussian of it is unchanged, Λpp :
[
−R

†
f−n+1

]2
= Λpp : [Rf−n+1]

2
.

Third, the most likely reservoir force has a similar symmetry,

R
conj

n =
|Δt|
2

Λpp∇pS̃r,st(Γ̃n, tn)

=
−|Δt|

2
Λpp∇pSr,st(Γf−n, tf−n), (8.200)

and so the Gaussian factor of it is also unchanged. These last two results are used
in conjunction with the fact that n is a dummy index for the product symbol
that can be replaced by f − n. It has also been assumed that the transport
matrix is either independent of time, or else satisfies Λ̃(tn) = Λ(tf + t0 − tn).
Again it is mentioned that the various functions can be evaluated at either
terminus of each time step without affecting the results to linear order in the
time step.

The ratio of the conditional probabilities of the original and of the conjugate
trajectory is exactly given by

℘(Γ|Γ0)

℘(Γ̃|Γ̃0; H̃)
= e[Sr,st(Γf ,tf )−Sr,st(Γ0,t0)]/kBeSr,dyn(Γ)/kB

= e
ΔSrΓ/kB . (8.201)

The exponent is the change in the reservoir entropy on the trajectory of the
original system. Since �ΔSr(Γ) = −�ΔS̃r(Γ̃), this obeys exactly the conjugation
operation (i.e. taking the conjugate of the left-hand side is equivalent to swap-
ping the numerator and the denominator of the fraction). For a long trajectory
the initial conditions ought to have negligible influence, so one expects that this
result for the ratio of conditional probabilities to also dominate the ratio of
unconditional probabilities.

Assuming that the system was in the non-equilibrium state prior to the start
of the original and of the conjugate trajectory, the ratio of the unconditional
probabilities of the two trajectories is

℘(Γ|Γ0)℘(Γ0, t0)

℘(Γ̃|Γ̃0; H̃)℘(Γ̃0, t0; H̃)
=

Z(t0; H̃)

Z(t0)

eSr,dyn(Γ0,t0)/kB

eSr,dyn(Γ̃0,t0;H̃)/kB

eSr,dyn(Γ)/kB

≈ eSr,dyn(Γ)/kB . (8.202)
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Neither of the two factors involving Sr,dyn depend upon the length of the time
interval, and so they can be neglected compared to Sr,dyn(Γ) for a long enough
trajectory. For a harmonic or cyclic Hamiltonian with period tf − t0, the two
partition functions are equal and so they cancel. The only case when the final
approximation may not be accurate is for the case when the time dependence
of the Hamiltonian is monotonic over the interval.

Alternatively, one can specify that the system was in the static state prior
to the start of the original and of the conjugate trajectory. In this case the ratio
of the unconditional probabilities of the two trajectories is

℘(Γ|Γ0)℘st(Γ0, t0)

℘(Γ̃|Γ̃0; H̃)℘st(Γ̃0, t0; H̃)
=

Zst(tf )

Zst(t0)
eSr,dyn(Γ)/kB

≈ eSr,dyn(Γ)/kB . (8.203)

In the general case the logarithm of the partition function is a free energy, such
as the Helmholtz free energy or one of its analogues, Fst(t) = −kBT ln Zst(t).
Hence the ratio that appears in the first equality corresponds to the exponential
of the change in the static free energy. (The static free energy is the same as an
equilibrium free energy in the case of mechanical work. It is a generalisation of
an equilibrium free energy in the case of an applied thermodynamic gradient.)
For a cyclic trajectory, H(Γ, tf ) = H(Γ, t0), which includes a harmonic trajec-
tory but is more general, the final approximation is exact as Zst(tf ) = Zst(t0).
Again the final approximation may not be accurate when the explicitly time
dependent part of the Hamiltonian varies monotonically with time over the
trajectory.

These results show that the state of the system is immaterial outside of the
time interval of interest for a large enough time interval. In this regime this ratio
of probabilities of the forward and conjugate trajectories is just the exponential
of the change in the reservoir entropy over the interval.

8.6.2 Fluctuation and Work Theorem

In a non-equilibrium system, on average the entropy of the reservoir increases
over a time interval. It is of interest to characterise the fluctuations in this
entropy change about its most likely value. The probability of a particular
entropy change may be obtained from the expressions given above for the tra-
jectory probability. More precisely, the probability of observing the entropy
of the reservoir change by �ΔSr over the given time interval is related to the
probability of observing the opposite change by

℘(�ΔSr) =

∫
dΓ δ(�ΔSr − �ΔSr(Γ))℘(Γ)

=

∫
dΓ̃ δ(�ΔSr − �ΔSr(Γ))℘(Γ̃; H̃)e

ΔSr(Γ)/kB

= e
ΔSr/kB

∫
dΓ̃ δ(�ΔSr + �ΔSr(Γ̃))℘(Γ̃; H̃)

= e
ΔSr/kB℘(−�ΔSr; H̃). (8.204)
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Note the appearance of the probability of the conjugate system on the right-
hand side of the second and subsequent equalities. It is essential to the result
that the conjugate system be invoked. Recall that in some cases the conjugate
system is the same as the original system. Examples where this can be done
exactly include equilibrium systems, non-equilibrium mechanical systems with
harmonic Hamiltonian, systems with a steady applied thermodynamic gradient,
and systems with an harmonic applied thermodynamic gradient. An approxi-
mate example is a cyclic system.

This result is exactly true if the conditional trajectory probability is used
(i.e. the beginning and end of the trajectory is fixed). Otherwise it holds ap-
proximately for a sufficiently long trajectory where end effects can be neglected.
This result says in essence that the probability of a positive increase in entropy
is exponentially greater than the probability of a decrease in entropy over a
time interval. In essence this is the fluctuation theorem that was first derived
by Bochkov and Kuzovlev,17 and subsequently by Evans et al.18 The original
versions of the theorem relied upon either an adiabatic trajectory, or else a de-
terministic trajectory with an ad hoc thermostat, and they were restricted to
mechanical work. The present version of the theorem19 has two key generali-
sations: it holds not only for non-equilibrium mechanical systems but also for
non-equilibrium thermodynamic systems (e.g. heat flow, driven diffusion, and
shear), and it explicitly accounts for the stochastic and dissipative interactions
with the reservoir along the trajectory.

Closely related to the fluctuation theorem is a class of results that have come
to be called the work theorem. Consider the average over the trajectory of the
exponential of the negative of the entropy change,

〈
e−

ΔSr(Γ)/kB

〉
=

∫
dΓ℘(Γ)e−

ΔSr(Γ)/kB

=

∫
dΓ̃℘(Γ̃; H̃)

= 1. (8.205)

Note that the exponent on the left-hand side is the negative of the change in
reservoir entropy over the trajectory, neglecting end effects. Similarly, in going
from the first to the second equality, it has been assumed that the trajectory
is long enough that the end effects may be neglected. Although the averand
on the left-hand side scales exponentially with time, this result shows that this
particular average is not extensive in time (i.e. it does not depend on |tf − t0|).

An illustration of this result is given by the average of the exponential of the
negative of the non-equilibrium part of the reservoir entropy (or thermodynamic

17Bochkov, G. N. and Kuzovlev, Yu. E. (1981), Physica, 106A, 443.
18Evans, D. J., Cohen, E. G. D., and Morriss, G. P. (1993), Phys. Rev. Lett. 71, 2401.

Evans, D. J. (2003), Molec. Phys. 101, 1551.
19Attard, P. (2006), J. Chem. Phys. 124, 024109.
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work), assuming static equilibrium at the interval termini,〈
e−Sr,dyn(Γ)/kB

〉
=

∫
dΓ℘(Γ|Γ0)℘st(Γ0, t0)e

−Sr,dyn(Γ)/kB

=

∫
dΓ̃℘(Γ̃|Γ̃0; H̃)℘st(Γ̃0, t0; H̃)

℘st(Γ0, t0)

℘st(Γ̃0, t0; H̃)

× e−Sr,st(Γ0,t0)/kBeSr,st(Γf ,tf )/kB

=
Zst(tf )

Zst(t0)

= e−βΔFst. (8.206)

The penultimate equality uses the fact that Zst(t0; H̃) = Zst(tf ), and the final
equality uses the fact that for a static system the free energy is −kBT times the
logarithm of the partition function. One can interpret the change in entropy
on a trajectory as the thermodynamic work, in which case one sees that the
averand on the left-hand side is the exponential of the negative of this. The
exponent on the right-hand side is the negative of the difference in the static
free energy divided by kBT .

As in the case of the fluctuation theorem, the work theorem was originally
restricted to mechanical work. It was first given by Bochkov and Kuzovlev,
(1981), who assumed a long cyclic trajectory, and it was later given by Jarzyn-
ski,20 who also treated a mechanical non-equilibrium system and assumed a
Boltzmann distribution at the beginning and end of the trajectory. The present
result is valid both for applied thermodynamic gradients and for external time
dependent mechanical fields.

8.7 Path Entropy for Mechanical Work

8.7.1 Evolution of the Reservoir Entropy and Transitions

This section analyses a sub-system that can exchange energy with a thermal
reservoir of temperature T and that is characterised by an explicitly time de-
pendent Hamiltonian H(Γ, t), where Γ ≡ {q3N ,p3N} is a point in the phase
space of the sub-system. The sub-system Hamiltonian may be separated into po-
tential and kinetic energy terms, H(Γ, t) = U(q3N , t) +K(p3N ), and with little
loss of generality the kinetic energy may be taken to be K(pN ) =

∑
iα p2

iα/2m,
where i indexes the atoms and α indexes the axes.

This particular system is the archetypal mechanical non-equilibrium system,
and one of the goals of this section is to characterise the mechanical work done
on the sub-system by the external potential over time.

For the present mechanical non-equilibrium case, the static part of the reser-
voir entropy is the usual Boltzmann factor, Sr,st(Γ, t) = −H(Γ, t)/T . With this,

20Jarzynski, C. (1997), Phys. Rev. Lett. 78, 2690.
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the change in entropy on a transition, Γ2
Δt→ Γ1, Δt ≡ t2 − t1, is

�ΔSr(Γ2, t2;Γ1, t1) = R · ∇pSr,st(Γ, t) =
−1

mT

∑
iα

Riα piα. (8.207)

Here the total reservoir force is the excess over the adiabatic evolution, R = Γ2−
Γ1 − ΔtΓ̇

0, and it may be decomposed into a dissipative part and a stochastic
part, R = R + R̃. The variance of the stochastic part of the force is

〈
R̃R̃

〉
= σIpp, (8.208)

and the most likely reservoir force is

R =
σ

2kB

[
∇pSr,st(Γ, t) + {t̂ − 1}S′p(t)

]
=

−βσ

2m

[
Γp + {t̂ − 1}Γp(t)

]
. (8.209)

Here the simplest transport matrix has been assumed, Λpp = σIpp/kB|Δt|, with
the variance, σ ∝ |Δt|, the inverse temperature, β ≡ 1/kBT , and t̂ ≡ sign(Δt).
The variance represents the strength of the influence of the reservoir on the
sub-system and it can be chosen arbitrarily within quite a wide range. In most
of the results below the time step will be taken to be positive, in which case the
pre-factor of the most likely momenta vanishes, {t̂ − 1} = 0.

The stochastic dissipative equations of motion for this non-equilibrium me-
chanical system are

qiα(t + Δt) = qiα(t) + Δtq̇
0
iα(t), (8.210)

piα(t + Δt) = piα(t) + Δtṗ
0
iα(t) − βσ

2m

[
piα + {t̂ − 1}piα(t)

]
+ R̃iα.

Here the adiabatic velocities are

q̇0
iα(t) =

∂H(Γ, t)

∂piα
=

piα

m
and ṗ0

iα(t) =
−∂H(Γ, t)

∂qiα
. (8.211)

The stochastic forces are chosen independently at each time step. The dissi-
pative force, −(βσ/2m)piα, has the form of a friction or drag force, and this
term corresponds to a so-called Hoover thermostat. The additional term that
appears here, −(βσ/2m){t̂− 1}piα(t), is only non-zero going backward in time.
The relationship between the friction coefficient and the variance of the stochas-
tic force is called the fluctuation dissipation theorem. The form of the equations
of motion, with a stochastic term and a dissipative term, is the same form as
the Langevin equation for Brownian motion.
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The conditional second entropy for the transition is

S(2)(Γ2, t2|Γ1, t1)

=
−kB

2σ
R̃ · R̃

=
−kB

2σ

[
R ·R + R · R

]
+

1

2
�ΔSr(Γ2, t2;Γ1, t1)

=
−kB

2σ

∑
iα

[
R2

iα +
β2σ2

4m2
p2

iα

]
− 1

2mT

∑
iα

Riα piα. (8.212)

The second and third equalities only hold for Δt > 0, which restriction is hence-
forth assumed. Strictly speaking one should add to this a term of the form
−
∑

iα[q2;iα − q1;iα − Δtp1;iα/m]2/2σ′, which comes from Λqq → 0, and which
represents a Dirac-δ for the adiabatic evolution of the position coordinates (c.f.
Eq. (8.97)). The conditional transition entropy is

℘(Γ2, t2|Γ1, t1) =
1

Z(t2, t1)
eS(2)(Γ2,t2|Γ1,t1)/kB

=
1

Z(t2, t1)
e−R̃·R̃/2σδ

(
Γq2 − Γq1 − ΔtΓ̇

0
q

)
=

1

Z(t2, t1)
δ
(
Γq2 − Γq1 − ΔtΓ̇

0
q

)∏
iα

e−[R2
iα+β2σ2p2

iα/4m2]/2σ

×
∏
iα

e−βRiα piα/2m, (8.213)

with the normalisation factor being Z(t2, t1) = (2πσ)3N/2.

The exponent in the final factor, −β
∑

iα Riα piα/2m = −βR · ∇pH/2, is
half the change in entropy for the transition (divided by Boltzmann’s constant).
The factor of β/2 emerges in the present analysis of the transition probability
from the second entropy approach. It is worth mentioning that this term has
previously appeared as the basis of Glauber or Kawasaki dynamics, which are
essentially a stochastic approach to dynamical systems that neglect adiabatic
evolution.21 This form for the conditional stochastic transition probability sat-
isfies detailed balance for an equilibrium Boltzmann distribution, and has pre-
viously been used with the adiabatic development in the context of a stochastic
molecular dynamics algorithm for equilibrium systems.22 In the non-equilibrium
context, it has been used for the development of a non-equilibrium molecular
dynamics algorithm for steady heat flow and for driven Brownian motion.23

21Glauber, R. J. (1963), J. Math. Phys. 4, 294. Kawasaki, K. (1966), Phys. Rev. 145, 145.
Langer, J. S. (1969), Annals Phys. 54, 258. Metiu, H., Kitahara, K., and Ross, J., (1975), J.
Chem. Phys. 63, 5116.

22Attard, P. (2002b), J. Chem. Phys. 116, 9616. Boinepalli, S. and Attard, P. (2003), J.
Chem. Phys. 119, 12769.

23Attard, P. (2006), J. Chem. Phys. 124, 024109. Attard, P. (2009a), J. Chem. Phys. 130,
194113.
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8.7.2 Transition Theorems

For the trajectory Γ, discretised as discussed above in §8.6, the change in reser-
voir entropy for the present mechanical non-equilibrium system is

�ΔSr(Γ) = Sr,st(Γf , tf ) − Sr,st(Γ0, t0) −
∫ tf

t0

dt′ Ṡ0
r,st(Γ(t′), t′)

=
1

T
[H(Γ0, t0) −H(Γf , tf )] +

1

T

∫ tf

t0

dt′
∂U(Γ′, t′)

∂t′
. (8.214)

where Γ′ ≡ Γ(t′). The final term here, the dynamic part of the change in
entropy over the trajectory, is the actual work done over the trajectory divided
by temperature, Sne(Γ) = W (Γ)/T , with the work done being

W (Γ) =

∫ tf

t0

dt′ Ḣ0(Γ(t′), t′) = Δt

f−1∑
n=0

Ḣ0(Γn, tn), (8.215)

where the adiabatic rate of change of the energy is just the partial time derivative
of the potential, Ḣ0(Γ, t) = ∂U(Γ, t)/∂t. There are of course more refined ways
of transforming the integral to a sum, but they make no difference to leading-
order. In particular, it matters not whether the sum is from 0 to f − 1 or
from 1 to f , or whether the summand is taken as the average of the termini
of each time step. In the expression for the change in entropy, �ΔSr(Γ), for a
sufficiently long trajectory the contributions of the initial and final states are
negligible compared to the work term, which is the only term that grows with
the trajectory (unless the time dependent part of the potential also scales with
the time interval).

The conditional trajectory entropy is

S(Γ|Γ0, t0) =
1

2
�ΔSr(Γ) − kB

2σ

f∑
n=1

∑
iα

[
R2

n;iα +
β2σ2

4m2
p2

n;iα

]

=
1

2T
[H(Γ0, t0) −H(Γf , tf )] +

W (Γ)

T

− kB

2σ

f∑
n=1

∑
iα

[
R2

n;iα +
β2σ2

4m2
p2

n;iα

]
. (8.216)

Recall that Rn ≡ Γp,n − Γp,n−1 − ΔtΓ̇
0
p is the total reservoir perturbation for

that transition, with the adiabatic velocity being evaluated at either terminus,
Γ̇0

p(Γn, tn), or Γ̇0
p(Γn−1, tn−1), or the average of the two. The conditional prob-
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ability of the trajectory is essentially the exponential of this,

℘(Γ|Γ0, t0) =

f∏
n=1

Θσ(R̃n)

(2πσ)3N/2

= e
ΔSr(Γ)/2kB

f∏
n=1

Θσ(Rn)Θσ(Rn)

(2πσ)3N/2
(8.217)

= e−β[H(Γf ,tf )−H(Γ0,t0)]/2eβW (Γ)/2

f∏
n=1

Θσ(Rn)Θσ(Rn)

(2πσ)3N/2
,

where the Gaussian probability distribution without normalisation is

Θσ(Rn) ≡ e−Rn·Rn/2σ. (8.218)

As in the preceding section, §8.6, define a conjugate system, H̃(Γ, t) =
H(Γ, tf + t0 − t), t ∈ [t0, tf ], and a conjugate trajectory, Γ̃, such that Γ̃(t) =
Γ(tf + t0 − t)†. The ratio of the conditional probabilities is

℘(Γ|Γ0)

℘(Γ̃|Γ̃0; H̃)
= e

ΔSr(Γ)/kB = e−β[H(Γf ,tf )−H(Γ0,t0)]eβW (Γ). (8.219)

Assuming that the system was in the non-equilibrium state prior to the start
of the original and of the conjugate trajectory, the ratio of the unconditional
probabilities of the two trajectories is

℘(Γ|Γ0)℘(Γ0, t0)

℘(Γ̃|Γ̃0; H̃)℘(Γ̃0, t0; H̃)
=

Z(t0; H̃)

Z(t0)

eβW (Γ0,t0)

eβW (Γ̃0,t0;H̃)
eβW (Γ). (8.220)

Here the non-equilibrium probability density is ℘(Γ, t) = exp[−βH(Γ, t) +
βW (Γ, t)]/Z(t), where the most likely work done is essentially the dynamic
part of the reservoir entropy,

W (Γ, t) ≡ TSr,dyn(Γ, t)

= −T

∫ t

0

dt′ Ṡ0
r (Γ(t′|Γ, t), t′)

=

∫ t

0

dt′
U(Γ′, t′)

∂t′
, Γ′ ≡ Γ(t′|Γ, t), (8.221)

and the partition function is

Z(t) =

∫
dΓ e−βH(Γ,t)eβW (Γ,t). (8.222)

In the case of a cyclic system, H(Γ, t0) = H(Γ, tf ), with the definition of

the conjugate system extended such that H̃(Γ, t) = H(Γ, t), t ≤ t0, then
Sr,dyn(Γ, t; H̃) = Sr,dyn(Γ, t) and it follows that Z(t0; H̃) = Z(t0). In any case,



294 8. Non-Equilibrium Statistical Mechanics

for a cyclic system it is clear that neither ln[Z(t0; H̃)/Z(t0)] nor W (Γ0, t0) −
W (Γ̃0, t0; H̃) scales with the size of the time interval.

A similar result holds if the system is dynamically disordered prior to and
after the trajectories. This corresponds to the Boltzmann distribution,

℘B(Γ, t) ≡ 1

ZB(t)
e−βH(Γ,t), t = t0, and t = tf , (8.223)

in which case the ratio of the unconditional probabilities is given exactly by,

℘(Γ|Γ0)℘B(Γ0, t0)

℘(Γ̃|Γ̃0; H̃)℘B(Γ̃0, t0; H̃)
=

ZB(t0; H̃)

ZB(t0)
eβW (Γ)

= e−β[Fst(tf )−Fst(t0)]eβW (Γ), (8.224)

where the static or instantaneous Helmholtz free energy is simply the logarithm
of the partition function,

Fst(t) = −T ln ZB(t) = −T ln

∫
dΓ e−βH(Γ,t). (8.225)

For a cyclic system, H(Γ, t0) = H(Γ, tf ), the static partition functions are
exactly equal to each other, and there is no change in Helmholtz free energy
over the time interval.

The fluctuation and work theorems were given above for the general non-
equilibrium case, Eqs (8.204), and (8.205). Those results also hold for me-
chanical work, but it may be worth repeating Eq. (8.206) explicitly. Assuming
thermal equilibrium at the beginning and at the end of the interval, the average
Boltzmann factor of the work done is〈

e−βW (Γ)
〉

=

∫
dΓ℘(Γ|Γ0)℘B(Γ0, t0)e

−βW (Γ)

=

∫
dΓ̃ ℘̃(Γ̃|Γ̃0)℘̃B(Γ̃0, t0)e

−β[Fst(tf )−Fst(t0)]

= e−β[Fst(tf )−Fst(t0)]. (8.226)

The averand on the left-hand side is the exponential of the negative of the
mechanical work actually done over the time interval. The exponent on the
right-hand side is the negative of the difference in the Helmholtz free energy
divided by kBT . The assumption that the system is in an equilibrium state at
the termini of the trajectory is valid if the time dependence of the Hamiltonian
is negligible near the termini of the trajectory: H(Γ, t) ≈ H(Γ, t0), for t ∈
[t0, t0 − τ ], H(Γ, t) ≈ H(Γ, tf ), for t ∈ [tf , tf + τ ], where τ is some relaxation
time.

As has been mentioned, the mechanical work theorem was first given by
Bochkov and Kuzovlev, (1981) (for the case of a long cyclic trajectory), and
was later given by Jarzynski, (1997). The present derivation explicitly accounts
for the exchange of heat between the sub-system and the reservoir during the
performance of the work.



Chapter 9

Statistical Mechanics of

Steady Flow: Heat and

Shear

This chapter returns to the subject of steady heat flow, previously treated in
Ch. 4 at the level of macroscopic non-equilibrium thermodynamics, which ma-
terial is reprised in §9.1. The bulk of the present chapter is focused on the
molecular-level description of steady heat flow. The non-equilibrium probabil-
ity density for phase space is given in §9.2. The stochastic dissipative equations
of motion, the fluctuation dissipation theorem, and the most likely reservoir
force are given in §9.3. A version of the equipartition theorem appropriate for
steady heat flow is given in §9.4. The Green-Kubo time correlation expression
for the thermal conductivity is given in §9.5, where the relationship with the
odd projection of the dynamic part of the reservoir entropy is discussed. The
chapter concludes with a summary of the statistical mechanics of shear flow in
§9.6.

9.1 Thermodynamics of Steady Heat Flow

9.1.1 Canonical Equilibrium System

The canonical equilibrium system consists of a sub-system that can exchange
energy with a reservoir of fixed temperature. Temperature and energy are con-
jugate variables, and temperature is defined as the energy derivative of the
entropy,

1

T
≡ ∂S(E, N, V )

∂E
. (9.1)

Here N is the number of molecules and V is the volume of the relevant system.
In what follows, T is the temperature of the reservoir and Ts is the temperature

295
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of the sub-system, which is not necessarily equal to that of the reservoir except
in the equilibrium or optimum state.

The relevant thermodynamic potential for the canonical equilibrium system
is the Helmholtz free energy, F (N, V, T ). This is actually related to the total
entropy of the total system, F (N, V, T ) = −TStot(N, V, T ) = −kBTZ(N, V, T ),
where Z is the partition function (see below). More generally, the constrained
Helmholtz free energy is (see §4.1),

F (E|N, V, T ) ≡ −TStot(E|N, V, T )

= E − TSs(E, N, V ). (9.2)

This expression is valid for arbitrary values of the energy of the sub-system,
E, and hence it characterises fluctuations and constrained states. The most
likely sub-system energy, E(N, V, T ), minimises the constrained Helmholtz free
energy, or, equivalently, maximises the constrained total entropy. The ordinary
thermodynamic Helmholtz free energy is approximately equal to the minimum
value of the constrained Helmholtz free energy F (N, V, T ) ≈ F (E|N, V, T ). The
approximation is exact in the thermodynamic limit, N → ∞, V → ∞, N/V =
const. Note the difference between the entropy of the total system, Stot, and
that of the sub-system alone, Ss.

The temperature of the reservoir is T−1
s ≡ ∂Ss(E, N, V )/∂E. Setting the

energy derivative of the constrained Helmholtz free energy to zero, one sees that
it is minimised when the temperature of the sub-system is equal to that of the
reservoir,

∂F (E|N, V, T )

∂E

∣∣∣∣
E=E

= 0, or T s = T, (9.3)

where T s ≡ Ts(E(N, V, T ), V, T ) ≡ (∂Ss(E, N, V )/∂E|E=E)
−1

. This is of course
equivalent to maximising the total system entropy.

The probability distribution for the canonical equilibrium system is the
Maxwell-Boltzmann distribution,

℘MB(Γ|N, V, T ) =
1

Z(N, V, T )
e−βH(Γ), (9.4)

where β ≡ 1/kBT , H is the Hamiltonian of the sub-system, and Γ = {qN ,pN}
is a point in the sub-system phase space. This represents a statement that the
reservoir entropy is Sr(Γ) = −βH(Γ), which includes the assumption that phase
space points in the sub-system have equal weight (i.e. have no internal entropy).
The partition function normalises the probability, Z(N, V, T ) =

∫
dΓ e−βH(Γ),

and Boltzmann’s constant times its logarithm is the total entropy of the total
system. Henceforth number and volume are not shown explicitly.

9.1.2 Fourier’s Law of Heat Conduction

The obvious non-equilibrium analogue of the canonical equilibrium system is
for two heat reservoirs of different temperatures. In this, the canonical non-
equilibrium system, the sub-system that separates the two reservoirs mediates
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the energy flow between them, (see Fig. 4.1 on p. 99). For fixed reservoir temper-
atures the optimum state is a steady state. It will be shown that in this optimum
state the local energy density at each point in the sub-system will be such that
there is a linear temperature profile between the two reservoirs. The constrained
state is the state with non-optimum heat flux (and non-optimum energy pro-
file, which will shortly be shown to be equivalent to a non-optimum temperature
gradient). The second entropy increases during spontaneous changes in the heat
flux, and it reaches a maximum in the steady state.

Let the boundaries between the sub-system and the reservoirs be located at
z = ±L/2 and let the reservoir temperatures be T±. Define the zeroth and first
temperatures as1

1

T0
≡ 1

2

[
1

T+
+

1

T−

]
, and

1

T1
≡ 1

L

[
1

T+
− 1

T−

]
. (9.5)

The zeroth temperature is essentially the average or mid temperature, and the
reciprocal of the first temperature is essentially the temperature gradient (more
precisely, the gradient of the reciprocal temperature). It is straightforward to
show (see §4.2) that the zeroth and first temperatures are thermodynamically
conjugate to the zeroth and first energy moments, respectively

1

Ts0
≡ ∂Ss(E0, E1)

∂E0
, and

1

Ts1
≡ ∂Ss(E0, E1)

∂E1
. (9.6)

Here the energy moments are used to label a constrained sub-system macrostate;
the other state variables are not shown explicitly. In the present case the system
is taken to be homogenous in the x- and y-directions, and the energy moments
are measured in the z-direction,

En ≡ A

∫ L/2

−L/2

dz ε(z)zn, n = 0, 1, (9.7)

where A is the cross-sectional area of the sub-system and ε is the local energy
density.

The energy flux J0
E is the energy per unit area per unit time crossing a plane

perpendicular to the z-axis. As shown by Onsager2 (see also Ch. 4), this is
related to the adiabatic rate of change of the first energy moment.3 This follows
from energy conservation: the rate of change of the energy density is just the
negative divergence of the flux, which in the present one-dimensional case is its
gradient, ε̇0(z) = −dJ0

E(z)/dz. Hence considering the sub-system as isolated
(so that J0

E(±L/2) = 0, and Ė1 = Ė0
1 ), the adiabatic rate of change of the first

1Attard, P. (2005a), J. Chem. Phys. 122, 154101.
2Onsager, L. (1931), Phys. Rev. 37, 405, and 38, 2265.
3This relationship has to be modified in the case of convection to account for the non-

uniformity of the sub-system.
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energy moment is (see also footnote 2 on p. 102),

Ė0
1 = A

∫ L/2

−L/2

dz zε̇0(z)

= A

∫ L/2

−L/2

dz z
−dJ0

E(z)

dz

= −AzJ0
E(z)

∣∣∣∣
L/2

−L/2

+ A

∫ L/2

−L/2

dz J0
E(z)

= V J0
E,av, (9.8)

where V = AL is the volume of the sub-system. In the final equality, J0
E,av ≡

L−1
∫ L/2

−L/2
dz J0

E(z) is the flux averaged over the sub-system. In the steady

state, the flux must be uniform (otherwise the energy density would change with
time anywhere where the gradient of the flux was non-zero), which means that
the spatially averaged flux is the same as the flux itself. An isolated system
can be in a steady state everywhere except near the boundaries. Here and
throughout, adiabatic means the evolution of the isolated sub-system according
to Hamilton’s equations of motion. This expression is formally exact and holds
in non-optimum constrained states as well as in the optimum steady state.

Fourier’s law states that the conductive energy flux is minus the thermal
conductivity times the temperature gradient,

J0
E = −λ∇T. (9.9)

In typical hydrodynamic and other non-equilibrium applications, Fourier’s law
is taken to apply locally. The present canonical non-equilibrium case of a sub-
system between two thermal reservoirs, will be sufficient to derive Fourier’s law
for the relationship between flux and temperature gradient, and this may be
extended piece-wise for an arbitrary temperature profile T (z). In the present
case one expects (and one can show) that in the optimum state, the inverse
temperature of the sub-system linearly interpolates between that of the reser-
voirs, T s(z)−1 = T−1

0 +zT−1
1 .4 This has constant gradient, ∇

[
T s(z)−1

]
= T−1

1 .

Alternatively, T s(z) = T0 − zT 2
0 /T1 + O(T−2

1 ). Hence in the linear regime of
small temperature gradients, ∇T = −T 2

0 /T1, and Fourier’s law is equivalent to

Ė0
1 = λV T 2

0

1

T1
. (9.10)

In fact this is the most fundamental form of Fourier’s and its regime of validity
is greater than that of the original expression. The over-line must be exhibited
on the left-hand side because this law only holds for the most likely flux. More
generally, the flux is a constrained variable and so can be given any desired value
independent of the temperature gradient. The task is now to derive Fourier’s
law from the second entropy theory.

4In general in thermodynamics, inverse temperature is a more natural physical quantity
than temperature, and many thermodynamic relationships are simpler when expressed in
terms of inverse temperature.
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9.1.3 Second Entropy for Heat Flow

Isolated System

For an isolated sub-system, the first entropy may be written as a quadratic form
in the first energy moment,

Ss(E1) =
1

2
SE2

1 . (9.11)

For this isolated system, the moment fluctuates about zero, 〈E1〉 = E1 = 0. The
fluctuation coefficient is S = −kB/

〈
E2

1

〉
. Since the heat flux is related to the

rate of change of the first energy moment, the zeroth energy moment is largely
irrelevant to the present analysis and is not shown here or below. The first
temperature is the gradient of the first entropy, which is the thermodynamic
force,

1

Ts1(E1)
= SE1. (9.12)

The first energy moment has even parity in phase space, E1(Γ
†) = E1(Γ),

and hence this is a case of pure parity fluctuations. The second entropy for the
isolated sub-system is (see §4.3),

S(2)
s (E′1, E1|τ) =

1

2
A(τ)[E′21 + E2

1 ] + B(τ)E′1E1, (9.13)

where E1 is at time t, and E′1 is at time t + τ . This is maximised with respect
to E′1 by

E′1 ≡ E1(E1, τ) = −A(τ)−1B(τ)E1. (9.14)

The short time expansions of the fluctuation coefficients in the pure parity
case, Eqs (2.39) and (2.40), are

A(τ) =
−1

|τ |Λ + A + O(τ), and B(τ) =
1

|τ |Λ + B + O(τ), (9.15)

with the reduction condition, Eq. (2.41), yielding, A + B = S/2. Short time
means small on macroscopic time scales, but long on molecular time scales (see
Fig. 2.1 on p. 40 and Fig. 4.2 on p. 104). With this the most likely future state
in the short time limit is

E
′

1 = E1 +
|τ |Λ
2

SE1 + O(τ2). (9.16)

With this and the reduction condition the second entropy may be rewritten

S(2)(E′1, E1|τ) =
1

2
SE2

1 − 1

2Λ|τ |

[
E′1 − E1 −

|τ |Λ
2

SE1

]2
+ O(τ2)

=
1

2
SE2

1 − |τ |
2Λ

[
◦

E1 − τ̂Λ

2
SE1

]2
, (9.17)
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which is valid for small time intervals. Here τ̂ ≡ sign(τ).
The most likely rate of change of the first energy moment for a given fluc-

tuation is

◦
E1

0 ≡ E
′

1 − E1

τ
=

τ̂Λ

2
SE1 =

τ̂Λ

2

1

Ts1
. (9.18)

For this isolated system, the rate of change is an adiabatic quantity, which
explains the superscript 0 on the left-hand side. In view of Fourier’s law above,
one can identify the thermal conductivity as

λ =
Λ

2V T 2
s0

. (9.19)

Note that Fourier’s law only applies forward in time, τ̂ = 1.
The time correlation function is (see Eq. 2.22),

Q(τ) = k−1
B 〈E1(t + τ)E1(t)〉0 = k−1

B

〈
E′1E1

〉
0

= −k−1
B A(τ)−1B(τ) 〈E1E1〉0 = A(τ)−1B(τ)S−1

∼ −
[
1 +

|τ |Λ
2

S

]
S−1 + O(τ2)

= −S−1 − |τ |V T 2
s0λ. (9.20)

The correlations in the first energy moment are Markovian, and hence the time
correlation function decays exponentially on longer time scales, (see Fig. 2.1 on
p. 40). The time correlation function and the averages are for a sub-system
that evolves adiabatically and that is initially distributed either according to
the Maxwell-Boltzmann distribution, or else uniformly in phase space on the
energy hypersurface E0 = 〈H〉N,V,T ; since the fluctuations in H in the Maxwell-
Boltzmann case are relatively negligible in the thermodynamic limit, the two
are approximately equal. If one imagines that this truncated expansion formally
holds at all times such that this defines a time dependent thermal conductivity
λ(τ), then one can rewrite this as

λ(τ) =
−1

V T 2
s0|τ |

[Q(τ) − Q(0)]

=
−1

V kBT 2
s0|τ |

〈[E1(t + τ) − E1(t)] E1(t)〉0

=
−1

V kBT 2
s0|τ |

∫ τ

0

dt′
〈
Ė0

1(t′ + t)E1(t)
〉

0

=
−1

V kBT 2
s0|τ |

∫ τ

0

dt′
〈
Ė0

1(Γ0(t′|Γ, 0))E1(Γ)
〉

0
. (9.21)

Since the system is isolated, it is the adiabatic trajectory that appears here.
The right-hand side becomes independent of τ for τ in the short time regime
(larger than molecular time scales, but smaller than macroscopic time scales;
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see Fig. 4.2 on p. 104). It is permissible to invoke the limit |τ | → ∞ after the
thermodynamic limit L → ∞, A → ∞, N → ∞, N/AL = const. This is the
Green-Kubo expression for the thermal conductivity.5

Reservoirs

Now two reservoirs of different temperatures are added to the isolated system
that was just treated. This is the canonical non-equilibrium system; the analysis
here is an abbreviated version of §4.5. Again suppressing the dependence on
the zeroth energy moment, the total first entropy is

Stot(E1|T1) = Ss(E1) −
E

(r)
1 (t)

T1
. (9.22)

The first temperature T1 is that of the reservoirs, and E1 remains the first

energy moment of the sub-system. The quantity E
(r)
1 (t) is the total reservoir

contribution to the first moment of the sub-system energy to the present time;
it is equal to −Er1(t), which was used in §4.5. Since the first moment is not a
conserved variable, it can change by adiabatic means, or by exchange with the

reservoirs, ΔE1 = Δ0E1 +ΔrE1. Here E
(r)
1 (t) =

∫ t

0
drE1, so that dE

(r)
1 /d0E1 =

0, and dE
(r)
1 /drE1 = 1. Of course one also has the results dE1/d0E1 = 1, and

dE1/drE1 = 1.

Maximisation of the total first entropy with respect to ΔrE1 gives

1

Ts1(E1)
=

1

T1
, (9.23)

which is to say that in the steady state the sub-system first temperature is equal
to the first temperature of the reservoirs.

As just mentioned, the first energy moment is not a conserved variable.
It can change by internal processes, Δ0E1 = τĖ0

1 , and by energy exchange
with the reservoir, ΔrE1 = −ΔEr,1. Hence define the transition as E′′1 =
E1 + Δ0E1 + ΔrE1 ≡ E′1 + ΔrE1. The total second entropy is the sum of that
due to the sub-system and that due to the reservoir. The sub-system second
entropy given above for the isolated system may be rewritten

S(2)
s (E′1, E1|τ)

=
1

2
A(τ)[E′1 − E1]

2 + [A(τ) + B(τ)]E′1E1

=
−1

2Λ|τ | [Δ
0E1]

2 +
1

2
SE1Δ

0E1 +
1

2
SE2

1 . (9.24)

5 Green, M. S. (1954), J. Chem. Phys. 22, 398. Kubo, R. (1966), Rep. Progr. Phys. 29,
255. Kubo, R., Toda, M., and Hashitsume, N. (1978), Statistical Physics II. Non-equilibrium

Statistical Mechanics, (Springer-Verlag, Berlin). Hansen, J.-P. and McDonald, I. R. (1986),
Theory of Simple Liquids, (Academic Press, London). Zwanzig, R. (2001), Non-equilibrium

Statistical Mechanics, (Oxford University Press, Oxford).
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The second equality follows for small τ . Recall that the thermal conductivity is
λ = Λ/2V T 2

s0.
This has the following physical interpretation. The first term is always neg-

ative and hence it is unfavourable. It represents the entropic cost of ordering
the system to create the flux. It is quadratic in the flux as it must be from
symmetry arguments. This first term limits the flux. The second term is posi-
tive when the flux opposes the first moment, which is to say that it reduces it.
This is half the entropy production, since it is a flux times a thermodynamic
force. This term is linear in the flux, as it must be from symmetry, and it is
what drives the flux. The final term is independent of the flux and represents
the first entropy cost of the non-zero first moment.

In the present case that the sub-system can exchange energy with two en-
compassing reservoirs of temperature T±, this expression for the second entropy
has to be modified to include the exchange ΔrE1. The term quadratic in the
flux is unchanged, as this is purely internal to the sub-system. To the linear
term is added half the first entropy production gained by the sub-system, and
half that gained by the reservoir,

1

2
SE1Δ

rE1 −
1

2T1
ΔrE1. (9.25)

The negative sign for the second term arises because ΔrE1 = −ΔEr,1, where the
left-hand side is the reservoir induced change in the sub-system energy moment,
and the right-hand side is the negative of the change in the energy moment of
the reservoirs. To the final term is simply added the sub-system dependent part

of the first entropy of the reservoir, −E
(r)
1 (t)/T1. Hence the total second entropy

is

S
(2)
total(Δ

0E1, Δ
rE1, E1|T1, τ) =

−(Δ0E1)
2

2Λ|τ | +
SE1

2
[Δ0E1 + ΔrE1] −

ΔrE1

2T1
+

1

2
SE2

1 − E
(r)
1 (t)

T1
. (9.26)

The derivatives are

∂S
(2)
total

∂Δ0E1
=

−1

Λ|τ |Δ
0E1 +

1

2
SE1, (9.27)

∂S
(2)
total

∂ΔrE1
=

1

2
SE1 −

1

2T1
, (9.28)

and

∂S
(2)
total

∂rE1
=

1

2
S[Δ0E1 + ΔrE1] + SE1 −

1

T1
. (9.29)

(Note that ΔrE1 refers to the transition in time τ , whereas ∂rE1 refers to the
prior reservoir induced change in E1. As discussed in footnote 4 on p. 108, one
assumes that equilibration with the reservoirs is much faster than the internal
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relaxation of the sub-system and does not consider the derivative ∂0E1.) These
vanish when

Δ0E1 =
|τ |Λ
2

SE1, (9.30)

which is unchanged from the isolated system,

1

T s1

≡ SE1 =
1

T1
, (9.31)

which is the expected moment induced by the reservoir, and

Δ0E1 = −ΔrE1. (9.32)

This last result means that the stochastic change in the moment due to heat
exchange with the reservoir most likely cancels the deterministic relaxation of
the energy moment due to internal processes. Whereas in the isolated sub-
system the moment relaxes to zero, the cancelling exchange with the reservoir
holds the sub-system moment constant. Its non-zero value is such that the
induced temperature gradient of the sub-system is equal to that imposed by the
reservoir. The induced gradient is essentially the first temperature T1, and so
this is the same as saying that in the steady state the internal thermodynamic
force is equal to the external thermodynamic force. This is the content of
Onsager’s regression hypothesis (Onsager, 1931).

9.2 Phase Space Probability Density

In what follows of this chapter, the statistical mechanics of steady heat flow
is presented, beginning with this section on the phase space probability distri-
bution. The general expression given in Ch. 8 will be applied to the present
problem.

9.2.1 Explicit Hamiltonian and First Energy Moment

Suppose that the Hamiltonian of the sub-system does not depend explicitly on
time, and that it consists of the kinetic energy and the potential energy. The
kinetic energy is taken to be the usual quadratic form in the momenta, and the
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potential energy consists of one-, two-, three-, . . . body potentials,

Hs(Γ) = K(Γ) + U (1)(Γ) + U (2)(Γ) + U (3)(Γ) + . . .

=
1

2m

N∑
i=1

p2
i +

N∑
i=1

u(1)(qi) +
N∑

i<j

u(2)(qi,qj)

+

N∑
i<j<k

u(3)(qi,qj ,qk) + . . .

=
1

2m

N∑
i=1

p2
i +

N∑
i=1

u(1)(qi) +
1

2!

N∑
i,j

′u(2)(qi,qj)

+
1

3!

N∑
i,j,k

′u(3)(qi,qj ,qk) + . . . (9.33)

Here the simplest form for the kinetic energy has been assumed, although some-
times below, the possibility that the mass mi differs for different atoms will be
allowed for. The prime on the summation means that terms where any of the
indeces have the same value are excluded. The prefactors of the summations in
the final form correct for multiple counting of the energy of each set of interact-
ing atoms. The one body potential often represents an external field, such as
gravity, or else the walls of a confined system.

The zeroth energy moment is the Hamiltonian itself, E0(Γ) = Hs(Γ), which
is the total energy of the system. The first energy moment in the z-direction is
explicitly

E1(Γ) =
1

2m

N∑
i=1

zip
2
i +

N∑
i=1

ziu
(1)(qi) +

N∑
i<j

zi + zj

2
u(2)(qi,qj)

+

N∑
i<j<k

zi + zj + zk

3
u(3)(qi,qj ,qk) + . . .

=
1

2m

N∑
i=1

zip
2
i +

N∑
i=1

ziu
(1)(qi) +

1

2!

N∑
i,j

′ zi + zj

2
u(2)(qi,qj)

+
1

3!

N∑
i,j,k

′ zi + zj + zk

3
u(3)(qi,qj ,qk) + . . . (9.34)

Here the z position of the ith atom is zi ≡ qiz . Notice how each atom in a set of
interacting atoms contributes equally to the moment, which is to say that their
average z-position appears, such as [zi + zj]/2 for the pair term, [zi + zj + zk]/3
for the triplet term etc.

In what follows, the adiabatic rate of change of the first energy moment will
be required. Recall that the heat flux is this divided by the sub-system volume,
J0

E = Ė0
1/V . In terms of the kinetic energy and the many body potential
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energies, the adiabatic rate of change of the first energy moment is

Ė0
1(Γ) = Γ̇0 · ∇E1(Γ)

=

N∑
l=1

ṗ0
l ·

∂E1(Γ)

∂pl
+

N∑
l=1

q̇0
l ·

∂E1(Γ)

∂ql

=
N∑

l=1

zl ṗ
0
l · pl/ml +

N∑
l=1

[
zl q̇

0
l ·

∂u(1)(ql)

∂ql
+ ż0

l u(1)(ql)

]

+
1

2!

N∑
l,j

′

[
{zl + zj} q̇0

l ·
∂u(2)(ql,qj)

∂ql
+ ż0

l u(2)(ql,qj)

]

+
1

3!

N∑
l,j,k

′

[
{zl + zj + zk} q̇0

l ·
∂u(3)(ql,qj ,qk)

∂ql

+ ż0
l u(3)(ql,qj ,qk)

]
+ . . . (9.35)

This follows because the potentials are symmetric with respect to interchange
of their arguments, and the summation indeces can be relabelled. One has of
course q̇0

l = pl/ml.

For the particular case that the single potential represents a wall or slit
pore, u(1)(q) = w(z), that the pair potential is central, u(2)(qi,qj) = u(qij),
qij ≡ |qi − qj |, and that there are no triplet or higher-order potentials, one can
write this as6

Ė0
1(Γ) =

N∑
i=1

∑
α=x,y,z

κiαpiα, (9.36)

with

κiα ≡ εi

mi
δα,z −

N∑
j=1

j �=i u′(qij)
qiz − qjz

2miqij
[qiα − qjα], (9.37)

where δα,z is a Kronecker delta, and εi is the energy of the ith atom,

εi =
p2

i

2mi
+ w(qiz) +

1

2

N∑
j=1

j �=i u(qij). (9.38)

If one wants to treat a bulk fluid, set w(z) = 0. Notice that κi does not depend
upon the momentum except in the kinetic energy contribution to the energy per
molecule, which fact will prove useful below.

6Attard, P. (2006), J. Chem. Phys. 124, 024109.
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9.2.2 Reservoir Entropy and Probability Density

The phase space probability distribution is essentially the exponential of the
reservoir entropy. The reservoir entropy is formally given by Eq. (8.15),

Sr(Γ, t) = Sr,st(Γ) + Sr,dyn(Γ, t). (9.39)

In the present case, the static (or equilibrium, or reversible) part of the reservoir
entropy is

Sst(Γ) =
−1

T0
E0(Γ) − 1

T1
E1(Γ). (9.40)

This is just the analogue of the Boltzmann factor, which is the reservoir en-
tropy in the canonical equilibrium case. The dynamic (or non-equilibrium, or
irreversible) part of the reservoir entropy in the present case is

Sdyn(Γ, t) ≡ −
∫ t

0

dt′ Ṡ0
r,st(Γ(t′|Γ, t), t′)

=
1

T1

∫ t

0

dt′ Ė0
1(Γ(t′|Γ, t)). (9.41)

This only depends upon the first energy moment because the adiabatic rate of
change of the zeroth energy moment vanishes. The dynamic part of the reservoir
entropy has an explicit time dependence that reflects the entropy produced in
the reservoirs up to the present time due to the net heat flow between them.

Because this is a steady state system, the most likely value of the heat flux

is independent of time, Ė0
1 . Also, the most likely trajectory is invariant with

respect to translations in time, Γ(t′|Γ, t) = Γ(t′ + τ |Γ, t + τ). Finally, in the
long time limit, on the most likely trajectory the heat flux must tend to its

most likely value, whatever its current value, Ė0
1 (Γ(t′|Γ, t)) → Ė0

1 , |t′− t| → ∞.
These three facts mean that the partial time derivative of the dynamic part of
the reservoir entropy is

∂Sdyn(Γ, t)

∂t

=
1

T1Δt

{∫ t+Δt

0

dt′ Ė0
1(Γ(t′|Γ, t + Δt)) −

∫ t

0

dt′ Ė0
1(Γ(t′|Γ, t))

}

=
1

T1Δt

{∫ t

−Δt

dt′′ Ė0
1(Γ(t′′|Γ, t)) −

∫ t

0

dt′ Ė0
1 (Γ(t′|Γ, t))

}

=
Ė0

1

T1
. (9.42)

This is in agreement with the general steady state result, Eq. (8.161).
The phase space probability for the canonical non-equilibrium problem

℘(Γ|T0, T1, t) =
1

Z(T0, T1, t)
eSr(Γ,t)/kB

=
1

Z(T0, T1, t)
e−β0E0(Γ)−β1E1(Γ)eSr,dyn(Γ,t)/kB , (9.43)
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where βn ≡ 1/kBTn, n = 0, 1. In order to simplify the notation, in most of this
chapter the temperature arguments will not be shown explicitly. The partition
function normalises this to unity,

Z(t) =

∫
dΓ eSr(Γ,t)/kB . (9.44)

Because this is a steady state system one must have ∂℘(Γ, t)/∂t = 0, which
implies

1

Z(t)

dZ(t)

dt
=

∂Sr,dyn(Γ, t)

kB∂t
= β1Ė0

1 . (9.45)

Hence Z(t) = Z̃ expβ1Ė
0
1t.

In view of this time dependence and the asymptotic behaviour of the inte-
grand, it is possible to cancel the exponential time dependence of the partition
function by making the integrand of the dynamic part of the reservoir entropy
short-ranged. That is one can write

℘(Γ|T0, T1) =
1

Z̃(T0, T1)
e−β0E0(Γ)−β1E1(Γ)eS̃r,dyn(Γ)/kB , (9.46)

with

S̃dyn(Γ) =
1

T1

∫ 0

−τ

dt′
{
Ė0

1 (Γ(t′|Γ, 0)) − Ė0
1

}
. (9.47)

The integrand is sufficiently short-ranged so that the integral is independent of
the lower limit for τ larger than molecular times, but smaller than macroscopic
times. Although this version may have certain numerical and computational
advantages, the full formulation is retained here because of the physical inter-
pretation of the time dependent parts.

The logarithm of the partition function times Boltzmann’s constant is the
total entropy of the total system (or, more precisely, the sub-system dependent
part thereof), Stot(T0, T1, t) = kB ln Z(T0, T1, t). This is related to the maximum
value of the total entropy used in the thermodynamic analysis of the preceding
section, Eq. (9.22) with the zeroth temperature added,

Stot(T0, T1, t) > Stot(E0, E1|T0, T1, t) ≡ Ss(E0, E1)−
E0

T0
− E

(r)

1 (t)

T1
. (9.48)

In the thermodynamic limit, this strict upper bound becomes an approximate
equality (because the far left-hand side includes the entropy of the fluctuations
about the most likely state, and, since these scale as the square root of the
system size, they are relatively negligible in the thermodynamic limit). The
thermodynamic potential or free energy for steady heat flow, which is the ana-
logue of the Helmholtz free energy, is

F (T0, T1, t) = −T0Stot(E0, E1|T0, T1, t)

≈ −T0Stot(T0, T1, t)

= −kBT0 ln Z(T0, T1, t). (9.49)
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The time derivative of the thermodynamic potential is proportional to the
logarithmic derivative of the partition function, which is proportional to that of
the total entropy. From the above one has

∂Stot(T0, T1, t)

∂t
=

Ė0
1

T1
, and

∂F (T0, T1, t)

∂t
=

−T0

T1
Ė0

1 . (9.50)

This implies dE
(r)

1 (t)/dt = −Ė0
1 , which is to say that most likely the rate of

relaxation of the first energy moment of the sub-system due to the reservoirs is
equal and opposite to the rate of its change due to internal influences.

9.3 Most Likely Trajectory

The general stochastic dissipative equations of motion are given by Eq. (8.89)

Γ2 = Γ1 + t21Γ̇
0(Γ) + R(Γ, t21) + O(t221), (9.51)

where the random force R has only momentum components. The adiabatic
velocities are

q̇0
iα =

∂H(Γ)

∂piα
= qiα/mi, (9.52)

and

ṗ0
iα =

−∂H(Γ)

∂qiα
= −w′(qiz)δα,z −

N∑
j=1

j �=iu′(qij)
qiα − qjα

qij
. (9.53)

Here the atoms are labelled by Roman letters, i = 1, 2, . . . , N , and the coor-
dinates are labelled by Greek letters, α = x, y, z,. The Hamiltonian has been
assumed to consist of only kinetic energy, an external wall potential, and a
central pair potential between the atoms (c.f. Eq. (9.38)).

The random force, which only has momentum components, is the sum of a
stochastic, R̃, and a dissipative, R, force. The stochastic forces have variance〈

R̃iαR̃jγ

〉
= σδijδαγ . (9.54)

The variance represents the stochastic influence of the heat reservoirs. In prac-
tical terms its value can be chosen arbitrarily within a relatively wide range,
provided that it is of the same order as the time step, σ ∼ |t21|.7 By this
is meant that the change in momenta at each time step due to the reservoirs

7The relationship between the variance and the time step independent transport coefficient
Λ shows that σ ∝ |t21|. This means that in comparing the results of simulations for equations
of motion with different time steps, strictly speaking the variances ought to be in the ratio
of the time steps. However since Λ is arbitrary within wide limits, this strict requirement
in practice need not be honored. See, for example, the molecular dynamics results shown in
Figs 11.4–11.6 on pp. 406–408.
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should be comparable to the adiabatic change. The variance cannot be too small
because the energy exchange with the reservoirs has to be large enough to coun-
teract the adiabatic energy flux. Conversely, the variance cannot be too large,
because the stochastic dissipative equations of motion represent an expansion
of the second entropy that assumes that quadratic terms in the time step and in
the variance can be neglected. Also, too large a variance unnaturally disorders
the adiabatic flux in a way that does not occur in the actual boundary driven
flows that exist in the real world. (This latter effect can be mitigated by the
constraint that is implemented on the dissipative force below.) In practice one
can explore several values of the variance and check that the relevant physical
properties of the system are insensitive to the precise value chosen.

The dissipative force is given by Eq. (8.94),

Riα(Γ, t21) =
σ

2kB

∂Sr,st(Γ)

∂piα
+

σ

2kB

(
t̂ − 1

)
S ′piα

=
−σ

2kB

[
1

T0

∂H(Γ)

∂piα
+

1

T1

∂E1(Γ)

∂piα

]
+

σ

2kB

(
t̂ − 1

) ∂Sr,st(Γ)

∂piα

=
−σ

2kB

[
piα

T0mi
+

zipiα

T1mi

]
− σ

2kB

(
t̂ − 1

) [ piα

T0mi
+

zipiα

T1mi

]

=
−σ

2mi
β(zi)piα − σ

2mi

(
t̂ − 1

)
β(zi)piα. (9.55)

The local inverse temperature has been defined as β(z) ≡ k−1
B [1/T0 + z/T1],

which is just the linear interpolation between the inverse temperatures of the
two reservoirs.

Here t̂ ≡ sign(t21), and so the final term is only non-zero for a backward
time step. For this final term, it has been assumed that the gradient of the
static part of the reservoir entropy at the most likely point can be replaced by
the most likely gradient of the static part of the reservoir entropy. There is an
argument to say that this term is zero, namely that in the conductive regime
the number flux at each point z is zero.

The first term represents a drag or friction force. It is of the same force as the
Langevin dissipation at the local temperature of the atom. It of course satisfies
the fluctuation dissipation theorem, because its magnitude is determined in
essence by the variance σ. It is the satisfaction of this theorem that allows
the wide choice for the variance without affecting the physical properties of the
system.

Constraints

As discussed in §8.3.6, one can impose constraints on the reservoir perturbation
so as to minimise the influence on the physical properties of interest. In the case
of heat flow possibly the most important property of the system is the heat flux,
which is embodied in the adiabatic rate of change of the first energy moment,
J0

E = Ė0
1/V . In order to disturb this as little as possible, one can make the
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dissipative force orthogonal to its gradient,8

R(Γ, t21) · ∇pĖ0
1 (Γ) = 0. (9.56)

Denoting the unconstrained or free force given above by R
f
(Γ, t21) and intro-

ducing a Lagrange multiplier, μ(Γ), the constrained most likely force becomes

R(Γ, t21) = R
f
(Γ, t21) + μ(Γ)∇pĖ0

1(Γ), (9.57)

with the Lagrange multiplier being

μ(Γ) =
−R

f
(Γ, t21) · ∇pĖ0

1(Γ)

∇pĖ0
1(Γ) · ∇pĖ0

1(Γ)
. (9.58)

Using the expression for the adiabatic rate of change of first energy moment
given in Eq. (9.36), and bearing in mind that the momentum dependence of κ
comes only via the kinetic energy per particle, one has explicitly

∂Ė0
1(Γ)

∂piα
= κiα +

piαpiz

m2
i

. (9.59)

Hence the most likely force orthogonal to the heat flux in component form is

Riα =
−σ

2mi
β(zi)piα − σ

2mi

(
t̂ − 1

)
β(zi)piα + μ

[
κiα +

piαpiz

m2
i

]
, (9.60)

with

μ =
σ
∑

iα

[
β(zi)piα +

(
t̂ − 1

)
β(zi)piα

] [
κiα + piαpiz/m2

i

]
/2mi∑

iα [κiα + piαpiz/m2
i ]

2 . (9.61)

9.4 Equipartition Theorem for Heat Flow

Global Equipartition Theorem

The generalised equipartition theorem, Eq. (8.150) (see also §3.7.4),

〈∇p∇pSr(Γ, t)〉ne = −k−1
B 〈[∇pSr(Γ, t)][∇pSr(Γ, t)]〉ne , (9.62)

in component form is〈
∂2Sr(Γ, t)

kB∂piα∂pjγ

〉
ne

= −
〈

∂Sr(Γ, t)

kB∂piα

∂Sr(Γ, t)

kB∂pjγ

〉
ne

. (9.63)

8In §8.3.6, the gradient of the adiabatic rate of change of the static part of the reservoir
entropy, Ṡ0

r = −Ė0
1/T1, was used instead. That expression equates to the present expression

when both sides of it are multiplied by −T1.
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These are averages in the non-equilibrium system. In the present case, with
Sr(Γ, t) = Sr,st(Γ) + S̃r,dyn(Γ), since the time dependent contribution to Sr,dyn

is a constant that does not contribute to the gradient, this becomes〈
−β(zi)

mi
δijδαγ +

∂2S̃r,dyn(Γ)

kB∂piα∂pjγ

〉
ne

=

−
〈[

−β(zi)piα

mi
+

∂S̃r,dyn(Γ)

kB∂piα

][
−β(zj)pjγ

mj
+

∂S̃r,dyn(Γ)

kB∂pjγ

]〉
ne

.(9.64)

Recall that β(z) ≡ β0 + β1z = [1/kBT0] + [z/kBT1].
Now this is expanded for small temperature gradients, β1 → 0, recalling

that Sr,dyn ∼ β1. It will also be assumed that the dynamic part of the reservoir

entropy is dominated by the odd projection, S̃r,dyn(Γ) ≈ S̃odd
r,dyn(Γ). (Symmetry

arguments outlined in footnote 9 on p. 316 show that S̃even
r,dyn ∼ O(β2

1).) The
non-equilibrium averages will be expanded as

〈f(Γ)〉ne =

∫
dΓ

1

Zne
eSr,st(Γ)/kBeS̃r,dyn(Γ)/kB f(Γ)

=

∫
dΓ

eSr,st(Γ)/kB

Zst + O(β2
1)

[
1 + S̃odd

r,dyn(Γ)/kB + O(β2
1 )
]

f(Γ)

=
〈
f even(Γ) + k−1

B S̃odd
r,dyn(Γ)fodd(Γ)

〉
st

+ O(β2
1). (9.65)

With this, the left-hand side of the generalised equipartition theorem becomes

LHS =
−δijδαγ

mi
〈β(zi)〉st + k−2

B

〈
∂2S̃odd

r,dyn(Γ)

∂piα∂pjγ
S̃odd

r,dyn(Γ)

〉
st

=
−δijδαγβ0

mi
+ O(β2

1 ). (9.66)

The right-hand side is

RHS = −
〈

β(zi)β(zj)piαpjγ

mimj

〉
st

+ O(β2
1 )

=
−β2

0

mimj
〈piαpjγ〉MB + O(β2

1). (9.67)

Equating these two gives the usual equipartition theorem for the canonical equi-
librium system for the mid-temperature. (The temperature gradient drops out
of this result because the average is taken over the whole system.)

Local Equipartition Theorem

This section obtains the average of the square of the momenta at a fixed position
in the sub-system. This gives a local form of the equipartition theorem. For
heat flow, the non-equilibrium probability density is

℘ne(Γ) =
eSr,st(Γ)/kBeS̃r,dyn(Γ)/kB

Z̃ne

=
eSr,st(Γ)/kB

Z̃ne

eβ1W1(Γ). (9.68)
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Use will be made of the fact that the dynamic part of the reservoir entropy is
linear in the temperature gradient, and so in order to facilitate a small gradient
expansion here has been defined S̃r,dyn(Γ)/kB ≡ β1W1(Γ). In what follows use
will be made of the static probability distribution,

℘st(Γ) =
eSr,st(Γ)/kB

Zst
=

e−β0E0(Γ)−β1E1(Γ)

Zst
. (9.69)

The average of a function of the sub-system phase space over all the coordi-
nates except zi is

〈f〉ne/i ≡
∫

dΓ/zi ℘ne(Γ)f(Γ)

=

〈
f + β1W1f + β2

1W 2
1 f2/2

〉
st/i

〈1 + β1W1 + β2
1W 2

1 /2〉st/i

+ Oβ3
1

= 〈f〉st/i + β1

〈[
f − 〈f〉st/i

] [
W1 − 〈W1〉st;i

]〉
st/i

+
β2

1

2

〈[
f − 〈f〉st/i

] [
W1 − 〈W1〉st/i

]2〉
st/i

+ O(β3
1). (9.70)

Now the dynamic part of the reservoir entropy will be assumed to be dom-
inated by its odd projection, S̃r,dyn(Γ) ≈ S̃odd

r,dyn(Γ), or, equivalently, W1(Γ) ≈
W odd

1 (Γ). (Note that S̃even
r,dyn ∼ O(β2

1); see footnote 9 on p. 316.) Because the

static probability distribution has even parity,
〈
W odd

1

〉
st/i

= 0. For the case of

an even parity function, then
〈
f evenW odd

1

〉
st/i

= 0, and the average simplifies
to

〈f even〉ne/i = 〈f even〉st/i +
β2

1

2

〈[
f even − 〈f even〉st/i

] (
W odd

1

)2〉
st/i

+ O(β4
1).

(9.71)

To obtain the equipartition theorem for steady heat flow, the non-equilibrium
average of the square of the momenta is required. In view of the above general
result, the static average needs to be evaluated, and invoking the quadratic form
of the kinetic energy this is

〈
p2

iα

〉
st/i

=

∫
dqN/zi e−β0E0(q

N )−β1E1(q
N )
∫

dpNe−β0K0(p
N )−β1K1(pN )p2

iα∫
dqN/zi e−β0E0(qN )−β1E1(qN )

∫
dpNe−β0K0(pN )−β1K1(pN )

=

∫∞
−∞

dpiα e−β(zi)p
2
iα/2mip2

iα∫∞
−∞ dpiα e−β(zi)p2

iα/2mi

=
mi

β(zi)
. (9.72)
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Here β(z) ≡ β0 + β1z. Using this one has

〈
p2

iα

〉
ne/i

=
mi

β(zi)
+

β2
1

2

〈[
p2

iα − mi

β(zi)

] (
W odd

1

)2〉
st/i

+ O(β4
1)

=
mi

β(zi)
+ O(β2

1). (9.73)

The second term in the first equality, which is of quadratic order in the tem-
perature gradient, depends upon the departure of the local kinetic energy from
its static, average value, and so may be expected to be small but non-zero. The
leading term is what one would get for the equipartition theorem in an equilib-
rium system at the local temperature imposed by the reservoirs. The second
term is a dynamic or non-equilibrium effect. The difference between this local
equipartition theorem and the generalised equipartition theorem given above,
Eqs. (9.66) and (9.67), is that the generalized result utilises an integral over the
system volume, which cancels the contributions linear in the gradient and so
reduces to the canonical equilibrium result for the mid-temperature.

9.5 Green-Kubo Expressions for the Thermal

Conductivity

9.5.1 Isolated System

For an isolated system the thermal conductivity was shown in Eq. (9.21) to be

λ(τ) =
−1

V kBT 2
0 |τ |

[Q(τ) − Q(0)]

=
−1

V kBT 2
0 |τ |

〈[E1(t + τ) − E1(t)] E1(t)〉0

=
−1

V kBT 2
0 |τ |

∫ τ

0

dt′
〈
Ė0

1(t′ + t)E1(t)
〉

0

=
−1

V kBT 2
0 |τ |

∫ τ

0

dt′
〈
Ė0

1(Γ0(t′|Γ, 0))E1(Γ)
〉

0
(9.74)

=
−1

V kBT 2
0 |τ |

∫ τ

0

dt′
∫

dΓ
δ(H(Γ) − E0)

Z(N, V, E0)
Ė0

1(Γ0(t′|Γ, 0))E1(Γ).

As the average is for an isolated system, the distribution of the initial point
is uniform in phase space over the energy hypersurface of energy E0(N, V, T0).
This is independent of τ for τ large on molecular time scales, but small on
macroscopic time scales.

Using the microscopic reversibility of Hamilton’s equations, Γ0(t′|Γ, 0) =
Γ0(−t′|Γ†, 0)†, and the fact that E1 has even phase space parity, and that Ė0

1
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has odd parity, this can be written in various equivalent forms,

λ(τ) =
−1

V kBT 2
0 |τ |

∫ τ

0

dt′
〈
Ė0

1(Γ0(t′|Γ, 0))E1(Γ)
〉

0

=
−1

V kBT 2
0 |τ |

∫ 0

−τ

dt′
〈
Ė0

1(Γ0(−t′|Γ, 0))E1(Γ)
〉

0

=
1

V kBT 2
0 |τ |

∫ 0

−τ

dt′
〈
Ė0

1(Γ0(t′|Γ†, 0))E1(Γ
†)
〉

0

=
−1

2V kBT 2
0 τ

∫ τ

−τ

dt′ sign(t′)
〈
Ė0

1(Γ0(t′|Γ, 0))E1(Γ)
〉

0
. (9.75)

The expression for the thermal conductivity may also be rewritten using the
fact that it must be independent of τ (for τ larger than some relaxation time).
Taking τ over to the other side and differentiating with respect to τ , the first
expression for the thermal conductivity is therefore equivalent to

λ =
−τ̂

V kBT 2
0

〈
Ė0

1(Γ0(τ |Γ, 0))E1(Γ)
〉

0

=
τ̂

V kBT 2
0

〈
Ė0

1(Γ0(τ |Γ, 0))
[
E1(Γ

0(τ |Γ, 0)) − E1(Γ)
]〉

0

=
τ̂

V kBT 2
0

∫ τ

0

dt′
〈
Ė0

1 (Γ0(τ |Γ, 0))Ė0
1(Γ0(t′|Γ, 0))

〉
0

=
τ̂

V kBT 2
0

∫ τ

0

dt′
〈
Ė0

1 (Γ′′)Ė0
1(Γ0(t′|Γ′′, τ))

〉
0
, Γ′′ ≡ Γ0(τ |Γ, 0)

=
τ̂

V kBT 2
0

∫ 0

−τ

dt′′
〈
Ė0

1 (Γ′′)Ė0
1(Γ0(t′′|Γ′′, 0))

〉
0
, t′′ ≡ t′ − τ

=
τ̂

V kBT 2
0

∫ τ

0

dt
〈
Ė0

1(Γ′′)Ė0
1(Γ0(t|Γ′′†, 0)†)

〉
0
, t ≡ −t′′

=
τ̂

V kBT 2
0

∫ τ

0

dt
〈
Ė0

1(Γ)Ė0
1 (Γ0(t|Γ, 0))

〉
0
, Γ ≡ Γ′′†

=
1

2V kBT 2
0

∫ ∞

−∞

dt
〈
Ė0

1(Γ)Ė0
1(Γ0(t|Γ, 0))

〉
0
. (9.76)

This uses the fact that there is no instantaneous correlation between the flux
and the moment,

〈
Ė0

1 (Γ)E1(Γ)
〉

0
= 0, which follows because the flux is odd,

Ė0
1(Γ†) = −Ė0

1(Γ), and the moment is even, E1(Γ
†) = E1(Γ). It also uses the

fact that Γ is a dummy variable for the average, and the fact that any point on
a Hamiltonian trajectory can be used as the starting point. In the final equality,
|τ | has been sent to infinity, on the grounds that the integrand is short-ranged.

For future reference, the penultimate equality may be rearranged as

λ =
1

2V kBT 2
0

∫ 0

−∞

dt
〈
Ė0

1(Γ)
[
Ė0

1(Γ0(t|Γ, 0)) − Ė0
1 (Γ0(t|Γ†, 0))

]〉
0
,

(9.77)
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as is readily proven.
The isolated system averages that appear here may be replaced by the canon-

ical equilibrium system average with negligible error in the thermodynamic
limit. These various results are the Green-Kubo expression for the thermal
conductivity, (see footnote 5 on p. 301). Generally in the literature the conduc-
tive energy flux appears instead of the rate of change of the first energy moment,
J0

E ≡ Ė0
1/V .

9.5.2 Heat Reservoirs

In the presence of the heat reservoirs, §9.1.3, one has exactly the same relation-
ship between heat flux and thermodynamic gradient as for the isolated system
(compare Eqs (9.18) and (9.30)). Hence multiplying both sides of Eq. (9.30) by
E1 and taking the average, the thermal conductivity is given by the same expres-
sion as above, with the isolated system average replaced by the non-equilibrium
average,

λ(τ) =
−1

V kBT 2
0 |τ |

〈[
E0

1(t + τ) − E1(t)
]
E1(t)

〉
ne

=
−1

V kBT 2
0 |τ |

∫ t+τ

t

dt′
〈
Ė0

1(t′)E1(t)
〉

ne

=
−1

V kBT 2
0 |τ |

∫ t+τ

t

dt′
∫

dΓ℘(Γ) Ė0
1(Γ(t′))E1(Γ)

≈ −1

V kBT 2
0 |τ |

∫ t+τ

t

dt′
∫

dΓ℘ne(Γ, t) Ė0
1(Γ(t′|Γ, t))E1(Γ). (9.78)

This expression holds for both a forward trajectory, (τ > 0), and a backward
trajectory, (τ < 0), and is independent of τ for τ large on molecular scales but
small on macroscopic scales. In obtaining the final equality, the average over all
trajectories has been replaced by the most likely trajectory averaged over the
initial point.

The linear relationship between flux and temperature gradient embodied in
Fourier’s law is valid for small gradients, β1 → 0, or, equivalently, T1 → ∞.
(The present formulation of non-equilibrium statistical mechanics is valid for
arbitrary gradients.) Accordingly the expression for the thermal conductivity
based upon the non-equilibrium probability ought be expanded with respect
to β1, and only the leading-order term ought to be retained. Hence the non-
equilibrium probability may be replaced by the Maxwell-Boltzmann probability
distribution,

℘ne(Γ, t) ∼ ℘MB(Γ) + O(β1), (9.79)

and one has

λ(τ) =
−1

V kBT 2
0 |τ |

∫ t+τ

t

dt′
〈
Ė0

1 (Γ(t′|Γ, t))E1(Γ)
〉

MB
+ O(β1). (9.80)
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This expresses the thermal conductivity as a canonical equilibrium average,
albeit over the most likely non-equilibrium trajectory.

For τ < 0 one can write∫ t+τ

t

dt′ Ė0
1(Γ(t′|Γ, t)) = −

∫ t

t−|τ |

dt′ Ė0
1(Γ(t′|Γ, t))

= −
∫ t

0

dt′ Ė0
1(Γ(t′|Γ, t)) −

∫ 0

t−|τ |

dt′ Ė0
1

= −T1Sr,dyn(Γ, t) + (t − |τ |)Ė0
1

= −T1S̃r,dyn(Γ) − |τ |Ė0
1 . (9.81)

Recall that S̃r,dyn(Γ) is equal to Sr,dyn(Γ, t) with the asymptote of the integrand
subtracted, Eq. (9.47). Inserting this into the preceding expression for the
thermal conductivity one obtains

λ(τ) =
−1

V kBT 2
0 |τ |

〈[
−T1S̃r,dyn(Γ) − |τ |Ė0

1

]
E1(Γ)

〉
MB

, τ < 0. (9.82)

As mentioned above, the right-hand side has to be independent of τ . This means
that 〈

S̃r,dyn(Γ)E1(Γ)
〉

MB
= 0. (9.83)

Since both the Maxwell-Boltzmann distribution and the first energy moment
have even phase space parity, one way to ensure this is if the even projection of
the dynamic part of the reservoir entropy is negligible, S̃even

r,dyn(Γ) ≈ 0. In fact it

appears most likely that S̃even
r,dyn(Γ) = O(β2

1 ).9

Defining the projections as

S
even/odd
r,dyn (Γ, t) ≡ 1

2

[
Sr,dyn(Γ, t) ± Sr,dyn(Γ†, t)

]
, (9.84)

this condition is equivalent to

Sodd
r,dyn(Γ, t) ≈ S̃r,dyn(Γ), and Seven

r,dyn(Γ, t) ≈ tĖ0
1/T1. (9.85)

It should be stressed that this is a sufficient, not necessary, condition for the
thermal conductivity to be independent of τ ; it is stronger than is strictly re-
quired.

9 Fluxes in the z-direction are determined by the temperature gradient in the same direc-
tion. Hence the average of functions that have odd temporal parity should be odd functions
of the temperature gradient. Conversely, the averages of even parity functions ought be even

functions of the temperature gradient. The result that Seven
r,dyn(Γ, t) ≈ −tĖ0

1/T1 obeys this

rule.
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What remains of the last expression for the thermal conductivity is just an
identity,

λ(τ) =
1

V kBT 2
0

〈
Ė0

1E1(Γ)
〉

MB
, τ < 0

=
1

V kBT 2
0

τ̂Λ

2
S 〈E1(Γ)E1(Γ)〉MB , τ < 0

=
−1

V kBT 2
0

Λ

2
S
[
−kBS−1

]
= λ. (9.86)

This uses Eq. (9.18), with the most likely coarse velocity replaced by the instan-
taneous velocity, and also the fact that the fluctuation matrix may be obtained
in the canonical equilibrium system.

An alternative, more explicitly non-equilibrium expression is obtained as
follows. One has from Eq. (9.30) (taking the coarse forward velocity in the
non-equilibrium system, τ̂ = 1, to be the same as the instantaneous velocity),

〈
Ė0

1(Γ)
〉

ne
= V T 2

0 λS 〈E1(Γ)〉ne . (9.87)

Now on the right-hand side one has

〈E1(Γ)〉ne =

∫
dΓ

e−β0E0(Γ)−β1E1(Γ)+S̃r,dyn(Γ)/kB

Z̃(β0, β1)
E1(Γ)

=

∫
dΓ

e−β0E0(Γ)
[
1 − β1E1(Γ) + S̃r,dyn(Γ)/kB + O(β2

1)
]

ZMB(β0) + O(β2
1)

E1(Γ)

= −β1

〈
E1(Γ)2

〉
MB

+ O(β2
1 )

=
1

T1
S−1 + O(β2

1). (9.88)

This is an identity that is equivalent to Eq. (9.31). In obtaining the penultimate
equality, Eq. (9.83) has been used, as well as the fact that 〈E1(Γ)〉MB = 0, and

also the expansion for the partition function, Z̃(β0, β1) = ZMB(β0) + O(β2
1),

which follows because it has to be insensitive to the sign of the temperature
gradient.

Similarly expanding the left-hand side, and using the fact that Ė0
1 has odd

phase space parity, one has

〈
Ė0

1(Γ)
〉

ne
=

〈
1 − β1E1(Γ) + Sr,dyn(Γ, t)/kB + O(β2

1)

1 + O(β2
1 )

Ė0
1 (Γ)

〉
MB

= k−1
B

〈
Sodd

r,dyn(Γ, t)Ė0
1 (Γ)

〉
MB

+ O(β2
1)

= k−1
B

〈
S̃odd

r,dyn(Γ)Ė0
1 (Γ)

〉
MB

+ O(β2
1). (9.89)
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Equating the leading-order of the expansion on both sides, gives the thermal
conductivity as

λ =
T1

V kBT 2
0

〈
S̃odd

r,dyn(Γ)Ė0
1 (Γ)

〉
MB

(9.90)

=
1

2V kBT 2
0

∫ t

0

dt′
〈[

Ė0
1(Γ(t′|Γ, t)) − Ė0

1(Γ(t′|Γ†, t))
]
Ė0

1(Γ)
〉

MB

=
1

2V kBT 2
0

∫ 0

−∞

dt′
〈[

Ė0
1(Γ(t′|Γ, 0)) − Ė0

1 (Γ(t′|Γ†, 0))
]
Ė0

1(Γ)
〉

MB
.

This shows that only the odd projection of the dynamic part of the reservoir
entropy contributes to the thermal conductivity (c.f. §8.5). Comparing this
with Eq. (9.77), with τ = −∞ and the isolated system average replaced by a
Maxwell-Boltzmann average, one must have∫ 0

−∞

dt′
〈[

Ė0
1(Γ(t′|Γ, 0)) − Ė0

1(Γ(t′|Γ†, 0))
]
Ė0

1(Γ)
〉

MB

=

∫ 0

−∞

dt′
〈[

Ė0
1 (Γ0(t′|Γ, 0)) − Ė0

1(Γ0(t′|Γ†, 0))
]
Ė0

1(Γ)
〉

MB
. (9.91)

On the left-hand side the most likely non-equilibrium trajectory appears, in
contrast to the right-hand side where the adiabatic or Hamiltonian trajectory
appears. This is in essence the mathematical content of Fig. 8.2 on p. 278, and
is Eq. (8.181) applied to the present problem of steady heat flow.

9.5.3 Relation with Odd Projection

The preceding result, which is based upon the entirely plausible assertion that
the thermal conductivity of an isolated system is identical to that measured
for steady heat flow, is obviously related to the odd projection of the dynamic
part of the reservoir entropy and its expression as an integral over the adiabatic
trajectory that was discussed in general in §8.5. It is worthwhile then to revisit
the latter argument explicitly for the present problem.

The analysis will be based upon the operation that reverses all the z-coordin-
ates and z-momenta. That is, if Γ = {qN

x , qN
y , qN

z , pN
x , pN

y , pN
z }, then

Γ‡ = {qN
x , qN

y , (−qz)
N , pN

x , pN
y , (−pz)

N}. (9.92)

Assuming that in the absence of the applied temperature gradient the system
is symmetric about the mid-plane, one can readily confirm the symmetries

E0(Γ
‡) = E0(Γ), E1(Γ

‡) = −E1(Γ), Ė0
1(Γ‡) = −Ė0

1(Γ). (9.93)

One also has

Γ0(t′|Γ‡, t) = Γ0(t′|Γ, t)‡, and ΓMB(t′|Γ‡, t) = ΓMB(t′|Γ, t)‡. (9.94)
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These results for the adiabatic and for the most likely canonical equilibrium
trajectory follow from the symmetry of the system about the mid-plane.

In such a symmetric system the non-equilibrium probability must be in-
variant with respect to reversing all the z-coordinates, including the applied
temperature gradient,

℘(Γ|β0, β1) = ℘(Γ‡|β0,−β1). (9.95)

It follows that the partition function has the expansion Z(β0, β1) = ZMB(β0) +
O(β2

1), and that the reservoir entropy, the exponent, has an expansion of the
form

Sr(Γ|β0, β1) = S0(Γ) + β1S1(Γ) + O(β2
1), (9.96)

with the z-parities of the expansion coefficients being even and odd, respectively

S0(Γ
‡) = S0(Γ) and S1(Γ

‡) = −S1(Γ). (9.97)

The reservoir entropy is Sr(Γ|β0, β1) = Sr,st(Γ|β0, β1) + Sr,dyn(Γ|β0, β1),
with the static part being Sr,st(Γ|β0, β1) = −E0(Γ)/T0 −E1(Γ)/T1. Obviously,
S0(Γ) = −E0(Γ)/T0, and −E1(Γ)/T1 belongs to β1S1(Γ). As indicated above,
E0(Γ) has even z-parity and E1(Γ) has odd z-parity, so the parity of the ex-
pansion is satisfied by these. It remains to analyse in detail the contribution of
the dynamic part of the reservoir entropy to β1S1(Γ). One has

Sr,dyn(Γ|β0, β1)/kB = β1

∫ t

0

dt′ Ė0
1(Γ(t′|Γ, t; β0, β1))

= β1

∫ t

0

dt′ Ė0
1(ΓMB(t′|Γ, t; β0)) + O(β2

1 )

≈ β1

∫ t

0

dt′ Ė0
1(Γ

0
(t′|Γ, t)). (9.98)

The second equality follows by setting β1 = 0 to extract the leading-order term,
and this converts the most likely trajectory in the non-equilibrium system to the
canonical equilibrium most likely trajectory. The final approximation assumes
that the latter is much the same as the adiabatic trajectory. In view of the
symmetries given above one can show explicitly that this has odd z-parity,

Sr,dyn(Γ‡|β0, β1)/kB = β1

∫ t

0

dt′ Ė0
1(Γ

0
(t′|Γ‡, t)) + O(β2

1 )

= β1

∫ t

0

dt′ Ė0
1(Γ

0
(t′|Γ, t)‡)

= −β1

∫ t

0

dt′ Ė0
1(Γ

0
(t′|Γ, t))

= −Sr,dyn(Γ|β0, β1)/kB. (9.99)

Of course it also follows that this has odd z-parity if the canonical equilibrium
most likely trajectory were to be used. This is a pleasing confirmation of the
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consistency of this argument based upon the symmetry of the probability dis-
tribution. One can therefore conclude two things about the dynamic part of the
reservoir entropy: Eq. (9.98) shows that it can be expressed as an integral over
the adiabatic trajectory, and Eq. (9.99) shows that it has odd parity with re-
spect to this particular z-symmetry operation. Both conclusions are valid only
to linear order in the temperature gradient.

These two results are similar to, but not as strong as, the general results
argued for in §8.5. This present analysis is more rigorous. The present results are
clearly similar to the Green-Kubo result established at the end of the preceding
subsection. Of course ‘odd parity’ here refers to the ‡ operation (reversal of
z-coordinates and z-momenta) whereas it refers to the † conjugation operation
(reversal of all momenta) in the preceding subsection and elsewhere. However,
Eq. (9.91) from the end of the preceding subsection follows directly from the
present adiabatic result, Eq. (9.98), and from the fact that the adiabatic rate
of change of the first energy moment has odd conjugation parity, Ė0

1(Γ†) =
−Ė0

1(Γ).

9.6 Shear Flow

In order to illustrate the way in which these results for heat flow are typical of
thermodynamic flows, the key results for shear flow will be given here. As shown
in Eq. (5.34), the velocity is the thermodynamic conjugate of the momentum,

∂σ(r, t)

∂p(r, t)
=

−1

T
v(r, t). (9.100)

Here σ(r, t) is the entropy density, p(r, t) = mn(r, t)v(r, t), is the momentum
density, m is the molecular mass (a single component system is assumed), n(r, t)
is the number density, v(r, t) is the velocity, and T is the temperature, assumed
uniform and constant. Also r = {x, y, z} is the position and t is the time.

From this identification of the conjugate variables, one could immediately
transcribe the results for shear flow from those for heat flow by making the
identifications E1 ⇒ Px1, T−1

1 ⇒ −vx1/T , and T0 ⇒ T . This is in essence what
is now done, with slightly more detail.

Consider two reservoirs with boundaries located at z = ±L/2, moving with
velocities vx±. The zeroth and first velocities exerted by the reservoirs on the
sub-system are

vx0 ≡ 1

2
[vx+ + vx−] , and vx1 ≡ 1

L
[vx+ − vx−] . (9.101)

The zeroth velocity is the average or mid velocity, and the first velocity is the
velocity gradient. It is straightforward to show, (see §4.2), that the sub-system
velocities are thermodynamically conjugate to the zeroth and first sub-system
momentum moments,

vsx0 ≡ −T
∂Ss(Px0, Px1)

∂Px0
, and vsx1 ≡ −T

∂Ss(Px0, Px1)

∂Px1
. (9.102)



9.6. Shear Flow 321

The momentum moments here label a constrained sub-system macrostate; the
other state variables are not shown explicitly. In the present case the moments
are measured in the z-direction,

Px0 ≡ A

∫ L/2

−L/2

dz px(z), and Px1 ≡ A

∫ L/2

−L/2

dz zpx(z), (9.103)

where A is the cross-sectional area of the sub-system.
The conductive part of the momentum flux is the viscous pressure tensor,

J0

P
(r, t) = Π(r, t), as was derived in §5.1.4. This is the momentum transport that

is not due to convection and that is not due to pressure work. The component
Πxz = Πzx is the x-momentum per unit area per unit time crossing a plane per-
pendicular to the z-axis by conduction. From momentum conservation, the rate
of change of the momentum density is just the negative divergence of the flux,
which in the present one-dimensional case is its gradient, ṗ0

x(z) = −dΠxz(z)/dz.
Hence considering the sub-system as isolated (so that Πxz(±L/2) = 0, and
Ṗx1 = Ṗ 0

x1), the adiabatic rate of change of the first momentum moment is,

Ṗ 0
x1 = A

∫ L/2

−L/2

dz zṗ0
x(z)

= A

∫ L/2

−L/2

dz z
−dΠxz(z)

dz

= −AzΠxz(z)

∣∣∣∣
L/2

−L/2

+ A

∫ L/2

−L/2

dz Πxz(z)

= V Πxz, (9.104)

where V = AL is the volume of the sub-system. In the final equality, Πxz ≡
L−1

∫ L/2

−L/2
dz Πxz(z) is the flux averaged over the sub-system. In the steady

state, the flux must be uniform, which means that the spatially averaged flux
is the same as the flux itself.10 This expression is formally exact and holds in
non-optimum constrained states as well as in the optimum steady state.

The linear constitutive relation from hydrodynamics relates the most likely
value of the traceless part of the viscous pressure tensor to the traceless sym-
metric part of the velocity gradient tensor, Eq. (5.72),

Π ∗(r, t) = −2η [∇v(r, t)]
∗,sym

, (9.105)

where η is the shear viscosity. The fluid is here at rest except for the x-
component, which only varies in the z-direction. This means that ∇·v(r, t) = 0.
Hence in the present problem the relevant component is

Πxz = −η
∂vx(z)

∂z
= −ηvx1. (9.106)

10The objection that there is a contradiction between this argument that Πxz(z) is uniform
and using an apparently non-zero dΠxz(z)/dz in the integrand can be resolved by noting that
the latter is formally a δ-function at the boundaries. See footnote 2 on p. 102.
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The task is now to derive this relation from the second entropy theory. As
a bonus, the Green-Kubo expression for the shear viscosity will also emerge.

9.6.1 Second Entropy for Shear Flow

For an isolated sub-system, the first entropy may be written as a quadratic form
in the first momentum moment,

Ss(Px1) =
1

2
SP 2

x1, S = −kB/
〈
P 2

x1

〉
. (9.107)

The first velocity is essentially the thermodynamic force,

vsx1(Px1) = −T
∂Ss(Px1)

∂Px1
= −TSPx1. (9.108)

The pure parity second entropy for the isolated sub-system is (see §4.3),

S(2)
s (P ′x1, Px1|τ) =

1

2
A(τ)[P ′2x1 + P 2

x1] + B(τ)P ′x1Px1, (9.109)

where Px1 is at time t, and P ′x1 is at time t + τ . This is maximised with respect
to P ′x1 by

P ′x1 ≡ Px1(Px1, τ) = −A(τ)−1B(τ)Px1. (9.110)

Using the short time expansions this is

P
′

x1 = Px1 +
|τ |Λ
2

SPx1 + O(τ2). (9.111)

With this and the reduction condition the second entropy may be rewritten

S(2)(P ′x1, Px1|τ) =
1

2
SP 2

x1 −
1

2Λ|τ |

[
P ′x1 − Px1 −

|τ |Λ
2

SPx1

]2
+ O(τ2)

=
1

2
SP 2

x1 −
|τ |
2Λ

[
◦

Px1 − τ̂Λ

2
SPx1

]2
, (9.112)

which is valid for small time intervals. Here τ̂ ≡ sign(τ).
The adiabatic rate of change of momentum flux is the volume times the

viscous pressure tensor
◦

P x1
0 ≡ [P

′

x1 − Px1]/τ = V Πxz. Hence the most likely
value of this component of the viscous pressure tensor is

Πxz =
1

V

◦

P x1
0 =

τ̂Λ

2V
SPx1 =

−τ̂Λ

2V T
vsx1. (9.113)

In view of the linear constitutive relation above, which applies forward in time,
one can identify the shear viscosity as

η =
Λ

2V T
. (9.114)
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The time correlation function is (see Eq. 2.22),

Q(τ) = k−1
B 〈Px1(t + τ)Px1(t)〉0

= −k−1
B A(τ)−1B(τ) 〈Px1Px1〉0

∼ −
[
1 +

|τ |Λ
2

S

]
S−1 + O(τ2)

= −S−1 − |τ |V Tη. (9.115)

This does not prove that the correlations in the first momentum moment are
Markovian, since it only holds on small time scales. Nevertheless, by analogy
with the result for the first energy moment, one might guess that they are indeed
Markovian and that the time correlation function decays exponentially on longer
time scales. If one imagines that this truncated expansion formally holds at all
times such that this defines a time dependent shear viscosity conductivity η(τ),
then one can rewrite this as

η(τ) =
−1

|τ |V T
[Q(τ) − Q(0)]

=
−1

|τ |V kBT
〈[Px1(t + τ) − Px1(t)] Px1(t)〉0

=
−1

|τ |V kBT

∫ τ

0

dt′
〈
Ṗ 0

x1(t
′ + t)Px1(t)

〉
0

=
−1

|τ |V kBT

∫ τ

0

dt′
〈
Ṗ 0

x1(Γ
0(t′|Γ, 0))Px1(Γ)

〉
0
. (9.116)

The right-hand side becomes independent of τ for τ in the short time regime.
Hence taking τ over to the other side and differentiating with respect to τ gives
an alternative expression,

η(τ) =
−τ̂

V kBT

〈
Ṗ 0

x1(Γ
0(τ |Γ, 0))Px1(Γ)

〉
0

=
1

2V kBT

∫ τ

−τ

dt′
〈
Ṗ 0

x1(Γ)Ṗ 0
x1(Γ

0(t′|Γ, 0))
〉

0
. (9.117)

(See §9.5 above for the steps leading to the final equality.) A molecular expres-
sion for the adiabatic flux is given next. These are two Green-Kubo expressions
for the shear viscosity. They are equivalent in the small time regime, but the
second as a function of τ might possibly converge faster to its asymptotic value.

These results are for an isolated system. The treatment for shear flow caused
by reservoirs moving with velocities vx± is entirely analogous to that for heat
flow, §9.1.3.

9.6.2 Phase Space Probability Density

The general expression given in Ch. 8 for the non-equilibrium phase space prob-
ability distribution will now be applied to shear flow. With pxi the x-component
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of the momentum of the ith molecule, and zi its z-coordinate, the zeroth and
first momentum moments are

Px0(Γ) =
N∑

i=1

pxi, and Px1(Γ) =
N∑

i=1

zipxi. (9.118)

The zeroth moment is a conserved variable, and hence its adiabatic rate of
change is zero. The adiabatic rate of change of the first momentum moment is

Ṗ 0
x1(Γ) = Γ̇0 · ∇Px1(Γ)

=
N∑

i=1

[
ṗ0

i ·
∂Px1(Γ)

∂pi
+ q̇0

i ·
∂Px1(Γ)

∂qi

]

=

N∑
i=1

[
ziṗ

0
xi + q̇0

zipxi

]

=
N∑

i=1

⎡
⎣pzipxi

m
− zi

N∑
j=1

(j �=i)u′(qij)
xi − xj

qij

⎤
⎦

=
N∑

i=1

pzipxi

m
−

N∑
i<j

u′(qij)
[zi − zj ][xi − xj ]

qij
. (9.119)

The penultimate equality assumes that the potential energy consists solely of
central pair terms. The first term is the contribution to the rate of momen-
tum moment change due to molecular diffusion, and the second term is the
contribution from intermolecular forces.

The phase space probability distribution is essentially the exponential of the
reservoir entropy. As usual the reservoir entropy for the non-equilibrium system
is formally Sr(Γ, t) = Sr,st(Γ) + Sr,dyn(Γ, t). Choose the reservoir velocities to
be equal and opposite, vx+ = −vx−, so that vx0 = 0 and vx1 = 2vx+/L. In this
case the static part of the reservoir entropy is

Sst(Γ) =
−H(Γ)

T
+

vx1

T
Px1(Γ) (9.120)

=
−1

T

∑
iα

[piα − mivx1ziδxα]
2

2mi
+

v2
x1

2T

∑
i

miz
2
i − 1

T

N∑
i<j

u(qij).

The first term on the right-hand side of the first equality arises from the ex-
change of energy with the reservoirs, and the second term from the exchange
of momentum. The first term on the right-hand side of the second equality is
the peculiar kinetic energy, which is the kinetic energy in the frame of reference
moving with the local flow. The second term is second-order in the shear rate
and is usually negligible.
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The dynamic part of the reservoir entropy in the present case is

Sdyn(Γ, t) ≡ −
∫ t

0

dt′ Ṡ0
r,st(Γ(t′|Γ, t), t′)

=
−vx1

T

∫ t

0

dt′ Ṗ 0
x1(Γ(t′|Γ, t)). (9.121)

The explicit time dependence here reflects the entropy produced in the reservoirs
up to the present time due to the momentum transferred between them via the
sub-system.

Because this is a steady state system, the most likely value of the momentum

flux is independent of time, Ṗ 0
x1. Also, the most likely trajectory is invariant

with respect to translations in time, Γ(t′|Γ, t) = Γ(t′ + τ |Γ, t + τ). Finally, in
the long time limit, on the most likely trajectory the heat flux must tend to its

most likely value whatever its current value, Ṗ 0
x1(Γ(t′|Γ, t)) → Ṗ 0

x1, |t′−t| → ∞.
These three facts mean that the partial time derivative of the dynamic part of
the reservoir entropy is

∂Sdyn(Γ, t)

∂t

=
−vx1

TΔt

{∫ t+Δt

0

dt′ Ṗ 0
x1(Γ(t′|Γ, t + Δt)) −

∫ t

0

dt′ Ṗ 0
x1(Γ(t′|Γ, t))

}

=
−vx1

TΔt

{∫ t

−Δt

dt′′ Ṗ 0
x1(Γ(t′′|Γ, t)) −

∫ t

0

dt′ Ṗ 0
x1(Γ(t′|Γ, t))

}

=
−vx1Ṗ 0

x1

T
. (9.122)

This is in agreement with the general steady state result, Eq. (8.161).
The phase space probability for the canonical non-equilibrium problem

℘(Γ|vx1, T, t) =
1

Z(vx1, T, t)
eSr(Γ,t)/kB

=
1

Z(vx1, T, t)
e−βH(Γ)+βvx1Px1(Γ)eSr,dyn(Γ,t)/kB , (9.123)

where β ≡ 1/kBT . The partition function normalises this to unity, Z(t) =∫
dΓ eSr(Γ,t)/kB . Since this is a steady state system one must have ∂℘(Γ, t)/∂t =

0, which implies

1

Z(t)

dZ(t)

dt
=

∂Sr,dyn(Γ, t)

kB∂t
= −βvx1Ṗ 0

x1. (9.124)

Hence Z(t) = Z̃ exp−βvx1Ṗ 0
x1t. The exponent could be added to the dynamic

part of the reservoir entropy to make it independent of time and the integrand
short-ranged,

S̃dyn(Γ) ≡ −vx1

T

∫ 0

−τ

dt′
{
Ṗ 0

x1(Γ(t′|Γ, 0)) − Ṗ 0
x1

}
. (9.125)
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The logarithm of the partition function times Boltzmann’s constant is the
total entropy of the total system (or, more precisely, the sub-system dependent
part thereof), Stot(vx1, T, t) = kB ln Z(vx1, T, t). This is related to the maximum
value of the total entropy,

Stot(vx1, T, t) > Stot(H, P x1|vx1, T, t)

≡ Ss(H, Px1) −
H
T

+
vx1P

(r)

x1 (t)

T
. (9.126)

Here P
(r)
x1 (t) = −Prx1(t) is the total reservoir contribution to the first momentum

moment of the sub-system to the present time. The thermodynamic potential
or free energy for steady shear flow, which is the analogue of the Helmholtz free
energy, is

F (vx1, T, t) = −TStot(H, P x1|vx1, T, t)

≈ −TStot(vx1, T, t)

= −kBT ln Z(vx1, T, t). (9.127)

The time derivative of the thermodynamic potential is proportional to the
logarithmic derivative of the partition function, which is proportional to that of
the total entropy. From Eq. (9.122) above one has

∂Stot(vx1, T, t)

∂t
=

−vx1Ṗ 0
x1

T
, and

∂F (vx1, T, t)

∂t
= vx1Ṗ 0

x1. (9.128)

This implies dP
(r)

x1 (t)/dt = −Ṗ 0
x1, which is to say that most likely the rate of

relaxation of the first momentum moment of the sub-system due to the reservoirs
is equal and opposite to the rate of its change due to internal influences.

9.6.3 Most Likely Trajectory

The stochastic dissipative equations of motion for shear flow are identical to
those given for steady heat flow, §9.3, with the exception of the formula for the
most likely reservoir force. That is one has

Γ2 = Γ1 + t21Γ̇
0(Γ) + R(Γ, t21) + O(t221). (9.129)

The random force, which only has momentum components, is the sum of a
stochastic, R̃, and a dissipative, R, force. The stochastic forces have variance

〈
R̃iαR̃jγ

〉
= σδijδαγ . (9.130)
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The variance represents the stochastic influence of the momentum reservoirs,
σ ∼ |t21|. The dissipative force is given by Eq. (8.94),

Riα(Γ, t21) =
σ

2kB

∂Sr,st(Γ)

∂piα
+

σ

2kB

(
t̂ − 1

)
S′piα

=
−σ

2kB

[
1

T

∂H(Γ)

∂piα
− vx1

T

∂Px1(Γ)

∂piα

]
+

σ

2kB

(
t̂ − 1

) ∂Sr,st(Γ)

∂piα

=
−σ

2kB

[
piα

Tmi
− vx1

T
ziδαx

]
− σ

2kB

(
t̂ − 1

) [ piα

Tmi
− vx1

T
ziδαx

]

=
−σ

2mi
β [piα − mivx1ziδαx] . (9.131)

One can recognise the bracketed term as the peculiar momentum, which is on
average zero. This represents a drag or friction force. It is of the same form as
the Langevin dissipation, but for the local fluctuating velocity of the atom.

Constraints

As discussed in §8.3.6, one can impose constraints on the reservoir perturbation
so as to minimise the influence on the physical properties of interest. In the case
of shear flow, Πxz = Ṗ 0

x1/V , one one can make the dissipative force orthogonal
to the flux gradient,

R(Γ, t21) · ∇pṖ 0
x1(Γ) = 0. (9.132)

Denoting the unconstrained or free force given above by R
f
(Γ, t21) and intro-

ducing a Lagrange multiplier, μ(Γ), the constrained most likely force becomes

R(Γ, t21) = R
f
(Γ, t21) + μ(Γ)∇pṖ 0

x1(Γ), (9.133)

with the Lagrange multiplier being

μ(Γ) =
−R

f
(Γ, t21) · ∇pṖ 0

x1(Γ)

∇pṖ 0
x1(Γ) · ∇pṖ 0

x1(Γ)
. (9.134)

Using the expression for the adiabatic rate of change of first momentum moment
given above, one has explicitly

∂Ṗ 0
x1(Γ)

∂piα
=

pxi

mi
δzα +

pzi

mi
δxα. (9.135)

9.6.4 Equipartition Theorem

It is an exercise to show that the local equipartition theorem holds for the
peculiar momentum,〈

[piα − mivx1ziδαx]2
〉
ne/i

= mikBT + O(v2
x1). (9.136)
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Recall that the notation 〈. . .〉/i means that the coordinate zi is fixed and not
averaged over. This result can also be seen directly from the expression given
above for the static part of the reservoir entropy that involves the peculiar
kinetic energy.



Chapter 10

Generalised Langevin

Equation

Brownian motion is the archetypal non-equilibrium system in thermodynamics
and statistical mechanics. It encompasses not only the original application of
the movement of small particles in a fluid, either free or driven by external forces,
but also the fluctuations of thermodynamic variables. What these systems have
in common is that they can be divided into slow and fast coordinates. The slow
or macroscopic coordinates are treated explicitly, while the fast or microscopic
coordinates are projected out of the problem and their influence is included via
probabilistic methods.

In Ch. 3 the three simplest types of Brownian motion were treated: a free
Brownian particle, a Brownian particle in a fixed potential trap, and a Brow-
nian particle in a steadily moving trap. These results all invoked the diffusion
constant (equivalently, the drag coefficient), which determines that the mean
square displacement of a free particle grows linearly with time, and that the
most likely velocity of a driven particle is linearly proportional to the constant
applied force. The results were formally exact in the case of an external po-
tential in uniform motion. For more general external potentials with arbitrary
time and space dependence, two related exact methods were given, namely the
non-equilibrium probability distribution for the particle, and the stochastic,
dissipative equations of motion that characterise its trajectory. These were de-
rived more formally from the principles of non-equilibrium statistical mechanics
in Ch. 8.

In the more general case of an accelerating trap or a trap in arbitrary motion,
the expressions that were obtained for the most likely position and velocity of
the particle in uniform motion no longer hold exactly. One has now to account
for not only the inertia of the particle, which causes a lag compared to the
uniform motion case, but also the more challenging phenomenon that reflects
the memory of the solvent for the past motion of the particle, which modifies
the diffusion or drag constant that is to be applied.

329
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Such memory effects signify non-Markov behaviour. The Einstein result
obtained in Ch. 3 for the diffusion of the free Brownian particle, namely that the
square of the displacement grows linearly with time, is predicated on Markovian
behaviour, which indeed was explicitly invoked in §3.6.3 in the derivation of the
most likely position and velocity. A Markov system has no memory beyond
the immediately preceding state, and it becomes the limiting case if successive
states are separated by a large time interval. However, the decomposition of
a trajectory into large time steps is only valid when the motion varies slowly
in time and in space. For example, in obtaining the Markovian exponential
decay in Eq. (3.77) from the coarse velocity in Eq. (3.76), it can be seen that
the second derivative of the displacement is neglected. For uniform motion of a
parabolic trap one can make the time step arbitrarily large and still satisfy this
condition.

The point is worth repeating: the restriction of the earlier analysis is that
the diffusion constant necessitates time scales that are long compared to the
molecular time scales that characterise the fast motion of the hidden variables.
Accordingly, the analysis breaks down when the competing requirements—a
small time interval so that the variation of the potential is negligible and a
large time interval so that memory effects are negligible—can not be satisfied
simultaneously. In such cases one has to go beyond the Markov approximation
implicit in the diffusion constant.

Of course the full problem has already been formally solved in Ch. 8, where
the probability distribution and the stochastic, dissipative equations of mo-
tion were given for phase space for an arbitrary mechanical or thermodynamic
non-equilibrium system. In this formulation the Brownian particle is treated
alongside the solvent as just one of the components of phase space. However,
whilst this analysis has the virtue of being formally exact, it does not seek to
exploit the separation in time scales that characterise Brownian motion, namely
retaining explicitly only the slow coordinates (the particle) and projecting out
the fast coordinates (the solvent). The twin disadvantages of the formally exact
approach are that one is restricted to time steps that are small on molecular
scales, which means very, very small on macroscopic scales, and one needs to
track the coordinates in phase space of hundreds or thousands of molecules
during their interaction and evolution, even though only the coordinates of the
Brownian particle or thermodynamic variables are of direct interest.

A perturbation approach to the problem is the primary focus of this chapter.
The equations of motion are formulated for the Brownian particle in the presence
of an arbitrary external potential. This requires the time correlation function
of the ‘bare’ Brownian particle, which is the free particle in the absence of any
external potential. This is used as a response function to the external potential
of interest. It will be seen that the influence of prior states progressively weakens
as they are further removed in time.

The perturbation theory is used in §10.3.4 to generalise the Langevin equa-
tion to include memory effects. That is, the stochastic dissipative equations of
motion are given that include the influence of prior states on the current de-
terministic and stochastic forces. The correlation between stochastic forces and
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its relation with the dissipative forces is a version of the fluctuation dissipation
theorem for memory effects. It will be shown that the memory function is just
the velocity autocorrelation function of the bare Brownian particle. In §10.4
linear response theory is presented for an external force acting on the Brownian
particle in an adiabatic system that is initially in thermal equilibrium, and it
is shown that the susceptibility that emerges is the same as that obtained in
the non-equilibrium perturbation theory. Numerical tests of the perturbation
theory for driven Brownian motion are given in §10.5.

The perturbation theory is generalised to mixed parity thermodynamic vari-
ables in §10.6. In this case two additional effects not present for pure parity
Brownian motion occur, namely that the memory function has an additional
term that represents indirect correlations between the velocity and the position
of the trajectory, and also that there is now instantaneous coupling between
position and velocity. An explicit formula for the memory function is given in
terms of the time correlation functions of the unperturbed system. In §10.7,
a summary of the projector operator formalism is given, and it is shown that
the generalised Langevin equation that emerges from that approach is formally
identical to the one given by the perturbation theory. In §10.8, Brownian mo-
tion in a harmonic oscillator model of the solvent (the Caldeira-Leggett model)
is analysed and an analytic expression for the memory function is obtained.

10.1 Free Brownian Particle

Let x denote the position of a Brownian particle, let ẋ be its velocity. In the
simplest case only one-dimensional motion is considered, and x is a scalar of
dimension N = 1. More generally the following analysis can be applied to
three-dimensional motion, and x can be a vector of dimension N = 3. Even
more generally, x can be considered to represent the positions of many Brownian
particles or the values of a set of multiple thermodynamic coordinates. In these
more general cases the multiplications below have to be considered as matrix
multiplications, and the elements of the various time correlation and fluctuation
matrices are themselves N × N matrices.

There is a distinction between the pure parity case, where all the components
have the same parity, and the mixed parity case, where each component of x
is either pure odd or pure even, but both cases occur. For clarity most of this
section will be restricted to the pure parity case, and will be discussed in terms
of the position of a single Brownian particle. Some of the present analysis can be
used in the mixed parity case, as is briefly summarised in §10.1.2. The general
mixed parity analysis will be given in §10.6.

A free particle is equally likely to be found anywhere within the volume, and
so the first entropy is a constant with respect to position that can be set equal

to zero, S
(1)
0 (x) = 0. The kinetic energy of the Brownian particle is mẋ2/2,

where m is its mass. Hence the first entropy of the free particle is

S
(1)
0 (X) =

−m

2T
ẋ2, (10.1)
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where X ≡ {x, ẋ}, and T is the temperature of the solvent, which acts as a
thermal reservoir.

10.1.1 Time Correlation Functions

The position self correlation function (also called the position autocorrelation
function) can be defined as1

qx(τ) ≡ k−1
B 〈x(t + τ)x(t)〉0 . (10.2)

This diverges at τ = 0, qx(0) ≡ k−1
B 〈x(t)x(t)〉0 = ∞. More precisely, it scales

with the square of the size of the system, which diverges in the thermodynamic
limit. In the general case that x is a vector, then this is an N×N dyadic matrix.
In the present pure parity case, this is an even, symmetric matrix, qx(τ) =
qx(−τ) = qx(τ)T. The fact that it is even follows because both elements of the
dyadic matrix have the same time parity, and so both change sign in the same
way when the velocity is reversed. This fact and time homogeneity imply that
the matrix is symmetric, 〈x(t + τ)x(t)〉0 = 〈x(t − τ)x(t)〉0 = 〈x(t)x(t + τ)〉0,
the second equality following upon replacing t by t + τ .

Because of this divergence of
〈
x2
〉
0
, it is more convenient to work with

displacements, or differences in position. Accordingly one can define

qs
0(τ) ≡ 1

2kB
〈[x(t + τ) − x(t)][x(t + τ) − x(t)]〉0

= [qx(0) − qx(τ)]. (10.3)

This is an even function of the time interval τ , qs
0(τ) = qs

0(−τ), and a sym-
metric matrix, qs

0(τ) = qs
0(τ)T. The superscript s here and below signifies the

symmetrised correlation function, which distinguishes the present analysis from
the more general analysis in §10.6.

The position autocorrelation function at large times grows linearly in time,
as found by Einstein.2 The result defines the diffusion tensor D,

lim
τ→∞

qs
0(τ) = |τ |k−1

B D. (10.4)

In general, because qs
0(τ) = qs

0(τ)T, the diffusion matrix must be a symmetric
matrix. For a single Brownian particle in three-dimensional space the diffusion
tensor is generally a constant times the identity matrix.

Taking the time derivative, one obtains the symmetrised position velocity
correlation function,

q̇s
0(τ) =

−1

2

[
q̇x(τ) + q̇x(τ)T

]
=

−1

2kB
[〈ẋ(t + τ)x(t)〉0 + 〈x(t)ẋ(t + τ)〉0] . (10.5)

1The reader should be aware that time correlation functions are conventionally defined
without Boltzmann’s constant. Also, time correlation functions generally refer to the cor-
relation of the departures from the average value,

〈[
x(t + τ) − 〈x〉0

] [
x(t) − 〈x〉0

]〉
0
. In the

present analysis the average is zero, 〈x〉0 = 0.
2Einstein, A. (1905), Ann. Phys. 17, 549.
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This is a symmetric matrix and an odd function of τ (since qs
0(τ) is an even

function), which implies that it must vanish at τ = 0. This may be seen directly
by differentiating the first equality in the definition of qs

0(τ),

q̇s
0(τ) =

1

2kB
[〈ẋ(t + τ) {x(t + τ) − x(t)}〉0

+ 〈{x(t + τ) − x(t)} ẋ(t + τ)〉0] . (10.6)

The two terms in braces clearly vanish at τ = 0. In the pure parity case there is
no instantaneous coupling of x and ẋ, and so the individual terms in Eq. (10.5)
vanish, 〈ẋ(t)x(t)〉0 = 0. In the opposite limit one has limτ→∞ q̇s

0(τ) = τ̂ k−1
B D,

where τ̂ ≡ sign(τ).
Taking a further derivative with respect to τ gives the symmetrised position

acceleration correlation function,

q̈ s
0 (τ) =

−1

2

[
q̈x(τ) + q̈x(τ)T

]
=

−1

2kB
[〈ẍ(t + τ)x(t)〉0 + 〈x(t)ẍ(t + τ)〉0] . (10.7)

This is in fact equal to the velocity self correlation (or autocorrelation) function,
as may be seen from the fact that q̇s

0(τ) is a symmetric matrix and an odd
function of τ ,

q̈ s
0 (τ) =

−1

2kB

d

dτ
[〈ẋ(t + τ)x(t)〉0 + 〈x(t)ẋ(t + τ)〉0]

=
1

2kB

d

dτ
[〈ẋ(t − τ)x(t)〉0 + 〈x(t)ẋ(t − τ)〉0]

=
1

2kB

d

dτ
[〈ẋ(t)x(t + τ)〉0 + 〈x(t + τ)ẋ(t)〉0]

=
1

2kB
[〈ẋ(t)ẋ(t + τ)〉0 + 〈ẋ(t + τ)ẋ(t)〉0]

=
1

kB
〈ẋ(t + τ)ẋ(t)〉0 . (10.8)

This is evidently a symmetric matrix, and it is an even function of τ , since it
consists of the product of two factors with the same parity. This means that the
two terms on the right-hand side are equal, 〈ẋ(t + τ)ẋ(t)〉0 = 〈ẋ(t − τ)ẋ(t)〉0 =
〈ẋ(t)ẋ(t + τ)〉0, the second equality following upon using time homogeneity to
replace t by t + τ ; this accounts for the final equality. This means that in the
present pure parity case, the symmetrised velocity autocorrelation function is
the same as the ordinary velocity autocorrelation function, q̈ s

0 (τ) = q̈0(τ). The
fact that q̈ s

0 (0) > 0 implies that qs
0(0) is a local minimum. In fact it is a global

minimum because qs
0(0) = 0 and qs

0(τ) ≥ 0.
At large times the initial and final velocities must become uncorrelated.

Hence the velocity autocorrelation function must go to zero,

q̈ s
0 (τ) → 1

kB
〈ẋ(t + τ)〉0 〈ẋ(t)〉0 = 0. (10.9)
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Figure 10.1: Relative velocity autocorrelation function for a free Brownian par-
ticle in a canonical equilibrium system. The horizontal line at 0 is a guide to
the eye. The inset is a magnification of the short time data. Data from Attard
and Gray-Weale, (2008).

The velocity is typical of thermodynamic fluctuations about zero, and this long
time decorrelation can be expected quite generally.

Conversely, from general considerations of the nature of thermodynamic fluc-
tuations, one expects that the velocity autocorrelation function is maximal at
τ = 0. (The discussion in this paragraph refers to the scalar case, N = 1.) The
argument for this is as follows. It is certainly the case that since variables of op-
posite time parity are instantaneously uncorrelated,

...
q s(0) ≡ k−1

B 〈ẍ(0)ẋ(0)〉0 =
0, which implies that q̈ s

0 (τ) must be an extremum at τ = 0. The velocity auto-
correlation function is positive at τ = 0, and it must decay to zero at large
times. It must be a local maximum, because non-zero values of the velocity are
unlikely, and in the future the system must most likely be returning to zero (just
as it most likely came from zero in the past). The decay from q̈s(0) to the long
time uncorrelated state must be either monotonic, or else damped oscillatory;
in both cases one concludes that the maximum in the velocity autocorrelation
function at τ = 0 is a global maximum.

Figure 10.1 shows the velocity autocorrelation function for a free Brownian
particle in a soft-sphere fluid.3 The function is normalised by its zero time value,

3 Attard, P. and Gray-Weale, A. (2008), J. Chem. Phys. 128, 114509. The soft-sphere
interaction potential was uαγ(r) = [σαγ/r]12. The solvent had a mass m1 = 1, a length scale
σ11 = 0.5, and a potential cut-off of R11 = 1.7. The solute had a mass m0 = 10, it interacted
with the solvent via σ10 = 2.25, and a potential cut-off of R10 = 5.2. The temperature was
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which in this case is q̈s(0) = T/m = 0.3. The velocity autocorrelation function
clearly has a maximum at t = 0, and decays fairly rapidly until t ≈ 1, after
which it has a rather slowly decaying tail. The negative values on the interval
0.45 � t � 5.5 appear to be statistically significant, with q̈s(5)/q̈s(0) = −0.03,
with the standard error on the mean being 0.01. This appears to be due to
the general phenomenon of backscattering, whereby at high densities collisions
with neighbouring molecules tend to reverse the velocity, which leads to negative
regions in velocity autocorrelation function, such as that apparent in the figure.4

10.1.2 Mixed Parity Digression

Many of the results given in the preceding section also hold for the mixed parity
case with minor modifications. The general mixed parity analysis will be given
in §10.6, but here a brief detour is undertaken to summarise the above results.
The difference between these results and the results to be given in §10.6 is that
the present results are restricted to symmetrised time correlation matrices.

The parity matrix ε is diagonal with elements equal to ±1, signifying the
parity of the corresponding component of x. Under velocity reversal of the
underlying phase space, x ⇒ εx.

The position autocorrelation function, qx(τ) ≡ k−1
B 〈x(t + τ)x(t)〉0, defined

in Eq. (10.2), but here considered as of mixed parity, has the general symmetry,

qx(τ) = qx(−τ)T, (10.10)

as follows from time homogeneity, t ⇒ t − τ , 〈x(t + τ)x(t)〉0 = 〈x(t)x(t − τ)〉0.
This implies that the matrix is symmetric at τ = 0, qx(0)T = qx(0). Invoking
the parity matrix and velocity reversal one must also have

qx(−τ) = εqx(τ)ε. (10.11)

Hence one also has qx(τ)T = εqx(τ)ε.

The autocorrelation function for displacements in this mixed parity case is

qs
0(τ) ≡ 1

2kB
〈[x(t + τ) − x(t)][x(t + τ) − x(t)]〉0

=
1

2
[2qx(0) − qx(τ) − qx(τ)T]. (10.12)

This is evidently a symmetric matrix, qs
0(τ) = qs

0(τ)T, and, since qx(−τ) =
qx(τ)T, it is an even function of the time interval τ . Also, qs

0(0) = 0.

kBT = 3, which was maintained by a Nosé-Hoover chain thermostat. A bulk system with
periodic boundary conditions was simulated, with a cube length of 16.48, and 3095 solvent
atoms, giving a solvent density of 0.69. The unit of time corresponds to about 1 picosecond
for a realistic liquid.

4Rahman, A. (1964), Phys. Rev. 136, A405. Levesque, D. and Verlet, L. (1970), Phys. Rev.
A 2, 2514. Hansen, J.-P. and McDonald, I. R. (1986), Theory of Simple Liquids, (Academic
Press, London).



336 10. Generalised Langevin Equation

Because this symmetrised function is an even function of time, in the mixed
parity case one still has the Einstein result,

lim
τ→∞

qs
0(τ) = |τ |k−1

B D. (10.13)

Even in this case the diffusion matrix is a symmetric matrix.
Taking the time derivative, one obtains the symmetrised position velocity

correlation function,

q̇s
0(τ) =

−1

2

[
q̇x(τ) + q̇x(τ)T

]
=

−1

2kB
[〈ẋ(t + τ)x(t)〉0 + 〈x(t)ẋ(t + τ)〉0] . (10.14)

This is a symmetric matrix and an odd function of τ (since qs
0(τ) is an even

function), which implies that q̇s
0(0) = 0.

This result, q̇s
0(0) = 0, is a consequence of the symmetrised formulation and

may be seen directly from the result

〈ẋ(t + τ)x(t)〉0 = −〈x(t + τ)ẋ(t)〉0 . (10.15)

This ‘dot transfer’ is an example of a more general result that can be seen as
follows. Because of time homogeneity, the time derivative of any equilibrium
average must vanish. Hence it follows that

d

dt

〈
a(t′ + t)b(t)

〉
0

=
〈
ȧ(t′ + t)b(t)

〉
0

+
〈
a(t′ + t)ḃ(t)

〉
0

= 0. (10.16)

Hence one can conclude that the two terms in Eq. (10.14) cancel each other in
the limit τ = 0,

〈ẋ(t)x(t)〉0 = −〈x(t)ẋ(t)〉0 . (10.17)

Generally in the mixed parity case neither side of this equation is zero, because
the time derivative of components on one parity instantaneously couple to com-
ponents of the opposite parity. In the pure parity case there is no instantaneous
coupling of x and ẋ, and so the individual terms vanish, 〈ẋ(t)x(t)〉0 = 0.

In the opposite limit in the general mixed parity case one has limτ→∞ q̇s
0(τ) =

τ̂ k−1
B D, where τ̂ ≡ sign(τ). Finally, since 〈x(t − τ)x(t)〉0 = ε 〈x(t + τ)x(t)〉0 ε,

then 〈ẋ(t − τ)x(t)〉0 = −ε 〈ẋ(t + τ)x(t)〉0 ε, and it follows that

q̇s
0(−τ) = −εq̇s

0(τ)ε. (10.18)

Taking a further derivative with respect to τ gives the symmetrised position
acceleration correlation function,

q̈ s
0 (τ) =

−1

2

[
q̈x(τ) + q̈x(τ)T

]
=

−1

2kB
[〈ẍ(t + τ)x(t)〉0 + 〈x(t)ẍ(t + τ)〉0] . (10.19)
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This is in fact equal to the symmetrised velocity self correlation (or autocorre-
lation) function, since, as mentioned above, transferring a ‘dot’ from one term
to the other gives a minus sign,

q̈ s
0 (τ) =

1

2kB
[〈ẋ(t + τ)ẋ(t)〉0 + 〈ẋ(t)ẋ(t + τ)〉0] . (10.20)

This is clearly an even function of τ , as it must be. The matrices in the brackets
are not individually symmetric, but their sum evidently is. As in the pure parity
case, at large times the initial and final velocities must become uncorrelated and
this goes to zero.

10.1.3 Diffusion Constant

In practice, a useful way of obtaining the diffusion constant is as follows. One
starts with an expression for the displacement as an integral of the velocity,

x(t) − x(0) =

∫ t

0

dt′ ẋ(t′). (10.21)

Forming the dyadic of this with itself and taking the free particle average gives
the symmetrised position self correlation function,

qs
0(t) =

1

2kB
〈[x(t) − x(0)][x(t) − x(0)]〉0

=
1

2kB

∫ t

0

dt′
∫ t

0

dt′′ 〈ẋ(t′′)ẋ(t′)〉0

=
1

2

∫ t

0

dt′
∫ t

0

dt′′ q̈ s
0 (t′′ − t′)

=

∫ t

0

dt′
∫ t′

0

dt′′′ q̈ s
0 (t′′′), t′′′ = t′ − t′′

=

∫ t

0

dt′′′
∫ t

0

dt′ q̈ s
0 (t′′′)

=

∫ t

0

dt′′′ q̈ s
0 (t′′′)[t − t′′′]. (10.22)

Since the integral is over a square, the integrand in the second equality can be
written in symmetrised form, which leads to the third equality. In view of the
Einstein limit, Eq. (10.4), one can define a diffusion function,

D(t) ≡ kB

|t| q
s
0(t) = kB

∫ t

0

dt′ q̈ s
0 (t′)

[
t̂ − t′

|t|

]
, (10.23)

where t̂ ≡ sign(t). This goes to the diffusion constant for large times, D(t) → D,
t → ∞. Since the velocity self correlation function goes to zero for large times,
the second term in the integrand makes a decreasing contribution to the diffusion
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Figure 10.2: Diffusion function of a free Brownian particle in a soft sphere
solvent. The dashed and dotted curves are the running integral of the first and
second terms, respectively, on the right-hand side of Eq. (10.23), and the solid
curve is their sum, which equals the left-hand side of that equation. Data from
Attard and Gray-Weale, (2008).

constant as t increases. This is an example of a Green-Kubo formula, whereby
a transport coefficient is related to a time correlation function.

The diffusion function for a soft sphere Brownian particle and fluid is plotted
in Fig. 10.2. This corresponds to the velocity autocorrelation function shown
in Fig. 10.1. This has a broad plateau with a maximum of D(t) = 0.105 at
t ≈ 10. It is clear that the left-hand side of Eq. (10.23) is a smoother function
of time than are the individual terms on the right-hand side, which argues for
the necessity of retaining both terms.

The peak of the diffusion function is generally taken to be ‘the’ diffusion con-
stant. There is some evidence that the slow decay beyond the peak is dependent
upon the periodic boundary conditions and the finite size of the simulation cell.

10.1.4 Trajectory Entropy and Correlation

A trajectory may be discretised with time step τ , and nodes tj = jτ . The
velocities on an n-step trajectory may be specified as ẋ(n) = {ẋ1, ẋ2, . . . , ẋn}. By
convention, all trajectory vectors and matrices are ordered with time increasing
for positive τ . For a small enough time step, successive positions are given by
xj = xj−1 + τẋj−1, which will be assumed throughout. Hence in order to fully
specify a trajectory one only has to give one position, say the terminal one xn,
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plus the n velocities, X(n) ≡ {xn, ẋ(n)}.
The free particle trajectory entropy is a quadratic form,5

S
(n)
0 (X(n); τ) =

1

2
S

(n)
0 (τ) : X(n)X(n) (10.24)

=
1

2
S

(n)
0;xx(τ) : x2

n + S
(n)
0;xẋ(τ) : ẋ(n)xn +

1

2
S

(n)
0;ẋẋ(τ) : ẋ(n)ẋ(n).

The total fluctuation matrix S
(n)
0 , which has dimension (n + 1)N × (n + 1)N , is

symmetric and consists of four sub-matrices: S
(n)
0;xx = [S

(n)
0;xx]T, which is N ×N ,

S
(n)
0;ẋẋ = [S

(n)
0;ẋẋ]T, which is nN × nN , S

(n)
0;xẋ, which is N × nN , and S

(n)
0;ẋx(τ) =

S
(n)
0;xẋ(τ)T.

The correlation matrix is

Q
(n)
0 (τ) ≡ k−1

B

〈
X(n)X(n)

〉
0
, (10.25)

and it likewise consists of four sub-matrices:

Q
(n)
0;xx ≡ k−1

B 〈x(t)x(t)〉0 , (10.26)

Q
(n)
0;ẋẋ(τ) ≡ k−1

B

〈
ẋ(n)ẋ(n)

〉
0

= Q̈
(n)
0 (τ), (10.27)

Q
(n)
0;xẋ(τ) ≡ k−1

B

〈
xnẋ(n)

〉
0
, (10.28)

and Q
(n)
0;ẋx(τ) = Q

(n)
0;xẋ(τ)T. For the case of the free Brownian particle, Q

(n)
0;xx

diverges, and this is invoked below.
The elements of the velocity autocorrelation matrix are

Q̈
(n)
0;ij(τ) = k−1

B 〈ẋ(t + iτ)ẋ(t + jτ)〉0 = q̈0((i − j)τ). (10.29)

This is an N × N matrix. In the pure parity case, it is a symmetric matrix,
q̈0(t) = q̈0(t)

T, and an even function of time, q̈0(t) = q̈0(−t). (In the mixed

parity case Q̈
(n)
0 is itself symmetric: Q̈

(n)
0;iα,jγ = Q̈

(n)
0;jγ,iα, where Roman letters

range over the nodes and Greek letters range over the components, but q̈0(t) is
not.) The fact that in the pure parity case q̈0(t) is an even function of time means

that Q̈
(n)
0 (τ) = Q̈

(n)
0 (−τ), which in turn means that Q̈

(n)
0 (τ) is a persymmetric

matrix, Q̈
(n)
0;i,j(τ) = Q̈

(n)
0;n−i+1,n−j+1(τ). One can conclude that in the present

pure parity case the correlation matrix is a persymmetric Toeplitz matrix. This
simplifies considerably its numerical inversion.

The fluctuation matrix is the negative inverse of the correlation matrix

Q
(n)
0 (τ)S

(n)
0 (τ) = −I(n+1). It is straightforward to show that the block ma-

trix equation(
A B

BT C

)(
D ET

E F

)
= I, (10.30)

5The superscript s ought to be appended to the trajectory matrices that appear here in
order to signify that they are based upon the symmetrised time correlation function. It has
been omitted in order to simplify the notation, with the hope that no confusion will arise.
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with A, C, D and F symmetric matrices, has solution

D = [I − A−1BC−1BT]−1A−1

F = [I − C−1BTA−1B]−1C−1

E = −[I − C−1BTA−1B]−1C−1BTA−1. (10.31)

In the present case, one has A = Q
(n)
xx , B = Q

(n)
xẋ C = Q

(n)
ẋẋ , D = −S

(n)
xx ,

E = −S
(n)
ẋx , and F = −S

(n)
ẋẋ . The minus sign arises because it is the negative

inverse in the present case. Hence in the present case the fluctuation sub-
matrices are given by

S(n)
xx = −

[
1 − [Q(n)

xx ]−1Q
(n)
xẋ [Q

(n)
ẋẋ ]−1[Q

(n)
xẋ ]T

]−1

[Q(n)
xx ]−1

= −[Q(n)
xx ]−1, Q(n)

xx → ∞, (10.32)

S
(n)
ẋẋ = −

[
I(n) − [Q

(n)
ẋẋ ]−1Q

(n)
ẋx [Q(n)

xx ]−1Q
(n)
xẋ

]−1

[Q
(n)
ẋẋ ]−1

= −[Q
(n)
ẋẋ ]−1, Q(n)

xx → ∞, (10.33)

and

S
(n)
ẋx =

[
I(n) − [Q

(n)
ẋẋ ]−1Q

(n)
ẋx [Q(n)

xx ]−1Q
(n)
xẋ

]−1

[Q
(n)
ẋẋ ]−1Q

(n)
ẋx [Q(n)

xx ]−1

= [Q
(n)
ẋẋ ]−1Q

(n)
ẋx [Q(n)

xx ]−1, Q(n)
xx → ∞. (10.34)

The limiting form holds for the free Brownian particle; it may or may not be
an acceptable approximation for thermodynamic fluctuations, and in any case
using the full form does not appear to impose significant difficulties (see §10.3.4

below). Because Q
(n)
ẋẋ = Q̈

(n)
0 is a Toeplitz matrix, its inverse is relatively easy

to calculate.

Most Likely Velocity

It is not necessary to actually give the most likely trajectory for the present free
particle, but is is useful to take a small digression and to establish one particular
result that will prove useful in §10.3.4.

Differentiating the trajectory entropy with respect to the velocities yields
the bare particle most likely trajectory velocities,

ẋ
(n)

= −[S
(n)
ẋẋ ]−1S

(n)
ẋx xn

= Q
(n)
ẋẋ

[
I(n) − [Q

(n)
ẋẋ ]−1Q

(n)
ẋx [Q(n)

xx ]−1Q
(n)
xẋ

]
×
[
I(n) − [Q

(n)
ẋẋ ]−1Q

(n)
ẋx [Q(n)

xx ]−1Q
(n)
xẋ

]−1

[Q
(n)
ẋẋ ]−1Q

(n)
ẋx [Q(n)

xx ]−1xn

= Q
(n)
ẋx [Q(n)

xx ]−1xn. (10.35)
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This result is exact and does not invoke the limiting form. Multiplying both
sides of this by xn and taking the equilibrium average yields for the left-hand
side 〈

ẋ
(n)

xn

〉
0

=
〈
ẋ(n)xn

〉
0

= kB

{
q̇0(tn − t1)

T, q̇0(tn − t2)
T, . . . , q̇0(0)T

}
, (10.36)

and for the right-hand side Q
(n)
ẋx [Q

(n)
xx ]−1 〈xnxn〉0. Hence one has

Q
(n)
ẋx [Q(n)

xx ]−1 =
〈
ẋ(n)xn

〉
0
〈xnxn〉−1

0 . (10.37)

In particular, the terminal element of the vector is

Q
(n)
ẋx;n[Q(n)

xx ]−1 = 〈ẋ(t)x(t)〉0 〈x(t)x(t)〉−1
0 = −q̇0(0)Tq0(0)−1. (10.38)

These are not the symmetrised correlation functions, but this is more important
for later sections than here. In fact, for the present pure parity case of free
Brownian motion, 〈ẋ(t)x(t)〉0 = 0, which means that this term vanishes. It
needs to be retained for the mixed parity analysis of §10.3.4.

The result is important because it tells how the current position affects
the current velocity. One reason for choosing the terminal position as the one
specified, is that the generalised Langevin equation that emerges from this choice
is the same as the one that is given by the projector operator approach in §10.7.
It would have been possible to specify the trajectory by all the velocities and a
preceding position, xk say, rather than the terminal position xn. The analysis
could be performed for this case, and it turns out that the memory function to
be given below also depends upon this choice. Nothing appears to be gained by
this. Presumably the choice of specified position affects the two terms in such
a way that the predicted terminal velocity is unaffected.

Nature of Trajectory Entropy

An explicit representation of the free particle fluctuation matrix will not be
required beyond what has just been given, but it is worth making one point
about its general properties. For a single node it has already been seen in

Eq. (10.1) that S
(1)
0 (ẋ, x) = −mẋ2/2T . This result follows because only the

kinetic energy of the Brownian particle contributes to the total energy, and the
solvent enters solely as a heat reservoir. This result necessarily assumes that all
possible trajectories leading to the current velocity have been integrated over.
In contrast, for a trajectory one cannot simply relate the trajectory entropy to
the kinetic energy or its change. Even at the two node level, for example,

S
(2)
0 (ẋ1, ẋ2; τ) �= 1

2

[
S

(1)
0 (ẋ1) + S

(1)
0 (ẋ2)

]
, (10.39)

or similar. The reason is that although the change in kinetic energy of the free
particle is exactly equal and opposite to the change in energy of the solvent,
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the latter is not sufficient to give the change in entropy; the specific trajectory
corresponds to a particular spatial distribution of the energy, number, and mo-
mentum density fields of the solvent in the vicinity of the particle, and these
affect its entropy. These perturbations on a uniform distribution occur over
length scales of similar size to the Brownian particle itself and cannot be ne-
glected. (In contrast, in the general non-equilibrium reservoir formalism, the
size of the inhomogeneous interfacial region between the sub-system and the
reservoir is small compared to the size of the sub-system.) The entropy for
n = 1 corresponds to all prior trajectories being integrated over, in which case
all such spatial distributions are averaged out leaving only the total energy of
the solvent as the relevant variable for the entropy. One cannot carry out such
an averaging process for a specified trajectory, and in this case the particular
microscopic arrangement of the solvent and its consequent entropy cannot be
expressed simply as changes in the kinetic energy.

Bare Particle Equations of Motion

The trajectory of the free Brownian particle in the solvent can be written in the
form of equations of motion,

x(t + τ) = x(t) + τẋ(t)

ẋ(t + τ) = ẋ(t) + τFs0(t)/m, (10.40)

where Fs0(t) is the force exerted by the solvent on the particle. This force
at all prior times t′ ≤ t is what is required to give the specific trajectory.
This force is part of the contribution that changes the entropy of the solvent,
and is incorporated into the fluctuation matrix above. The existence of the
solvent forces, their rôle in determining the trajectory, and their influence on
the trajectory entropy, provide the conceptual basis for the perturbation theory
that is shortly developed.

The time correlation function q̈0(t), given above, can be expressed simply as
an average over the trajectory. For example,

q̈ s
0 ((n − j)τ) = k−1

B 〈ẋ(nτ)ẋ(jτ)〉0

=
k−1
B

∫
dẋ(n) eS

(n)
ẋẋ (ẋ(n);τ)/kB ẋnẋj∫

dẋ(n) eS
(n)
ẋẋ (ẋ(n);τ)/kB

=
k−1
B

∫
dẋndẋj eS

(2)
0 (ẋn,ẋj;(n−j)τ)/kB ẋnẋj∫

dẋndẋj eS
(2)
0 (ẋn,ẋj;(n−j)τ)/kB

. (10.41)

This shows how the higher-order fluctuation matrix reduces to a lower-order
matrix when the irrelevant nodes are integrated out.

10.2 Langevin and Smoluchowski Equations

Now a time dependent external potential, U(x, t), is applied to the otherwise
free Brownian particle. In the first instance the Smoluchowski and Langevin
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approximations for the problem will be given.
Langevin originally developed a stochastic, dissipative equation for the mo-

tion of a Brownian particle.6 The dissipative force is taken to be a drag force
Fdrag = −γẋ. By setting the driving force to zero and solving the stochastic,
dissipative equation of motion to obtain the mean square displacement of the
free particle, it can be shown that the drag coefficient is related to the diffusion
constant by γ ≡ 1/βD. For the present case of a driven Brownian particle,
a mechanical force, F (x, t) = −∂U(x, t)/∂x acts in addition to the dissipative
force. Setting the stochastic force to zero gives Newton’s equation for the most
likely trajectory,

mẍ(t) = F (x(t), t) − γẋ(t). (10.42)

This is the deterministic form of Langevin’s equation.
Smoluchowski independently obtained a somewhat simpler equation that

is applicable in the large drag limit.7 In this over damped case, Smoluchowski
effectively set the acceleration to zero in the Langevin equation. In consequence,
the drag force is equal and opposite to the applied force,

ẋ(t) = γ−1F (x(t), t) = βDF (x(t), t). (10.43)

This is the Smoluchowski equation, and it applies in the large drag (equivalently,
small diffusion) regime.

10.3 Perturbation Theory

10.3.1 Most Likely Velocity

Again impose upon the Brownian particle a time dependent external potential
U(x, t). The system belongs to the class of mechanical non-equilibrium systems,
which was treated in Ch. 8, where a formally exact expression was given for the
trajectory entropy (see §§8.2.1 and 8.6). As will now be seen, the trajectory
entropy of the driven Brownian particle is just that of the free particle, as
discussed above, §10.1.4, plus that due to the work done by the external potential
over the trajectory.

The equations of motion for the driven particle are of the form,

x(t + τ) = x(t) + τẋ(t)

ẋ(t + τ) = ẋ(t) +
τ

m
[Fs0(t) + FsU(t) + F (x(t), t)] . (10.44)

Here Fs0(t
′) is the force due to the solvent that would give the trajectory if the

particle were free, FsU(t′) is the additional solvent force that has arisen because
of the external potential, and F (x′, t′) = −∂U(x′, t′)/∂x′ is the external force.
In order for Fs0 to be the same here as in Eq. (10.40) for the same trajectory,

6Langevin, P. (1908), C. R. Acad. Sci. Paris, 146, 530.
7von Smoluchowski, M. (1906), Ann. Phys. 21, 756.
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the additional solvent force has to be equal and opposite to the applied force,
FsU = −F . In other words, the total solvent force, Fs = Fs0 + FsU, plus the
external force, F , gives the trajectory, and the trajectory is the same as that of
a free particle when the total force, Fs + F equals that of the solvent acting on
the bare particle, Fs0.

The rate of change of energy of the particle due to this additional solvent
force is Ėp = −ẋFsU. By energy conservation, this is equal and opposite to the

rate of energy change of the solvent, Ės = ẋFsU. Hence the additional rate of
change of solvent entropy is ṠsU = −ẋFsU/T = ẋF/T . Using this formulation,
the entropy of the trajectory of the driven particle is equal to that of the free
particle for the same trajectory plus the change in entropy of the solvent that
arises from these additional solvent forces,

S(n)(X(n); τ, U) = S
(n)
0 (X(n); τ) − 1

T

∫ t

0

dt′ ẋ(t′)FsU(t′)

= S
(n)
0 (X(n); τ) +

1

T

∫ t

0

dt′ ẋ(t′)F (x(t′), t′). (10.45)

The contribution of the free particle solvent forces, Fs0(t
′), has been incorpo-

rated into the free particle trajectory entropy, S
(n)
0 (X(n); τ), as was discussed in

relation to Eq. (10.40). Recall that the trajectory is specified by the terminal
position and the velocities, X(n) ≡ {xn, ẋ(n)}.

The discrete version of this is

S(n)(X(n); τ, U) =
1

2
S

(n)
0 (τ) : X(n)X(n) +

τ

T
ẋ(n) ·F(n). (10.46)

The force vector is defined on the same nodes as the velocity vector, F(n) ≡
{F1, F2, . . . , Fn}, with Fj ≡ F (xj , tj). Obviously there are more refined ways in
which the integral could be discretised, but these make no difference to linear
order in the time step.

Differentiating this with respect to the velocities gives

∂S(n)(X(n); τ, U)

∂ẋ(n)

= S
(n)
ẋẋ (τ)ẋ(n) + S

(n)
ẋx (τ)xn +

τ

T
F(n) − τ2

T
U(n)[∇(n)F(n)]ẋ(n)

= S
(n)
ẋẋ (τ)ẋ(n) + S

(n)
ẋx (τ)xn +

τ

T
F(n) + O(U2). (10.47)

Here U (n) is an upper triangular matrix consisting of ones above the diagonal.

Neglecting the final term of the first equality is justified because ẋ
(n)

is linear
in the force. Accordingly, the most likely trajectory predicated upon xn is

ẋ
(n)

(xn) = −S
(n)
ẋẋ (τ)−1S

(n)
ẋx (τ)xn − τ

T
S

(n)
ẋẋ (τ)−1F(n)

= Q
(n)
ẋx [Q(n)

xx ]−1xn +
τ

T
Q̈

(n)
0 (τ)F(n), Q(n)

xx → ∞. (10.48)
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The second equality holds for the free Brownian particle, in which case S
(n)
ẋẋ (τ)−1

= −Q̈
(n)
0 (τ), as discussed in connection with Eq. (10.33). The first term in

the second equality is zero for the free Brownian particle, but it is retained
here in order to facilitate the later discussion of mixed parity, thermodynamic
fluctuations.

Differentiating the trajectory entropy with respect to the terminal velocity

∂S(n)(X(n); τ, U)

∂ẋn
=

n∑
k=1

S
(n)
0;nk(τ)ẋk +

τ

T
Fn. (10.49)

This neglects S
(n)
ẋx;n(τ)xn because, as discussed in connection with Eq. (10.38),

its contribution to the most likely terminal velocity vanishes in the pure parity
case of Brownian motion, 〈ẋ(t)x(t)〉0 = 0. Terms ẋj(∂Fj/∂xj)(∂xj/∂ẋn) =
−τẋj(∂Fj/∂xj), j < n, have also been neglected for the reasons given above.
Setting the derivative to zero yields the most likely terminal velocity conditional
upon the preceding velocities and xn,

ẋn(ẋ(n−1), xn) = −S
(n)
0;nn(τ)−1

[
n−1∑
k=1

S
(n)
0;nk(τ)ẋk +

τ

T
Fn

]
+ O(U2). (10.50)

The difference between the optimised trajectory, Eq. (10.48) and the opti-
mised terminal point, Eq. (10.50) is not great in practical terms, as both can
be used to calculate the most likely trajectory by stepping forward one node at
a time. That is Eq. (10.48) can be written as,

ẋ
(n/j)

(xj) = Q
(n)
ẋx [Q(n)

xx ]−1xj +
τ

T
Q̈

(n)
0 (τ)F(n/j) , (10.51)

and evaluated for the terminal node,

ẋj(xj) =
τ

T

{
Q̈

(n)
0 (τ)F(n/j)

}
n

=
τ

T

j∑
k=j−n+1

q̈ s
0 (tj − tk)Fk. (10.52)

Here the velocities at the n nodes up to and including the node j are ẋ(n/j) ≡
{ẋj−n+1, ẋj−n+2, . . . , ẋj}, and similarly for F(n/j). The final element of the
vector that is the first term on the right-hand side of Eq. (10.48) vanishes in

the present pure parity case, Q
(n)
ẋx;n[Q

(n)
xx ]−1 = 0, as was discussed following

Eq. (10.38). From the previous velocities ẋ(n/j−1) and forces F(n/j−1), the next
position may be obtained, xj = xj−1 + τẋj−1. Using this for the force Fj , one
may find ẋj , and then move to node j + 1.

Equation (10.52) has one advantage over Eq. (10.50) in that the velocity
autocorrelation function can be used directly. In Eq. (10.50), the velocity auto-

correlation function has to be inverted to obtain the fluctuation matrix S
(n)
0 (τ).

This is inconvenient rather than prohibitive because, as has been mentioned,
the velocity autocorrelation function is a positive definite Toeplitz matrix, at
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least in the present symmetrised case, and there exist efficient O(n2) algorithms
for their inversion.

Evaluating Eq. (10.52) for the terminal velocity, and using the fact that

Q̈
(n)
0;ij(τ) = q̈ s

0 (ti − tj), the continuum version is

ẋ(t) =
1

T

∫ t

0

dt′ q̈ s
0 (t − t′)F (x(t′), t′). (10.53)

This result goes beyond the Markov approximation. It shows how previous
values of the applied force influence the current motion. It also shows how this
influence decreases over time, since q̈ s

0 (t) → 0, t → ∞. Hence the integrand
goes to zero for t− t′ sufficiently large, which means that the lower limit of the
integral can be replaced by t − t∗, for some relaxation time t∗ large enough.

A major finding of the perturbation theory is that the kernel or memory
function, which gives the current influence of the prior force, is just the velocity
autocorrelation function. This explicit result is exact within the perturbation
approach.

A second major outcome of the perturbation theory is that the difficult part
of the calculation, which is to obtain the bare particle velocity autocorrelation
function, need be done only once, and the result can be used to obtain the
particle motion in the presence of any external force by a relatively trivial one-
dimensional quadrature.

In practice, one generally works with the discretised version. One needs nτ
sufficiently large that q̈ s

0 (nτ) ≈ 0, and τ sufficiently small that the discretisation
approximation is valid. Various criteria can be used for the latter, such as
that it is an accurate approximation to take ẋi ≈ [xi − xi−1]/τ , or U i+1 ≈
U i + τẋiF i + τ∂U(xi, ti)/∂ti.

Approximating the quadrature by just two terms gives

ẋj+1 =
τ

2T
[Fj+1 q̈ s

0 (0) + Fj q̈ s
0 (τ)]

≈ 1

T
Fj q̇s

0(τ)

≈ βDFj . (10.54)

This is the Smoluchowski result. If τ is large enough to justify the two term
expansion, then it must also be large enough for the velocity position correla-
tion function to have reached its asymptotic limit. Differentiating the Einstein
asymptote, Eq. (10.4), this is limτ→∞ q̇s

0(τ) = k−1
B D. Using such a large value

of τ is only valid when the force is slowly varying, which is the condition for the
Smoluchowski approximation to be valid.

This limiting result can be directly confirmed when the force is constant,
F (x′, t′) = F . In this case the continuum expression, Eq. (10.53), yields directly

ẋ(t) =
F

T
[q̇s

0(t) − q̇s
0(0)]

t→∞→ βDF. (10.55)
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10.3.2 Alternative Derivation

There is another way to obtain the perturbation result that illustrates a rather
general linearisation procedure that is common in statistical mechanics. In the
first instance one ought to regard the external force as a function of time but
independent of the particle position, F (t). The reason for this will be discussed
further below, but here it may be briefly pointed out that taking the external
force to be independent of the particle position allows it to be taken outside of
the average. Linearising the exponential, the average of the trajectory is may
then be seen to be

〈
ẋ(n)

〉
U

=

∫
dẋ(n) eS(n)(ẋ(n);τ,U)/kB ẋ(n)∫

dẋ(n) eS(n)(ẋ(n);τ,U)/kB

=

∫
dẋ(n) eS

(n)
0 (ẋ(n);τ)/kB

[
1 + βτ ẋ(n) ·F(n) + O(U2)

]
ẋ(n)∫

dẋ(n) eS
(n)
0 (ẋ(n);τ)/kB

[
1 + βτ ẋ(n) · F(n) + O(U2)

]
=

〈
ẋ(n)

〉
0

+ βτ
〈
ẋ(n)ẋ(n)F(n)

〉
0

1 + βτ
〈
ẋ(n) ·F(n)

〉
0

= βτ
〈
ẋ(n)ẋ(n)F(n)

〉
0
+ O(U2)

= βτ
〈
ẋ(n)ẋ(n)

〉
0
F(n) + O(U2)

=
τ

T
Q̈

(n)
0 (τ)F(n). (10.56)

The second equality is the linearisation with respect to the external potential, in
which procedure the quadratic terms are neglected. The third equality follows
from the definition of the free particle trajectory probability and averages. The
fourth equality follows because 〈ẋ(t)〉0 = 0. The penultimate equality follows
because the external force here is only a function of time, not of the particle
position on the trajectory, and so it may be taken outside of the average, as was
discussed above. Obviously one can take the average trajectory to be equal to
the most likely trajectory.

This result holds for an arbitrary time dependent external force, F (t). This
means that having obtained the result, one can choose the force to be a function
of the most likely position on the trajectory, F (t′) ≡ F (x(t′), t′), t′ ≤ t. Here
the most likely trajectory may be a function of the terminal position, here xn,
above xj , and the most likely velocities. One can also use this freedom of choice
for the force to evaluate this for the average terminal velocity, 〈ẋn〉, predicated
upon the actual trajectory and actual force leading up to the current time,
F (x(t′), t′), t′ ≤ t.
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10.3.3 Most Likely Position

The velocity result can be integrated to obtain the most likely position,

x(t) = x(0) +

∫ t

0

dt′ ẋ(t′)

= x(0) +
1

T

∫ t

0

dt′
∫ t′

0

dt′′ q̈ s
0 (t′ − t′′)F (x(t′′), t′′)

= x(0) +
1

T

∫ t

0

dt′′ F (x(t′′), t′′)

∫ t

t′′
dt′ q̈ s

0 (t′ − t′′)

= x(0) +
1

T

∫ t

0

dt′′ F (x(t′′), t′′)

∫ t−t′′

0

dt′′′ q̈ s
0 (t′′′), t′′′ = t′ − t′′

= x(0) +
1

T

∫ t

0

dt′′ [q̇s
0(t − t′′) − q̇s

0(0)]F (x(t′′), t′′). (10.57)

In both the pure parity case and the mixed parity case the symmetrised posi-
tion velocity time correlation function vanishes at t = 0, q̇s

0(0) = 0. The full
correlation function does not vanish in the mixed parity case in this limit (see
§10.6 below).

In the discrete case, this can simply be written x(t) = x(t− τ)+ τ ẋ(t− τ)+
O(τ2). These results allow the trajectory to be obtained by marching forward
one node at a time. The length of the time steps, and the number of nodes
retained for the backward time integration for the velocity must be chosen from
the natures of the applied force and the time correlation function, respectively.

10.3.4 Stochastic Dissipative Equations of Motion

The preceding analysis gave the most likely velocity of a Brownian particle when
it is driven by a time and space varying external potential, and when memory
effects of the solvent are important. It is desirable to develop the stochastic
equations for the trajectory since in some cases these yield information that
is not available from the most likely trajectory. For example, one often wants
the average of a ‘phase function’, f(X, t), or a trajectory function, f(X(n)). In
general, the most likely value of a function is not equal to the function evaluated
at the most likely value of the trajectory, and similarly for average values. An
algorithm for generating stochastic trajectories in the case that memory effects
are non-negligible allows averages of such phase functions to be taken.

The stochastic dissipative equations will now be developed in a form that
allows one to march along a trajectory remembering the previous n nodes. As in
the preceding section, the results are restricted to the pure parity case and the
symmetrised velocity autocorrelation function will be used. The general mixed
parity analysis will be given in §10.6.

As above, the vector of the n most recent velocities up to and including the
one at tj is ẋ(n/j) ≡ {ẋj−n+1, ẋj−n+2, . . . , ẋj}, and similarly for the vector of
forces, F(n/j). The terminal position plus the velocities were used to specify a
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trajectory, X(n/j) ≡ {xj , ẋ
(n/j)}. These and all vectors and matrices are ordered

with time increasing when τ > 0. As slightly modified from Eq. (10.46), the
trajectory entropy for the current and preceding nodes is

S(n)(X(n/j); τ, U) =
1

2
S

(n)
0 (τ) : X(n/j)X(n/j) +

τ

T
ẋ(n/j) ·F(n/j). (10.58)

The most likely trajectory maximises this, and its terminal node was given by
Eq. (10.52),

ẋj =
τ

T

{
Q̈

(n)
0 (τ)F(n/j)

}
n

=
τ

T

j∑
k=j−n+1

q̈ s
0 (tj − tk)Fk. (10.59)

The force Fi ≡ F (xi, ti) is here taken to be the force on the actual prior trajec-
tory, whether or not this is equal to the most likely prior trajectory. Combining
this with xj = xj−1 + τẋj−1 allows the most likely trajectory to be stepped out.

The physical meaning of this result can be clarified by looking at the change
in the most likely terminal velocity,

ẋj − ẋj−1 =
τ

T

j∑
i=j−n+1

q̈ s
0 (tj − ti)Fi −

τ

T

j−1∑
i=j−n

q̈ s
0 (tj−1 − ti)Fi

=
τ

T
q̈ s
0 (0)Fj −

τ

T
q̈ s
0 (nτ)Fj−n

+
τ

T

j−1∑
i=j−n+1

[q̈ s
0 (tj − ti) − q̈ s

0 (tj−1 − ti)] Fi

=
τ

m
Fj −

τ

T
q̈ s
0 (nτ)Fj−n +

τ2

T

j−1∑
i=j−n+1

...
q s

0(tj − ti)Fi. (10.60)

The first term, which arises from the fact that q̈ s
0 (0) ≡ k−1

B 〈ẋ(0)ẋ(0)〉0 =
(T/m)I, is the usual Newtonian acceleration, and so this represents the adi-
abatic contribution to the change in velocity. The second term is negligible
for nτ large enough, q̈ s

0 (t) → 0, t → ∞. The remaining terms give the de-
pendence of the change in velocity on the history of the external force. These
are non-Hamiltonian, deterministic terms, and their sum may be regarded as a
generalised dissipative force for the case of memory.

One can simply add the random force to the equation for the most likely
terminal velocity to obtain the stochastic dissipative equations of motion in
perturbation approximation,

xj = xj−1 + τẋj−1

ẋj = Rj +
τ

T

j∑
i=j−n+1

q̈ s
0 (tj − ti)Fi. (10.61)
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This is the generalised Langevin equation for position. The continuum version
of the second of these is obvious,

ẋ(t) = R(t) +
1

T

∫ t

0

dt′ q̈ s
0 (t − t′)F (x(t′), t′). (10.62)

Since the velocity autocorrelation function is short-ranged, the distant prior
history contributes with ever decreasing weight, and so the integral becomes
independent of the lower limit. The evolution of functions of x and t, including
the probability density, can be obtained by expanding over a time step, retain-
ing terms to second-order in the random force, and averaging. As mentioned in
connection with the Fokker-Planck equation, in footnote 18 on p. 89, the differ-
ence between the Ito and Stratonovich stochastic calculus disappears when the
variance is not a function of x, as is the case here and throughout. (See also
§11.3.3 below.)

The random forces form a vector R(n/j), and they have covariance matrix8〈
R(n/j)R(n/j)

〉
U

=
〈[

ẋ(n/j) − ẋ
(n/j)

] [
ẋ(n/j) − ẋ

(n/j)
]〉

U

= −kBS
(n)
0 (τ)−1

= kBQ̈
(n)
0 (τ). (10.63)

The ikth element of this matrix is 〈R(tj−i+1)R(tj−k+1)〉U = kBq̈ s
0 (|i − k|τ).

It is significant that the random force for the current time step is correlated
with the preceding random forces. The fact that the velocity autocorrelation
function of the bare particle gives both the covariance of the random forces and
the dissipative force may be regarded as the fluctuation dissipation theorem for
a system with memory.

The probability distribution of the last n random forces is just the multi-
variate Gaussian

℘(R(n/j)) =
1∣∣∣2πkBQ̈
(n)
0 (τ)

∣∣∣1/2
eS

(n)
0 (τ):R(n/j)R(n/j)/2kB . (10.64)

Maximising the exponent with respect to Rj yields the most likely value condi-
tional upon the preceding n − 1 random forces,

Rj(R
(n−1/j−1)) = −S

(n)
0;nn(τ)−1

n−1∑
k=1

S
(n)
0;nk(τ)Rj−n+k . (10.65)

Hence the conditional probability distribution of the final random force is

℘(Rj |R(n−1/j−1)) =
eS

(n)
0;nn(τ)[Rj−Rj(R

(n−1/j−1))]2/2kB

[−2πkBS
(n)
0;nn(τ)−1]1/2

. (10.66)

8Note the distinction between the unconditional most likely velocity, ẋj , which appears

here in the ẋ
(n/j)

, and the conditional most likely velocity, ẋj(ẋ
(n−1/j−1) , xj−n+1), which

is the left-hand side of Eq. (10.61) with Rj = 0. The unconditional most likely position
and velocity satisfy the deterministic equations that are Eq. (10.59) with Fi = F (xi, ti), plus
xj = xj−1 + τẋj−1.
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This equation has the virtue that it allows the random forces to be calculated one
at a time from a Gaussian distribution for a single variable. Each random force
has a non-zero mean that is a weighted average of the preceding n − 1 random
forces. It does require the inverse of the velocity autocorrelation function matrix,
which, as mentioned above, can be efficiently obtained by exploiting its Toeplitz
structure (in the present symmetrised case).

The present stochastic differential equation for driven Brownian motion can
be compared with the Langevin equation. The Langevin equation is appropriate
when one can take a time step that is large on the time scales of the solvent
such that memory effects are negligible, in which regime the diffusion constant is
truly constant. In this regime the dissipative force is simply the drag force, and
the random forces are uncorrelated with each other and have a variance that
is proportional to the diffusion constant—the fluctuation dissipation theorem.
The Langevin equation is appropriate when the force is slowly varying in time
and space such that a large time step is justified.

In contrast, rapidly varying forces necessitate the present approach that
takes into account the memory of the solvent. In this case historical values
of the force contribute directly to the current change in the velocity of the
particle, and the current random force is correlated with the previous random
forces. The non-Hamiltonian deterministic forces may be called the dissipative
forces, and the stochastic forces may be called the fluctuation. It is the velocity
autocorrelation function of the bare particle that determines the magnitude of
the dissipation and its dependence on previous history. It also determines the
covariance of the random forces. The relation between the two may be called
the fluctuation dissipation theorem with memory.

10.3.5 Generalised Langevin Equation for Velocity

Differentiating the continuous version of the most likely velocity, Eq. (10.53),
one obtains

ẍ(t) = m−1F (x(t), t) +
1

T

∫ t

−∞

dt′
...
q s

0(t − t′)F (x(t′), t′). (10.67)

This uses the fact that q̈ s
0 (0) = Tm−1, where m is the mass, a diagonal matrix

in the multi-particle case, and the fact that q̈ s
0 (t) = 0 for t sufficiently large.

The lower limit has been extended to −∞, which is permissible because the
integrand is short-ranged.

One can add a random force to this to obtain a version of the generalised
Langevin equation for momentum. Noting that the most likely velocity is lin-
early proportional to the force (in an integral sense, Eq. (10.53)), it is con-
ventional, however, to replace the force that appears in the integrand by the
velocity, and to replace the present proportionality factor, the memory function...
q s

0(t − t′), by a new proportionality factor, the as yet undetermined memory
function K(t − t′). Adding a random force, the generalised Langevin equation
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for the velocity then becomes

mẍ(t) = F (x(t), t) + Rp(t) −
∫ t

−∞

dt′ K(t − t′)ẋ(t′)

= F (x(t), t) + Rp(t) −
∫ ∞

−∞

dt′ K̃(t − t′)ẋ(t′), (10.68)

where the truncated memory function is K̃(t) = Θ(t)K(t), with the Heaviside
step function being Θ(t) = 1, t > 0, and Θ(t) = 0, t < 0. In the limit that
the memory function is infinitely short-ranged, K(t) = 2γδ(t), this becomes
mẍ(t) = F (x(t), t) + Rp(t) − γẋ(t). One may recognise the term −γẋ(t) as the
friction or drag force, and this as the stochastic equation originally given by
Langevin.

The Fourier transform of the generalised Langevin equation for the velocity
is9

−iωmẋ(ω) = F (ω) + Rp(ω) − K̃(ω)ẋ(ω), (10.69)

with solution

ẋ(ω) =
1

K̃(ω) − iωm
[F (ω) + Rp(ω)] . (10.70)

Setting the random force to zero and comparing this with the Fourier transform
of the most likely velocity, Eq. (10.53), ẋ(ω) = T−1 ˜̈q s

0 (ω)F (ω), one can see that
the memory function and the velocity autocorrelation function are related by

1

T
˜̈q s
0 (ω) =

1

K̃(ω) − iωm
. (10.71)

This can be rearranged to give the velocity autocorrelation function in terms of
the memory function,10

q̈ s
0 (ω) = 2Re

{
˜̈q s
0 (ω)

}
= 2TRe

{
1

K̃(ω) − iωm

}

=
TK(ω)∣∣∣K̃(ω) − iωm

∣∣∣2 , (10.72)

9The Fourier transform is defined as f(ω) =
∫∞
−∞

dt eiωtf(t), with inverse f(t) =

(2π)−1
∫∞
−∞

dω e−iωtf(ω). The Fourier transform of ḟ(t) is −iωf(ω). A convolution in
real space gives a product in Fourier space. Many results can be proven using the fact that∫∞
−∞

dt eiωt = 2πδ(ω). As is common in this book, distinct but related functions are distin-
guished by their arguments; here ω and t distinguish the Fourier pair.

10Let f±(t) = f(t), t > 0, and f±(t) = ±f(−t), t < 0. Then f̃(t) ≡ Θ(t)f(t) = [f+(t) +
f−(t)]/2. Hence f̃(ω) = [f+(ω) + f−(ω)]/2, with f+(ω) pure real, and f−(ω) pure imaginary.
Hence if f(t) is even, then f(ω) is pure real, and so f(ω) = 2Re{f̃(ω)}.
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or vice versa,

K(ω) = 2Re
{
K̃(ω)

}
= 2Re

{
iωm + T/ ˜̈q s

0 (ω)
}

=
T q̈ s

0 (ω)∣∣ ˜̈q s
0 (ω)

∣∣2 . (10.73)

10.3.6 Fluctuation Dissipation Theorem

The fluctuation dissipation theorem may be derived from Eq. (10.70) by setting
the external force to zero, forming the product of the respective sides evaluated
at ω and its complex conjugate at ω′, and taking the equilibrium average,

〈ẋ(ω)ẋ∗(ω′)〉0 =

〈
Rp(ω)R∗p(ω′)

〉
0[

K̃(ω) − iωm
] [

K̃∗(ω′) + iω′m
] . (10.74)

Since the equilibrium system is homogeneous in time, each side of this contains
a factor of δ(ω − ω′). That is

〈ẋ(ω)ẋ∗(ω′)〉0 =

∫ ∞

−∞

dt

∫ ∞

−∞

dt′ eiωte−iω′t′ 〈ẋ(t)ẋ(t′)〉0

=

∫ ∞

−∞

dt

∫ ∞

−∞

dt′ eiω[t−t′]e−i[ω′−ω]t′ 〈ẋ(t − t′)ẋ(0)〉0

= 〈ẋ(ω)ẋ(t = 0)〉0 2πδ(ω′ − ω)

= 2πkBq̈ s
0 (ω)δ(ω′ − ω). (10.75)

Similarly,
〈
Rp(ω)R∗p(ω′)

〉
0

= 2π 〈Rp(ω)R(t = 0)〉0 δ(ω − ω′). Integrating out
this δ-function on both sides of Eq. (10.74) gives

q̈ s
0 (ω) =

1

kB

〈Rp(ω)Rp(t = 0)〉0∣∣∣K̃(ω) − iωm
∣∣∣2 . (10.76)

Comparing this with Eq. (10.72) shows that

〈Rp(ω)Rp(t = 0)〉0 = kBTK(ω). (10.77)

Taking the inverse Fourier transform yields the fluctuation dissipation theorem
for the random force for the velocity,

〈Rp(t)Rp(0)〉0 = kBTK(t). (10.78)
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10.3.7 Weiner-Khintchine Theorem

These results are often derived by invoking the Weiner-Khintchine theorem.11

This theorem broadly relates the autocorrelation function to the inverse Fourier
transform of the noise or power spectrum.12 In fact, Eq. (10.75) is related to
the Weiner-Khintchine theorem.

The historical significance of the Weiner-Khintchine theorem is linked to the
fact that the Fourier transform of a stochastic process, in this case ẋ(t), does not
exist except as a generalised function. One can truncate the process by setting
ẋτ (t) = 0, |t| > τ/2, for which the transform exists. The theorem relates the
power spectrum, which is the average of the product of the Fourier transforms,
and which depends upon the truncation, to the Fourier transform of the time
correlation function, which is independent of the truncation,13

S(ω) =
1

τ
〈ẋτ (ω)ẋ∗τ (ω)〉

=

∫
dt eiωt 〈ẋτ (t)ẋτ (0)〉

=

∫
dt eiωt 〈ẋ(t)ẋ(0)〉 . (10.79)

The non-trivial part of the theorem is contained in the second equality, which
follows from the general result that∫ τ/2

−τ/2

dt

∫ τ/2

−τ/2

dt′ f(t − t′) =

∫ 0

−τ

dt′′
∫ t′′+τ/2

−τ/2

dt f(t′′)

+

∫ τ

0

dt′′
∫ τ/2

t′′−τ/2

dt f(t′′)

= τ

∫ τ

−τ

dt′′ f(t′′). (10.80)

Also the second equality interchanges the operations of Fourier transformation
and statistical averaging. The third equality follows because the time correla-
tion function is short-ranged, and so the correlation of the truncated series is
the same as that of the full series. The power spectrum is an experimentally
measurable object, and the truncation time is an experimental specification.

The present derivation of the fluctuation dissipation theorem invoked di-
rectly the properties of the Fourier transform, and the Weiner-Khintchine theo-
rem was not required. This appears to be the general rule for other mathemat-
ical results in the field of stochastic processes. Generalised functions are not
nowadays as challenging as they were in the early part of the twentieth century,

11Pottier, N. (2010), Non-equilibrium Statistical Physics: Linear Irreversible Processes,
(Oxford University Press, Oxford). See §§10.4 and 10A.3, and also §§12.6 and 14.3.

12Wiener, N. (1930), Acta Math. 55, 117. Khintchine, A. (1934) Math. Ann. 109, 604.
13Le Bellac, M., Mortessagne, F., and Batrouni, G. G., (2004), Equilibrium and Non-

equilibrium Statistical Thermodynamics, (Cambridge University Press, Cambridge). See
Eqs. (9.189) and (9.190).
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and this is perhaps the reason that it can be difficult to appreciate the import
of the Weiner-Khintchine theorem.

10.3.8 Exponentially Decaying Memory Function

A common approximation is to assume that the memory kernel is exponential
(Pottier, 2010),

K(t) = γωce
−ωc|t|. (10.81)

The relevant Fourier transforms of this are

K(ω) =
2γω2

c

ω2 + ω2
c

, and K̃(ω) =
γωc

ωc − iω
. (10.82)

From the expression for the response function, the complex Fourier transform
of the one-sided velocity autocorrelation function is therefore

˜̈q s
0 (ω) =

T

m

[
γωc

ωc − iω
− iω

]−1

. (10.83)

In the short memory or low friction case, ωc > 4γ, there are simple poles at
−iω±, with

ω± ≡ ωc

2

[
1 ± [1 − 4γ/ωc]

1/2
]
. (10.84)

These give an exponentially decaying velocity autocorrelation function,

q̈ s
0 (t) =

T

m
[1 − 4γ/ωc]

−1/2

[
ω+

ωc
e−ω−|t| − ω−

ωc
e−ω+|t|

]
. (10.85)

Because ω+ > ω−, this is strictly positive and monotonic decaying. In the
ωc < 4γ case, which is the long memory or large friction case, one gets damped
oscillatory behaviour. The velocity autocorrelation function for a Brownian
particle in a soft sphere fluid, shown in Fig. 10.1 on p. 334, is clearly not pure
exponential; to a crude approximation it might be fitted by a damped sinusoid.

In the large cut-off limit, ωc → ∞, the memory function becomes a δ-
function, K(t) → 2γδ(t). Since ω+ → ωc and ω− → γ, the velocity autocorrela-
tion function becomes a single exponential, q̈ s

0 (t) → (T/m)e−γ|t|. In this limit
the generalised Langevin equation reduces to

mẍ(t) = F ext(x(t), t) + Rp(t) − γẋ(t), (10.86)

which is just the ordinary Langevin equation without memory. The quantity γ
is the friction or drag coefficient.
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10.4 Adiabatic Linear Response Theory

Now a linear response approach is used as an alternative to the perturbation
theory. In the present case the adiabatic evolution of an isolated total system
is used, whereas in the perturbation theory the particle was treated explicitly
and the reservoir was treated statistically. In the present case the initial dis-
tribution is taken to be the canonical equilibrium distribution, whereas in the
perturbation theory the exact non-equilibrium probability distribution was im-
plicit. In spite of these differences, the adiabatic linear response theory, like the
perturbation theory, shows that the velocity autocorrelation function is the sus-
ceptibility that links the velocity to the applied force. A number of such linear
response relationships between susceptibilities and time correlation functions
were obtained by Green,14 and by Kubo.15

For simplicity, a single Brownian particle is considered and only one dimen-
sion of its motion is treated explicitly. Let X be a point in the total system
phase space, and write the total Hamiltonian H(X, t) = H0(X)+U(x, t), where
x is the position of the Brownian particle. The total system phase space X in-
cludes x and ẋ as well as the solvent positions and momenta. The total system
is isolated (apart from the applied external potential) and evolves adiabatically
according to Hamilton’s equations.

Let the system be Boltzmann distributed at the initial time t = t0,

℘(X, t0) =
1

Z(t0)
e−βH(X,t0), (10.87)

where β ≡ 1/kBT . The system evolves adiabatically according to the equations
of motion for the total Hamiltonian; the trajectory may be written XU (t|X1, t0).
Since Hamilton’s equations are incompressible, the corresponding probability at
time t is

℘(X, t) = ℘(XU (t0|X, t), t0) =
1

Z(t0)
e−βH(XU (t0|X,t),t0). (10.88)

The total energy at time t equals the initial energy plus the work done on
the trajectory,

H(X, t) = H(XU (t0|X, t), t0) +

∫ t

t0

dt′
∂H(X′, t′)

∂t′
, X′ ≡ XU (t′|X, t), t′)

= H0(XU (t0|X, t)) + U(xU (t0|X, t), t0) +

∫ t

t0

dt′
∂U(x′, t′)

∂t′

= H0(XU (t0|X, t)) + U(x, t) −
∫ t

t0

dt′
{

dU(x′, t′)

dt′
− ∂U(x′, t′)

∂t′

}

= H0(XU (t0|X, t)) + U(x, t) +

∫ t

t0

dt′ ẋ′F ext(x′, t′), (10.89)

14Green, M. S. (1954), J. Chem. Phys. 22, 398.
15Kubo, R. (1966), Rep. Progr. Phys. 29, 255. Kubo, R., Toda, M., and Hashitsume,

N. (1978), Statistical Physics II. Non-equilibrium Statistical Mechanics, (Springer-Verlag,
Berlin).
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where the external force is F ext(x, t) = −∂U(x, t)/∂x, and x′ ≡ xU (t′|X, t).
Hence the non-equilibrium probability can be written as

℘(X, t) =
1

Z(t0)
exp−β

[
H0(X) −

∫ t

t0

dt′ ẋ′F ext(x′, t′)

]
(10.90)

=
1

Z(t0)
e−βH0(X)

[
1 + β

∫ t

t0

dt′ ẋ′F ext(x′, t′) + O(U2)

]
.

The second equality is the linearisation with respect to the external potential.
Because quadratic terms are neglected, and because the external force is linear
in the potential, one can take x′ = x0(t

′|X, t) + O(U). The partition function
is unchanged to linear order,

Z(t) =

∫
dX e−βH0(X,t)

[
1 + β

∫ t

t0

dt′ ẋ′F ext(x′, t′) + O(U2)

]
(10.91)

= Z(t0)

[
1 + β

∫ t

t0

dt′
〈
F ext(x(t′), t′)ẋ(t′)

〉
0

]
= Z(t0) + O(U2).

The last equality follows because the average exactly vanishes, there being no
instantaneous correlation between variables of opposite parity in the equilibrium
system. (Note that dX = dX′ and H0(X) = H0(X

′).)
The average velocity induced by the external potential is16

〈ẋ(t)〉U =

∫
dX ℘(X, t)ẋ(t)

=

∫
dX

1

Z(t0)
e−βH0(X)β

∫ t

t0

dt′ F ext(x(t′), t′)ẋ(t′)ẋ(t)

= β

∫ t

t0

dt′
〈
F ext(x(t′), t′)ẋ(t′)ẋ(t)

〉
0

= β

∫ t

t0

dt′ F ext(x(t′), t′) 〈ẋ(t′)ẋ(t)〉0 . (10.92)

In the final equality the external force, which depends upon the actual position
of the Brownian particle, has been taken outside the average. The argument for
doing this is that the correlation between x(t′) and ẋ(t) is linear in the external
force, and so this contributes a second-order term (c.f. the similar discussion in
the non-equilibrium perturbation theory in §10.3, specifically the justification
for Eq. (10.47)). Alternatively, the force could be replaced by its most likely

16Equilibrium, denoted by the subscript 0, here means an average in the adiabatic or isolated
system in the absence of the external force. In the preceding sections it denoted an average in
the canonical equilibrium system that could exchange energy with a thermal reservoir, also in
the absence of the external force. The two averages are expected to be equal. Also, the sym-
metrised velocity autocorrelation function is q̈ s

0 (τ) =
[
〈ẋ(t + τ)ẋ(t)〉0 + 〈ẋ(t)ẋ(t + τ)〉0

]
/2kB.

In the present pure parity case this is equal to the ordinary velocity autocorrelation function,
q̈ s
0 (τ) = q̈0(τ) = 〈ẋ(t + τ)ẋ(t)〉0 /kB.
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value, F
ext

(t′) ≡ F ext(x(t′), t′), as was done in §10.3.2. The result shows that
the equilibrium velocity autocorrelation function times the inverse temperature
gives the susceptibility for the velocity induced by a time dependent external
force.

In terms of the Heaviside step function, which is Θ(t) = 1, t > 0, Θ(t) =
0, t < 0, one can define ˜̈q0(t) ≡ Θ(t)q̈0(t), with the velocity autocorrelation
function being q̈0(t) = k−1

B 〈ẋ(t)ẋ(0)〉0. In the present section this is a scalar.
With this the average induced velocity may be written

〈ẋ(t)〉U =
1

T

∫ ∞

−∞

dt′ F ext(x(t′), t′)˜̈q0(t − t′). (10.93)

The lower limit on the integral has been extended to −∞ because q̈0(t) is short-
ranged. This has Fourier transform

〈ẋ(ω)〉U =
1

T
˜̈q0(ω)F ext(ω). (10.94)

One often sees in the literature a susceptibility or linear response to the external
force, 〈ẋ(ω)〉U = A(ω)F ext(ω). The present result shows that the response
function is here A(t) = Θ(t)q̈0(t)/T .

This result may be inverse transformed (or else use Eq. (10.92) directly),
and the random force added to obtain the generalised Langevin equation for
the position,

ẋ(t) = Rx(t) +
1

T

∫ t

−∞

dt′ q̈0(t − t′)F ext(t′). (10.95)

Set the external force to zero, F ext(t′) = 0, multiply the respective sides of
this by their value at t = t′, and take the average to obtain the fluctuation
dissipation theorem for this particular random force,

〈Rx(t)Rx(t′)〉0 = 〈ẋ(t)ẋ(t′)〉0 = kBq̈0(t − t′). (10.96)

Of course Rx has units of velocity and as such it is a scaled force. These last
two results and Eq. (10.92) agree with the non-equilibrium perturbation theory
results in §10.3.4, namely Eq. (10.59), Eq. (10.61), and Eq. (10.63).

10.5 Numerical Results for a Brownian Particle

in a Moving Trap

The perturbation theory will now be tested for a Brownian particle in a parabolic
potential in harmonic motion. That is, the external potential is

U(x, t) =
κ

2
[x − b(t)]2, (10.97)

with the trap being located at

b(t) = B cosωt. (10.98)
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The applied force is F (x, t) = −κ[x − b(t)].

In the linear regime the most likely trajectory can be expected to be of the
form,

x(t) = A cos(ωt + φ), ẋ(t) = −Aω sin(ωt + φ). (10.99)

The approximate theories will be tested against computer simulation results for
the relative amplitude A/B, and the phase lag φ.

10.5.1 Langevin Theory

The deterministic part of the Langevin equation adds a dissipative drag force,
Fdrag = −γẋ, to the mechanical force in Newton’s equation,

mẍ(t) = F (x(t), t) − γẋ(t). (10.100)

The drag coefficient is γ ≡ 1/βD.

In the present case of a parabolic trap, with a harmonic time dependence
and response, x(t) = A cos(ωt + φ), the Langevin equation becomes

−Amω2 cos(ωt + φ) = −κ [A cos(ωt + φ) − B cos(ωt)]

+
ωA

βD
sin(ωt + φ). (10.101)

Equating the coefficients of sinωt gives

Amω2 sin φ = κA sin φ +
ωA

βD
cosφ, (10.102)

or

tanφ =
ω/mβD

ω2 − κ/m
. (10.103)

This predicts a change in phase at the mechanical resonance of ω =
√

(κ/m).
Equating the coefficients of cosωt gives

−Amω2 cosφ = −κ [A cosφ − B] +
ωA

βD
sin φ, (10.104)

or

A =
Bκ

[κ − mω2] cosφ − (ω/βD) sin φ
. (10.105)

This has the appearance of a damped harmonic oscillator.
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10.5.2 Smoluchowski Theory

In the over damped case, the acceleration is zero and the drag force is equal and
opposite to the applied force. This is the Smoluchowski equation,

ẋ = γ−1F (x) = βDF (x), (10.106)

which becomes in this case

−Aω sin(ωt + φ) = −βDκ [A cos(ωt + φ) − B cos(ωt)] . (10.107)

Expanding these, the coefficient of sinωt is

Aω cosφ = −AβDκ sin φ, or tanφ =
−ω

βDκ
. (10.108)

The coefficient of cosωt is

Aω sin φ = βDκ [A cosφ − B] , or A =
βDκB

βDκ cosφ − ω sin φ
. (10.109)

Since the Smoluchowski theory is only valid for slowly varying forces, it is ar-
guable that one ought to take the low frequency limit of this, which gives an
amplitude that decreases quadratically with frequency,

A = B

[
1 − ω2

2[βDκ]2

]
+ O(ω4). (10.110)

10.5.3 Computer Simulations

Two types of simulations were performed for the driven Brownian particle:
conventional equilibrium molecular dynamics, and non-equilibrium stochastic
molecular dynamics, which will be described in Ch. 11.

The conventional molecular dynamics simulations are detailed by Attard and
Gray-Weale (2008). These used an equilibrium Nosé-Hoover chain thermostat
with thermostat relaxation of 20. The thermostat appeared adequate as far
as controlling the temperature was concerned, since there was no evidence of
local heating of the solvent. In these simulations 3095 solvent molecules were
used, in a cube of edge length 16.48, with periodic boundary conditions. The
trap constant was κ = 16.8, and the drive amplitude was either B = 2.5 or
B = 5. The position and velocity of the particle were averaged at set points
in the drive cycle and at the conclusion of the simulation a least squares fit
of these yielded the relative amplitude and phase lag. All other parameters
for the solvent and solute were as described for the simulation of the velocity
autocorrelation function (see footnote 3 on p. 334).

The stochastic molecular dynamics simulations detailed by Attard (2009a)17

used a simulation cell that was a cube of edge length 11.31, with 1000 solvent

17Attard, P. (2009a), J. Chem. Phys. 130, 194113.
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atoms and density of 0.69, and periodic boundary conditions. The drive am-
plitude was B = 2.5, and the trap constant was κ = 16.81. By varying the
amplitude it was confirmed that the results were in the linear regime. Typi-
cally, 300 drive cycles were simulated using a time step of Δt = 10−3. All other
parameters for the solvent and solute were as described for the simulation of
the velocity autocorrelation function, (see footnote 3 on p. 334).

To obtain the amplitude and phase lag, in the stochastic molecular dynamics
simulations the period of the harmonic potential was broken into 20 nodes, and
the average position and velocity of the Brownian particle at each node were
obtained, as well as the standard error on the mean. A least squares fit to
these average values at the nodes yielded the relative amplitude and phase lag.
This procedure is not exactly the same as obtaining directly the average relative
amplitude and the average phase lag.

10.5.4 Perturbation Algorithm

The perturbation theory described in §10.3 was tested against the simulations.
In the first instance only the most likely trajectory was generated, with the
random force set to zero. The implementation was straightforward. The velocity
autocorrelation function shown in Fig. 10.1 on p. 334, was used as input and
interpolated onto the nodes used for the discrete trajectory. Values of n ∈
[20, 100] were tested, and τ ∈ [0.05, 0.5]. The most likely next velocity and
position were generated from the current values on the n preceding nodes, as
indicated in Eq. (10.52). Smoluchowski theory was used for the initial values,
but it was found that the results were insensitive to this choice. The trajectory
was followed until tj = max(50, 10π/ω). At the conclusion of the calculation,
the amplitude and phase were obtained by a least squares fit to the trajectory
on the n most recent nodes.

The perturbation theory is computationally trivial compared with the simu-
lations (once the velocity autocorrelation function of the bare particle has been
obtained). The computer program comprises on the order of 250 lines, and
it takes about one second to obtain results for 50 frequencies on a personal
computer.

10.5.5 Relative Amplitude and Phase Lag

Figure 10.3 shows the relative amplitude of the driven Brownian particle, as
given by the various simulations and approximations. In general, the response
amplitude decreases as the drive frequency increases, as one might expect for a
damped harmonic oscillator. Indeed, it can be seen that the Langevin theory,
which predicts just such an over damped oscillator, smoothly interpolates be-
tween the low frequency limit and the mechanical resonance at ω =

√
(κ/m) =

1.3. The Langevin theory tends to underestimate the response amplitude in the
range ω ∈ (0.2, 0.8), and to overestimate it in the range ω ∈ (0.9, 2).

The natural frequency that occurs in Smoluchowski theory is βDκ = 0.59.
For frequencies somewhat less than this one might expect Smoluchowski theory



362 10. Generalised Langevin Equation

0.6

0.8

1

A
m

pl
itu

de
, A

/B

0

0.2

0.4

0 0.5 1 1.5 2

R
el

at
iv

e 
A

Frequency, ω

Figure 10.3: Relative amplitude as a function of drive frequency of a trapped
Brownian particle. The circles (B = 2.5) and triangles (B = 5) are Nosé-Hoover
equilibrium molecular dynamics simulations (Attard and Gray-Weale, 2008),
and the crosses are non-equilibrium stochastic molecular dynamics simulations
with B = 2.5 (Attard, 2009a). In these the statistical error is smaller than
the size of the symbols. The solid line is the perturbation theory for the most
likely trajectory, using n = 50, τ = 0.07, and tmax = 50, and the velocity
autocorrelation function shown in Fig. 10.1 on p. 334. The dashed line is the
Langevin result, Eq. (10.105), and the dotted line is the Smoluchowski result,
Eq. (10.109), both using D = 0.105.

to be accurate. In fact, Smoluchowski theory only appears accurate for the
response amplitude for ω � 0.1, and it is probably somewhat of a coincidence
that it comes back to reasonable agreement with the simulations for higher
frequencies.

The two types of simulations—the Nosé-Hoover equilibrium molecular dy-
namics and the non-equilibrium stochastic molecular dynamics—are in quite
good agreement with each other for the relative amplitude. This suggests that
possibly the system is only weakly non-equilibrium, or that the thermostatting
properties of the explicit solvent are efficient enough that the actual thermostat
used does not significantly perturb the motion of the solute.

In so far as the simulated relative amplitude for B = 5 and B = 2.5 are in
agreement, the results can be said to be in the linear regime, which is necessary
for the validity of the perturbation theory. There is perhaps a hint of non-
linearity in the range ω ∈ (0.5, 1), with the higher drive amplitude having a
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Figure 10.4: Phase lag as a function of drive frequency of a trapped Brownian
particle. Symbols and curves are the same as in the preceding figure.

statistically significant lower response.
The perturbation theory for the most likely trajectory performs quite well,

capturing the sigmoidal shape evident in the simulation data. At the highest
frequency, ω = 2.5, the time step used, τ = 0.07, gives ωτ/2π = 0.03, or
approximately 35 nodes per period, which is more than adequate. The number of
nodes times the time step, nτ = 3.5, is sufficient for the velocity autocorrelation
function to have decayed significantly (see Fig. 10.1 on p. 334). In general
varying the number of nodes or the time step made no significant change to the
results. However the case n = 50, τ = 0.05, which had the shortest memory
of nτ = 2.5, performed noticeably worse (i.e. an understated sigmoidal shape,
rather like the Smoluchowski result) than the rest.

The phase lag is shown in Fig. 10.4. It can be seen that this is neg-
ative, which corresponds to the motion of the particle lagging that of the
trap. The change from lag to lead, φ = ±π/2, occurs somewhere in the range
ω ∈ (1.25, 1.39), according to the Nosé-Hoover molecular dynamics simulations
(Attard and Gray-Weale, 2008). This is quite close to the mechanical resonance
at ω =

√
(κ/m) = 1.3, and explains to some extent the relatively good perfor-

mance of the Langevin theory, since this smoothly interpolates between the low
frequency results, where use of the diffusion constant and neglect of memory
effects are exact, and the high frequency regime, where the particle behaves
ballistically.

The Smoluchowski theory performs slightly better for the phase lag than for
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Figure 10.5: The average position (circles, solid curve) and velocity (triangles,
dashed curve) of the driven Brownian particle over a period for ω = 0.5 and
B = 2.5. The symbols result from the stochastic dissipative equations, and the
curves are best fits, x(t) = A cos(ωt+φ) and ẋ(t) = −Aω sin(ωt+φ). The total
length of the error bars is twice the standard error on the mean. The number
of nodes was n = 100 and the time step was τ = 0.1. All other parameters are
as in the preceding figures.

the amplitude, and does not become inaccurate until ω � 0.3.
The perturbation for the most likely trajectory appears to be accurate over

the whole regime. The small discrepancies between the perturbation theory
and the simulation data may likely be attributed to systematic errors in the
velocity autocorrelation function (such as, for example, those due to the periodic
boundary conditions) or to the use of biased estimators (using the phase lag of
the most likely trajectory rather than the most likely phase lag). There is little
evidence for non-linear effects in the simulations.

10.5.6 Stochastic Trajectory

The algorithm for the stochastic dissipative equations resulting from the per-
turbation theory is essentially the same as that described in §10.5.4 for the most
likely trajectory. The main difference is the addition of the random force at each
step on the trajectory. Two sets of averages were stored: the amplitude and
the phase lag, and the position and the velocity. In both cases the first three
cycles were used for equilibration and then averages were taken until t = 50
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Table 10.1: Amplitude and phase lag at ω ≈ 0.5 and at ω ≈ 0.8

ω A/B φ Approach

0.50 0.908± .008 −0.820± .009 non-equil., stochastic MD‡

0.50 1.01 ± .01 −0.77± .01 non-equil., MC�

0.55 0.83 ± .01 −0.95± .01 equil. MD†

0.50 0.921 −0.762 perturbation, most likely trajectory
0.50 0.929± .005 −0.753± .006 perturbation, stochastic trajectory

0.80 0.661± .004 −1.247± .004 non-equil. stochastic MD‡

0.80 0.68 ± .02 −1.19± .02 non-equil., MC�

0.83 0.62 ± .01 −1.28± .02 equil. MD†

0.80 0.717 −1.29 perturbation, most likely trajectory
0.80 0.717± .004 −1.295± .006 perturbation, stochastic trajectory

‡Attard (2009a).
�Attard (2009c), Phys. Rev. E 80, 041126.
†Attard and Gray-Weale (2008).

(or until five cycles, whichever was greater). No attempt was made to optimise
these. For the amplitude and phase, every n/2 nodes, a least squares fit was
made to the trajectory on the preceding n nodes and stored for averaging. For
the position and velocity, a period was divided into 20 points, and the position
and velocity were stored each time the trajectory crossed one of these points in
the cycle. The square of the quantities was also recorded and at the conclusion
of the trajectory this was used to calculate the standard error on the mean.
The time taken to run the stochastic algorithm differed immaterially from that
taken for the deterministic algorithm.

The direct calculations of the amplitude and phase lag using the stochastic
dissipative equations are not shown because they gave results indistinguishable
from those obtained with the most likely trajectory and shown in Fig. 10.3 and
in Fig. 10.4. Instead, Fig. 10.5 shows the position and velocity over a cycle for
the case ω = 0.5. Obviously the statistical error could have been reduced by
collecting averages over more cycles. The relative amplitude obtained from a
least squares fit to these data was A/B = 0.923 and the phase lag was φ =
−0.752. These can be compared to the averages obtained directly, A/B =
0.906±0.013 and φ = −0.763±0.033. The values obtained from the deterministic
calculation, the most likely trajectory, were A/B = 0.921 and φ = −0.762 (for
the same parameters, n = 100 and τ = 0.1). In this particular case of driven
Brownian motion, it appears that the amplitude and phase of the most likely
trajectory were indistinguishable from the average amplitude and phase, and
also from the amplitude and phase of the average trajectory.

Table 10.1 compares the results of the perturbation theory with three dif-
ferent simulation methods. The non-equilibrium stochastic molecular dynamics
method and the non-equilibrium Monte Carlo method will be detailed in Ch. 11.
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Of the three, the stochastic molecular dynamics results have the lowest statis-
tical error and appear the most reliable. The perturbation theory results for
a stochastic trajectory in Table 10.1 were obtained from a trajectory of length
1000.

There is some evidence for a weak non-linear dependence of the amplitude
response at higher drive amplitudes. For example, at ω = 0.8, in the case of
non-equilibrium stochastic molecular dynamics simulations, drive amplitudes of
5, 2.5, 1, and 0.5 give A/B = 0.624 ± 0.002, 0.657 ± 0.002, 0.664 ± 0.005, and
0.675 ± 0.006, respectively. The non-equilibrium Monte Carlo simulations for
drive amplitudes of 1, 0.5, and 0.2 give 0.68± 0.02, 0.78± 0.05, and 0.76± 0.05.
The phase lag showed less variability with drive amplitude.

10.6 Generalised Langevin Equation in the Case

of Mixed Parity

10.6.1 Equilibrium System

The preceding perturbation theory used the symmetrised velocity autocorrela-
tion function of the bare system as the response function. This is not a re-
striction in the pure parity case. However, in the general mixed parity case the
velocity autocorrelation function contains antisymmetric components, and it is
therefore worthwhile developing the perturbation theory for this more general
case.

In §10.1.1 the time correlation functions of the bare Brownian particle were
given, including the position autocorrelation function, Eq. (10.2),

qx(τ) ≡ k−1
B 〈x(t + τ)x(t)〉0 , (10.111)

and the symmetrised displacement autocorrelation function,

qs
0(τ) ≡ 1

2kB
〈[x(t + τ) − x(t)][x(t + τ) − x(t)]〉0

=
1

2
[2qx(0) − qx(τ) − qx(τ)T]. (10.112)

The latter matrix is by design symmetric, even in the mixed parity case, as
was discussed in §10.1.2. It was from the symmetry of this matrix that the
symmetrised form of the velocity autocorrelation function arose as the response
function. The reason for starting the analysis from the symmetric displace-
ment autocorrelation function, rather than from the position autocorrelation
function, is that the latter scales like the square of the volume at τ = 0,
qx(0) ≡ k−1

B 〈x(t)x(t)〉0 = V 2. Hence the square root of this divided by the
volume does not go to zero in the thermodynamic limit.

In a mathematical sense this divergence is not catastrophic, and even for the
case of the bare Brownian particle one could formally proceed with the analysis
based on the position autocorrelation function. In any event there can be no
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objections to the analysis for the case of thermodynamic fluctuations since such
fluctuations occur about some fixed value and are bounded by a value that
usually scales with the system size. Hence the root mean square fluctuation
divided by the average value goes to zero in the thermodynamic limit.

There are qualitative differences in the evolution of the trajectory depend-
ing whether or not the position autocorrelation function diverges at τ = 0,
〈x(t)x(t)〉0 → ∞. The fact that for the free Brownian particle, Q0;xx → ∞, but
for a thermodynamic fluctuation, Q0;xx < ∞, has consequences for the form of
the response function (c.f. Eq. (10.33)), as will be detailed here.

A second difference between the pure parity Brownian motion case and the
present mixed parity thermodynamic fluctuation case concerns the position ve-
locity time correlation function. In the pure parity case, this vanishes at t = 0,
〈ẋ(t)x(t)〉0 = 0, whereas this is non-zero in the mixed parity case. This also has
consequences for the trajectory evolution.

Let x be a vector of N fluctuating thermodynamic variables of a sub-system.
More precisely, let it measure the departure from the average so that its equi-
librium average vanishes, 〈x〉0 = 0. The sub-system, which can be isolated
or in contact with a reservoir, has no macroscopic time dependence, and nei-
ther does the reservoir. Let the individual variables each be of pure parity,
but let the vector as a whole have mixed parity, with diagonal parity matrix ε:
x(Γ†) = εx(Γ), where Γ is a point in the phase space of the sub-system and †
denotes the conjugate point with all velocities of the total system reversed.

The velocity autocorrelation function of the mixed parity system is the N×N
equilibrium time correlation dyadic matrix,18

q̈0(τ) ≡ k−1
B 〈ẋ(t + τ)ẋ(t)〉0 . (10.113)

Since this matrix may have an antisymmetric component, it now has no super-
script in order to distinguish it from the symmetrised version used in the pre-
ceding sections. Compare, for example, this expression for the velocity autocor-
relation function with the mixed parity, symmetrised expression given above in
Eq. (10.20). From the parity rules one has

q̈0(−τ) = εq̈0(τ)ε = q̈0(τ)T, (10.114)

and also

q̈0(τ) = k−1
B

d

dτ
〈x(t + τ)ẋ(t)〉0

= −k−1
B ε

d

dτ
〈x(t − τ)ẋ(t)〉0 ε

= −k−1
B ε

d

dτ
〈x(t)ẋ(t + τ)〉0 ε

= −k−1
B ε 〈x(t)ẍ(t + τ)〉0 ε

= −k−1
B 〈ẍ(t + τ)x(t)〉0 . (10.115)

18Generally one is dealing with fluctuations in physical quantities, which are real valued
variables. Complex variables can arise if one takes Fourier transforms, for example, and in
such a case the time correlation functions are usually defined to include a complex conjugate.
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The minus sign appears at the second equality because −ε is the parity matrix of
ẋ. The third equality follows from time homogeneity of an equilibrium system.
In fact the final result could have been written down directly from the time
homogeneity of the equilibrium system, Eq. (10.16). The reason for spelling out
the derivation is to illustrate certain common manipulations of time correlation
functions. It should be noted that all of the parity rules hold not just for an
equilibrium adiabatic system, but also for an equilibrium sub-system in contact
with an equilibrium reservoir, since forward and backward motion is equally
likely for such equilibrium systems.

The position velocity correlation function is

q̇0(τ) = k−1
B 〈x(t + τ)ẋ(t)〉0

= −k−1
B 〈ẋ(t + τ)x(t)〉0 . (10.116)

Differentiating the first equality with respect to τ gives Eq. (10.113), and dif-
ferentiating the second equality gives Eq. (10.115). The integration constant
is chosen to be zero so that q̇0(τ) → 0, τ → ∞. (This is another difference
between the present thermodynamic fluctuations and free Brownian motion.)
The parity rules for this are

q̇0(−τ) = −εq̇0(τ)ε = −q̇0(τ)T. (10.117)

In the analysis of Brownian motion above, §§10.1.1 and 10.1.2, the fact that q̇0(τ)
was a symmetric matrix meant that the final equality here implied that q̇0(0) =
0. In the present case where the time correlation matrices have an antisymmetric
part, this last equation shows that the position velocity correlation function is
a strictly antisymmetric matrix at τ = 0, q̇0(0) = −q̇0(0)T �= 0. This result will
be of use below.

The position autocorrelation function is

q0(τ) = −k−1
B 〈x(t + τ)x(t)〉0 . (10.118)

Differentiating this yields the second equality in Eq. (10.116). Again unlike
Brownian motion, the integration constant is chosen to be zero so that q0(τ) →
0, τ → ∞. The parity rules for this are

q0(−τ) = εq0(τ)ε = q0(τ)T. (10.119)

Note the negative sign in the definition of q0(τ). It is not possible to define
both the velocity and the position autocorrelation functions with positive signs.
(At least it is not possible to do so if the two are related by differentiation and
go to zero at large times.) Since if the position autocorrelation function is a
global maximum at τ = 0, then the velocity autocorrelation function, its second
derivative, must be negative and therefore a global minimum. Conversely, if one
takes the position autocorrelation function to be a global minimum at τ = 0,
then the velocity autocorrelation function must be positive and therefore a global
maximum. The convention chosen here is that the velocity autocorrelation
function is defined with a positive sign.
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Trajectory

As above, define ẋ(n/j) ≡ {ẋj−n+1, ẋj−n+2, . . . ẋj} to be the velocities on a
trajectory of n nodes ending at node j, with ẋk ≡ ẋ(tk), and tk ≡ kτ . Let xj be
the terminal position and denote the trajectory by X(n/j) ≡ {xj , ẋ

(n/j)}, with
the understanding that xk−1 = xk − τẋk, k ∈ [2, n]. (In §10.6.2 that follows, an
example will be given that uses instead the initial position to fix the trajectory.)

As in §10.1.4, the free particle trajectory entropy is a quadratic form,

S
(n)
0 (X(n/j); τ) =

1

2
S

(n)
0 (τ) : X(n/j)X(n/j)

=
1

2
S

(n)
0;xx(τ) : x2

j + S
(n)
0;xẋ(τ) : ẋ(n/j)xj

+
1

2
S

(n)
0;ẋẋ(τ) : ẋ(n/j)ẋ(n/j). (10.120)

The total fluctuation matrix S
(n)
0 , which has dimension (n + 1)N × (n + 1)N , is

symmetric and consists of four sub-matrices: S
(n)
0;xx = [S

(n)
0;xx]T, which is N ×N ,

S
(n)
0;ẋẋ = [S

(n)
0;ẋẋ]T, which is nN×nN , S

(n)
0;xẋ, which is N×nN , and S

(n)
0;ẋx = [S

(n)
0;xẋ]T.

The elements of the last ‘vector’ are N × N matrices, and this last symmetry

means
{
S

(n)
0;ẋx;k

}
αβ

=
{
S

(n)
0;xẋ;k

}
βα

, where k refers to ẋk and x refers to xn.

The correlation matrix is

Q
(n)
0 (τ) ≡ k−1

B

〈
X(n)X(n)

〉
0
, (10.121)

and it likewise consists of four sub-matrices:

Q
(n)
0;xx ≡ k−1

B 〈x(t)x(t)〉0 = −q0(0), (10.122)

Q
(n)
0;ẋẋ(τ) ≡ k−1

B

〈
ẋ(n)ẋ(n)

〉
0

= Q̈
(n)
0 (τ), (10.123)

Q
(n)
0;xẋ(τ) ≡ k−1

B

〈
xnẋ(n)

〉
0
, (10.124)

and Q
(n)
0;ẋx = [Q

(n)
0;xẋ]T.

The velocity autocorrelation matrix has elements

Q̈
(n)
0;ik(τ) = k−1

B 〈ẋ(ti)ẋ(tk)〉0 = q̈0(ti − tk). (10.125)

In the present mixed parity case Q̈
(n)
0 itself is symmetric: Q̈

(n)
0;iα,jγ = Q̈

(n)
0;jγ,iα,

where Roman letters range over the nodes and Greek letters range over the
components. However, q̈0(t) is not symmetric: q̈0;αγ(t) �= q̈0;γα(t). In fact,
q̈0(t) �= q̈0(−t), but q̈0(t) = q̈0(−t)T.

The position velocity time correlation vector (actually N × nN matrix) has
elements

Q
(n)
0;xẋ;k(τ) ≡ k−1

B 〈x(tn)ẋ(tk)〉0 = q̇0(tn − tk). (10.126)
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Again these elements are N × N matrices, with
{

Q
(n)
0;ẋx;k

}
αβ

=
{
Q

(n)
0;xẋ;k

}
βα

= q̇0;αβ(tn − tk) = −q̇0;βα(tk − tn).
The fluctuation matrix is the negative inverse of the correlation matrix

Q
(n)
0 (τ)S

(n)
0 (τ) = −I(n+1). As shown in §10.1.4, this gives the fluctuation sub-

matrices as

S
(n)
0;xx = −

[
1 − [Q

(n)
0;xx]−1Q

(n)
0;xẋ[Q

(n)
0;ẋẋ]−1[Q

(n)
0;xẋ]T

]−1

[Q
(n)
0;xx]−1, (10.127)

S
(n)
0;ẋẋ = −

[
I(n) − [Q

(n)
0;ẋẋ]−1Q

(n)
0;ẋx[Q

(n)
0;xx]−1Q

(n)
0;xẋ

]−1

[Q
(n)
0;ẋẋ]−1, (10.128)

and

S
(n)
0;ẋx =

[
I(n) − [Q

(n)
0;ẋẋ]−1Q

(n)
0;ẋx[Q

(n)
0;xx]−1Q

(n)
0;xẋ

]−1

[Q
(n)
0;ẋẋ]−1Q

(n)
0;ẋx[Q

(n)
0;xx]−1.

(10.129)

The last two give

−[S
(n)
0;ẋẋ]−1S

(n)
0;ẋx = Q

(n)
0;ẋx[Q

(n)
0;xx]−1. (10.130)

For the terminal node this is Q
(n)
0;ẋx;n[Q

(n)
0;xx]−1 = −q̇0(0)Tq0(0)−1, which will be

used below.
The inverse of the velocity fluctuation matrix will play the rôle of the memory

function for the perturbation theory below, and it is of some interest to attempt
to interpret it physically. The memory matrix is

M (n) ≡ [S
(n)
0;ẋẋ]−1 = −Q

(n)
0;ẋẋ + Q

(n)
0;ẋx[Q

(n)
0;xx]−1Q

(n)
0;xẋ. (10.131)

The first term represents the contribution to the entropy from the direct cor-
relation between the velocities at a pair of nodes. This contribution occurs ir-
respective of the location of the terminal position. The second term represents
the indirect contribution that arises from the correlation between velocities as
it is affected by the location of the terminal position. In so far as the thermo-
dynamic fluctuation is localised, this term is non-zero. For the case of a free

Brownian particle, Q
(n)
0;xx → ∞, leaving M (n) = −Q

(n)
0;ẋẋ.

In component form one has

M
(n)
ik = −q̈0(ti − tk) − q̇0(tn − ti)

Tq0(0)−1q̇0(tn − tk). (10.132)

Each of these is an N × N matrix. The memory matrix itself is in total sym-

metric, M
(n)
iα,kγ = M

(n)
kγ,iα.

The case i = n will be required below, and so one can define the memory
‘vector’ with components

Mk ≡ M
(n)
nk = −q̈0(tn − tk) − q̇0(0)Tq0(0)−1q̇0(tn − tk). (10.133)
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In the continuum limit this is M(t−t′) ≡ −q̈0(t−t′)−q̇0(0)Tq0(0)−1q̇0(t−t′). The
symmetry of the memory matrix manifests itself as Mαγ(t − t′) = Mγα(t′ − t).
The memory function is short-ranged, M(t) → 0, |t| → ∞, due to the short-
range nature of the velocity autocorrelation function and of the position velocity
correlation function for thermodynamic fluctuations. This means that either nτ
in the discrete case or the integration interval in the continuum case can be
relatively short.

It should be noted that the actual memory function depends upon the choice
of the terminal node xj as the location of the position that fixes the trajectory.
As a result of this choice, the zero time position velocity correlation function,
q̇(0), appears here and in the results below. If one were to choose another
position, xk say, then the form of the memory function would change, as would
the first term in the equation for the most likely next velocity, but, presumably,
the predicted most likely next velocity ẋj would remain unchanged. An example
of this is now given, and it is also further discussed on p. 377 below.

10.6.2 Regression of Fluctuation

Above the terminal position xn was used in conjunction with the velocities ẋ(n)

to specify a trajectory. This is somewhat arbitrary, with one motivation for
this specific choice being to match the perturbation results with the projector
operator results in §10.7 below. An alternative choice is the initial position just
prior to the start of the trajectory, x0, which accounts for the prior state of the
system before the external force is applied.

For the general case one could in addition specify the prior velocity, ẋ0, but
this complicates the analysis with little gain. For the case of spontaneous re-
gressions of fluctuations in an equilibrium system, one begins in the dynamically
disordered state so that ẋ0 = 0 anyway.

In view of this, in this section the trajectory is X(n) ≡ {x0, ẋ
(n)}. The

trajectory entropy is formally the same as Eq. (10.120), except that S
(n)
0;xẋ now

couples the velocity to the position x0,

S
(n)
0 (X(n); τ) =

1

2
S

(n)
0 (τ) : X(n)X(n)

=
1

2
S

(n)
0;xx(τ) : x2

0 + S
(n)
0;xẋ(τ) : ẋ(n)x0

+
1

2
S

(n)
0;ẋẋ(τ) : ẋ(n)ẋ(n). (10.134)

The derivative of the trajectory entropy with respect to the velocities is

∂S
(n)
0 (X(n); τ)

∂ẋ(n)
= S

(n)
0;ẋx(τ)x0 + S

(n)
0;ẋẋ(τ)ẋ(n). (10.135)

Hence the most likely trajectory given the starting fluctuation (and ẋ0 = 0) is

ẋ
(n)

= −[S
(n)
0;ẋẋ(τ)]−1S

(n)
0;ẋx(τ)Tx0

= Q
(n)
0;ẋx[Q

(n)
0;xx]−1x0. (10.136)
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This has to be the same as what can be obtained directly. Right multiplying
this by x0 and taking the average gives

LHS =
〈
ẋnx0

〉
0

= 〈ẋnx0〉0 = kBq̇0(t0 − tn)T, (10.137)

and

RHS = −q̇0(t0 − tn)Tq0(0)−1 〈x0x0〉0 = kBq̇0(t0 − tn)T. (10.138)

The equality of these is consoling.

The final element of ẋn, is the most likely terminal velocity, and this is
explicitly

ẋn = −q̇0(t0 − tn)Tq0(0)−1x0 = q̇0(t0 − tn)TSx0, (10.139)

since Q
(n)
0;xx = −q0(0) = −S−1. Here the fluctuation form for the equilibrium

entropy has been used,

S(1)(x) =
1

2
S : xx, S = kB 〈xx〉−1

0 = −q0(0)−1. (10.140)

Hence one sees that this is just the Onsager regression of the fluctuation, with
F = ∂S/∂x = Sx being the thermodynamic force.

Initial Velocity

To add the initial velocity, one can take X0 ≡ {x0, ẋ0},

Q
(n)
0;XX ≡ k−1

B

(
〈x0x0〉0 〈x0ẋ0〉0
〈ẋ0x0〉0 〈ẋ0ẋ0〉0

)
=

(
−q0(0) q̇0(0)
q̇0(0)T q̈0(0)

)
, (10.141)

and

Q
(n)
0;Xẋ;n ≡ k−1

B

(
〈x0ẋn〉0
〈ẋ0ẋn〉0

)
=

(
q̇0(t0 − tn)
q̈0(t0 − tn)

)
. (10.142)

Hence one has in this case

ẋn = −
{
[S

(n)
0;ẋẋ(τ)]−1S

(n)
0;ẋX(τ)T

}
n·

X0

= Q
(n)
0;ẋX;n[Q

(n)
0;XX ]−1X0

=

(
q̇0(t0 − tn)T

q̈0(t0 − tn)T

)
·
(

−q0(0) q̇0(0)
q̇0(0)T q̈0(0)

)−1(
x0

ẋ0

)
. (10.143)

Right multiplying by X0 and taking the average yields an identity. Clearly this
vanishes as |tn − t0| → ∞, which shows that the most likely terminal velocity
becomes independent of the initial conditions.
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10.6.3 Time Dependent Perturbation

Return to the original representation of the trajectory, X(n/j) ≡ {xj , ẋ
(n/j)}.

In the case of driven Brownian motion, it was shown in Eq. (10.45) that the
trajectory entropy was

S(n)(X(n/j); τ, U)

= S
(n)
0 (X(n/j); τ) +

1

T

∫ t

0

dt′ ẋ(t′)F (x(t′), t′)

=
1

2
S

(n)
0 (τ) : X(n/j)X(n/j) +

τ

T
ẋ(n/j) ·F(n/j). (10.144)

For simplicity, the integral is written for tj = t and tj−n+1 = 0. This is the
same as Eq. (10.45) except that here the trajectory ends at j. In this case the
second term is the entropy produced over the trajectory, since it may be written

1

T

∫ t

0

dt′ ẋ(t′)F (x(t′), t′) =

∫ t

0

dt′ ẋ(t′)∇Sst(X(t′), t′), (10.145)

where the static part of the entropy in this mechanical case is just Sst(X, t) =
−H(X, t)/T , and F = −∇H. In obtaining this result it was necessary that the
additional solvent forces on the particle due to the presence of the perturbing
potential were equal and opposite to the applied perturbing force. This had to
be the case in order for the trajectory in the perturbed system to be identical to
that in the bare system, so that the bare trajectory entropy could be invoked.
It is worth noting that the memory effects arose from the trajectory entropy
of the bare system, and that only the simplest instantaneous entropy arose in
direct response to the external force via the induced internal force.

Linear versus Non-Linear Force

In the present case of mixed parity thermodynamic fluctuations, the sub-system
first entropy is given by the usual fluctuation formula. It is the linear regime
that is of most interest, and in this case the entropy is

S(x, t) =
1

2
S : xx. (10.146)

Consequently the force is

FTD(x, t) = Sx. (10.147)

In this case the time dependence is indirect and occurs only via the current
position x(t). The fluctuation matrix is of course the negative inverse of the
correlation matrix, which is just the position autocorrelation function at τ = 0,

S = −kB 〈x(0)x(0)〉−1
0 = q0(0)−1. (10.148)

Note the positive sign on the right-hand side of the final equality (c.f. the dis-
cussion on p. 368), which is consistent with the fact that the fluctuation matrix
has to be negative definite.
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The static part of the entropy is an equilibrium property and as such it does
not couple variables of opposite time parity. Hence the static fluctuation matrix
commutes with the parity matrix and is consequently symmetric,

εSε = S, and S = ST. (10.149)

In the non-linear regime, one can still invoke a fluctuation form for the
entropy in terms of the departure from the most likely state,

S(x, t) =
1

2
S(t) : [x − x(t)][x − x(t)]. (10.150)

Consequently the force is

FTD(x, t) = S(t)[x − x(t)]. (10.151)

The time dependence of S(t), as discussed in §3.6.3 on p. 78, arises because
it is a material property that may depend upon the most likely current state,
S(x(t)),

S(t) ≡ −kB 〈[x − x(t)][x − x(t)]〉−1
st . (10.152)

In the non-linear case x(t) can differ significantly from 〈x〉0 = 0, which in turn

means that S(t) can differ significantly from S ≡ kB 〈xx〉−1
0 . The fluctuations

about x(t) are always relatively small, which justifies the quadratic form even
in the non-linear regime.

In what follows results will be presented in terms of this generic non-linear
thermodynamic force, F (x, t), and also the linear case where F (x, t) = Sx(t).
The time correlation matrices defined above, q̈0(τ), q̇0(τ), and q0(τ), depend
only upon the interval τ and not upon the time t, and so are most consistent
with the linear case (c.f. the formula S = q0(0)−1). They could of course be
redefined in the event that the system is non-linear.

Internal versus External Force

In the case of driven Brownian motion, the external mechanical force, F (x, t),
appeared explicitly. This was justified by saying that it caused an equal and
opposite internal solvent force, and that it was this internal force that changed
the entropy of the solvent. The nett result was that F (x, t)/T ⇒ ∇S(x, t). This
was the instantaneous form for the entropy, and, in the perturbation approxi-
mation, it was simply added to the trajectory entropy of the bare system which
incorporated all the memory effects.

In the present thermodynamic problem, it is most common to specify the
preceding trajectory, x(t′), t′ < t, without being explicit about the external
force that caused this trajectory. The reasons for this will be discussed in the
following paragraph. The generalised Langevin equation below will give the
current velocity that arises from the past positions of the sub-system, without
needing to specify how those past positions came to be. This means that the
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thermodynamic force FTD(x, t) = ∇S(x, t) that appears is to be interpreted as
the additional entropy that has appeared as a result of this implied external
force. Although ∇S(x, t) is the internal entropy gradient and depends upon
the actual trajectory x(t), it nevertheless represents additional entropy in the
system due to the external force. Like the case of Brownian motion, it is the
instantaneous entropy, and all memory effects are contained in the bare system
trajectory entropy.

The reason for avoiding being explicit about the external force that causes
the thermodynamic trajectory x(t′), t′ < t, arises from practical considerations
of the time dependent problem. In the rest of this book, the state of the sub-
system is determined by an external reservoir whose field variables are taken
as the independently specified variables. One might attempt to formulate the
present problem in similar terms, by specifying a time dependent reservoir field
variable or force, λr(t) and calculating the sub-system response λs(t) = Sx(t).
If one were to do this, then one needs the internal sub-system velocity, ẋ0(t) and
the reservoir induced sub-system velocity, ẋ(r)(t), such that the actual velocity
is the sum of these, ẋ(t) = ẋ0(t)+ ẋ(r)(t). One would need some prescription for
the reservoir induced velocity. If one were to naively attempt to maximise the
total trajectory entropy with respect to the reservoir induced velocity without
limitation, then one would obtain the result that the internal thermodynamic
force is equal to the reservoir force at each instant, λs(t) = λr(t). In most real
world problems this result is only correct in the steady state or slowly varying
force limit. More generally, the internal force lags the reservoir force because
there is a limit to the propagation of the reservoir changes through the sub-
system that is more appropriately described by hydrodynamics than by the
single moment description that was used, for example, to describe steady heat
flow. The complications imposed by these practical considerations preclude a
generic treatment of the time dependent reservoir problem.

Maximisation of the Trajectory Entropy

In view of the discussion above, the general perturbation expression for the
trajectory entropy is

S(n)(X(n/j); τ,F) = S
(n)
0 (X(n/j); τ) +

∫ t

0

dt′ ẋ(t′) · ∇S(x(t′), t′)

=
1

2
S

(n)
0 (τ) : X(n/j)X(n/j)+τ ẋ(n/j) · F(n/j)

TD , (10.153)

where the thermodynamic force is FTD(x, t) ≡ ∇S(x, t) = ∂S(x, t)/∂x. This
thermodynamic force differs from the usual force in a mechanical system by a
factor of inverse temperature. This is the time dependent perturbation that is
not contained in the bare equilibrium system.

Differentiating the general expression for the trajectory entropy with respect
to the velocities gives

∂S(n)(X(n/j); τ,F)

∂ẋ(n/j)
= S

(n)
0;ẋẋẋ

(n/j) + S
(n)
0;ẋxxj + τF

(n/j)
TD + O(S2). (10.154)
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This neglects a term τ2[[U (n)]T∇(n)F
(n)
TD]ẋ(n), since ẋ

(n)
is linear in the force.

(The matrix U (n) is upper triangular with ones above the diagonal.) Accord-
ingly, the most likely trajectory is

ẋ
(n/j)

= −[S
(n)
0;ẋẋ]−1S

(n)
0;ẋxxj − τ [S

(n)
0;ẋẋ]−1F

(n/j)
TD

= Q
(n)
0;ẋx[Q

(n)
0;xx]−1xj − τM (n)F

(n/j)
TD . (10.155)

This uses Eq. (10.130) and the memory matrix given in Eq. (10.131), M (n) ≡
[S

(n)
0;ẋẋ]−1. This is essentially the same as the result for Brownian motion,

Eq. (10.48), except that in that case the position dependent term that appears
here vanished, as did the indirect correlation term in the memory function, so
that the latter was exactly the velocity autocorrelation function.

In fluctuation approximation the vector of forces is

F
(n/j)
TD = Sx(n/j). (10.156)

This assumes that the static fluctuation matrix is independent of time. In this
case the static fluctuation matrix is a scalar as far as the trajectory nodes are
concerned, but an N × N matrix as far as the thermodynamic components are
concerned.

Evaluating the most likely trajectory for the terminal velocity one obtains

ẋj = −q̇0(0)Tq0(0)−1xj − τ
n∑

k=1

MkFTD;j−n+k

= −q̇0(0)Tq0(0)−1xj − τ

j∑
k=j−n+1

Mj−k+1FTD;k

= −q̇0(0)Tq0(0)−1xj − τ

j∑
k=j−n+1

Mj−k+1Sxk, (fluc.). (10.157)

One could rewrite the first term using the fact that q̇0(0)T = −q̇0(0). The
continuum version of this is

ẋ(t) = −q̇0(0)Tq0(0)−1x(t) −
∫ t

0

dt′ M(t − t′)FTD(x(t′), t′)

= −q̇0(0)Tq0(0)−1x(t) −
∫ t

0

dt′ M(t − t′)Sx(t′), (fluc.). (10.158)

The equilibrium entropy fluctuation matrix is S = q0(0)−1 = −kB 〈x(t)x(t)〉−1
0 ,

the position velocity correlation function is q̇0(0) = k−1
B 〈x(t)ẋ(t)〉0, and the

memory function given by Eq. (10.133) is

M(t − t′) ≡ −q̈0(t − t′) − q̇0(0)Tq0(0)−1q̇0(t − t′)

= −k−1
B 〈ẋ(t)ẋ(t′)〉0

+ k−1
B 〈ẋ(t)x(t)〉0 〈x(t)x(t)〉−1

0 〈x(t)ẋ(t′)〉0 . (10.159)
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The memory function is short-ranged, M(t) → 0, |t| → ∞ (since for a thermo-
dynamic fluctuation, q̈0(t) → 0 and q̇0(t) → 0, when |t| → ∞), which means that
the integral can be truncated after a fixed interval greater than the relaxation
time.

Non-Terminal Fixed Node

As mentioned above, it is possible to specify the trajectory by the velocities and
the position at any node, say x(t′). In this case the most likely terminal velocity
is

ẋ(t) = −q̇0(t
′ − t)Tq0(0)−1x(t′) −

∫ t

0

dt′′ M(t − t′′; t′)FTD(x(t′′), t′′)

= −q̇0(t
′ − t)Tq0(0)−1x(t′) −

∫ t

0

dt′′ M(t − t′′; t′)Sx(t′′), (fluc.).

(10.160)

The memory function in this case is

M(t − t′′; t′) ≡ −q̈0(t − t′′) − q̇0(t
′ − t)Tq0(0)−1q̇0(t

′ − t′′)

= −k−1
B 〈ẋ(t)ẋ(t′′)〉0

+ k−1
B 〈ẋ(t)x(t′)〉0 〈x(t′)x(t′)〉−1

0 〈x(t′)ẋ(t′′)〉0 .(10.161)

10.6.4 Generalised Langevin Equation

The stochastic dissipative equations of motion that follow are essentially the
same as for Brownian motion, Eq. (10.61),

xj = xj−1 + τẋj−1

ẋj = Rj − q̇0(0)Tq0(0)−1xj − τ

j∑
k=j−n+1

Mj−k+1FTD;k

= Rj − q̇0(0)Tq0(0)−1xj − τ

j∑
k=j−n+1

Mj−k+1Sxk, (fluc.). (10.162)

The first term may be called the random force and the final sum may be called
the dissipative force (although in the mechanical case the k = j term is just the
adiabatic force). The middle term is only non-zero in the mixed parity case.

The random forces have covariance matrix〈
R(n/j)R(n/j)

〉
st

=
〈[

ẋ(n/j) − ẋ
(n/j)

] [
ẋ(n/j) − ẋ

(n/j)
]〉

st

= −kBS
(n)
0;ẋẋ(τ)−1

= −kBM (n). (10.163)
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The covariance matrix is symmetric, M
(n)
iα,jγ = M

(n)
jγ,iα. In the linear case this is

just an average in the bare system,〈
R(n/j)R(n/j)

〉
0

=
〈
ẋ(n/j)ẋ(n/j)

〉
0

= −kBM (n). (10.164)

The fact that the memory function of the equilibrium system gives both the
covariance of the random forces and the dissipative force may be regarded as
the fluctuation dissipation theorem for a system with memory. The probability
distribution of the last n random forces is just the multivariate Gaussian.

The continuum version of the generalised Langevin equation is

ẋ(t) = R(t) − q̇0(0)Tq0(0)−1x(t) −
∫ t

0

dt′ M(t − t′)FTD(x(t′), t′)

= R(t) − q̇0(0)Tq0(0)−1x(t) −
∫ t

0

dt′ M(t − t′)Sx(t′), (fluc.).

(10.165)

The covariance of the random forces is given by the elements of the covariance
matrix

〈R(t)R(0)〉0 = −kBM(t), (10.166)

where the memory function is given by Eq. (10.159). The memory function is
actually an N × N matrix that satisfies M(−t) = M(t)T, which is to say that
Mαγ(−t) = Mγα(t). In the pure parity case this is a symmetric matrix.

The generalised Langevin equation can be rewritten in terms of the time
correlation functions and the random force covariance,

ẋ(t) = R(t) + 〈ẋ(t)x(t)〉0 〈x(t)x(t)〉−1
0 x(t)

−
∫ t

0

dt′ 〈R(t)R(t′)〉0 〈x(t)x(t)〉−1
0 x(t′), (fluc.). (10.167)

This form will facilitate comparison with the generalised Langevin equation that
emerges from the projector operator formalism.

10.7 Projector Operator Formalism

This section presents an introduction to the projector operator approach and
compares the generalised Langevin equation that emerges from that formalism
with the above perturbation result based upon fluctuation theory. The two are
shown to be formally identical when the memory function in the perturbation
theory is written as the covariance of the random force. In so far as the pertur-
bation theory (and the linear response theory) gives an explicit expression for
the memory function in terms of time correlation functions, then it may be said
to go beyond the projector operator formalism.
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Projector operator methods were developed by Zwanzig and by Mori.19 One
aim was to provide a more fundamental justification for the Langevin equation
that proceeds from systematic approximations to molecular level statistical me-
chanics. A second aim was to obtain tractable approximations for the time
correlation functions, with the hope that the memory function has a simpler
structure and is easier to approximate than the time correlation function itself.
Certain formal relationships involving the memory function, such as the fluc-
tuation dissipation theorem with memory, emerge from the projector operator
formalism.

The following account is based upon that given by Zwanzig.20 The focus
is upon getting to the generalised Langevin equation as quickly as possible,
whilst at the same time identifying the similarities and differences between this
approach and the approach taken in the rest of this book.

Let Γ be a point in the phase space of the total system, which is isolated
and therefore evolves by Hamilton’s equations,

Γ̇0
q =

∂H(Γ)

∂Γp
, and Γ̇0

p =
−∂H(Γ)

∂Γq
. (10.168)

For simplicity an equilibrium total system is considered and the total Hamilto-
nian is not explicitly dependent upon time.

The use of an isolated system and adiabatic evolution contrasts with the
treatment in most of this book, where the total system is divided into a sub-
system and a reservoir, and the evolution of the sub-system contains a deter-
ministic Hamiltonian sub-system part, a deterministic dissipative part, and a
stochastic part, the latter two accounting for the reservoir contribution in a
probabilistic fashion. The advantage of the reservoir formalism is that it fo-
cuses on the region of direct interest and treats it in molecular detail, while
accounting for the influence of the ‘far’ part of the system in a gross or prob-
abilistic fashion. The far region is irrelevant but for the fact that it sets the
thermodynamic state of the system of interest and it determines the conditions
at the boundary of the region of direct interest

Let x(Γ) be a dynamical variable, or a set of macroscopic thermodynamic
variables. For simplicity no explicit time dependence is considered. Also for
simplicity its current value will often be written, x(t) ≡ x(Γ0(t|Γ0)), where the
initial point of the trajectory, Γ0 at t = 0, is understood.

Although Γ represents a point in the phase space of the total system, x
can readily represent thermodynamic variables defined on the sub-system of
direct interest. In this case only some of the coordinates of Γ directly affect its
instantaneous value. However all of the coordinates of Γ are required to predict
the evolution of x.

19Zwanzig, R. (1961), in Lectures in Theoretical Physics, (W. E. Britton, B. W. Downs,
and J. Downs, eds), Vol. III, p. 135, (Wiley Interscience, New York). Mori, H. (1965), Progr.
Theor. Phys. 33, 423 and 34, 399.

20Zwanzig, R. (2001), Non-equilibrium Statistical Mechanics, (Oxford University Press,
Oxford).
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The rate of change of x is

ẋ(t) ≡ dx(t)

dt

=

{
Γ̇0

q · ∂

∂Γq
+ Γ̇0

p · ∂

∂Γp

}
x(Γ), Γ ≡ Γ0(t|Γ0)

≡ Lx(Γ). (10.169)

The final equality defines the Liouville operator. For the projector operator
formalism it is essential that the time evolution is given by a linear operator.
This in turn explains why the derivation is given for the total system, because
the Liouville operator only applies to adiabatic equations of motion.

The linearity that enters the projector operator formalism here is the coun-
terpart of the fluctuation formulation of the perturbation theory treated above.
The quadratic form used there leads directly to a thermodynamic force that is
linear in the thermodynamic variable.

The formal operator solution to the evolution of x is

x(t) = etLx(Γ0). (10.170)

This again shows the linear nature of the formulation.
The heart of the projector operator formalism is the existence of an inner

product on phase space. As inner product, the equilibrium time correlation
function is chosen,

(A(t), B(0)) ≡ 〈A(t)B(0)〉0 ≡
∫

dΓ0℘(Γ0)A(Γ(t|Γ0))B(Γ0). (10.171)

One can think of phase space as a vector space, and Γ as the index of the vector.
The weight for the inner product, which is the probability distribution ℘(Γ),

is somewhat problematic. Strictly speaking, since one is dealing with an isolated
system the energy is fixed and one ought to have ℘(Γ) = δ(H(Γ) − E0). This
means that the average is not, for example, a canonical equilibrium average.
However, in a mathematical sense there is nothing to prevent choosing the
initial probability distribution as one likes without being overly concerned with
its physical realisation. One can, for example, choose the Maxwell-Boltzmann
distribution, ℘(Γ) = Z(T )−1 exp−βH(Γ), in which case the inner product is
the same as the canonical equilibrium average. Because Hamilton’s equations
are incompressible, dΓ(t) = dΓ0, the probability density is conserved, ℘(Γ, t) =
℘(Γ0(−t|Γ)). Because energy is conserved on an adiabatic trajectory, this means
that for the Maxwell-Boltzmann distribution, ℘(Γ, t) = ℘(Γ). This is necessary
for time homogeneity, which is invoked in some of the following analysis.

One can use the inner product to project any phase function B(Γ) onto the
sub-space spanned by the thermodynamic variables of interest at t = 0,

PB(t) = 〈B(t)x(0)〉0 〈x(0)x(0)〉−1
0 x(0). (10.172)

The normalisation factor preserves the initial value, Px(0) = x(0). The com-
plement of the projector is 1 − P . Obviously P2 = P and [1 − P ]2 = 1 − P .
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The random force is defined as that part of the evolution that occurs in the
sub-space orthogonal to the initial thermodynamic variable,

R(t) ≡ et(1−P)L(1 − P)Lx(0). (10.173)

Since (1 − P)L is the time derivative operator in the sub-space orthogonal to
x(0), this represents the orthogonal evolution of the thermodynamic variable.
This means that the random force remains orthogonal during its evolution,

〈R(t)x(0)〉0 = 0. (10.174)

The force is random in the sense that it arises from outside the sub-space of
interest, and therefore it is not determined solely by the sub-space of interest.

Following Zwanzig (2001),21 write the Liouville operator as L = PL + (1 −
P)L, and note the operator identity,

etL = et(1−P)L +

∫ t

0

dt′ e(t−t′)LPL et′(1−P)L, (10.175)

which may be verified using repeated differentiation to make a Taylor expansion
about t = 0 of both sides. Now multiply both sides of this by (1 − P)Lx(0) =
ẋ(0) − Pẋ(0). The left-hand side becomes

LHS = etL(1 − P)Lx(0)

= etL
[
ẋ(0) − 〈ẋ(0)x(0)〉0 〈x(0)x(0)〉−1

0 x(0)
]

= ẋ(t) − 〈ẋ(0)x(0)〉0 〈x(0)x(0)〉−1
0 x(t). (10.176)

This is the evolved velocity, less the projected component of the initial velocity
carried in the evolved subspace. With the random force the right-hand side is

RHS = R(t) +

∫ t

0

dt′ e(t−t′)L PLR(t′)

= R(t) +

∫ t

0

dt′ e(t−t′)L 〈LR(t′)x(0)〉0 〈x(0)x(0)〉−1
0 x(0)

= R(t) +

∫ t

0

dt′ 〈LR(t′)x(0)〉0 〈x(0)x(0)〉−1
0 x(t − t′), (10.177)

the final equality following because the time evolution operator commutes with
the time correlation functions, which are independent of Γ.

It is traditional to define a frequency matrix,

iΩ ≡ 〈ẋ(0)x(0)〉0 〈x(0)x(0)〉−1
0 , (10.178)

21who followed Hynes, J. and Deutch, J. (1975), in Physical Chemistry, an Advanced Trea-

tise, edited by H. Eyring, D. Henderson, and W. Jost, Vol. XI, (Academic Press, New York).
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which is the projection of the initial velocity that occurs on the left-hand side,
and a memory or kernel matrix,

K(t) ≡ −〈[LR(t)] x(0)〉0 〈x(0)x(0)〉−1
0

= 〈R(t)Lx(0)〉0 〈x(0)x(0)〉−1
0

= 〈R(t)R(0)〉0 〈x(0)x(0)〉−1
0 , (10.179)

which occurs in the integrand on the right-hand side. The second equality fol-
lows from the time homogeneity of the equilibrium system, Eq. (10.16). The final
equality follows because R(t) lies in the orthogonal sub-space, and therefore only
the orthogonal part of the second term contributes, Lx(0) ⇒ (1 − P)Lx(0) =
R(0). Equating the above left and right-hand sides, inserting these definitions,
and rearranging gives the generalised Langevin equation,

ẋ(t) = R(t) + iΩx(t) −
∫ t

0

dt′ K(t′)x(t − t′)

= R(t) + 〈ẋ(0)x(0)〉0 〈x(0)x(0)〉−1
0 x(t)

−
∫ t

0

dt′′ 〈R(t)R(t′′)〉0 〈x(0)x(0)〉−1
0 x(t′′), (10.180)

where in the second equality the substitution t′′ = t− t′ has been made. It may
be seen that this is identical to the perturbation result, Eq. (10.167).

It should be emphasised that the projector operator formalism leading to
the generalised Langevin equation is formally exact and no approximations have
been made. The physical interpretation of the formalism is another matter. The
definition of the random force as the orthogonal evolution of the original vector
is plausible, although whether or not it is precisely the same as the reservoir force
in the perturbation theory remains to be clarified. Similarly questionable is the
physical basis for the position x(t′′) that appears in the integrand (i.e. how to
relate it in an actual physical problem to a time dependent external mechanical
or thermodynamic force). In the light of the perturbation theory one could

interpret the term 〈x(0)x(0)〉−1
0 x(t′′) as the internal thermodynamic force. It is

not immediately obvious how to extend the projector operator method into the
non-linear regime, whereas in the perturbation theory the non-linear extensions
appear well defined in principle (c.f. the discussion on p. 373).

There has been a deal of effort to develop practical approximations for the
memory function that arises in the projector operator formalism (Hansen and
McDonald, 1986; Zwanzig, 2001; Das, 2004).22 The explicit expression for
the memory function given by the perturbation theory in terms of the time
correlation functions of the unperturbed system, Eq. (10.159), which is the
same as that given by the linear response theory, §10.4, has been shown to
perform well in the case of driven Brownian motion, §§ 10.5 and 10.5.6 above,
and for the regression of fluctuations, §10.6.2. To some extent the two theories
have been used to address different problems: the projector operator method

22Das, S. P. (2004), Rev. Modern Phys. 76, 785.
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has been concerned with obtaining the equilibrium time correlation functions
from simple approximations to the memory function, whereas the perturbation
theory has been concerned with obtaining the behaviour of the non-equilibrium
system using the given equilibrium time correlation functions as the memory
function.

10.8 Harmonic Oscillator Model for the Mem-

ory Function

A particular molecular model for Brownian motion that yields the generalised
Langevin equation and an analytic expression for the memory function, takes
the solvent or heat reservoir to be a collection of harmonic oscillators of arbitrary
frequency and coupling. The model has the virtue of being simple enough that
analytic expressions can be obtained for the time evolution of the Brownian
particle and the various time correlation functions. Its limitations are discussed
as they arise below and in the concluding paragraphs of this section.

The harmonic oscillator model of the heat reservoir for Brownian motion
has come to be called the Caldeira-Leggett model after its use by these authors
to describe quantum tunnelling with dissipation.23 However, a deal of work
with the model, both in quantum dissipation and in classical Brownian motion,
predates this.24 Useful summaries of the model may be found in Zwanzig (2001)
and Pottier (2010).

In the model, the Brownian particle has position x, momentum p, and mass
m0, and experiences a time dependent external potential U(x, t). The solvent
or heat reservoir consists of particles with position xn, momentum pn, and mass
mn, with n = 1, 2, . . . For simplicity the one-dimensional case is considered, and
the coordinates are collectively denoted X. The Hamiltonian is

H(X, t) =
p2

2m0
+U(x, t)+

∑
n

{
p2

n

2mn
+

mnω2
n

2

[
xn − cn

mnω2
n

x

]2}
. (10.181)

An essential feature of the model is that the coupling between the particle and
the reservoir is bilinear in the positions, with terms of the form −cnxxn. Hence
cn measures the strength of the coupling with the nth oscillator, which has
frequency ωn. Note that even in the absence of the external potential, the term
x2
∑

n c2
n/2mnω2

n, acts as a parabolic trap pinning the Brownian particle about
the origin. It is emphasised that this is the Hamiltonian of the total system and
it completely determines the evolution.

The interaction between the particle and the reservoir depends only upon
the distances xn(t) − x(t) (as can be seen by rearranging the Hamiltonian),
even as the Brownian particle moves through the solvent. This means that the
oscillators of the reservoir do not represent physical solvent molecules. Rather

23Caldeira, A. O. and Leggett, A. J. (1983), Ann. Phys. 149, 374.
24Senitzky, I. R. (1960) Phys. Rev. 119, 670. Ford, G. W., Kac, M., and Mazur, P. (1965)

J. Math. Phys. 6, 504. Ullersma, P. (1966), Physica 32, 27, 56, 74, and 90.
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they represent modes of interaction with the surroundings or effective statisti-
cal entities. Because these modes are effective quantities rather than physical
oscillators, the masses mn (and the momenta pn), should not be taken overly
literally. It is often convenient to set all the oscillator masses equal to the same
value.

10.8.1 Generalised Langevin Equation

The equations of motion for the Brownian particle are

dx

dt
=

p

m0
, and

dp

dt
= F (x, t) +

∑
n

cn

[
xn − cn

mnω2
n

x

]
, (10.182)

where the external force is F (x, t) = −∂U(x, t)/∂x. Those for the solvent par-
ticles are

dxn

dt
=

pn

mn
, and

dpn

dt
= −mnω2

nxn + cnx. (10.183)

The equations of motion of the solvent can be solved in terms of the trajectory
of the Brownian particle up to the present time and the initial configuration at
time t0,

xn(t) = xn(t0) cos(ωn(t − t0)) +
pn(t0)

mnωn
sin(ωn(t − t0))

+ cn

∫ t

t0

dt′
sin(ωn(t − t′))

mnωn
x(t′). (10.184)

Integrating by parts, this may be rearranged as

xn(t) − cn

mnω2
n

x(t)

=

[
xn(t0) −

cn

mnω2
n

x(t0)

]
cos(ωn(t − t0)) +

pn(t0)

mnωn
sin(ωn(t − t0))

− cn

∫ t

t0

dt′
cos(ωn(t − t′))

m0mnω2
n

p(t′). (10.185)

The right-hand side of this depends only upon the initial configuration of the
reservoir and the past trajectory of the Brownian particle. Using this, the
equation of motion for the acceleration of the particle can be written in the
form of the generalised Langevin equation,

dp(t)

dt
= F (x(t), t) +

∑
n

cn

[
xn(t) − cn

mnω2
n

x(t)

]

= F (x(t), t) + R(t) −
∫ t

t0

dt′K(t − t′)
p(t′)

m0
. (10.186)
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The memory function that appears here has the explicit microscopic represen-
tation,

K(t) ≡
∑

n

c2
n

mnω2
n

cosωnt. (10.187)

It is conventional to display the factor of m0 explicitly in the integrand even
though it could be incorporated into the definition of the memory function. The
random force is defined as

R(t) ≡
∑

n

cn

[
xn(t0) −

cn

mnω2
n

x(t0)

]
cos(ωn(t − t0))

+
∑

n

cnpn(t0)

mnωn
sin(ωn(t − t0)). (10.188)

The force is random in the sense that it depends upon the initial configuration
of the reservoir, but not upon the current coordinates of the Brownian particle.

The random force is the sum of a large number of independent terms, and
hence by the central limit theorem it is Gaussian distributed.25 The distribu-
tion is therefore characterised by its first and second moments. Although one is
dealing with a single isolated system that evolves adiabatically, one may never-
theless specify how the initial configuration is determined. It particular, it can
be drawn randomly according to a specified law. If the initial distribution is
Maxwell-Boltzmann,

℘(X, t0) =
1

Z(t0)
exp[−H(X, t0)/kBT ], (10.189)

then it is a Gaussian in the variables xn(t0)− cnx(t0)/mnω2
n and pn(t0). Hence

their first moments vanish,〈
xn(t0) −

cn

mnω2
n

x(t0)

〉
0

= 0, and 〈pn(t0)〉0 = 0, n = 1, 2, . . . (10.190)

These hold irrespective of the external potential, U(x, t0). It should be noted
that without loss of generality one can shift the origin so that the initial external
potential is such that 〈x(t0)〉0 = 0, but this is not required here. Because the
random force at time t is a linear combination of these initial first moments,
then 〈R(t)〉0 = 0. The second moments are〈[

xn(t0) −
cn

mnω2
n

x(t0)

]2〉
0

=
kBT

mnω2
n

, n = 1, 2, . . . , (10.191)

and 〈
pn(t0)

2
〉
0

= mnkBT, n = 1, 2, . . . (10.192)

25In fact, for the Maxwell-Boltzmann distribution that is about to be invoked, the individual
terms are Gaussian distributed. In this case the Gaussian distribution for the random force
holds irrespective of the number of modes.
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Since there is no correlation between different modes one has

〈R(t)R(t′)〉0 =
∑
n

kBTc2
n

mnω2
n

cos(ωn(t − t0)) cos(ωn(t′ − t0))

+
∑
n

kBTc2
n

mnω2
n

sin(ωn(t − t0)) sin(ωn(t′ − t0))

=
∑

n

kBTc2
n

mnω2
n

cos(ωn(t − t′))

= kBTK(t − t′). (10.193)

That the covariance of the random force is related to the memory function is
the generalised fluctuation dissipation theorem.

The use of the Maxwell-Boltzmann distribution as the initial distribution
is another limitation of the model. It is generally chosen for three reasons:
it is simple, it is familiar, and it leads directly to the generalised fluctuation
dissipation theorem. In the case that the external potential is not explicitly de-
pendent on time for t < t0, then it is indeed the correct probability distribution.
More generally, however, the non-equilibrium probability distribution ought to
be invoked.

The memory function is a functional of the distribution of mode frequencies
and the strength of the couplings. This represents a further weakness of the
model in that it is unclear how to go from a real physical system to a specific
distribution of modes and couplings, and hence to the memory function of the
physical system.

Because the spectrum of oscillators is divorced from the physical nature of
the reservoir, the focus tends to shift to the memory function itself. One often
chooses a distribution of modes to give a desired memory function. For example,
in the continuum limit the sum over modes can be replaced by an integral over
ω, with mode density g(ω), so that the memory function becomes

K(t) ≡
∫ ∞

0

dω g(ω)
c(ω)2

m(ω)ω2
cosωt. (10.194)

Hence the memory function is essentially a Fourier transform of the mode cou-
pling distribution. The general results given in §10.3.5 relate the memory func-
tion to the velocity autocorrelation function.

The choice of a Lorentzian,

g(ω)c(ω)2

m(ω)ω2
=

2γ

π [ω2 + ω2
c ]

, (10.195)

gives an exponentially decaying memory function,

K(t) = γωce
−ωc|t|. (10.196)

This shows that the cut-off for the modes, ωc, gives the inverse of the relaxation
time, which tells how far back the system remembers.
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In the limit of infinitely short relaxation time, ωc → ∞, the mode coupling
distribution becomes constant, and the memory function becomes a δ-function,

g(ω)c(ω)2

m(ω)ω2
→ 2γ

πω2
c

, K(t) → 2γδ(t), ωc → ∞. (10.197)

In this limit the system is Markovian (i.e. it has no memory), and the generalised
Langevin equation reduces to the usual Langevin equation without memory,
with γ being the usual friction coefficient.

10.8.2 Modified Random Force

A slightly different formulation of the random force illustrates an interesting
connection with the perturbation theory given above. That part of the random
force that depends upon the initial position x(t0) of the Brownian particle can
be written −x(t0)

∑
n(c2

n/mnω2
n) cos(ωn(t − t0)) = −K(t − t0)x(t0). Hence the

generalised Langevin equation can be written in the form,

dp(t)

dt
= F (x(t), t)−K(t− t0)x(t0) + R̃(t)−

∫ t

t0

dt′K(t− t′)
p(t′)

m0
, (10.198)

with the memory function being as given above and the random force now being
defined as

R̃(t) ≡
∑

n

cnxn(t0) cos(ωn(t− t0)) +
∑

n

cnpn(t0)

mnωn
sin(ωn(t− t0)). (10.199)

In view of this, one can define a modified Hamiltonian,

H̃(X, t) =
p2

2m0
+ U(x, t) +

∑
n

{
p2

n

2mn
+

mnω2
n

2
x2

n

}
, (10.200)

which has no coupling between the Brownian particle and the reservoir. The
initial probability distribution can be taken to be the Boltzmann factor of this
uncoupled Hamiltonian, ℘̃(X, t0) = Z(t0)

−1 exp−H̃(X, t) /kBT . Obviously the
reason for doing this is to make the initial distribution a Gaussian in the vari-
ables that now define the random force. The averages are taken over this modi-
fied initial distribution. With this, all of the above analysis remains unchanged
and the generalised fluctuation dissipation theorem holds for the modified ran-
dom force,〈

R̃(t)R̃(t′)
〉

0̃
= kBTK(t− t′). (10.201)

The memory function remains unchanged in this modified analysis. The initial
probability distribution is arguably physical if the coupling between the particle
and the reservoir could somehow be turned on only for t ≥ t0.

This particular digression shows that by altering the definition of the random
force, the generalised Langevin equation can be altered to explicitly show a
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term dependent on the initial position of the particle. This is reminiscent of the
discussion of the choice of the position in the definition of the trajectory in the
perturbation theory (c.f. §10.6.2 and also p. 377). In the perturbation theory,
the memory function depended upon the choice of the position that was used to
fix the trajectory, whereas in the present harmonic oscillator model the memory
function is unchanged when the initial position is removed from the definition
of the random force.

10.8.3 Discussion

As mentioned at the beginning of this section, the chief merit of the harmonic
oscillator model for the interaction of the Brownian particle and the reservoir
is that it has analytic solutions that explicitly yield the generalised Langevin
equation and an analytic expression for the memory function. The distribu-
tion of the frequencies and couplings between the particle and the reservoir is
arbitrary, which is both a strength—analytic solutions can be obtained in the
generic case—and a weakness—results may correspond to distributions that in-
advertently violate fundamental statistical requirements. Likewise the fact that
the averages can be taken over an arbitrary initial probability distribution is a
mixed blessing: on the one hand one can use an equilibrium distribution such as
the Maxwell-Boltzmann distribution, which is both familiar and simple, but on
the other hand one ought to use arguably the proper non-equilibrium probability
distribution, which is not given directly by the model. Finally, in the harmonic
oscillator model, the force between the reservoir and the particle is always lin-
ear in the distance between the particle and the centre of each oscillator of the
reservoir, no matter where the particle moves. Under such circumstances the
oscillators must be regarded as effective statistical entities rather than physical
solvent particles, and this creates challenges in the quantitative application of
the model to actual physical systems.



Chapter 11

Non-Equilibrium Computer

Simulation Algorithms

Molecular level computer simulations have revolutionised statistical mechanics
over the past several decades. One can identify three generic contributions:
they have provided insight into the molecular mechanisms that cause observed
phenomena, they have been used to establish benchmark results to test quanti-
tatively approximation schemes and to verify hypotheses of a more fundamental
thermodynamic or statistical mechanical nature, and they have enabled predic-
tions to be made of the behaviour of systems in a more timely and cost effective
manner than can be achieved in a laboratory or in regimes that might be dan-
gerous or impossible to explore in the real world.

The essential requirement of computer simulations is that they generate
exact results for the molecular model chosen. Issues such as the statistical
accuracy of the results, or the influence of the finite size of the system can be
addressed by systematically increasing the size of the simulation. The reality of
the molecular model can also, in principle, be dealt with by either comparison
with experiment or by quantum calculations of molecular interactions. Beyond
these there remains the simulation algorithm itself, and if this is not formally
exact, then most of the benefits of computer simulation summarised in the
preceding paragraph are lost.

This is a major problem in the simulation of time dependent systems, where
most of the results that have been generated to date have been obtained with
algorithms that have been developed for equilibrium systems. For example,
many molecular dynamics simulations use thermostats that are based upon the
Maxwell-Boltzmann probability distribution. In other cases, artificial equations
of motion have been invoked to yield certain non-equilibrium flows, whilst sac-
rificing fundamental thermodynamic requirements. What is known is that such
algorithms are not exact; what is unknown is the degree to which the equilib-
rium assumption or the artificial equations of motion affect the results. It is
unfortunate that many non-equilibrium simulations are accepted uncritically,
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as though they were as reliable as simulations of equilibrium systems.
There are two main simulation techniques for equilibrium systems: Monte

Carlo and molecular dynamics. The Monte Carlo algorithm is based upon a
transition probability that has as the stationary solution the equilibrium prob-
ability distribution, either the Maxwell-Boltzmann distribution in the case of a
temperature reservoir, or else the related Gibbs distributions in the case of pres-
sure or chemical potential reservoirs. The obvious analogue for time dependent
systems is to develop an algorithm that preserves the non-equilibrium probabil-
ity distribution as derived in Ch. 8. Because these probability distributions are
of relatively recent discovery, there have been few attempts to use Monte Carlo
techniques for non-equilibrium problems (apart from some studies that naively
invoke the Maxwell-Boltzmann distribution using the instantaneous value of the
potential).

In contrast there have been many simulations of time dependent systems
using molecular dynamics, probably because even equilibrium molecular dy-
namics invokes time explicitly in the equations of motion. Consequently these
have been applied unchanged, with little thought and no foundation, to non-
equilibrium mechanical systems in which the potential varies explicitly with
time. However even in equilibrium molecular dynamics there is the issue of
the thermostat to consider, and the problem is potentially exacerbated in the
non-equilibrium situation where there may be no real reason to suppose that
the temperature of the system is constant, or that it is uniform in the region
of work, or that the statistical effects of an artificial thermostat are negligible.
Often, for example, constraints are introduced into the equations of motion to
hold the kinetic energy constant. But since this fails even in the equilibrium
case (the Maxwell-Boltzmann distribution is not stationary), an isokinetic ther-
mostat also produces spurious results in the non-equilibrium case. The problem
for non-equilibrium molecular dynamics is in essence no different to that for
non-equilibrium Monte Carlo: whichever thermostatted equations of motion are
invoked one must guarantee that they correspond to the correct non-equilibrium
probability distribution.

A third simulation technique that has been applied to non-equilibrium sys-
tems is Brownian dynamics. This is really an approximation, at the same level
as the perturbation theory of Ch. 10, which is suited to complex heteroge-
neous non-equilibrium systems. Because of the great range of time scales due
to the presence of both molecular and macroscopic components, these may be
intractable for an exact simulation. Such systems may be practically important
in laboratory, technological, or industrial applications, and a more pragmatic
approach can be justified compared with, for example, the benchmark results
that are sought from simulations of simple systems.

This chapter is divided into three sections, one for each of the three simula-
tion techniques, with most emphasis placed on molecular dynamics, §11.1, and
Monte Carlo, §11.2. For each of these, both equilibrium and non-equilibrium al-
gorithms are given, as well as numerical results for a mechanical non-equilibrium
system (driven Brownian motion), and for a thermodynamic non-equilibrium
system (steady heat flow). These sections are concerned more with applications
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and results than with foundations or fundamental principles. Because these
non-equilibrium simulation algorithms are relatively recent, the focus here is
mostly on the recipes for implementing the algorithms, the details of actual
computations, and the tests and comparisons of the simulation results. The
final section of this chapter, §11.3, reviews the Brownian dynamics simulation
technique. Some speculation on systematically improving the Brownian dynam-
ics algorithm via a perturbation expansion is offered in §11.3.2.

11.1 Stochastic Molecular Dynamics

11.1.1 Equilibrium Systems

At the simplest level, one might attempt to simulate an equilibrium system by
discretising Hamilton’s equations of motion and stepping along a trajectory of
the system,

qiα(t + Δt) = qiα(t) + Δtpiα(t)/m,

piα(t + Δt) = piα(t) + ΔtFiα(t). (11.1)

These are the adiabatic equations of motion. Here one considers a total isolated
system of N identical atoms, labelled i = 1, 2, . . . , N , in three-dimensional space,
α = x, y, or z, with kinetic energy K(Γ) =

∑
iα p2

iα/2m, momentum piα =
mq̇iα, and force that is the derivative of the potential, Fiα(Γ) = −∂U(Γ)/∂qiα.
Generalisations of this include mixtures, where the species have different masses
and interaction forces, and molecular systems, where the orientation and angular
momentum have to be included in the phase space coordinates.

In the simplest case the potential is the sum of central pair-wise interactions,

U(Γ) =
∑
i<j

u(qij), qij = |qi − qj| , (11.2)

in which case the force is

Fiα(Γ) = −
N∑

j=1

(j �=i) u′(qij)
qiα − qjα

qij
. (11.3)

Inhomogeneous systems can be modelled by invoking in addition a singlet po-
tential,

∑
i u(1)(qi), and in such cases the pair potential might not be central.

Less commonly, triplet,
∑

i<j<k u(3)(qi,qj ,qk), and high order many body po-
tentials can be invoked. For macromolecular systems, one might distinguish
between the intra- and the inter-molecular potentials.

For an isolated system, Hamilton’s equations of motion conserve the total
energy, Ḣ(Γ) = 0. However the discretised equations of motion given above are
only exact to O(Δt), and one finds in practice that, due to the accumulation
of errors, the energy increases more or less monotonically at a rate dependent
upon the size of the time step. The reason that the energy increases is that
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entropy increases with energy, and so random numerical errors tend to find high
energy states rather than low energy states.

One partial solution to the problem is to use higher-order equations of mo-
tion, which reduce the error in each step (or else allow a larger time step for a
given error). The simplest such formula is the central difference formula, which
exploits the time reversibility of Hamilton’s equations. By taking the difference
of the time step expressions for qiα(t ± Δt) (and changing t ⇒ t − Δt), and
piα(t ± Δt), one obtains the Verlet leap frog algorithm,1

qiα(t) = qiα(t − 2Δt) + 2Δtpiα(t − Δt)/m,

piα(t + Δt) = piα(t − Δt) + 2ΔtFiα(t). (11.4)

Since the even terms vanish, these are exact to O(Δ2
t ). Higher-order Gear

predictor corrector algorithms are also used.2 The main reason for using such
higher-order algorithms is that they enable a larger time step to be used, which
allows a larger region of phase space to be covered in a given amount of computer
time. This in turn leads to more reliable statistical averages for two reasons:
first, more representative regions of phase space are likely to be visited, and sec-
ond, since adjacent points on a trajectory are highly correlated, and correlated
points add no new information to averages, the number of distinct contributions
to an average increases with the length of the time step.

Whilst such higher-order algorithms have benefits in terms of statistical effi-
ciency, the inevitable energy (equivalently temperature) increase is only delayed,
not prevented. For this reason almost all equilibrium molecular dynamics sim-
ulations invoke some form of thermostat that keeps the temperature constant.
The rationale or physical interpretation of adding a thermostat to Hamilton’s
equations of motion is that the simulations represent a canonical equilibrium
system. Under such an interpretation not all thermostats are acceptable. In
fact since the discrete equations of motion represent a transition from one mi-
crostate of the sub-system to another, then they must be a manifestation of the
transition probability for the canonical equilibrium system. This determines the
nature and the specific form of the thermostat that can be used.

At a minimum the thermostat must ensure that the equilibrium probability
distribution, the Maxwell-Boltzmann distribution, is stationary. Some ther-
mostats commonly in use, such as velocity rescaling and isokinetic (constant
kinetic energy) thermostats, fail this criterion.

Another essential requirement of the thermostat is that it should contain
a stochastic element. This requirement stems from the fact that the non-
Hamiltonian terms in the equations of motion represent the interactions be-
tween the sub-system and the thermal reservoir, with the reservoir coordinates
projected out. As discussed in §1.3.4, such projection operations are the origin
of randomness in classical mechanics, since the future behaviour is not uniquely
determined by the current phase space point of the sub-system alone. Implicit

1Verlet, L. (1967), Phys. Rev. 159, 98.
2Allen, M. P. and Tildesley, D. J. (1987), Computer Simulations of Liquids, (Oxford Uni-

versity Press, Oxford).



11.1. Stochastic Molecular Dynamics 393

in the idea that the thermostat represents the hidden interactions between the
sub-system and the reservoir is that it must also contain dissipative elements,
and that these must be related by the equilibrium fluctuation dissipation theo-
rem, as discussed next. (This is another reason that the isokinetic thermostat is
unrealistic: as a purely deterministic thermostat it includes dissipation without
fluctuation.)

Although they don’t explicitly address the fluctuation dissipation theorem,
there are three equilibrium stochastic thermostats worth mentioning because
they preserve the Maxwell-Boltzmann distribution. One such thermostat is the
Nosé-Hoover thermostat.3 This is a deterministic thermostat in an extended
system that preserves the canonical equilibrium probability distribution. This
thermostat is stochastic in the sense that the evolution of the sub-system is
not determined by the phase space of the sub-system alone. This is particularly
true for the Nosé-Hoover chain thermostat, where the randomness increases with
the links in the chain. A second stochastic algorithm proceeds by replacing a
randomly selected particle’s velocity by one chosen from a Maxwell distribu-
tion.4 Such replacement is made after a number of Hamiltonian (adiabatic)
time steps. This ensures that the probability distribution of the simulation is
the Maxwell-Boltzmann distribution. A third equilibrium molecular dynamics
algorithm invokes a transition probability for each atom at each time step in
addition to the adiabatic motion.5 This method has also been applied to grand
canonical (constant chemical potential, varying particle number) simulations.

Stochastic Thermostat

In fact, the stochastic dissipative equations of motion for the canonical equilib-
rium transition probability were given in Ch. 7, and in §7.4.5 it was shown that
the Maxwell-Boltzmann distribution was stationary under their action. In the
present notation, Eq. (7.86) reads

qiα(t + Δt) = qiα(t) + Δtpiα(t)/m,

piα(t + Δt) = piα(t) + ΔtFiα(t) − σ

2mkBT
piα(t) + R̃iα(t). (11.5)

This holds for positive or negative values of the time step. The momentum
equation has the form of a simple Langevin equation, with the dissipative force,
Riα(t) = −σpiα(t)/2mkBT , being of the form of a drag or friction force, and

the random force, R̃iα(t), having mean zero and variance σ,
〈
R̃iα(t)R̃jγ(t)

〉
=

σδijδαγ . The two are related by the equilibrium fluctuation dissipation theorem.
The variance σ can be chosen arbitrarily, with the proviso that it be of the same

3Nosé, S. (1984), Mol. Phys. 52, 255. Hoover, W. G. (1985), Phys. Rev. A 31, 1695.
Tuckerman, M. E. and Martyna, G. J. (2000), J. Phys. Chem. B 104, 159.

4Andersen, H. C. (1980), J. Chem. Phys. 72, 2384. Haile, J. M. and Gupta, S. (1983), J.
Chem. Phys. 79, 3067. Andrea, T. A., Swope, W. C., and Anderson, H. C. (1983), J. Chem.
Phys. 79, 4576. Heyes, D. M. (1983), J. Chem. Phys. 82, 285.

5Attard, P. (2002b), J. Chem. Phys. 116, 9616. Boinepalli, S. and Attard, P. (2003), J.
Chem. Phys. 119, 12769.



394 11. Non-Equilibrium Computer Simulation Algorithms

order as the time step, since the equations of motion are predicated upon an
expansion in Δt and σ. It is important to note that the dissipative force does
not depend upon the sign of the time step. There is no memory for the random
force.

With these equations of motion, the change in energy in a time step is

ΔH(Γ) =
∑
iα

[
−σ

2mkBT
piα(t) + R̃iα(t)

]
piα(t)

m
+

1

2m

∑
iα

R̃iα(t)2

=
−σ

2m2kBT

∑
iα

piα(t)2 +
3Nσ

2m

=
3Nσ

2m

[
1 − T (Γ)

T

]
. (11.6)

Terms O(Δ2
t , Δtσ, σ2) have been neglected here. The second equality follows

after averaging over the random force. In view of the equipartition theo-
rem, the kinetic temperature has been defined as T (Γ) ≡ 2K(Γ)/3NkB =∑

iα piα(t)2/3NmkB. From this one sees how the stochastic thermostat works:
on average the energy of the sub-system decreases when the kinetic temperature
is higher than the reservoir temperature, and vice versa.

One way to develop second-order equations of motion is to symmetrise the
adiabatic and dissipative forces with respect to t and t + Δt. That is

qiα(t + Δt) = qiα(t) +
Δt

2m
[piα(t) + piα(t + Δt)] (11.7)

= qiα(t) +
Δt

m
piα(t) +

Δ2
t

2m
Fiα(t) − Δtσ

4mkBT
piα(t) +

Δt

2m
R̃iα(t),

and

piα(t + Δt) = piα(t) +
Δt

2
[Fiα(t) + Fiα(t + Δt)]

− σ

4mkBT
[piα(t) + piα(t + Δt)] + R̃iα(t) (11.8)

=
1 − s

1 + s
piα(t) +

Δt

2[1 + s]
[Fiα(t) + Fiα(t + Δt)] +

1

[1 + s]
R̃iα(t),

where s ≡ σ/4mkBT . Note that it is R̃iα(t), the random force of zero mean and
variance σ, that appears here. The intention with this reformulation is to allow
a larger time step than otherwise to be taken.

It would appear that for the physical realisation of canonical equilibrium
systems there is only one acceptable form for the equations of motion, and that
is the form given here. First, the reservoir formalism necessitates some form
of stochastic equations, and these must appear as non-Hamiltonian terms in
the equations of motion for the sub-system. Conversely, any equations of mo-
tion that contain non-Hamiltonian terms must arise from interactions with the
reservoir, and such interactions are necessarily dissipative and stochastic. Sec-
ond, the transition probability (and consequently the random force distribution)
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must be Gaussian (i.e. the second entropy must be a quadratic form), because
it is the sum of a large number of independent, random reservoir perturbations.
Third, maximisation of the second entropy leads uniquely to the dissipative
force having the drag or friction form, with the friction coefficient being equal
to the variance of the random force.

Equilibration

The point in phase space chosen for the start of the trajectory requires some
discussion. If the initial point is chosen ‘at random’, by which is meant without
regard to the proper equilibrium probability distribution, then one ought to
observe an equilibration phase during which the system evolves into a likely
equilibrium state, and during which variables should not be accumulated for
averaging. The duration of the equilibration phase is often a matter of trial
and error and experience. The signature of equilibration is often a more or less
monotonic change in thermodynamic variables such as the kinetic temperature,
energy, or pressure, the latter often being the most sensitive.

Alternatively, one might choose the initial point according to the appropri-
ate equilibrium probability distribution. If this is done well, then no further
equilibration is required for the molecular dynamics trajectory. The Metropolis
algorithm, which is discussed in the Monte Carlo section below, §11.2.1, gener-
ates points chosen from the equilibrium probability distribution. However even
in this algorithm a sequence of points needs to be generated before the system
equilibrates. The Monte Carlo method offers the opportunity to optimise the
rate of equilibration, particularly because one is not constrained to use a small
time step to the same extent that one is in the molecular dynamics method.
From the point of view of ease of programming, a not insignificant considera-
tion, one is probably best advised to use the same method for equilibration as
for collecting averages.

11.1.2 Mechanical Non-Equilibrium System

The stochastic molecular dynamics algorithm is readily extended to a mechan-
ical non-equilibrium system. In such cases the Hamiltonian is explicitly time
dependent, H(Γ, t) = K(Γp) + U(Γq, t). It is often the case that the time
dependent part of the potential is an external potential that is added to the
pre-existing time independent intermolecular potential, and it may act on all
the atoms of the system, or on a particular sub-set, as in driven Brownian mo-
tion that will be treated next. The equations of motion are formally the same
as given above in the equilibrium case, Eq. (11.5), except that now the force
is Fiα(t) = −∂U(Γq, t)/∂qiα. The equations give the evolution of a sub-system
that can exchange energy with a thermal reservoir of temperature T .

One of the major aims of simulations is to obtain the average value of a phase
function, 〈f(Γ, t)〉. This is relatively straightforward in the case of a harmonic
(i.e. periodic in time) system, such as the driven Brownian particle treated next,
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or in the steady state case, such as heat flow, treated below. However in the
general non-equilibrium case it can be a challenge.

One way of proceeding is to generate M trajectories, which at time t yield
M points in phase space, Γ1(t),Γ2(t), . . . ,ΓM (t), where ΓI (t) ≡ Γ(t|ΓI,0, t0),
ΓI,0 being the initial point of the Ith trajectory. Provided that the system is
equilibrated by time t (i.e. either the current time is sufficiently long after the
start of the trajectories for the stochastic dissipative equations of motion to
have converged on the correct non-equilibrium probability at the current time,
or else the initial point of each trajectory has been chosen from the correct
non-equilibrium probability distribution at the initial time), then the average is

〈f(Γ, t)〉 =
1

M

M∑
I=1

f(ΓI (t), t). (11.9)

11.1.3 Driven Brownian Motion

The stochastic molecular dynamics algorithm and results will now be given for a
Brownian particle in a moving potential trap, which is the same model as treated
analytically in Ch. 3, and used to test the perturbation theory in Ch. 10.

System Details

The sub-system consisted of one solute atom, the Brownian particle, and 1000
solvent atoms. A soft sphere pair potential was used for the interactions between
the solvents, and between the solute and solvent,

uαγ(r) =

{
[dαγ/r]12, r ≤ Rcut

αγ ,

0, r > Rcut
αγ .

(11.10)

The solvent had a mass m1 = 1, a length scale d11 = 0.5, and a potential cut-off
of Rcut

11 = 1.2. The solute had a mass m0 = 10, the solute-solvent length scale
was d10 = 2.25, and solute-solvent cut-off was Rcut

10 = 5.2. The temperature was
3 in these units.

As in the earlier chapters, a one-dimensional parabolic potential along the
x-axis was applied to the solute, with its minimum in oscillatory motion along
that axis,

U(x, t) = κ[x − b(t)]2/2, (11.11)

with κ = 16.81, and the location of the trap being b(t) = B cosωt. This
potential was applied to the solute alone, and x is the solute position. Unless
stated otherwise, the amplitude of oscillation was B = 2.5.

Periodic boundary conditions were used to simulate a bulk system. A cube
of edge length 11.31 was used, and the solvent density was 0.69. A spatial
neighbour table with cubic cells of side length ≈ 0.6 was used, which is about
three times more efficient than the more common spatial neighbour table that
uses Rcut as the size of the neighbour cells.
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Results were obtained for a range of frequencies, ω ∈ [0.1, 1.5]. One simu-
lation was carried out for each radial frequency, with typically 300 oscillation
cycles being simulated each time. The time step was Δt = 10−3, so that the
simulation ran for ≈ 2 × 106/ω times steps. The variance was set at σ = 10−3

for both the solvent and the solute. The second-order equations of motion,
Eqs. (11.7) and (11.8), were used. A cycle (i.e. a period 2π/ω) was divided into
20 nodes, and the position and velocity of the solute was accumulated for aver-
aging at each node. At the conclusion of the simulation, these data were fitted
in a least squares sense using x(t) = A cos[ωt + φ] and ẋ(t) = −Aω sin[ωt + φ],
where φ is the phase lag, and A is the oscillation amplitude. The simulation was
broken into 10 blocks, and 10 independent fits were made. From the fluctuation
in these, the standard error on the mean was estimated.

Notice that this method of collecting averages for the present harmonic sys-
tem is somewhat simpler than in the most general non-equilibrium case discussed
in the preceding subsection, §11.1.2. In the present case one simply generates
a single trajectory, and after an initial equilibration period, one accumulates
averages each time the system passes through the particular point in the drive
cycle that one is interested in. The number of drive cycles in the total trajectory
determines the number of points that contribute to each average and hence the
statistical accuracy.

Results

The relative response of the Brownian particle to the driving potential is shown
in Fig. 11.1. The results of the present stochastic molecular dynamics algorithm
(Attard, 2009a) are compared with conventional Nosé-Hoover simulations that
employ a chain thermostat, which ensures the stationarity of the equilibrium
Maxwell-Boltzmann distribution for the instantaneous value of the Hamiltonian,
(Attard and Gray-Weale, 2008). There is good agreement between the two
simulation methods, which is perhaps a little surprising considering that one is
an equilibrium method and the other is a non-equilibrium method. Possibly
the reason is that the ratio of solvent to solute is 1000:1, and the solvent,
which is treated explicitly in both methods, acts as a thermal reservoir (in
addition to the thermal reservoir that is represented implicitly by the respective
thermostats). It would be interesting to systematically decrease the solvent
solute ratio with a view to quantifying the extent to which the two simulation
methods are insensitive to the system size. After all, one of the motivations and
a rationale for the reservoir formalism is that it focuses on the sub-system of
interest, which reduces the computational effort required. Presumably, since the
non-equilibrium algorithm specifically accounts for the non-equilibrium effects
of the reservoir, it does not require as much solvent. (Both methods require some
solvent in order to produce the generalised diffusion constant for the particle.)

One might expect that the response ratio, A/B, would be less than one,
but both simulation methods show that this is slightly greater than one at low
frequencies. The matter is not resolved unambiguously by the data, because
low frequencies are the most challenging to simulate, and although the effect is
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Figure 11.1: Relative amplitude of the driven Brownian particle in a soft sphere
solvent. The crosses (B = 2.5) and plus symbols (B = 5) are non-equilibrium
stochastic molecular dynamics simulations, [Attard, P. (2009a), J. Chem. Phys.
130, 194113]. The circles (B = 2.5) and triangles (B = 5) are molecular
dynamics simulations with equilibrium Nosé-Hoover chain thermostat, [Attard,
P. and Gray-Weale, A. (2008), J. Chem. Phys. 128, 114509]. The line is a guide
to the eye. The error bars are in total twice the standard error on the mean,
and are in most cases smaller than the symbols.

larger than the estimated statistical error, one cannot rule out systematic effects
such as those due to the finite size of the system. It can be seen that after the
initial slight increase in the ratio from unity at ω = 0, the response amplitude
decreases with further increase in frequency.

The diffusion constant that corresponds to this solvent solute combination
has memory. This can be seen from the departure from the Langevin equation
with D = 0.105, shown by the data in Figs 10.3 and 10.4 on pp. 362 and 363.
The macroscopic description embodied in the Langevin equation with constant
transport coefficient assumes Markovian behavior, which has limited validity
in this case. The equations of motion in the present phase space molecular
dynamics simulations are Markovian, but they yield non-Markovian behavior
when projected onto the macroscopic solute coordinate space.

Increasing the amplitude by a factor of two, from B = 2.5 (circles and
crosses) to B = 5 (triangles and plusses), tended to slightly decrease the relative
response amplitude. The relative fluctuations shown in Fig. 3.3 on p. 73, for
ω = 0.7 and B = 2.5, show a hint of systematic departure from unity over
the period of oscillation, which also suggests non-linear corrections. These are
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Figure 11.2: Phase lag of the driven solute. As in the preceding figure, the
crosses (B = 2.5) and plus symbols (B = 5) are non-equilibrium stochastic
molecular dynamics simulations (Attard, 2009a), and the circles (B = 2.5) and
triangles (B = 5) are molecular dynamics simulations with equilibrium Nosé-
Hoover chain thermostat (Attard and Gray-Weale, 2008).

rather small non-linear effects, but they nevertheless ought to be reliable as
no linearisation has been assumed in the non-equilibrium stochastic molecular
dynamics algorithm.

Figure 11.2 shows the phase lag of the solute as a function of the drive
frequency. The solute oscillates almost in phase with the trap at low frequen-
cies, and increasingly lags behind the trap as the frequency is increased, going
through φ = π/2 at approximately ω = 1.3.

In the simulations summarised in the two figures, the stochastic thermostat
performed well. The second-order equations of motion, Eqs. (11.7) and (11.8),
were used, together with a time step of Δt = 10−3 and a variance σ = 10−3.
The average solvent kinetic temperature was less than 1.5% greater than the
reservoir temperature over the whole frequency range with these parameters. At
ω = 0.7, increasing both by a factor of five did not change any results. However,
increasing the time step by a factor of five and leaving the variance unchanged
gave a temperature 6% above the nominal temperature, and increasing the
variance by a factor of five and leaving the time step unchanged decreased the
response amplitude by 11%. Obviously a lower drive frequency or a smaller
drive amplitude would allow a smaller variance to be used to attain the desired
temperature with a reduced perturbation of the dynamics.
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11.1.4 Steady Heat Flow

Equations of Motion

The stochastic molecular dynamics algorithm for steady heat flow is based on
the usual equations of motion,

qiα(t + Δt) = qiα(t) + Δtq̇
0
iα(t)

≡ q0
iα(t + Δt),

piα(t + Δt) = piα(t) + Δtṗ
0
iα(t) + Riα(t) + R̃iα(t)

≡ p0
iα(t + Δt) + Riα(t) + R̃iα(t). (11.12)

The superscript 0 denotes the adiabatic velocities, q̇0
iα = ∂H/∂piα = piα/m,

and ṗ0
iα = −∂H/∂qiα = Fiα, and the adiabatic evolution.

As shown in Chs 4 and 9, the static part of the reservoir entropy depends
upon the zeroth and first energy moments of the sub-system and the zeroth and
first temperatures of the reservoir,

Sr,st(Γ) =
−E0(Γ)

T0
− E1(Γ)

T1
. (11.13)

If the boundaries of the sub-system are located at z = ±L/2, and if the temper-
atures of the respective reservoirs are T±, then the zeroth and first temperatures
of the reservoir are given by

1

T0
≡ 1

2

[
1

T+
+

1

T−

]
, and

1

T1
≡ 1

L

[
1

T+
− 1

T−

]
. (11.14)

For future reference is defined βn ≡ 1/kBTn, n = 0, 1, and also β(z) ≡ β0 +β1z,
which may be thought of as the local inverse temperature. The zeroth energy
moment of the sub-system is just the total energy or Hamiltonian of the sub-
system. In the present case a one body potential representing confining walls,
w(z) will be included, as well as a central pair potential, and Eq. (9.33) reads,

E0(Γ) = H(Γ) =
1

2m

N∑
i=1

p2
i +

N∑
i=1

w(zi) +
1

2

N∑
i,j

′u(qij), (11.15)

where the prime on the summation indicates that the i = j term is excluded,
and zi ≡ qiz . The first energy moment in the z-direction given by Eq. (9.34) in
the present case reads,

E1(Γ) =
1

2m

N∑
i=1

zip
2
i +

N∑
i=1

ziw(zi) +
1

2!

N∑
i,j

′ zi + zj

2
u(qij). (11.16)

The adiabatic rate of change of the first energy moment is given by Eq. (9.35),
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and, in the present case, by Eq. (9.36). It is

Ė0
1(Γ) =

N∑
l=1

zl
ṗ0

l · pl

ml
+

N∑
l=1

[
zl ż

0
l

∂w(zl)

∂zl
+ ż0

l w(zl)

]

+
1

2!

N∑
l,j

′

[
{zl + zj} q̇0

l ·
∂u(qlj)

∂ql
+ ż0

l u(qlj)

]

=

N∑
i=1

∑
α=x,y,z

κiαpiα, (11.17)

with

κiα ≡ εi

mi
δα,z −

N∑
j=1

j �=i u′(qij)
qiz − qjz

2miqij
[qiα − qjα], (11.18)

where δα,z is a Kronecker delta, and εi is the energy of the ith atom,

εi =
p2

i

2mi
+ w(zi) +

1

2

N∑
j=1

j �=i u(qij). (11.19)

In some cases below, a bulk system will be modelled by setting the wall potential
to zero, w(z) = 0. Notice that κi does not depend upon the momentum except
in the kinetic energy contribution to the energy per molecule, which means that
the momentum derivative of the adiabatic rate of change of the first energy
moment is

∂Ė0
1(Γ)

∂piα
= κiα +

piαpiz

m2
i

. (11.20)

This result will be invoked in the constraint below.
Maximising the second entropy without constraint, the most likely force for

the present problem of steady heat flow was given as Eq. (9.55),

R
f

iα(Γ, t21) =
σ

2kB

∂Sr,st(Γ)

∂piα
+

σ

2kB

(
t̂ − 1

)
S ′piα

=
−σ

2mi
β(zi)piα − σ

2mi

(
t̂ − 1

)
β(zi)piα, (11.21)

where t̂ ≡ sign(t21).
As was discussed in the general non-equilibrium case in §8.3.6, and specif-

ically for heat flow in §9.3, p. 309, the reservoir formalism is idealised in the
sense that the interactions occur throughout the sub-system, and this can dis-
order the internal sub-system flow in a way that does not occur with realistic
boundary driven flows. One way to minimise this artifact is to make the reser-
voir perturbation orthogonal to the energy flux, so that R(Γ, t21)·∇pĖ0

1 (Γ) = 0.



402 11. Non-Equilibrium Computer Simulation Algorithms

Maximising the second entropy subject to this constraint gives Eq. (9.57),6

R(Γ, t21) = R
f
(Γ, t21) + μ(Γ)∇pĖ0

1(Γ), (11.22)

with μ(Γ) = −R
f
(Γ, t21) · ∇pĖ0

1 (Γ)/∇pĖ
0
1(Γ) · ∇pĖ0

1(Γ) being the Lagrange
multiplier. In component form this is

Riα =
−σ

2mi
β(zi)piα − σ

2mi

(
t̂ − 1

)
β(zi)piα + μ

[
κiα +

piαpiz

m2
i

]
, (11.23)

with

μ =
σ
∑

iα

[
β(zi)piα +

(
t̂ − 1

)
β(zi)piα

] [
κiα + piαpiz/m2

i

]
/2mi∑

iα [κiα + piαpiz/m2
i ]

2 . (11.24)

The stochastic molecular dynamics algorithm was based upon the above
equations of motion. Each time step consisted of the adiabatic step, followed
by the reservoir (dissipative plus stochastic) step. The dissipative force was
evaluated at the position after the adiabatic step, R(Γ0(t + Δt)), rather than
at the initial point of the transition, R(Γ0(t)).

System Details

Non-equilibrium stochastic molecular dynamics were used to simulate heat flow
in a Lennard-Jones fluid (Attard, 2009a). The pair potential was

u(r) =

⎧⎨
⎩ 4εLJ

[(σLJ

r

)12

−
(σLJ

r

)6
]
− u(R−cut), r ≤ Rcut

0, r > Rcut.
(11.25)

Results are reported in dimensionless form by invoking the well depth εLJ, the
diameter σLJ, and the time constant τLJ =

√
(mLJσ

2
LJ/εLJ), where mLJ is the

mass, and by setting Boltzmann’s constant to unity. The pair potential was cut-
off at Rcut = 2.5. No tail correction was used. The constant subtracted from
the potential within the cut-off makes it zero approaching the cut-off, which is
necessary for consistency between the Monte Carlo and the molecular dynamics
results.

A spatial neighbour table with cubic cells of side length ≈ 0.6 was used.7

The neighbour cells were defined as all those cells at least partially within the
cut-off (plus the step length) of a given cell. Prior to the commencement of

6In Attard, (2009a) and in Attard, P. (2009b), Annu. Rep. Prog. Chem., Sect. C 105,
63, an additional constraint was invoked, R · ∇pSdyn = −ΔtkBŻ(t)/Z(t), which stems from
Eqs (8.23) (with γ = 0), (8.26), (8.94), and (8.139). It turns out that for steady heat flow
the associated Lagrange multiplier is negligible, η ≈ 0, and results of simulations with this
particular constraint imposed are indistinguishable from those without it. In contrast, ne-
glecting the constraint R(Γ, t21) ·∇pĖ0

1(Γ) = 0, treated explicitly here, leads to a measurable
underestimate of the thermal conductivity, as will be shown in the results below.

7Attard, P. (2004), J. Chem. Phys. 121, 7076.
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the simulation, a list of such neighbour cells was calculated and stored. The
advantage of such a neighbour list is that the neighbourhood volume composed
of such small neighbour cells closely approximates the cut-off sphere. This is
better than the conventional neighbour lists that use cubes of side length equal
to the potential cut-off (Allen and Tildesley, 1987). Specifically, the present
small neighbour cells reduce the enveloping neighbourhood volume from 27 large
cubes (each of size Rcut, neighbourhood volume 27R3

cut), to approximately 667
small cubes giving a neighbourhood volume of the order of (4π/3)(Rcut +0.6)3.
This is an improvement of almost a factor of three. That is, with these small
cells each force or potential calculation requires the computation of one third
the number of pair interactions that are required by conventional cells of length
Rcut.

Generally, 800 atoms were used in the stochastic molecular dynamics simu-
lations, with the lateral width being Lx = 5.87, and, in the case of the density
being ρ = 0.8, the nominal distance between the walls being L̃z = 29.87, which
gave a fluid phase width of Lz = 28.55. Only a slit pore was simulated with
the stochastic molecular dynamics algorithm, since it was found that the bulk
system with periodic boundary conditions gave unreliable results. The origin of
the problem in the latter case is suspected to lie with the unrealistic behaviour
of the first energy moment when an atom leaves the system at z = +Lz/2 and
re-enters at z = −Lz/2; whether formulating the problem with itinerant coor-
dinates (i.e. applying the periodic boundary conditions to qij rather than to
qi) was not addressed. For this case, the temperatures of the reservoirs were
T− = 2.25 and T+ = 1.80, which correspond to T0 = 2 and β1 = 3.7 × 10−3.

The slit pore had uniform Lennard-Jones walls perpendicular to the z-axis,

w(z) = 8πρεLJ

{[
σ12

LJ

90((L̃z/2) − z)9
− σ6

LJ

12((L̃z/2) − z)3

]

+

[
σ12

LJ

90((L̃z/2) + z)9
− σ6

LJ

12((L̃z/2) + z)3

]}
. (11.26)

The separation and number of atoms were varied by trial and error until the
uniform density in the centre of the cell was equal to the nominal bulk density.
The density of the fluid went rapidly but smoothly to zero approaching each
wall. The effective width of the slit pore, which was required to calculate the
volume and hence the thermal conductivity, was taken as the region where the
density was non-zero (c.f. as mentioned above, for ρ = 0.8, the nominal distance
between the walls was L̃z = 29.87, and the fluid phase width was Lz = 28.55).
Periodic boundary conditions and the minimum image convention were used in
the lateral directions.

Most of the results presented below were obtained with a time step of Δt =
5× 10−3. No change was observed upon reducing this to 2× 10−3. A time step
larger than 7.5 × 10−3 for these systems with these equations of motion causes
the kinetic energy to increase significantly on an adiabatic trajectory.

A dimensionless variance was defined, σ∗ ≡ 2σ/mLJkBT0, where the denom-
inator is the average of the square of a component of the momentum. Values
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of σ∗ ∼ 1 mean that the stochastic change in a momentum component is of
the same order as the momentum component itself. Results were obtained with
σ∗ ∈ [5 × 10−4, 10−1]. The influence of the variance on the results is discussed
in detail below.

A time step consists of an adiabatic part and a reservoir perturbation, as
described above. In most of the results reported here, averages were collected
every 100 time steps. In some cases this was reduced to every 10 time steps,
which appeared more efficient (i.e. it gave smaller statistical error for little
increase in computer time). In general terms, there is a small overhead in
gathering averages, and since consecutive points are highly correlated, there is
a cost to collecting averages too frequently. No effort was made to optimise the
calculation of the averages or the frequency with which they were collected.

In the stochastic molecular dynamics method for steady state systems such
as the present heat flow, averages mean simple time averages over the single
trajectory that is simulated. This is simpler than collecting averages in the gen-
eral non-equilibrium case discussed in §11.1.2, or in the harmonic case discussed
above in the context of driven Brownian motion, §11.1.3. In the general steady
state case one has

〈f〉 =
1

M

M∑
I=1

f(Γ(tI )), (11.27)

where the tI are regularly spaced time nodes along the trajectory, and f(Γ) is
a function of the sub-system phase space. The standard error is estimated by
breaking the simulation into Q blocks, and taking the averages separately in
each block. With fJ the average of block J , and 〈f〉 = Q−1

∑Q
J=1 fJ the over

all average, the standard error on the mean is

Ef =
1

Q1/2
σ

1/2
f =

1

Q1/2

√√√√ 1

Q

Q∑
J=1

[
fJ − 〈f〉

]2
. (11.28)

The variance of f measured by the blocks is σf , and so σ
1/2
f is an estimate of

the variation of fJ each time a new block is simulated. Hence σ
1/2
f /Q1/2 is an

estimate of the overall accuracy of the simulation once the Q blocks have been
combined. Often the Q in the denominator is replaced by

√
Q(Q − 1), but for

typical values, Q ≈ 10–20, this makes little difference. Once again there ought
to be an equilibration period before one begins collecting averages.

It can be shown using Fourier’s law that when the first energy moment
relaxes in an adiabatic system, then the temperature profile has to have zero
gradient at the walls, because there is no heat flux across the boundaries.8 Hence
in the slit pore of the present stochastic molecular dynamics simulations, the
adiabatic step mitigates against having a linear temperature profile throughout
the system. This also affects the dynamics in the vicinity of the walls. For this

8Attard, P. (2005a), J. Chem. Phys. 122, 154101.
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Figure 11.3: Induced temperature profile from stochastic molecular dynamics
simulations for a slit pore with ρ = 0.8, T+ = 2.25, T− = 1.80, and Lz = 29.87,
which give T0 = 2, and β1 = 3.7×10−3. The time step was Δt = 5×10−3. The
filled diamonds use σ∗ = 5 × 10−3, and the open squares use σ∗ = 5 × 10−4.
The solid line is the applied temperature from the reservoirs, T (z) = T0 +(T+−
T−)z/Lz. Data from Attard (2009a).

reason, when calculating the rate of change of energy moment, and also when
calculating the μ, only the contribution from atoms in the central half of the
slit pore was used.

Results

Figure 11.3 shows the induced temperature profile in a slit pore obtained with
stochastic molecular dynamics for two cases of the variance. The equipartition
theorem was used to obtain the local temperature T (z) from the local average
kinetic energy. It can be seen that the data lie on sigmoidal curves, which have
approximately zero gradient at the boundaries. As discussed above, this shape is
due to the absence of any heat flux across the walls during the adiabatic motion,
and so this is most prominent at low values of the variance. The reservoir
perturbation acts in part like a thermostat that induces the temperature profile
to be equal to the applied profile. One can interpret the stochastic molecular
dynamics algorithm as a competition between the adiabatic evolution and the
reservoir perturbation, with the variance controlling their relative strengths.
This explains why the sigmoidal shape is less pronounced at high variance.

In the central half of the system the simulated temperature profiles have
approximately the same slope as the applied temperature profile from the reser-
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Figure 11.4: The kinetic temperature averaged across the whole system,〈
p2
〉
/mkBT0, as a function of variance for the same case as the preceding

figure. The crosses are for a time step Δt = 5 × 10−3, and the triangles are for
a time step Δt = 2 × 10−3. The line is T 0/T0 = [1 + (β2

1/β2
0)L2

z/12] = 1.004.
Data from Attard (2009a).

voirs. Closer inspection of Fig. 11.3 shows that in this region the induced
temperature gradient is slightly less than the applied temperature gradient,
particularly for the lower variance. Again this is a result of the competition be-
tween the adiabatic step and the reservoir perturbation. During the adiabatic
evolution heat flows from the high energy region of the sub-system to the low
energy region as the first energy moment internally relaxes. The rate of internal
heat flow is proportional to the magnitude of the first energy moment, which in
turn is proportional to the induced temperature gradient. The reservoir pertur-
bation attempts to counter this internal adiabatic heat flow and to restore the
moment to what it was before the adiabatic evolution. Obviously the amount
of heat that can be supplied by the reservoir is proportional to the magnitude
of the variance, which represents the strength of the coupling between the reser-
voir and the sub-system. For small variances, the average moment decreases to
a value such that the adiabatic heat flow is reduced to an amount that can be
compensated by the reservoir. This effect is manifest in the reduced induced
temperature gradient in the figure.

Figure 11.4 shows the kinetic temperature averaged over the whole system
relative to T0, which one would expect to be unity. The data show that at
high values of the variance the kinetic temperature is significantly larger than
the expected value. In deriving the transition probability that underlies the
stochastic molecular dynamics algorithm, various expansions were carried out
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Figure 11.5: Ratio of the induced temperature gradient in the central half of
the slit pore to the applied temperature gradient as a function of variance for
the same case as the preceding figures (Δt = 5 × 10−3). The line is a guide to
the eye. Data from Attard (2009a).

to linear order in the variance. Presumably then, the heating up of the system
for large values of σ is a consequence of neglecting the higher-order terms.

Two different time steps were tested in the simulations in Fig. 11.4, and it
can be seen that they are in quantitative agreement. This indicates that the
results can be relied upon for these values.

Small values of the variance lead to a kinetic temperature ratio close to
unity, but slightly above unity. This is a second-order effect that arises from
averaging the applied temperature profile over the whole system. The applied
temperature has expansion

kBT (z) =
1

β0 + zβ1
= β−1

0 [1 − zβ1/β0 + z2β2
1/β2

0 . . .]. (11.29)

Integrating this over z yields T 0 = T0[1+(β2
1/β2

0)L2
z/12] = 1.004T0. This agrees

with the low variance data in Fig. 11.4.
Figure 11.5 shows how the gradient of the temperature induced in the sub-

system depends upon the variance. As already discussed in connection with
Fig. 11.3, at small variance the coupling between the sub-system and the reser-
voir is too weak to supply heat fast enough to compensate for the adiabatic
relaxation of the energy moment. Hence the system adopts a reduced energy
moment, which is equivalent to a reduced temperature gradient. At this reduced
value the internal flux can be matched to the flux from the reservoir and the
energy moment can be held steady.
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Figure 11.6: Thermal conductivity as a function of variance for the same case
as the preceding figures (T0 = 2, ρ = 0.8). The crosses use the applied tem-
perature gradient, and the open triangles use the induced temperature gradient
in the central half of the system. The total length of each error bar is twice
the standard error on the mean. The two lines represent the range of values
obtained with Green-Kubo and non-equilibrium molecular dynamics methods
in the literature for this state point [Daivis, P. J. and Evans, D. J. (1993), Phys.
Rev. E 48, 1058. Evans, D. J. (1986) Phys. Rev. A 34, 1449]. Data from Attard
(2009a).

The effect just identified is very important in calculating the thermal conduc-
tivity, as is shown in Fig. 11.6. The thermal conductivity is essentially the ratio
of the adiabatic rate of change of the first energy moment to the temperature
gradient,

λ =

〈
Ė0

1

〉
β1V kBT 2

0

. (11.30)

This is a simple time average over the stochastic molecular dynamics trajectory.
Because the temperature gradient depends on the variance for the reasons just
discussed, it makes a difference whether the β1 that appears here is the induced
or the applied temperature gradient, particularly at lower values of the variance.
It can be seen in Fig. 11.6 that using the induced temperature gradient gives
the same value of the thermal conductivity for over three orders of magnitude
of range in σ. Note that the induced temperature gradient, the adiabatic rate
of change of the first energy, and the volume were all taken in the central half
of the slit pore.
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The stochastic molecular dynamics results for the thermal conductivity for
this case (T0 = 2, ρ = 0.8) are in good agreement with the literature values
shown in Fig. 11.6. Of the two methods that are commonly used in the literature
to obtain the thermal conductivity, the equilibrium Green-Kubo method is the
most reliable. This obtains the time correlation function for the heat flux from
molecular dynamics simulations of an equilibrium system with thermostat, such
as the Nosé-Hoover chain thermostat. From the long time behaviour of the time
correlation function the thermal conductivity is obtained. The limitation of the
Green-Kubo method is that as an equilibrium method the simulations need to
be quite long in order to get reliable statistics for the fluctuations. Although
quantitative tests have not been performed, one would expect that the stochastic
molecular dynamics algorithm would be perhaps an order of magnitude more
computationally efficient than the Green-Kubo method, because the thermal
conductivity results directly from a non-equilibrium average rather than from
an equilibrium fluctuation.

The second literature method is called the non-equilibrium molecular dy-
namics algorithm, and this relies on certain artificial non-Hamiltonian equations
of motion that have been developed to mimic heat flow (Evans, 1986; Daivis
and Evans, 1993). The problem with these deterministic equations of motion
is that there is no fundamental thermodynamic basis for the non-Hamiltonian
terms, and consequently the fluctuation dissipation theorem is violated. Al-
though there are fundamental problems with the non-equilibrium molecular
dynamics method, these do not appear to effect the thermal conductivity it-
self, judging by the agreement with the non-equilibrium stochastic molecular
dynamics results and with the Green-Kubo results. One should be cautious
about drawing broader conclusions about the artificial equations that underpin
the non-equilibrium molecular dynamics algorithm.

The main point that can be taken from Fig. 11.6 is that the present non-
equilibrium stochastic molecular dynamics algorithm produces results for the
transport coefficient that are in agreement with literature values. Further com-
parison of the stochastic molecular dynamics algorithm for the thermal conduc-
tivity with literature values and with non-equilibrium Monte Carlo results is
given below.

11.2 Non-Equilibrium Monte Carlo

11.2.1 Equilibrium Systems

As mentioned in the introduction to the chapter, there are two main simulation
methods: molecular dynamics and Monte Carlo. Arguably, of the two, molecular
dynamics is the more direct, brute force approach. This is because one follows,
and one is restricted to following, the physical trajectory in time of the sub-
system through its phase space. By comparison, the Monte Carlo method is
more refined because it allows any convenient path, even non-physical paths, to
be followed, and these can be optimised to increase the computational efficiency
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or to exploit the physical structure of the system in ways that are beyond the
molecular dynamics method.

In mathematical terms, the Monte Carlo method is a quadrature method for
evaluating integrals, based upon a uniform random sampling of the integration
volume and a simple average of the integrand. In this raw form it is suited for
multidimensional integrals in which the integrand is a relatively smooth function
that almost completely fills the region of integration. This raw form is not suited
for statistical mechanics because almost all of phase space has zero weight due to
the overlap of atoms that arises when points are chosen at random. The actual
hypersurface that contributes significantly to canonical equilibrium averages is
a negligible fraction of the total phase space, and accordingly one has to focus
the points chosen for the quadrature on this region.

To achieve this goal, the Monte Carlo simulation method for a canonical
equilibrium system consists of generating a sequence of points in phase space,9

Γ1,Γ2, . . ., selected from the Maxwell-Boltzmann distribution,

℘MB(Γ) =
1

Z(N, V, T )
e−βH(Γ), (11.31)

where β ≡ 1/kBT , kB being Boltzmann’s constant and T being the temperature.
The sequence of points in phase space is not a sequence in time. Because the
points are already chosen with the proper weight, the canonical equilibrium
average of a phase function is just a simple average over the sequence,

〈f(Γ)〉 =
1

M

M∑
I=1

f(ΓI ). (11.32)

This assumes that appropriate equilibration has taken place before commence-
ment of the averaging process.

In general, the probability distribution, which is the exponential of an ex-
tensive variable, is a much more rapidly varying function of phase space than
any function that one typically seeks to average. This is the reason why the
probability distribution alone is used to bias the selection of phase space points.
Umbrella sampling is a useful variant of this, which is discussed below.

Metropolis Algorithm

The key to selecting points in a sequence with a chosen weight lies in the choice
of transition probability, ℘(ΓI+1|ΓI). For Monte Carlo simulations, the most
common choice for the transition probability is the Metropolis algorithm. This
algorithm divides the transition into two stages: first the generation of a trial
phase space point, ℘trial(Γ̃I+1|ΓI), and second the decision whether to accept

9In an equilibrium system the momenta play a trivial rôle and are generally integrated out
of the problem, so that only points in configuration space are generated, Γq1,Γq2, . . ., with
weight exp−βU(Γq). In the present description of the equilibrium algorithm, the full phase
space is used in order to make a more direct connection with the non-equilibrium problem,
which requires the momenta.
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this trial point as the next point in the sequence, ΓI+1 = Γ̃I+1, or else to reject
it and to retain the original point as the next point, ΓI+1 = ΓI .

The trial transition most commonly consists of selecting an atom i, at ran-
dom or in turn, and moving it by a random amount,

Γ̃I+1;j =

{
ΓI;i + DξI+1, j = i,
ΓI;j , otherwise,

(11.33)

where upper case Roman indeces label the phase space point, and the lower case
Roman indeces label the atom. It is sometimes useful to move several atoms
simultaneously, but this is not discussed here. Here D is a diagonal matrix (six-
dimensional in phase space; three-dimensional in the more usual configuration
space) that is fixed at the outset and that determines the maximum size of the
random trial move, which is typically a fraction of an atomic diameter (so that
the energy change is on average a fraction of kBT ). The vector ξI+1 consists of
six (or three) independent random numbers drawn from a uniform distribution
on [−1, 1]. As will become clearer shortly, what is important for the algorithm
is that the trial transition probability is symmetric,

℘trial(Γ
′|Γ) = ℘trial(Γ|Γ′). (11.34)

The Metropolis recipe certainly satisfies this criterion because positive and neg-
ative values of ξI+1 are equally likely, and because the atom to be moved is
chosen independent of the point in phase space. Algorithms that do not have a
symmetric trial probability are possible, but the analysis is somewhat simplified
when this condition is obeyed.

For greatest generality the transitions can be made based on an arbitrary
probability distribution ℘(Γ). This is most commonly taken to be the Maxwell-
Boltzmann distribution, ℘MB(Γ), but there can sometimes be merit in using a
different distribution, which is called umbrella sampling. The decision whether
to select or reject the trial point depends on whether the probability increases
or decreases in the trial move. Specifically,

ΓI+1 =

{
Γ̃I+1, ζI+1 ≤ ℘(Γ̃I+1)/℘(ΓI),
ΓI , otherwise,

(11.35)

where ζI+1 is a random number uniformly distributed on [0, 1]. The effect of
this is that if the probability increases after the trial move, then the trial point
is certainly accepted as the next point in the sequence. If the trial probability
decreases by only a small amount, then the trial point is likely accepted, whereas
if the trial probability decreases by a large amount, then it is likely that the trial
point will be rejected and the next point in the sequence will be set equal to the
preceding point. The nett effect of this transition rule is that the phase space
points in the sequence tend to be points of high probability, but not exclusively
so. Note that because the ratio of probabilities appears on the right-hand side,
unnormalised probabilities, ω(Γ), can be used.

The Metropolis algorithm corresponds to the transition probability,

℘(Γ′|Γ) =

{
℘trial(Γ

′|Γ), ℘(Γ′) ≥ ℘(Γ),
℘trial(Γ

′|Γ)℘(Γ′)/℘(Γ), otherwise.
(11.36)
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Because the trial transition probability is symmetric, ℘trial(Γ
′|Γ) = ℘trial(Γ|Γ′),

the transition can readily be shown to satisfy statistical symmetry,

℘(Γ′|Γ)℘(Γ) = ℘(Γ|Γ′)℘(Γ′). (11.37)

As mentioned above, the sequence of points in phase space is not a sequence in
time, and so one should not interpret this in terms of molecular motion. This
is the rule for joint probabilities that comes from the laws of probability, from
which one can conclude that the transition rule visits points in phase space
according to the probability distribution ℘(Γ).10

A canonical equilibrium average for this algorithm is given by,

〈f(Γ)〉 =

∑M
J=1 f(ΓJ )ωMB(ΓJ )/ω(ΓJ )∑M

I=1 ωMB(ΓJ )/ω(ΓJ )
. (11.38)

Typically an average is taken every nN Monte Carlo trial steps, J = nNI,
where N is the number of atoms and n = 10–100. This is because adjacent
points on the Monte Carlo sequence are highly correlated and contribute no
new information to the average. Here the unnormalised probabilities appear,
since the normalisation factors cancel top and bottom. In the case that the
transition probability invokes the Maxwell-Boltzmann canonical form, this re-
duces to the simple average given above, Eq. (11.32). More generally, choosing
a slightly different weight, ω(Γ) �= ωMB(Γ), is called umbrella sampling, and it
is convenient when, for example, one wants to simulate multiple thermodynamic
states simultaneously.

Almost always there is an equilibration period following the initiation of a
Monte Carlo path. During this time the distribution of the points generated
approaches the designated probability distribution ℘(Γ). Averages should not
be collected during this equilibration period (c.f. the discussion on p. 395).

11.2.2 Non-Equilibrium Systems

As just mentioned, Monte Carlo simulations of equilibrium systems depend
upon generating a sequence of points with a weight corresponding to a known
probability distribution. The well-known Metropolis algorithm achieves this
goal by using a transition probability that has a known probability (usually equal
to, or at least close to, the equilibrium probability) as its stationary solution.

A transition probability with the correct non-equilibrium probability distri-
bution as its stationary state has already been invoked above: the stochastic dis-
sipative equations of motion used in the molecular dynamics algorithm. These
represent the physical transition probability of the system and accordingly they
yield a sequence of points distributed according to the proper non-equilibrium
probability distribution. Although in this sense the non-equilibrium stochastic

10Another way of seeing this is to note that integrating over Γ
′ yields ℘(Γ) on the left-hand

side. This says that ℘(Γ) is an eigenfunction of ℘(Γ′|Γ) with eigenvalue unity. This means
that a long sequence of applications of the transition probability will tend to ℘(Γ), whatever
the starting probability.
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molecular dynamics algorithm is similar to the equilibrium Monte Carlo method,
it does differ qualitatively in the sense that it follows the physical trajectory of
the non-equilibrium system, and one does not have the freedom to utilise any
alternative paths, which may have computational advantages, or which may ex-
ploit the physical behaviour of the system (c.f. the remarks at the beginning of
the preceding subsection, §11.2.1).

The development of a non-equilibrium Monte Carlo algorithm that retains
the same advantages as its equilibrium counterpart, is, in a formal sense, rather
trivial. There are however two challenges in formulating the algorithm in a prac-
tical form suitable for actual computation. One challenge is actually to evaluate
the non-equilibrium probability, which has been formally derived in general in
Ch. 8. The second challenge is to give an efficient transition probability, and
for this a form of umbrella sampling will be required.

Here the most general non-equilibrium case is treated. The algorithm simpli-
fies somewhat for the case of a harmonic system and for the case of a steady state
system. These simpler but more specialised algorithms are discussed below.

Metropolis Algorithm

For the present, let ℘NE(Γ, t) be the non-equilibrium probability distribution
for the system of interest, and let ℘(Γ, t) be the arbitrary probability distribu-
tion that will be used in the transition probability (umbrella sampling). Let
Γ1(t),Γ2(t), . . ., be a sequence of points in phase space all at time t. These are
generated by a transition probability of the Metropolis form. That is, a trial
move is made on atom i,

Γ̃I+1;j(t) =

{
ΓI;i(t) + DξI+1(t), j = i,
ΓI;j(t), otherwise,

(11.39)

where again D is a diagonal matrix, that determines the maximum move of
atom i and the random vector ξI+1(t) has elements drawn from a uniform
distribution on [−1, 1]. Evidently the trial transition probability is symmetric.
℘trial(Γ

′(t)|Γ(t)) = ℘trial(Γ(t)|Γ′(t)). The actual transition is

ΓI+1(t) =

{
Γ̃I+1(t), ζI+1(t) ≤ ℘(Γ̃I+1(t), t)/℘(ΓI (t), t),
ΓI(t), otherwise,

(11.40)

where ζI+1(t) is a random number uniformly distributed on [0, 1]. Again un-
normalised probabilities, ω(Γ, t), can be used.

This non-equilibrium analogue of the Metropolis algorithm corresponds to
the transition probability

℘(Γ′(t)|Γ(t); t) =

⎧⎨
⎩

℘trial(Γ
′(t)|Γ(t)), ℘(Γ′(t), t) ≥ ℘(Γ(t), t),

℘trial(Γ
′(t)|Γ(t))

℘(Γ′(t), t)

℘(Γ(t), t)
, otherwise.

(11.41)
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Again the symmetry of the trial transition probability means that the transition
satisfies statistical symmetry,

℘(Γ′(t)|Γ(t); t)℘(Γ(t), t) = ℘(Γ(t)|Γ′(t); t)℘(Γ′(t), t). (11.42)

Again the sequence of points in phase space at time t is not a sequence in time,
and so one should not interpret this in terms of molecular motion. As in the
equilibrium case, this is the rule for joint probabilities that comes from the laws
of probability, from which one can conclude that the transition rule visits points
in phase space according to the probability distribution ℘(Γ, t).

The non-equilibrium average for points generated with this algorithm is

〈f(Γ, t)〉 =

∑M
J=1 f(ΓJ (t), t)ωne(ΓJ (t), t)/ω(ΓJ(t), t)∑M

I=1 ωne(ΓJ (t), t)/ω(ΓJ (t), t)
, (11.43)

assuming equilibration has taken place. The number of points retained for this
average is typically about one or two orders of magnitude less than the number
of trial moves in the Monte Carlo sequence, J = nNI, where N is the number
of atoms and n = 10–100.

It bears repeating that this is the average at a single time t. For the most
general mechanical non-equilibrium case with external potential of arbitrary
time variation, the whole procedure has to be carried out at each time that one
wants an average. For the case of steady state systems, a single time suffices.

Non-Equilibrium Probability

Still in this general time dependent case, two points remain to be addressed:
calculation of the non-equilibrium weight, and the choice of umbrella weight.

In Ch. 8 the non-equilibrium probability density was shown to be propor-
tional to the exponential of the reservoir entropy, ℘NE(Γ, t) ∝ exp Sr(Γ, t)/kB

It was shown that the latter consisted of a static and a dynamic part,

Sr(Γ, t) = Sr,st(Γ, t) + Sr,dyn(Γ, t). (11.44)

This neglects the time dependent constant Sr(t), which can be incorporated
into the normalising partition function. Hence the exponential of the right-
hand side divided by Boltzmann’s constant can be taken as the unnormalised
weight, ωNE(Γ, t) = exp[Sr,st(Γ, t) + Sr,dyn(Γ, t)]/kB.

The static part of the reservoir entropy can be derived from equilibrium
considerations and is relatively trivial to write down in a given case. It is
essential to note that it depends only upon the instantaneous configuration of
the sub-system, and not upon the previous history.

In contrast, the dynamic part of the reservoir entropy depends upon the
most likely trajectory of the sub-system leading to the current point,

Sr,dyn(Γ, t) = −
∫ t

t0

dt Ṡ0
r,st(Γ(t′|Γ, t), t′). (11.45)
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It is this term that poses a challenge to non-equilibrium Monte Carlo simulations
because as a one-dimensional integral it requires, say, L nodes to evaluate it.
Each time step on the backwards trajectory requires the force on all atoms,
usually an N2 operation for N atoms, but this an be reduced to O(N) with
the use of neighbour tables. If one has M ′ points on the Monte Carlo sequence
(typically M ′ = (10–100)M), then in the general case this is an O(NLM ′)
operation for each time t. This is computationally demanding (it is L times the
number of operations required to evaluate Sr,st) and it is clear that one ought
to minimise the number of evaluations of Sr,dyn.

One obvious way of proceeding is to use umbrella sampling, with the um-
brella weight simply the static part of the reservoir entropy,

ω(Γ, t) = exp Sr,st(Γ, t)/kB. (11.46)

This is about a factor of L less demanding to compute than the full ωne(Γ, t).
For this to be useful the number of points used for the average, M , ought to be
very much less than the total number of points in the Monte Carlo sequence,
M ′, with typically M � M ′ � LM . The reason is that adjacent points on
the Monte Carlo sequence are highly correlated, and they contribute no new
information to the average. With this umbrella weight, generating a new point
in the sequence is much less expensive than evaluating the weight of the point
for the average. Typically, an average is accumulated once every 100N trial
moves (i.e. an attempt has been made to move each atom 100 times). The
algorithm is now O(NLM, NM ′) for each time t.

This umbrella weight has even parity, Sr,st(Γ
†, t) = Sr,st(Γ, t), whereas the

non-equilibrium probability distribution must have an odd parity component. In
view of the fact that the adiabatic rate of change of the static part of the reservoir

entropy has an odd parity component, and since one expects Ṡ0
r,st(t) < 0, an

alternative possibility for the umbrella weight is

ω(Γ, t) = exp
[
Sr,st(Γ, t) − cṠ0

r,st(Γ, t)
]
/kB, (11.47)

where c > 0 is a time constant chosen by experience or by trial and error. Usu-
ally one tries to achieve equality between the average value of Ṡ0

r,st taken with
this instantaneous weight alone with that taken with the full non-equilibrium

weight; linearising, this criterion is c ≈ −kB

〈
Ṡ0

r,st

〉
ne

/〈
[Ṡ0

r,st]
2
〉

st
. (It should

be stressed that even with this choice of c, the weight ω(Γ, t) is not the ex-
act non-equilibrium weight.) Of course the final average is independent of the
umbrella weight, since this is replaced by the actual non-equilibrium weight,
ωne(Γ, t), when the averages are accumulated; it is only the computational ef-
ficiency required to obtain the average with a given variance that is affected
by the actual form of the umbrella weight. In general terms, the closer the
umbrella weight to the actual non-equilibrium weight, the more efficient is the
simulation. The particular form of umbrella weight discussed here is, in prin-
ciple, better than the static weight because it biases the Monte Carlo path so
that it visits regions of phase space that have the same parity as those that
dominate the non-equilibrium system.
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Odd Parity Approximation

In §8.5, the odd parity projection of the dynamic part of the reservoir entropy
was analysed. It was argued that in many circumstances only this odd projec-
tion was required (e.g. obtaining transport coefficients), that the odd projection
was computationally easier to evaluate than the full quantity (because adia-
batic trajectories could be used, and because the integrand was short-ranged),
and that the even parity projection was in any case negligible (because the in-
termolecular interactions of the sub-system dominated the entropy, and these
were contained in Sr,st, which has even parity, Sr,st(Γ, t) � Seven

r,dyn(Γ, t)). These
arguments led to Eq. (8.169),

Sr(Γ, t) ≈ Sr,st(Γ, t) + Sodd
r,dyn(Γ, t). (11.48)

As noted in the discussion leading up to Eq. (8.181), the odd projection could
be approximated by an integration over adiabatic trajectories,11

Sodd
r,dyn(Γ, t) ≡ 1

2

[
Sr,dyn(Γ, t) − Sr,dyn(Γ

†, t)
]

≈ −1

2

∫ t

t−τ

dt′
[
Ṡ0

r,st(Γ
0(t′|Γ, t), t′) − Ṡ0

r,st(Γ
0(t′|Γ†, t), t′)

]
≡ Sodd;0

r,dyn (Γ, t). (11.49)

The computational advantage of this expression for the dynamic part of the
reservoir entropy is twofold. First the integrand is short-ranged, because the

two terms tend to the same asymptotic value, Ṡ0
r,st(t

′), t − t′ → ∞, and so
the integral can be truncated after a fixed and relatively short time interval τ .
Second, the original formulation required the most likely backward trajectory,
Γ(t′|Γ, t), t′ < t, which in turn required the most likely reservoir force for

a negative time step, R(Γ′, t′, Δt < 0) = (σ/2kB)
[
∇pSr,st(Γ

′, t′) − 2S′r,st(t
′)
]
.

The final term is the most likely value of the gradient of the static part of the
reservoir entropy at time t′, and an efficient algorithm for the computation of
this quantity is not immediately obvious.12

There is one potential problem with the use of adiabatic trajectories, namely
that without a thermostat the numerical errors could lead to a temperature
increase. This is ameliorated somewhat by the fact that relatively short tra-
jectories are needed. Nevertheless, one should monitor this potential problem
and keep in mind the options of short time steps or higher-order equations of
motion. Another possibility is adding an equilibrium thermostat, although the

11Note that although the integrand is a total differential, there is no point in integrating
this analytically. The upper limit vanishes, Sr,st(Γ, t) − Sr,st(Γ†, t) = 0, and value at the
lower limit, Sr,st(Γ0(t − τ |Γ, t), t − τ) − Sr,st(Γ0(t − τ |Γ†, t), t − τ) is not known explicitly
other than by numerical integration.

12 In the discussion of the regression of fluctuations on the most likely reservoir perturbed
trajectory on p. 420, it is pointed out that one can evaluate the dynamic part of the reservoir
entropy on the future most likely trajectory, which is relatively easy to evaluate. This also
obviates the problem with using unthermostatted equations of motion.
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derivation has not been done for this case and so the fundamental implications
of doing this have yet to be established.

This argument for using only the odd projection of the dynamic part of the
reservoir entropy rests on the general observation that the reservoir entropy is
dominated by the static entropy, and that any part of the dynamic entropy
that breaks a symmetry in the static entropy needs to be retained, and need
only be retained. The most obvious symmetry is time reversal, but, as will now
be seen, additional symmetries can also be exploited. The odd projection of
the dynamic part of the reservoir entropy that results from this procedure can
then be shown to be calculable on adiabatic trajectories rather than most likely
backward trajectories.

11.2.3 Driven Brownian Motion

The model of driven Brownian motion consisting of a moving harmonic trap that
has been invoked in Chs 3 and 10 and in § 11.1.3 above will now be used as a
generic model for Monte Carlo simulations of a mechanical non-equilibrium sys-
tem. The Hamiltonian of the sub-system consists of the kinetic energy, K(Γp),
the intermolecular potential energy, U(Γq) (here and throughout Γ contains
both the solvent atoms and Brownian particle), and an external time depen-
dent potential of parabolic form acting only on the Brownian particle,

U ext(x, t) =
κ

2
[x − b(t)]2. (11.50)

That is, H(Γ, t) = K(Γp) + U(Γq) + U ext(x, t).
As in the general case of a mechanical non-equilibrium system treated in

Ch. 8, the reservoir entropy is Sr(Γ, t) = Sr,st(Γ, t)+Sr,dyn(Γ, t), with the static
entropy being

Sr,st(Γ, t) ≡ −H(Γ, t)

T
(11.51)

and the dynamic entropy being

Sr,dyn(Γ, t) ≡ 1

T

∫ t

t0

dt′ Ḣ0(Γ(t′|Γ, t), t′). (11.52)

The adiabatic rate of change of the Hamiltonian is of course

Ḣ0(Γ, t) =
∂U ext(x, t)

∂t
= −κḃ(t)[x − b(t)]. (11.53)

Odd Projection of the Dynamic Entropy

For this trapped Brownian particle there are two symmetries that leave the
value of the Hamiltonian unchanged. The first symmetry operation is velocity
reversal, Γ† = {Γq,−Γp}. This can apply to all components of the velocity or
to just the x-component, but it must apply to all molecules of the sub-system,
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Γ ‡
Γ 

Γ 
†‡ Γ 

†

Figure 11.7: Four configurations of a Brownian particle in a potential trap
moving to the right. The most likely configuration is denoted Γ. Particle and
solvent velocity reversal, Γp ⇒ −Γp, is denoted by a dagger. Reflection of
the particle and solvent positions in the trap minimum, Γq ⇒ 2b(t)x̂ − Γq, is
denoted by a double dagger. The static part of the reservoir entropy is the same
for all four configurations.

not just the Brownian particle. The second symmetry operation is reflection in
the trap minimum at time t, denoted by Γ‡ = {2b(t)x̂−Γq,Γp}. Again this can
apply to either all components of the position or to just the x-component, and
again it applies to all molecules in the sub-system, not just the Brownian parti-
cle. (An achiral solvent and particle and homogeneous sub-system is assumed.)
By design, the Hamiltonian is invariant under these operations,

H(Γ, t) = H(Γ†, t) = H(Γ‡, t) = H(Γ†‡, t). (11.54)

The static part of the reservoir entropy, Sr,st(Γ, t) = −H(Γ, t)/T , obviously
displays the same symmetries.

Four configurations related by these symmetry operations are sketched in
Fig. 11.7. For the moving trap they are not equally likely. Since they all have
the same energy and therefore the same static entropy, it is the dynamic part of
the reservoir entropy that distinguishes them. As remarked in the previous sub-
section on p. 417, since the reservoir entropy is dominated by the static entropy,
one can reduce the dynamic part of the reservoir entropy to the symmetry
breaking part. One could immediately write down the doubly odd projection
without further discussion, but the following remarks may give physical insight
into the mathematical result.

For the moving trap at a given time t, one can divide phase space into likely
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and unlikely regions. If Γ is a likely point in phase space, then Γ†, Γ‡, and Γ†‡

are all unlikely (c.f. Fig. 11.7). That is,

℘(Γ, t) � ℘(Γ†, t) ≈ ℘(Γ‡, t) � ℘(Γ†‡, t). (11.55)

Because of the invariance of the static part of the reservoir entropy under these
operations, this ordering of the probabilities must be carried by the dynamic
part of the reservoir entropy,

Sr,dyn(Γ, t) � Sr,dyn(Γ
†, t) ≈ Sr,dyn(Γ‡, t) � Sr,dyn(Γ

†‡, t). (11.56)

In order to identify that portion of the dynamic part of the reservoir entropy
that carries these distinctions, one needs to generalise the notion of odd parity
to two variables by defining

Sab
r,dyn(Γ, t) ≡ (11.57)

1

4

[
Sr,dyn(Γ) + aSr,dyn(Γ†) + bSr,dyn(Γ

‡) + abSr,dyn(Γ
†‡)
]
, a, b = ±1.

The projection S++
r,dyn is even with respect to both operations. The projection

S−+
r,dyn is odd with respect to velocity reversal and even with respect to spatial

reflection. The projection S+−
r,dyn is even with respect to velocity reversal and

odd with respect to spatial reflection. The projection S−−r,dyn exclusively changes
sign upon velocity reversal alone or upon spatial reflection alone, but remains
unchanged when both are reversed.

The dynamic part of the reservoir entropy is the sum of its four projections,

Sr,dyn(Γ, t) = S++
r,dyn(Γ, t) + S−+

r,dyn(Γ, t) + S+−
r,dyn(Γ, t) + S−−r,dyn(Γ, t). (11.58)

In view of the ordering of the dynamic part of the reservoir entropy deduced
above from the broken symmetry of the probability, the two singly odd projec-
tions dominate this. Hence with negligible statistical error one can write,

Sr,dyn(Γ, t) ≈ Sodd
r,dyn(Γ, t), (11.59)

with the odd projection defined as

Sodd
r,dyn(Γ, t) ≡ S−+

r,dyn(Γ, t) + S+−
r,dyn(Γ, t)

=
1

2

[
Sr,dyn(Γ, t) − Sr,dyn(Γ

†‡, t)
]

=
1

2T

∫ t

t0

dt′
[
Ḣ0(Γ(t′|Γ, t), t′) − Ḣ0(Γ(t′|Γ†‡, t), t′)

]
.(11.60)

It is worth noting that the explicit expression for the dynamic part of the
reservoir entropy derived for the case of a Brownian particle in a trap in uniform
motion, Eq. (3.43), is the sum of two terms: the first term is even with respect
to reflection and odd with respect to velocity reversal, and the second term is
even with respect to velocity reversal and odd with respect to reflection. In
other words, it is exactly the odd projection in the sense that has just been
defined.
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Asymptotic Behaviour

At large times, the adiabatic rate of change of the energy asymptotes to its most
likely value,

Ḣ0(Γ(t′|Γ, t), t′) ∼ Ḣ0(t′), |t − t′| → ∞. (11.61)

This is independent of the starting position of the trajectory, so that the same
asymptote holds for Γ†‡. This means that the integrand goes to zero at large
times and so the integral for Sodd

r,dyn can be taken over a relatively short fixed
time interval, with lower limit t0 ⇒ t − τ . This has obvious computational
advantages, as will be shown explicitly below.

Regression of Fluctuation

By adding and subtracting the asymptote, the integrand of the odd dynamic
entropy can be written as the difference between the regression of two fluctua-
tions,

Ḣ0(Γ(t′|Γ, t), t′) − Ḣ0(Γ(t′|Γ†‡, t), t′)

=
[
Ḣ0(Γ(t′|Γ, t), t′) − Ḣ0(t′)

]
−
[
Ḣ0(Γ(t′|Γ†‡, t), t′) − Ḣ0(t′)

]
. (11.62)

Just as in the equilibrium case, fluctuations in a non-equilibrium system are
most likely even functions of time,

Ḣ0(Γ(t′|Γ, t), t′) − Ḣ0(t′) =

Ḣ0(Γ(2t − t′|Γ, t), 2t − t′) − Ḣ0(2t − t′), (11.63)

and similarly for the trajectory starting at Γ†‡. This equality is meant in a sta-
tistical sense. This result is true for a future Hamiltonian extended by reflection,
H̃(Γ, t′; t) = H(Γ, 2t − t′), t′ > t, as is discussed next.

With this result the integral for the dynamic part of the reservoir entropy,
originally over the backward trajectory on the past interval [t − τ, t], can be
rewritten over the forward trajectory on the future interval, [t, t + τ ],

Sodd
r,dyn(Γ, t)

=
1

2T

∫ t+τ

t

dt′
[
Ḣ0(Γ(t′|Γ, t), t′) − Ḣ0(Γ(t′|Γ†‡, t), t′)

]
. (11.64)

The asymptote can be added to and subtracted from this if desired, but it makes
no real difference. This expression for the dynamic part of the reservoir entropy
appears computationally feasible, since the explicit formula for the most likely
future trajectory is straightforward (c.f. footnote 12 on p. 416). To date, it has
not been numerically implemented.
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Future Adiabatic Behaviour

The original motivation for rewriting the dynamic part of the reservoir entropy
as an integral over the forward most likely trajectory was to be able to exploit
adiabatic trajectories. In general, the future regression of a fluctuation is de-
termined by the adiabatic evolution of the isolated system. In contrast, the
past behaviour leading up to a fluctuation in structure, the backward regres-
sion, differs markedly in an isolated and in a reservoir-driven sub-system. For
an isolated system, the structure has arisen by a spontaneous fluctuation. For a
sub-system of a reservoir, the structure has resulted from an external force or an
imposed thermodynamic gradient. That the future regression, more precisely
the adiabatic part of the future regression, is the same in an isolated system
as in a sub-system of a reservoir, is part of the content of Onsager’s regression
hypothesis.

In view of these remarks, one can say that in the future, the rate of energy
production is approximately the same on the adiabatic trajectory and on the
most likely trajectory in the presence of the reservoir,

Ḣ0(Γ0(t′|Γ, t), t′) ≈ Ḣ0(Γ(t′|Γ, t), t′), t′ > t. (11.65)

(Again this result assumes a future Hamiltonian, H̃(Γ, t′; t) = H(Γ, 2t − t′),
t′ > t, as is discussed shortly.) This result also holds for Γ†‡. Hence one can

write Sodd
r,dyn(Γ, t) ≈ Sodd;0

r,dyn (Γ, t), with

Sodd;0
r,dyn (Γ, t)

=
1

2T

∫ t+τ

t

dt′
[
Ḣ0(Γ0(t′|Γ, t), t′) − Ḣ0(Γ0(t′|Γ†‡, t), t′)

]
. (11.66)

Now the reversibility of the adiabatic equations of motion will be estab-
lished with a view toward transforming this integral to one over the past adi-
abatic trajectory. For a Hamiltonian that is independent of time, H(Γ), then
Hamilton’s equations obey microscopic reversibility: if Γ2 = Γ0(t′|Γ1, t) then

Γ
†
1 = Γ0(t′|Γ†2, t). Because a Hamiltonian trajectory is uniquely specified by

any point and time on it, and because of time homogeneity, this second result
may be written Γ

†
2 = Γ0(t|Γ†1, t′) = Γ0(2t − t′|Γ†1, t). In summary,

Γ2 = Γ0(t′|Γ1, t) ⇔ Γ
†
2 = Γ0(2t − t′|Γ†1, t). (11.67)

Since the operation ‡ reflects all the positions, then it has the effect of reversing
all the forces. Consequently one also has,

Γ2 = Γ0(t′|Γ1, t) ⇔ Γ
‡
2 = Γ0(2t − t′|Γ‡1, t). (11.68)

This last result implicitly assumes a spatially homogeneous sub-system (i.e. no
external force). These two results individually give the future behaviour of the
trajectory based upon the past behaviour.

Neither of these two hold as such for a Hamiltonian that is explicitly time
dependent, such as the present moving trap, because this breaks time and space
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homogeneity. However one can combine them to give future behaviour that is
an exact reflection of past behaviour, provided that one extends the external
potential into the future by reflecting its past. Hence, define the extended
Hamiltonian as

H̃(Γ, t′; t) =

{
H(Γ, t′), t′ ≤ t,
H(Γ, 2t − t′), otherwise.

(11.69)

In the above the tilde has not been shown explicitly; rather this expression has
been implicitly invoked whenever t′ > t. Similarly the trajectories Γ(t′|Γ, t),
and Γ0(t′|Γ, t) implicitly use H̃ whenever t′ > t. This expression for the future
Hamiltonian is equivalent to reversing at time t all the velocities in the universe
external to the sub-system, since ultimately any time dependent potential arises
from molecular motion. For the present moving trap, this definition implies

b(t′) = b(2t− t′), and ḃ(t′) = −ḃ(2t − t′). (11.70)

With this extended Hamiltonian, at time t the velocity of the trap is reversed.
Since the † operation reverses all the velocities of the sub-system, and the ‡
operation reverses all the forces in the sub-system including that due to the
trap, one can see that

Γ2 = Γ0(t′|Γ1, t) ⇔ Γ
†‡
2 = Γ0(2t − t′|Γ†‡1 , t). (11.71)

Here Γ
‡
1, means reflection of the positions in b(t), and Γ

‡
2 means reflection of

the positions in b(t′) = b(2t − t′).
This establishes the reversibility of the adiabatic equations of motion in the

presence of a time varying potential. Accordingly, the dynamic part of the
reservoir entropy can be transformed from an integral over the future adiabatic
trajectory to an integral over the past adiabatic trajectory,

Sodd;0
r,dyn (Γ, t)

=
1

2T

∫ t+τ

t

dt′
[
Ḣ0(Γ0(t′|Γ, t), t′) − Ḣ0(Γ0(t′|Γ†‡, t), t′)

]

=
1

2T

∫ t

t−τ

dt′′
[
Ḣ0(Γ0(t′′|Γ†‡, t)†‡, t′′) − Ḣ0(Γ0(t′′|Γ, t)†‡, t′′)

]

=
1

2T

∫ t

t−τ

dt′
[
Ḣ0(Γ0(t′|Γ, t), t′) − Ḣ0(Γ0(t′|Γ†‡, t), t′)

]
. (11.72)

The final equality invokes the result that Ḣ0(Γ†‡, t) = −Ḣ0(Γ, t). Recalling the

arguments leading successively to Sr,dyn(Γ, t) ≈ Sodd
r,dyn(Γ, t) ≈ Sodd;0

r,dyn (Γ, t), this
expression represents a computationally convenient form for the dynamic part
of the reservoir entropy.

System Details

The system used for the non-equilibrium Monte Carlo simulations of driven
Brownian motion is almost identical to that described for the stochastic molec-
ular dynamics simulations in §11.1.3. The soft sphere potential was the same,



11.2. Non-Equilibrium Monte Carlo 423

as was the temperature, T = 3 and the density, ρ = 0.69. A bulk system was
simulated, in the form of a cube with periodic boundary conditions and an edge
length 8.98 or 11.31 (for N = 500 or 1000 solvent atoms, respectively). The small
cell spatial neighbour was used with cells of edge length ≈ 0.3 (see p. 402).

Each simulation was performed for fixed drive frequency ω. The Metropolis
algorithm and umbrella sampling were used. The umbrella potential was based
upon the static part of the reservoir entropy (see below). Each simulation
consisted of 500–1650 Monte Carlo cycles.

A Monte Carlo cycle was as follows. First the position of a solvent atom was
changed as a trial with the Brownian particle fixed at the origin. Each trial move
was accepted or rejected, based upon the usual Metropolis criteria, using the
solvent-solvent and solvent-solute potentials only (no external potential). This
was repeated successively for each solvent in turn as part of one cycle. The step
length was adjusted to give an acceptance rate of � 50%. This was repeated
10–25 times (i.e. 10–25 moves per solvent atom per cycle). Then the solvent
and solute velocities were chosen randomly from the Maxwell-Boltzmann dis-
tribution, Gaussians of variance

√
kBT/m1 and

√
kBT/m0, respectively. Then,

with the solute the y- and z-coordinates left unchanged at the origin, the solute
x-coordinate was chosen from a Gaussian of variance

√
kBT/κ. After this, all

the solvent x-coordinates were shifted by this value of the solute x-coordinate,
so that their position relative to the solute remained unchanged. At this stage
of the cycle, the procedure is equivalent to choosing the phase space position of
the solute and solvent from an equilibrium Boltzmann distribution with the ex-
ternal potential being fixed at the origin (i.e. the position of the trap minimum
being located at the origin). This phase space coordinate (solute plus solvent),
Γα, is stored, and after the following loop of trajectories and averages, it is used
as the starting point for the next Monte Carlo cycle, at which time the solute
and solvent were shifted by the same amount, the negative of the current solute
x-coordinate. Hence at the start of the next cycle, the solute was back at the
origin, and the solvent molcecules were in the same positions relative to each
other and to the solute as at the end of the current cycle.

Now, as the next stage in the current cycle, a loop was performed over a set
of 10 time nodes, t1, t2, . . . , t10, typically evenly spaced on the interval [0, 2π/ω].
Each time node defined the location of the external potential, bi = B cosωti.
For each time node, the solute and the solvent x-coordinates were shifted by
the amount bix̂, so that their position relative to the trap minimum was main-
tained. This phase space coordinate was denoted Γα,i. For each such coordinate,
two adiabatic trajectories were calculated backward in time, Γ0(t′|Γα,i, ti) and

Γ0(t′|Γ†‡α,i, ti), for t′ ∈ [ti, ti − τ ]. The maximum time interval was τ = 7. The

second-order Verlet leap frog algorithm, Eq. (11.4), with a time step of 2×10−2

was used for the trajectory calculation. These trajectory calculations were in
the presence of the time varying external potential, Uext(x′, t′). A running in-
tegral of the partial time derivative of the external potential was performed
over each trajectory, so that effectively integrals over successively longer inter-
vals, [ti, ti − τk], k = 1, 2, . . . , 20, with τ20 = 7, were obtained. Taking the
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difference between the integrals for the two trajectories for a given τk gave
Sodd;0

r,dyn (Γα,i; ti, τk). This was stored for use as the non-equilibrium weight for
the subsequent averages.

This loop over the time nodes was the final stage in each Monte Carlo cycle.
Before the start of the next cycle phase functions were evaluated, weighted,
and accumulated for later averaging. For any given phase function 200 distinct
averages were taken, 〈f(Γ, t)〉i,k: one for each point in the drive cycle ti, and
one for each interval used for the integration of the dynamic part of the reservoir
entropy, τk. Values for the averages was taken once per Monte Carlo cycle α,
and the simulation consisted of 500–1650 such cycles. In view of the umbrella
sampling (the umbrella weight is the equilibrium Boltzmann factor, equivalently
the static part of the reservoir entropy), an average value is

〈f(Γ, t)〉ti,τk
=

∑
α f(Γα,i, ti)e

Sodd;0
r,dyn (Γα,i;ti,τk)/kB∑

α eSodd;0
r,dyn (Γα,i;ti,τk)/kB

. (11.73)

Running totals for these were added to, and stored as a function of, k and i at
the end of each cycle.

The two main quantities averaged in each simulation were the solute position
x(t) and the solute velocity, ẋ(t), and from them the amplitude and phase
lag of the response from the functions 〈x(ti)〉τk

= A cos(ωti + φ), 〈ẋ(ti)〉τk
=

−Aω sin(ωti + φ). For each ti and τk, these can be inverted to obtain the
amplitude and phase lag, Ai =

√
x2

i + ẋ2
i /ω2, and φi = tan−1([ẋi + ωxi]/[ẋi −

ωxi]). Values of φ in the first quadrant were shifted to the third, so that φ ∈
[−π, 0]. For each τk , these were simply averaged over the 10 ti to obtain the
average amplitude and phase, Aτk

, and φτk
, and an estimate of the standard

error in the mean of this average. Statistical error creates problems with the
phase lag for small values of the lag due to the branch cut. Hence an alternative
approach was also used, in which the two trigonometric response functions were
fitted in a least squares sense to all the data at the 10 ti to obtain Aτk

and φτk
.

Except for the smallest values of τk (see discussion), the two methods gave very
similar results.

A minor improvement on the umbrella sampling algorithm was explored.
The static Maxwell-Boltzmann distribution is insensitive to velocity reversal
and to spatial reflection, since H(Γ†‡, t) = H(Γ, t). By definition of the odd

projection of the dynamic part of the reservoir entropy one has, Sodd;0
r,dyn (Γ; t, τ) =

−Sodd;0
r,dyn (Γ†‡; t, τ). These two results mean that one can calculate the phase

space average for both Γα,i and Γ
†‡
α,i with no additional work (two configurations

per ti per cycle). This ought to reduce the statistical error by about 40%.

Results

Non-equilibrium Monte Carlo simulation results are shown in Fig. 11.8. These
are for the drive frequency ω = 0.8 and the drive amplitude B = 0.2, and
use the longest time interval for the integration, τ = 7, but are fairly typical
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Figure 11.8: Non-equilibrium Monte Carlo simulation results for the average
position (open squares) and velocity (open diamonds) of the solute at 10 times
ti during the drive cycle (ω = 0.8, B = 0.2, τ = 7). The solid curves are the
trigonometric functions, x(t) = A cos(ωt + φ), and ẋ(t) = −Aω sin(ωt + φ),
where A and φ are obtained from a simple average of the 10 A(x(ti), ẋ(ti)) and
φ(x(ti), ẋ(ti)). The enveloping dashed curves are a guide to the estimated error.
The bold dashed and dotted curves are the position b(t) and velocity ḃ(t) of the
trap, respectively. Data from Attard, P. (2009c) Phys. Rev. E 80, 041126.

of all the simulation results that were obtained. The figure shows the average
position and velocity of the solute at 10 different times in the drive cycle. The
error bars are the standard error on the mean, which was obtained by breaking
the simulation into in this case 25 blocks, and obtaining the variance of the
averages. As can be seen, trigonometric curves are well defined by the data,
and a least squares fit to them readily yields the phase lag and the response
amplitude.

Using the static Boltzmann distribution for the umbrella sampling yielded
〈A/B〉 = 0.736 ± 0.007 and 〈φ〉 = −1.23 ± 0.01. Some alternative umbrella
weights were explored, but these were found to be less efficient (i.e. required
more trajectories to obtain a specified statistical error) than the present static
entropy weight (Attard, 2009c). It was however demonstrated that the averages
were independent of the umbrella weighting.

It should be understood that all of the non-zero phase lag and and non-
unity relative amplitude comes from the dynamic part of the reservoir entropy
in the Monte Carlo algorithm. The static part of the entropy alone, which was
used as the umbrella weight, and which would be equivalent to using the usual
equilibrium Monte Carlo algorithm with the instantaneous Maxwell-Boltzmann
factor, would give 〈φ〉 = 0 and 〈A〉 = B. This is just another way of saying that
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Figure 11.9: Non-equilibrium Monte Carlo simulation results for the average
relative amplitude, 〈A/B〉τ , (crosses) and phase lag, 〈φ〉τ , (bars) of the solute
as a function of the time interval τ used for the averages, (ω = 0.8, B = 0.2).
Data from Attard, (2009c).

the Maxwell-Boltzmann distribution is not the correct probability distribution
for a non-equilibrium system. The non-equilibrium part of the reservoir entropy
in the present non-equilibrium probability distribution is an essential addition
to the Boltzmann factor to produce a non-trivial response to the time varying
force.

The non-equilibrium averages depend upon the dynamic part of the reservoir
entropy, and this in turn depends upon τ , the time interval over which it is
calculated in the Monte Carlo simulations. (This was denoted τk above in the
description of the algorithm.) This is explored in Fig. 11.9, where the non-
equilibrium Monte Carlo averages for the phase lag and for the amplitude ratio
are plotted as a function of the time interval (i.e. 〈φ〉τ , and 〈A/B〉τ ). It can
be seen that the averages asymptote to constant values as the time interval
is increased. This confirms the asymptotic analysis above, which found that
the integrand of the odd projection of the dynamic part of the reservoir entropy
was a short-range function, and that therefore the integral was insensitive to the
value of the lower limit once the integrand had reached its asymptotic regime.
In this case, the figure shows that the averages have reached their asymptotic
values for τk � 3.

As τ → 0, the dynamic part of the reservoir entropy vanishes. As discussed
above, this limit is equivalent to using the instantaneous Maxwell-Boltzmann
distribution as the probability distribution, in which case one would obtain
〈x(t)〉st = B cosωt and 〈ẋ(t)〉st = 0. The obvious inconsistency of these two
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Figure 11.10: Phase lag of the solute as a function of the drive frequency.
The plus symbols are MD simulations with the equilibrium Nosé-Hoover chain
thermostat (Attard and Gray-Weale, 2008), the diamonds are non-equilibrium
stochastic molecular dynamics simulations (Attard, 2009a), and the bars are
the present non-equilibrium Monte Carlo simulations (τ = 7). The error bars
are the standard error on the mean, and are in most cases smaller than the
symbols. Data from Attard, (2009c).

results (the second is not the time derivative of the first) confirms that the
Maxwell-Boltzmann distribution is inappropriate for a non-equilibrium system.
This inconsistency explains in part why the data in Fig. 11.9 at small τ are less
reliable. Part of this is due to the fact that the statistical noise makes estimates
of φ for small φ problematic due to the branch cut. But for the most part the
unreliability at small τ arises from this inconsistency in the fitted functions (i.e.
fitting to position alone would give A = B and fitting to velocity alone would
give A = 0). The figure graphically illustrates the need to use a large enough
value of τ for the data to have attained its asymptotic value. Recording averages
as a function of τ in order to retrospectively confirm that the data have indeed
reached their asymptotes creates no extra computation time because the ωodd;0

r,dyn

can be saved as a running integral of τk.

Figure 11.10 shows the phase lag , and Fig. 11.11 shows the relative response
amplitude, both as a function of the drive frequency. It can be seen that the so-
lute oscillates almost in phase with the trap at low frequencies, and increasingly
lags the trap as the frequency is increased, and also that the response amplitude
decreases with increasing frequencies. In both figures the results of the present
non-equilibrium Monte Carlo algorithm are compared with Nosé-Hoover simu-
lations that employ an equilibrium chain thermostat (Attard and Gray-Weale,
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Figure 11.11: Relative amplitude of the driven solute. Symbols and curves as
in the preceding figure. The line is a guide to the eye.

2008), and with the non-equilibrium stochastic molecular dynamics algorithm
(Attard, 2009a), which was discussed and presented above in §11.1.3. The data
represent a significant test of the non-equilibrium Monte Carlo algorithm as
it is a qualitatively different approach to the molecular dynamics approaches.
The Monte Carlo algorithm relies upon the correct non-equilibrium probabil-
ity density (i.e. the correct weighting of phase space), whereas the stochastic
molecular dynamics algorithm relies upon the correct non-equilibrium transi-
tion probability. The fact that the phase lag obtained in this approach is the
same as that given by the molecular dynamics simulations is strong evidence
for the validity of the non-equilibrium probability distribution that is invoked.
Furthermore, it also confirms the arguments given for the dominance of the
odd projection of the dynamic part of the reservoir entropy, and for adiabatic
trajectories, Sr,dyn(Γ, t) ≈ Sodd

r,dyn(Γ, t) ≈ Sodd;0
r,dyn (Γ, t). One can conclude from

the data in Fig. 11.10 and in Fig. 11.11 that the non-equilibrium Monte Carlo
algorithm and the underlying non-equilibrium probability distribution are valid
over the whole temporal regime from steady state to transient.

As mentioned in the discussion of Fig. 11.1, there is a weak non-linear de-
pendence of the amplitude response. For example, at ω = 0.8, in the case of
non-equilibrium stochastic molecular dynamics simulations, drive amplitudes of
5, 2.5, 1, and 0.5 give 〈A/B〉 = 0.624± 0.002, 0.657± 0.002, 0.664± 0.005, and
0.675 ± 0.006, respectively. The non-equilibrium Monte Carlo simulations for
drive amplitudes of 1, 0.5, and 0.2 give 0.68± 0.02, 0.78± 0.05, and 0.76± 0.05.
The phase lag showed less variability with drive amplitude.

As far as computational efficiency is concerned, for the present case of a
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driven Brownian particle, the non-equilibrium stochastic molecular dynamics
method was better than the present implementation of the non-equilibrium
Monte Carlo method. For example, at ω = 0.8, the stochastic molecular dynam-
ics simulations used a total of 4× 106 time steps to give 〈A/B〉 = 0.675± 0.006
and 〈φ〉 = −1.27±0.01. The non-equilibrium Monte Carlo algorithm at ω = 0.8
and for τ = 3 used 625 trajectories, each of length 3000 time steps, a total of
1.9× 106 time steps, giving 〈A/B〉 = 0.73± 0.05 and 〈φ〉 = −1.19± 0.08. (The
data in Fig. 11.9 is for τ = 7.) Hence the error is reduced by about a factor of 10
for twice as many time steps, which means that stochastic molecular dynamics
is about 50 times more efficient than non-equilibrium Monte Carlo in this case.

This relative inefficiency in the non-equilibrium Monte Carlo method may
be a little misleading, since this is the first implementation of the algorithm and
there are opportunities to optimise it. It is clear that there is a great deal of
redundancy in using 10 time nodes per cycle to get the amplitude and phase
lag, and that this number could be reduced. No doubt there is a more optimal
balance between the accuracy at each node and the number of nodes used for
the fitting procedure. Also, different, more efficient forms of umbrella sampling
could be developed with a view to reducing the variance. In more challenging
non-equilibrium cases, such as polymeric or glassy systems, the non-equilibrium
Monte Carlo method offers much greater potential for optimisation and for broad
coverage of phase space than the stochastic molecular dynamics method.

11.2.4 Steady Heat Flow

Algorithm and System Details

The non-equilibrium statistical mechanics for steady heat flow was described
above in the context of stochastic molecular dynamics, §11.1.4, and the molec-
ular expressions for the various phase functions are given there. In terms of
the zeroth, E0(Γ), and first, E1(Γ), energy moments of the sub-system, and the
zeroth β0 and first β1 inverse temperatures of the reservoirs, the static part of
the reservoir entropy is

k−1
B Sr,st(Γ) = −β0E0(Γ) − β1E1(Γ), (11.74)

and the dynamic part of the reservoir entropy is

k−1
B Sr,dyn(Γ) = −β1

∫ 0

−τ

dt Ė0
1(Γ(t|Γ, 0)). (11.75)

As was discussed in detail in §8.5, this is dominated by the odd projection,
Sr,dyn(Γ) ≈ Sodd

r,dyn(Γ) ≡ [Sr,dyn(Γ) − Sr,dyn(Γ†)]/2 where the dagger means

reversing the velocity, Γ† = {Γq,−Γp}. By adding and subtracting the asymp-
tote, one could see that this could be written as the difference in the regression
of two fluctuations, and that consequently the integrand was short-ranged and
an even function of time. The latter meant that the most likely trajectory go-
ing forward in time could be invoked, [−τ, 0] ⇒ [0, τ ], and that, in turn, this



430 11. Non-Equilibrium Computer Simulation Algorithms

could be replaced by adiabatic trajectories. Finally, invoking the reversibility
of Hamilton’s equations one ends up with,

k−1
B Sr,dyn(Γ) ≈ k−1

B Sodd,0
r,dyn (Γ)

≡ −β1

2

∫ 0

−τ

dt
[
Ė0

1(Γ(t|Γ, 0)) − Ė0
1(Γ(t|Γ†, 0))

]

=
−β1

2

∫ τ

−τ

dt Ė0
1(Γ(t|Γ, 0)). (11.76)

In the following non-equilibrium Monte Carlo results this is used to compute the
non-equilibrium probability, in conjunction with umbrella sampling as described
below. The structure of the non-equilibrium Monte Carlo algorithm for steady
heat flow is more or less the same as described above for driven Brownian
motion, §11.2.3.

The Lennard-Jones potential used here was as described for the stochastic
molecular dynamics simulations, §11.1.4. Both a uniform bulk fluid (periodic
boundary conditions, minimum image convention) and a confined fluid were
simulated. The latter was in the form of a slit pore, terminated in the z-direction
by uniform Lennard-Jones walls, and with periodic boundary conditions in the
lateral directions (see p. 403 for further system details).

The simulations were performed in 6N -dimensional phase space, with N =
120–500 atoms. The Metropolis algorithm was used with umbrella weight den-
sity

ω(Γ) = e−β0E0(Γ)e−β1E1(Γ)ecβ1Ė0
1(Γ). (11.77)

As discussed in conjunction with Eq. (11.47), the static part of the reservoir
entropy has even parity, so that if it alone were used as the umbrella weight, the
flux visited in the Monte Carlo sequence would be as likely positive as negative.
Although these would be given the correct weight in the final averaging, about
half the simulated points would be wasted. Including the final term biases
the points visited in the Monte Carlo sequence to those with a flux in the right
direction. This term obviously approximates Sr,dyn(Γ)/kB, but is about a factor
of 400 faster to evaluate. In the simulations reported below c was fixed at 0.08.
It would be possible to optimise this choice, or to determine c on the fly.13

A trial move of an atom consisted of a small displacement in its position and
momentum simultaneously. The step lengths were chosen to give an acceptance
rate of � 50%. A Monte Carlo cycle consisted of one trial move of each atom
in turn, or N trial moves in total.

The full non-equilibrium weight was calculated once every 50 Monte Carlo
cycles, and quantities for later averaging were accumulated at this time. This
reduces the correlation between consecutive, costly trajectories, by inserting

13It is a moot point whether it is better to bias the umbrella sampling in this way with the
parameter c, or whether to use the static part of the reservoir entropy alone for the umbrella

weight, and to include both Γ and Γ
† in the average, since S

odd;0
r,dyn(Γ†) = −S

odd;0
r,dyn(Γ), or to

do both. The relative computational efficiency of these options was not explored.
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many cheap, umbrella steps. Labelling the current configuration used for an
average Γi, the Hamiltonian trajectory Γ0(t|Γi, 0) was generated forward and
backward in time using a second-order rule and a time step of Δt = 10−2, which
gave satisfactory energy conservation. Prior to the generation of each trajectory
the velocities of the particles were scaled and shifted at constant kinetic energy
to give zero total z-momentum. In the inhomogeneous system, a constraint
force was added to keep the total z-momentum zero on a trajectory.

The running integral for Sodd,0
r,dyn (Γi; t) was calculated along the trajectory us-

ing both the trapezoidal rule and Simpson’s rule, with indistinguishable results.
The average flux was calculated as a function of the time interval,

〈
Ė0

1

〉
τ

=

∑
i Ė0

1(Γi)e
−cβ1Ė0

1 (Γi)eSodd,0
r,dyn (Γi;τ)/kB∑

i e−cβ1Ė0
1(Γi)eSodd,0

r,dyn (Γi;τ)/kB

. (11.78)

The umbrella weight used in the Metropolis scheme is obviously cancelled here.

The thermal conductivity is reported below as λ(τ) =
〈
Ė0

1

〉
τ
/β1V kBT 2

0 . Of

the order of 50,000 trajectories were generated for each case studied.
Compared to using the exact non-equilibrium weight, the umbrella method is

orders of magnitude faster in generating configurations. Furthermore, it allows
results as a function of τ to be collected, with no additional computational
burden. This provides a check that the integration range for the dynamic part
of the reservoir entropy is long enough for the integrand to have reached its
asymptotic limit. It also allows results to be obtained for different thermal
gradients simultaneously, since the costly weight Sodd,0

r,dyn is linearly proportional
to β1. Thus non-linear effects in the thermal conductivity could be obtained in
a single simulation.

Results

Non-equilibrium Monte Carlo results for the thermal conductivity are given in
Fig. 11.12, where the time interval used to calculate Sodd,0

r,dyn (Γ; τ) is tested. The
thermal conductivity was taken from the ratio of the average adiabatic rate of
change of the first energy moment, the heat flux, to the imposed thermal gra-
dient. As can be seen, λ(τ) is independent of the integration limit for τ � 1.
This asymptotic or plateau value is ‘the’ thermal conductivity. The value of
τ required to reach the respective plateaus here is comparable to equilibrium
Green-Kubo calculations,14 but the present non-equilibrium Monte Carlo simu-
lations used about one third the number of trajectories for comparable statistical
error.

The simulation results in Fig. 11.12 were obtained in a bulk system with
periodic boundary conditions. In particular, the adiabatic heat flux, Ė0

1 , that
was integrated to get the non-equilibrium weight and which was averaged to
get the thermal conductivity, depends upon the separation between pairs of
atoms, not their absolute position, Eq. (11.18). For the periodic boundary

14Attard, P. (2005b), J. Chem. Phys. 122, 244105.
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Figure 11.12: Non-equilibrium Monte Carlo results for the thermal conductivity
as a function of the time interval used for the dynamic part of the reservoir

entropy, λ(τ) =
〈
Ė0

1

〉
τ
/V kBT 2

0 β1. The temperature is T0 = 2, and from top

to bottom the densities are 0.8, 0.6, 0.5, and 0.3. A bulk system with periodic
boundary conditions was used. Data from Attard, P. (2006), J. Chem. Phys.
124, 024109.

conditions these separations were evaluated using the nearest image convention.
Figure 11.13 shows non-equilibrium Monte Carlo results for the slit pore. In
this case there are no periodic boundaries in the z-direction, and the actual
z-coordinate and separation are used. It can be seen from the data in the figure
that as the width of the fluid increases, the extent of the plateau region for the
conductivity increases and the eventual rate of decay slows. These data suggest
that the extent of the plateau region scales with the size of the system, and that
periodic systems are effectively infinite, at least on the time scales used in these
simulations.

The stochastic molecular dynamics simulations presented in §11.1.4 above
were for a slit pore. As discussed there, the thermal conductivity was obtained
from the average adiabatic flux and the induced temperature gradient in the
central half of the pore. This was necessary because the competition between
the adiabatic and the reservoir induced evolution led to artifacts in the flux and
in the temperature profile near the walls. In the non-equilibrium Monte Carlo
simulations, this was not an issue, with the induced temperature profile being
quite linear throughout. The data in Fig. 11.13 were obtained from the average
adiabatic flux of the whole system and the applied temperature gradient. Of
course the data in the figure do indicate that there is some dependence on the
width of the slit, and for this reason the widest slit should be taken as an
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Figure 11.13: Non-equilibrium Monte Carlo results for the thermal conductivity
λ(τ) obtained in a slit pore as a function of τ , (ρ = 0.8, T0 = 2). The width of
the pore, indicated by the numbers, increases from top to bottom at the peak.
Data from Attard, (2006).

approximation to the thermal conductivity of the bulk system.

Figure 11.14 compares the thermal conductivity for a bulk system and for
a slit pore, both case using non-equilibrium Monte Carlo. The value at the
peak of the plateau was taken in all cases, and, in the case of the slit pore, the
largest width that was studied. It can be seen there is good agreement between
the results obtained in the two geometries over the range of densities. This
indicates that the density inhomogeneity induced by the walls has little effect
on the thermal conductivity.

Non-equilibrium stochastic molecular dynamics results are also given in
Fig. 11.14. These were obtained for a slit pore with the algorithm described
in §11.1.4. It can be seen that there is quite good agreement between the two
non-equilibrium simulation algorithms. In terms of computational efficiency, it
appears that the stochastic molecular dynamics algorithm is more efficient than
the non-equilibrium Monte Carlo algorithm. For the case ρ = 0.8, (Δt = 0.005,
σ∗ = 0.002), the standard error on the mean was 2%, and this took 4×106 time
steps, with averages being collected every 10 steps. This is about a factor of 5
more efficient than the non-equilibrium Monte Carlo algorithm. Alternatively,
the non-equilibrium Monte Carlo simulations required about 3× 107 time steps
(typically 2× 105 independent trajectories, each of about 75 time steps forward
and backward to get to the plateau). This obviously depends upon the size
of the applied thermal gradient (the statistical error decreases with increasing
gradient), but appears comparable to that required by deterministic molecular
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Figure 11.14: Thermal conductivity as a function of density at T0 = 2. The filled
triangles are non-equilibrium Monte-Carlo results for a bulk system (shifted hor-
izontally by +0.01), and the open triangles are non-equilibrium Monte-Carlo re-
sults for a slit pore (shifted horizontally by −0.01) (Attard, 2006). The open cir-
cles are the stochastic molecular dynamics results, obtained with Δt = 5×10−3

and σ∗ = 0.002, (Attard, 2009a). The dotted line is deterministic molecular
dynamics results, (Evans, 1986; Daivis and Evans, 1993).

dynamics simulations. No doubt the non-equilibrium Monte Carlo algorithm
could be made more efficient by optimising the number of Monte Carlo cycles
between trajectory evaluations or the value of the umbrella parameter.

Both non-equilibrium simulation algorithms, the stochastic molecular dy-
namics method discussed above and the present Monte Carlo method, are in-
herently non-linear methods. Unlike, for example, Green-Kubo methods, or
deterministic molecular dynamics methods with artificial non-equilibrium equa-
tions of motion, no linearisation has been invoked. A non-linear effect that
cannot be explored with such linear methods is the dependence of the ther-
mal conductivity on the applied thermal gradient. However, this variation can
be obtained with the non-equilibrium Monte Carlo algorithm, and results are
shown in Fig. 11.15. The increase in λ with increasing β1 is due primarily to
the coupling of the induced density gradient to the heat flux. The non-linear
effects appear greater for ρ = 0.6 than for ρ = 0.8, which is perhaps surpris-
ing. One should be cautious in invoking these results. The largest gradient
shown corresponds to 1011 K/m in argon, which may be difficult to achieve in
the laboratory. In this case the temperature discontinuity across the periodic
z-boundaries is 1 kB/εLJ. It is not clear how this discontinuity and other finite
size effects affect the non-linear conductivity.
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Figure 11.15: The non-linear thermal conductivity, λ(β1) =
〈
Ė0

1

〉
β1

/V kBT 2
0 β1,

as a function of the imposed thermal gradient for T0 = 2. The symbols are non-
equilibrium Monte Carlo simulation data, and the curves are fitted quadratics.
The triangles are ρ = 0.8 and λ(β1) = 7.21 + 413β2

1, and the circles are ρ = 0.6
and λ(β1) = 3.61 + 554β2

1. Data from Attard (2006).

11.3 Brownian Dynamics

Brownian dynamics is an approximate form of non-equilibrium computer sim-
ulation that is most like the stochastic molecular dynamics method described
earlier in this chapter, but which differs qualitatively from it in a number of
important respects. In fact it is an implementation of Langevin’s equation,
or, more rarely, the generalised Langevin equation as derived by perturbation
theory and by the projector operator formalism in Ch. 10. Like these approxi-
mations, it is designed for a system that can be divided into components that
have fast and slow relaxation times. Typical examples include the simulation of
polymers, biomolecules, or other macromolecules, colloids or other heavy solutes
dispersed in a solvent, and monolayer, membrane, micelle, and microemulsion
self-assembly. In such cases the solvent typically relaxes on much shorter time
scales than the macro-component of the system, and it is this that limits the
maximum time step that can be used in the stochastic molecular dynamics. In
fact the separation in time scales can be so large that thousands of solvent steps
are required before any measurable change in macrostructure occurs. Further-
more, the number of solvent atoms can be comparable to, or even many times
larger than, the number of atoms or sites that comprise the macro-component,
and so most of a molecular dynamics simulation can consist of solvent eval-
uations and moves. This is somewhat perverse since generally the primary
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motivation in simulating such systems is to characterise the structure and the
dynamics of the macro-component, with the behaviour of the solvent being of
secondary interest. Brownian dynamics seeks to overcome this problem by re-
moving the explicit solvent and incorporating it implicitly via effective forces
and interactions for the macro-components.

There are typically two types of problems that are addressed by Brownian
dynamics. In one case one is interested in the spontaneous evolution of the
structure of the macro-component. A typical example would be the folding
or the unfolding of a protein following a change, such as solvent exchange,
or such as the binding of an ion or antigen to a receptor site. This type of
problem corresponds to the regression analysis of §10.6.2, and to the projector
operator formalism of §10.7, where the perturbation theory for the spontaneous
relaxation of a fluctuation was presented. A second type of problem concerns
driven motion due to an external force. Examples include the electrophoretic
mobility or sedimentation of colloids, ion or solute transport through membrane
pores or microchannels, and the viscoelastic deformation of gels. This type
of problem corresponds to the generalised Langevin equation, Eq. (10.61) or
Eq. (10.165).

Brownian dynamics in typical implementation is an approximation, often
modified with ad hoc corrections. This is in contrast to the non-equilibrium
stochastic molecular dynamics and the non-equilibrium Monte Carlo algorithms
presented above, which are formally exact.15 The spirit of Brownian dynam-
ics is focused on gaining an understanding of the behaviour of otherwise in-
tractable heterogeneous systems, rather than on establishing benchmark results
or on validating generic thermodynamic formulae or theorems. To this end an
approximate approach is more defensible than it is for simulations of simple
systems.

As mentioned above, the approximation in Brownian dynamics consists of
subsuming the solvent into effective solute forces and interactions, so that only
the solute or macro-component is simulated explicitly. In §11.3.1, which im-
mediately follows, the simplest form of Brownian dynamics is discussed. This
is the no memory limit of the generalised Langevin equation and perturbation
theory of §10.3, and is typical of the field. Going beyond this to include memory
effects is a more sophisticated form of Brownian dynamics simulation. Results
have already been given for this type of algorithm in the form of the perturba-
tion computations for driven Brownian motion presented in §10.5; these will not
be repeated here. In §11.3.2, a way of systematically improving Brownian dy-
namics for more concentrated dispersions and for macromolecules is described,
again in the context of perturbation theory. This section is somewhat specu-
lative and no computational results are presented. In §11.3.3 an introduction
to stochastic calculus is given, and its relevance to Brownian dynamics and to
non-equilibrium statistical mechanics more generally is discussed.

15There are of course limitations in the non-equilibrium algorithms, primarily the model of
the system studied, the size of the system, and the length of the simulation. These are prac-
tical restrictions that can be systematically checked and overcome, rather than fundamental
approximations in the algorithm itself.
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11.3.1 Elementary Brownian Dynamics

In §10.3.5, the generalised Langevin equation for velocity was derived from non-
equilibrium perturbation theory for the pure parity case. With x = {x1, x2, . . .}
a vector with components representing the positions of each macro-component
(e.g. monomer or site of the macromolecule, colloid particle of the dispersion,
etc.), in the continuum limit, the generalised Langevin equation (10.68) is

mẍ(t) = F ext(x(t), t) + Rp(t) −
∫ t

−∞

dt′ K(t − t′)ẋ(t′). (11.79)

Here m is the mass, F ext(x, t) is the external force, and Rp(t) is the random force
for the velocity, which satisfies the fluctuation dissipation theorem, Eq. (10.78),

〈Rp(t)Rp(0)〉0 = kBTK(t). (11.80)

The memory kernel is simply related to the velocity autocorrelation function in
Fourier space by Eq. (10.73),

K(ω) =
T q̈0(ω)∣∣ ˜̈q0(ω)

∣∣2 . (11.81)

Here the one-sided velocity autocorrelation function is ˜̈q0(t) = q̈0(t), t ≥ 0, and
˜̈q0(t) = 0, t < 0. This is a pure parity case, and so the symmetrised velocity
autocorrelation function is the same as the ordinary velocity autocorrelation
function, q̈0(t) ≡ 〈ẋ(t)ẋ(0)〉0 /kB.

The simplest approximation used for Brownian dynamics simulations is to
take the memory function to be a δ-function, (Allen and Tildesley, 1987),

K(t) = 2γδ(t). (11.82)

With this, the generalised Langevin equation reduces to the ordinary Langevin
equation,

mẍ(t) = F (x(t), t) + Rp(t) − γẋ(t). (11.83)

Evidently γ is the friction or drag coefficient, which is related to the diffu-
sion constant by γ ≡ kBTD−1. Because one is generally dealing with a multi-
component system, x ≡ {x1, x2, . . .}, in this simplest case there is no coupling
between different components and γ is a diagonal matrix with friction coefficient
appropriate to each component on the diagonal. This δ-function memory func-
tion corresponds to an exponentially decaying velocity autocorrelation function,
q̈0(t) = Tm−1e−γm−1|t|, §10.3.8.

Alternatively, and more commonly, one proceeds from the continuum version
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of the generalised Langevin equation for position, Eq. (10.62),

ẋ(t) = R(t) +
1

T

∫ t

0

dt′ q̈0(t − t′)F (x(t′), t′)

= R(t) + m−1

∫ t

0

dt′ e−m−1γ|t−t′|F (x(t′), t′)

= R(t) +
1

kBT
DF (x(t), t). (11.84)

The second equality holds in the no memory limit, and the third equality holds
in the large friction, γ → ∞, or, equivalently, in the slowly varying force limit.
The fluctuation dissipation theorem for the random force for the position follows
from Eq. (10.63),

〈R(t)R(t′)〉 = kBq̈0(t − t′)

= kBTm−1e−kBTD−1m−1|tkl|

= 2D δ(t − t′). (11.85)

The successive equalities correspond to the short memory and high friction
limits, respectively.

In practice in Brownian dynamics simulations one discretises time, tk = kΔt,
so that the Langevin equation for position becomes (short memory, high friction
limit),16

xk+1 = xk + R̃k +
Δt

kBT
DFk. (11.86)

Here the random force has been rescaled, R̃k = ΔtRk, so that the covariance is〈
R̃kR̃l

〉
= 2|Δt|D δkl. (11.87)

The Dirac δ-function of the continuum has been interpreted as a ‘top-hat’ func-
tion, of width Δt and height Δ−1

t , δ(tk − tl) ⇒ Δ−1
t δkl, leading to the present

Kronecker δ for the discrete time step. It is significant for the discussion of the
stochastic calculus in §11.3.3 below that the covariance of the random force is
proportional to the width of the time step. In the mathematics literature on
stochastic calculus, this property is used as the definition of a Brownian motion,
namely that the quadratic variation of the increments is proportional to the step
length.

In component form the covariance is〈
R̃IαkR̃Jβl

〉
= 2|Δt|DIα,Jβ δkl. (11.88)

16This is equivalent to, for example, Eqs (9.33) and (9.34) of Allen and Tildesley, (1987).
The extra term Δt∇D(xi) that appears in Eq. (9.33) that doesn’t appear here results from
a configuration dependent diffusion tensor (see next), and from the stochastic calculus (see
§11.3.3), neither of which, it is therein argued, are justified for physical systems.
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Here upper case Roman indices refer to the Cartesian coordinate, lower case
Greek indices refer to the solute species, and lower case Roman indices refer
to the time node. In the most usual case, there is no coupling between the

diffusion tensor for different species, Dαβ = D
(3)
α Iαβ , nor between different

Cartesian components, D
(3)
α;JK = DαJ I(3). For a spherically symmetric solute,

this is the same for all Cartesian components. Either one can obtain the diffusion
constant from a simulation of the velocity autocorrelation function of a single
solute in the solvent, or else one might assume that it is simply given by Stokes
hydrodynamic drag, Dα = kBT/6πηρα, where η is the viscosity of the solvent
and ρα is the Stokes radius of the monomer.

As mentioned above, the major application of Brownian dynamics is to com-
plex systems, such as macromolecules or colloid dispersions. In such cases one
expects that the interactions between the monomers or solutes strongly affect
their diffusion. The simplest attempt to take such interactions into account is
based on macroscopic hydrodynamics, and it invokes the Oseen tensor for the
pair-wise interaction,17

Dαβ =

⎧⎪⎪⎨
⎪⎪⎩

kBT

6πηρα
I(3), α = β,

kBT

8πηxαβ

[
I(3) +

xαβxαβ

x2
αβ

]
, otherwise,

(11.89)

where xαβ ≡ xα − xβ and xαβ ≡ |xαβ |. Note that this expression represents
only the hydrodynamic interaction; it does not include any interaction potentials
between the monomers or solutes.

The status of this approach is a little unclear. This might be interpreted as
the first term in a systematic expansion, with higher-order terms involving three
body, four body, etc. interactions that can be obtained from macroscopic hy-
drodynamics. But whether this term and the higher-order terms are consistent
with neglecting memory effects remains an issue. There is also an issue with
the apparent dependence of the diffusion constant on the configuration. This
is not trivial because such a dependence creates an ambiguity that turns on
the difference between the Itô and Stratonovich stochastic calculus (see Ermak
and McCammon, (1978), Allen and Tildesley, (1987), Mazo, (2008), which were
mentioned above, and others18). This was mentioned in connection with the
Fokker-Planck equation, in footnote 18 on p. 89, and will be analysed in detail
in §11.3.3 below.

This brief review of Brownian dynamics simulations raises two related ques-
tions. The first concerns the use of more sophisticated diffusion constants that

17Ermak, D. L. and McCammon, J. A. (1978), J. Chem. Phys. 69, 1352. Mazo, R. M.
(2008), Brownian Motion: Fluctuations, Dynamics, and Applications, (Oxford University
Press, Oxford).

18Gardiner, C. W. (1983), Handbook of Stochastic Methods, (Springer, New York). Risken,
H. (1984), The Fokker-Planck Equation, (Springer-Verlag, Berlin). Tough, R. J. A., Pusey,
P. N., Lekerkerker, H. N. W., and van den Broeck, C. (1986), Mol. Phys. 59, 595. Keizer,
J. (1987), Statistical Thermodynamics of Non-equilibrium Processes, (Springer-Verlag, New
York).
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include memory effects and possibly configuration dependence, with the aim of
developing systematic expansions that lead to controlled approximations and
tractable algorithms. The second question concerns the stochastic calculus, and
the difference between Brownian stochastic processes, such as one finds in the
mathematics and financial engineering literature, and the more realistic formu-
lations of Brownian dynamics that are suitable for physical systems. The first
question is discussed in the following section, which approaches the problem in
the spirit of the perturbation theory that was used to derive the generalised
Langevin equation in Ch. 10. The issue of the stochastic calculus is addressed
in §11.3.3.

11.3.2 Perturbative Brownian Dynamics

In one sense an exact algorithm for Brownian dynamics for complex systems
has already been given: it is the generalised Langevin equation for position with
the velocity autocorrelation function providing the memory kernel, Eq. (10.62).
This equation is exact in the context that the external force can be treated as
a perturbation. The problem is, however, that obtaining the full velocity auto-
correlation function of the solutes or monomers in the solvent is a challenging
computational task; once it has been obtained the consequent simulations for
different external forces are relatively trivial. This section seeks to simplify the
computation of the solute velocity autocorrelation function and to place the
many body diffusion tensor mentioned above on a more formal basis.

Consider a macromolecule in a solvent. Let the positions of the monomers
comprising the macromolecule be denoted by X = {x1,x2, . . .}, with xα =
{rxα, ryα, rzα}. (This formulation can as well apply to a concentrated colloid
dispersion, with the Greek indices labelling the colloids.) There are five types
of potential energies relevant to the problem: there is the solvent-solvent poten-
tial, the solvent-monomer potential, the non-bonding monomer-monomer po-
tential, the bonding monomer-monomer potential, and the external potential
on the monomers. The bonding potential, Ub(X), is short-ranged and consists
of pair terms between nearest neighbours, which describe the connectivity of
the macromolecule and the length of the bonds, and three body and higher-
order potentials, which describe bond bending and bond rotation effects. (The
bonding potential is not present for a colloid dispersion.) The non-bonding
monomer-monomer potential is non-specific compared to the bonding potential,
and it contains short-range excluded volume terms, for example hard-sphere or
Lennard-Jones interactions, and longer range terms such as Coulomb interac-
tions, if present.

In the simplest case the macromolecule is a linear chain, with identical
monomers labelled in order along the chain, with the bonding potential act-
ing only between adjacent pairs, Ub(X) =

∑
α ub(xα,α+1), where xαβ ≡ |xαβ |,

and xαβ ≡ xα−xβ. Typically, ub(x) might represent a stiff spring, with possibly
a non-harmonic component. Short-range repulsions and excluded volume effects
are probably best included in the non-bonding part of the monomer-monomer
potential, as typically these are unsuited for a perturbation treatment.
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Conditional Correlations and Response

There is a fundamental difference between the perturbation theory that was
developed in Ch. 10 and the perturbation theory that will be developed here.
In the perturbation theory of §10.3, the velocity autocorrelation function of
the bare or equilibrium system was invoked, §10.1.1, as well as the trajec-
tory entropy, §10.1.4. The trajectory in that case was specified by velocities
at the time nodes, Ẋ(n/j) ≡ {Ẋ(tj−n+1), Ẋ(tj−n+2), . . . , Ẋ(tj)}, and one posi-
tion, usually the final position X(tj), but sometimes instead the initial position
X(tj−n+1). (In the present notation, the position of the solutes is denoted
X.) The velocity autocorrelation function that emerged as the memory func-

tion, q̈ s
0 (t) ≡ k−1

B

〈
Ẋ(t)Ẋ(0)

〉
0
, was independent of the initial position. This

corresponds to integrating over all initial positions, and to treating the posi-
tions explicitly in the quadratic form for the trajectory entropy, §10.1.4. In the
case that X represents a single Brownian particle, or that it represents a set of
Brownian particles at low concentration in the solvent, this is appropriate.

When X represents the monomers on a macromolecule, or the colloids in a
high concentration dispersion, more accurate results can be anticipated when
the initial positions of the particles are taken into account, so that one has the
conditional velocity autocorrelation function,

q̈0(t, t
′|X(0)) ≡ k−1

B

〈
Ẋ(t)Ẋ(t′)

∣∣∣X(0)
〉

0

− k−1
B

〈
Ẋ(t)

∣∣∣X(0)
〉

0

〈
Ẋ(t′)

∣∣∣X(0)
〉

0
. (11.90)

(The superscript s is dropped because only the pure parity case is analysed here,
and there is no distinction between the symmetrised and the full correlation
function in this case. The meaning of the subscript 0 in the present context
will be defined shortly; until then, it can be taken to signify the equilibrium
system.) The reasons that this is important in the present problem is that
unlike a dilute dispersion, there may be a high probability of xα(t) and xβ(t)
being close together, and the consequent interactions significantly affect the time
correlations of the monomer velocities. The dependence of a particular velocity
autocorrelation function q̈0;αβ(t|X(0)) on the initial positions is not restricted
to the initial separation of the pair, xαβ(0), but may include the separations of
other monomers initially in the vicinity (three body and higher-order effects).

This conditional velocity autocorrelation function q̈0;αβ(t|X(0)) contains the
so-called hydrodynamic interactions. Neglecting memory effects, at the pair
level it gives the Oseen form for the diffusion tensor, Eq. (11.89), with two
significant improvements: it includes the contributions from the non-bonding
monomer-monomer interactions (or else these can be added to the perturba-
tion potential), and it is xαβ(0) that appears here, which is arguably more
correct than the xαβ(t) that appears in the Oseen equation. The significance
of this is that as far as the stochastic calculus is concerned, the transport co-
efficient (equivalently the velocity autocorrelation function) is independent of
the stochastic variable, ∂q̈0(t;X(0))/∂X(t) = ∂D(X(0))/∂X(t) = 0. This is



442 11. Non-Equilibrium Computer Simulation Algorithms

consistent with the remarks made in footnote 18 on p. 89 on the relevance of
the Itô and Stratonovich stochastic calculus to the Fokker-Planck equation, and
will be discussed in detail in §11.3.3 below.

Bond Potential as a Perturbation

The non-trivial problem is to obtain the conditional solute velocity autocor-
relation function in a computationally efficient fashion, with the eventual aim
of using it in a form of Brownian dynamics to simulate the evolution of the
structure of the macromolecule, X(t), under the influence of an external force
F ext(X, t), or of a non-equilibrium (unlikely) starting position X(0). As men-
tioned in the introduction the separation of time scales of solvent motion and
macromolecule relaxation makes the full simulation of the solute velocity auto-
correlation function challenging. Hence a solution is sought in terms of Brownian
dynamics of the macromolecule that invokes time correlation functions of the
non-bonded macromolecule.

The bonding force on monomer α is

Fb;α(X) =
−∂Ub(X)

∂xα

= −u′b(xα,α+1)
xα,α+1

xα,α+1
− u′b(xα,α−1)

xα,α−1

xα,α−1
. (11.91)

The second equality holds in the simplest case of a linear chain with nearest
neighbour bonds only.

Now consider the bonding potential as an external potential, and develop
a perturbation theory using the non-bonded macromolecule as the reference
system. As is well known in equilibrium statistical mechanics, there is no fun-
damental distinction between an internal potential and an external potential.
Hence the total perturbation force may be taken to be

F(X, t) = Fb(X) + Fext(X, t). (11.92)

The bare or unperturbed system consists of the solvent and macromolecule
without the external and bonding potentials. It is an equilibrium system and
is denoted by a subscript 0. The bare trajectory entropy, conditional upon
X(0) ≡ X0, is a quadratic form that is modified from Eq. (10.24),

S
(n)
0 (Ẋ(n)|X0) = S

(n)
0;xẋ(X0) · Ẋ(n) +

1

2
S

(n)
0;ẋẋ(X0) : Ẋ(n)Ẋ(n). (11.93)

This is maximised by the most likely trajectory velocities,

Ẋ
(n)

(X0) = −[S
(n)
0;ẋẋ(X0)]

−1S
(n)
0;xẋ(X0). (11.94)

The velocity autocorrelation function is related to the fluctuation matrix in the
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usual fashion,

Q̈
(n)
0 (X0) = k−1

B

〈[
Ẋ(n) − Ẋ

(n)
(X0)

] [
Ẋ(n) − Ẋ

(n)
(X0)

]∣∣∣∣X0

〉
0

= k−1
B

〈
Ẋ(n)Ẋ(n)

∣∣∣X0

〉
0
− k−1

B

〈
Ẋ(n)

∣∣∣X0

〉
0

〈
Ẋ(n)

∣∣∣X0

〉
0

= −[S
(n)
0;ẋẋ(X0)]

−1. (11.95)

One also has that

S
(n)
0;xẋ(X0) = −S

(n)
0;ẋẋ(X0)Ẋ

(n)
(X0) = [Q̈

(n)
0 (X0)]

−1
〈
Ẋ(n)

∣∣∣X0

〉
0
. (11.96)

These averages are in the absence of the bond and external potentials, and
with the initial positions of the monomers at X0. The elements of the velocity
autocorrelation function matrix are

{Q̈(n)
0 (X0)}ij = q̈0(ti, tj |X0)

= k−1
B

〈
Ẋ(ti)Ẋ(tj)

∣∣∣X0

〉
0

− k−1
B

〈
Ẋ(ti)

∣∣∣X0

〉
0

〈
Ẋ(tj)

∣∣∣X0

〉
0
. (11.97)

In general this is not homogeneous in time. But for large times it does become
homogeneous, q̈0(ti, tj |X0) ∼ q̈0(tij), ti → ∞. In terms of monomers this is

q̈0;αβ(t, t′|X0) = k−1
B

〈[
Ẋα(t) − Ẋα(t|X0)

] [
Ẋβ(t′) − Ẋβ(t′|X0)

]〉
0

= k−1
B

〈
Ẋα(t)Ẋβ(t′)

∣∣∣X0

〉
0

− k−1
B

〈
Ẋα(t)

∣∣∣X0

〉
0

〈
Ẋβ(t′)

∣∣∣X0

〉
0
. (11.98)

Adding now the total force, F(n), the trajectory entropy of the perturbed
system is formally the same as in Eq. (10.46), with the conditional dependence
on the starting positions now exhibited explicitly,

S(n)(Ẋ(n)|X0,F
(n)) = S

(n)
0 (Ẋ(n)|X0) +

τ

T
Ẋ(n) · F(n). (11.99)

The subscript zero here signifies either the non-bonded macromolecule in the

case of S
(n)
0 , or else the initial position in the case of X0. The force here is

the sum of the bonding force and the external force, {F(n)}i ≡ F (X(ti), ti) =
Fb(X(ti)) + F ext(X(ti), ti). The trajectory has been uniformly discretised, τ =
ti+1 − ti.

As discussed in connection with Eq. (10.47), to leading-order in the perturb-
ing force, one may neglect the dependence of F(n) on Ẋ(n). (Or else one may
regard the perturbing force as a given that is later set equal to the actual force
on the most likely trajectory, §10.3.2.) In this case the most likely trajectory
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velocities are given by

Ẋ
(n)

(X0,F
(n)) = Q̈

(n)
0 (X0)

[
S

(n)
0;xẋ(X0) +

τ

T
F(n)

]
= Ẋ

(n)
(X0) +

τ

T
Q̈

(n)
0 (X0)F

(n). (11.100)

A subscript 0 could be added to the first term here, Ẋ
(n)

0 (X0), to make it clear
that this is the most likely trajectory velocity in the unbonded system. Here
and above, X0 ≡ X(0) is the initial position; it is not the unbonded trajectory

X
(n)
0 .
One can evaluate this for the terminal position, transform to the continuum,

and add the random force,

Ẋ(t|X0,F) = Ẋ(t|X0) + R(t)

+
1

T

∫ t

0

dt′ q̈0(t, t
′|X0)F(X(t′), t′). (11.101)

The random force has zero mean and covariance

〈R(t)R(t′)〉 = kBq̈0(t, t
′|X0). (11.102)

Obviously, because the memory function is short-ranged, one can set the lower
limit of the integral to t − t∗ for some fixed t∗ greater than the relaxation

time, and set X0 ⇒ X(t − t∗). Also, Ẋ(t|X0) =
〈
Ẋ(t)

∣∣∣X(0)
〉

0
(i.e. it is the

unbonded conditional most likely position), and this must have been obtained
at the same level of systematic approximation as q̈0(t, t

′|X0). By systematic
approximation is meant that for each component of the velocity autocorrelation
only a small sub-set of monomers are fixed at their initial positions, for example
q̈0;αβ(t, t′|xα(0),xβ(0), . . .), where the ellipsis represents the closest neighbours
of α and β. Obviously if one can compute the velocity autocorrelation function
〈 ẋα(t)ẋβ(t′)|X0〉0 as a function of t, t′, and a sub-set of X0, then one can even
more easily compute 〈 ẋα(t)|X0〉0 as a function of t and a sub-set of X0.

There are three reasons for presenting these results here even though there
are no numerical results to illustrate them or to confirm their utility. The first
reason is to show how one should go beyond the simple Langevin equation to
the generalised Langevin equation with memory to reduce the approximation
invoked in Brownian dynamics simulations. The second reason is to show how
a configuration dependent diffusion tensor enters the problem in a formal sense,
as opposed to postulating its influence on the basis of macroscopic hydrody-
namics. The third reason is that there may be computational advantages of
this formulation of the problem for macromolecules. The hope is that the time
correlation functions of the unbonded system are more tractable than those of
the bonded system. In part this is because one expects the relaxation time
of a non-bonded macromolecule to be shorter than that of a bonded macro-
molecule. And in part it is because, both in the case of a macromolecule and in
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the case of a concentrated colloid dispersion that has no bonding potentials, one
can systematically obtain in turn the velocity correlation functions conditioned
on no monomers, q̈0;αβ(t), two monomers, q̈0;αβ(t;xαβ(0)), three monomers,
q̈0;αβ(t;xαβ(0),xαγ(0)), etc., and truncate the series as dictated by physical
reality, mathematical convenience, or computer limitations. The utility or oth-
erwise of this approach remains to be determined, which omission doubtless will
be rectified in time.

11.3.3 Stochastic Calculus

Now the question raised briefly at the end of §11.3.1 is addressed, namely the
rôle of the stochastic calculus in realistic physical systems. In order to make the
analysis as transparent as possible, the simplest form of the stochastic equations
will be used that retains their essential features: they are discrete, and they
consist of a continuous deterministic part (the most likely part), and a stochastic
part.

First, begin with the generalised Langevin equation for velocity,

ẋ(t|x0, F ) = ẋ(t|x0) + R(t)

+
1

T

∫ t

0

dt′ q̈0(t − t′|x0)F (x(t′), t′). (11.103)

The random force for the velocity has zero mean and covariance,

〈R(t)R(t′)〉 = kBq̈0(t, t
′|x0). (11.104)

Now integrate this to obtain the generalised Langevin equation for position,

x(t|x0, F ) = x(t|x0) +

∫ t

0

dt′ R(t′)

+
1

T

∫ t

0

dt′
∫ t′

0

dt′′ q̈0(t
′, t′′|x0)F (x(t′′), t′′)

= x(t|x0) +

∫ t

0

dt′ R(t′)

+
1

T

∫ t

0

dt′′
∫ t

t′′
dt′ q̈0(t

′, t′′|x0)F (x(t′′), t′′)

= x(t|x0) + R1(t) (11.105)

+
1

T

∫ t

0

dt′′ [q̇0(t, t
′′|x0) − q̇0(t

′′, t′′|x0)] F (x(t′′), t′′).

Here R1(t) ≡
∫ t

0 dt′ R(t′). One expects R1(t) to be a Gaussian random variable,
because it is the sum of Gaussian random variables.
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The covariance of the random force for the position is

〈R1(t)R1(t
′)〉 =

∫ t

0

ds

∫ t′

0

ds′ 〈R(s)R(s′)〉

= kB

∫ t

0

ds

∫ t′

0

ds′ q̈0(s, s
′|x0)

=

∫ t

0

ds

∫ t′

0

ds′ 〈 ẋ(s)ẋ(s′)|x0〉0

= 〈[x(t) − x0][x(t′) − x0]|x0〉0 . (11.106)

What will be required below is the variance of the increment in the random
force. This can be obtained from,〈

[R1(t) − R1(t
′)]2
〉

=
〈
[x(t) − x0]

2|x0

〉
0
+ 〈[x(t) − x0][x(t′) − x0]|x0〉0

+ 〈[x(t′) − x0][x(t) − x0]|x0〉0 +
〈
[x(t′) − x0]

2|x0

〉
0

=
〈
[x(t) − x(t′)]2|x0

〉
0

=
〈
[x(t) − x(t′)]2

〉
0
, t, t′ → ∞,

= 2kBqs
0(t − t′)

∼
{

kBq̈ s
0 (0)[t − t′]2, |t − t′| → 0,

2D|t − t′|, |t − t′| � τrelax.
(11.107)

The third equality holds at long times, such that the initial state has negligible
influence. In the molecular time interval limit, the upper equality on the final
right-hand side, the variance of the difference is proportional to the square of
the time interval because the symmetrised position autocorrelation function
is an analytic, even function of time. (See, for example, Eq. (3.34). Also,
q̈ s
0 (0) = Tm−1, but this is not required here.) The short time limit, the lower

equality on the final right-hand side, is the usual Einstein limit, in which the
mean square displacement of the Brownian particle grows linearly with time.

It is emphasised that this is how the stochastic force in real physical systems
behaves. In particular, the Einstein (or Brownian process) limit does not hold
on infinitesimal time intervals. In the case of a Brownian particle in a soft sphere
fluid shown in Fig. 10.2 on p. 338, it can be seen that τrelax ≈ 5. The difference
between the time scales where a thermodynamic fluctuation shows quadratic
and linear behaviour was discussed in reference to Fig. 2.1 on p. 40.

Simplest Stochastic Equation

In order to focus upon what is essential, one can set the perturbing force to
zero, F = 0, and remove the dependence on the initial configuration by taking
the limit t, t′ → ∞. In this case the discrete stochastic equation to be analysed
is

xi = x(ti) + R1,i, (11.108)
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with the time discretised as ti = iΔt. By subtracting this from the version for
i + 1, it may be written in the form of a stochastic evolution equation,

xi+1 = xi + Δtẋ(ti) + [R1,i+1 − R1,i]. (11.109)

This is in essence the same as the conventional form used for Brownian dynamics,
Eq. (11.86), with the random force invoked there being R̃i ≡ [R1,i+1 − R1,i].

The deterministic part x(t) and all its derivatives are assumed continuous,
and it is not responsible for the unique features of the stochastic calculus that
are discussed here. Hence one can interpret below x(t) = xi + [t − ti]ẋi + . . .

Focusing on the random force, the variance of the increment is given by the
above expression with t − t′ = Δt,〈

[R1,i+1 − R1,i]
2
〉

= 2kBqs
0(Δt) (11.110)

∼
{

kBq̈ s
0 (0)Δ2

t Δt → 0, (memory),

2D|Δt|, Δt � τrelax, (no memory).

The lower equality is the traditional no memory limit for the Langevin equation
(see, for example, Eq. (11.86)). It embodies the constant drag force and for an
equilibrium system yields the Einstein result for Brownian motion. Although
the no memory result only holds for times greater than some relaxation time, in
practice, particularly in mathematical and financial applications, the covariance
of the random force is taken to be linear in the time step and the time step
is regarded as infinitesimal on the scale of motion that is being considered.
Virtually the whole field of stochastic calculus in mathematics is predicated on
the so-called Brownian result, that the covariance of the random force is linear
in the time step.

Internodal Behaviour

The key to understanding the origin of the stochastic calculus is to note that
the discrete stochastic equations of motion are silent about the behaviour of
the system between time steps, t ∈ (ti, ti+1). Consequently one has a certain
freedom in defining the value between nodes, and this choice affects integrals of
functions of the stochastic variable. For example, one could define

x(t) = x(t) + R1,i, (Itô). (11.111)

Here and below, t ∈ (ti, ti+1), with i ≡ �t/Δt�, where �. . .� means the largest
integer that is smaller than or equal to the argument. This has the interpretation
that the stochastic force is applied at the beginning of the time interval and is
zero throughout. Consequently the position is discontinuous at the time nodes.
This interpretation is equivalent to the Itô calculus.

A second possibility is

x(t) = x(t) + [R1,i + R1,i+1]/2, (Stratonovich). (11.112)
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This is equivalent to the Stratonovich calculus. One objection to this interpre-
tation is that the position at time t anticipates the force at time ti+1 > t, which
appears to violate time causality. This objection need not be taken too seriously
because in physical reality the random force arises from reservoir perturbations
that are continuous in time, and so in principle it is possible to predict the
future force from the present and past forces. Obviously other interpolation or
extrapolation schemes are possible.

Quadrature

Now consider the integration of a function over the trajectory of the form,

G(t) =

∫ x(t)

x0

dx(t′) g(x(t′))

=
n−1∑
i=0

[xi+1 − xi] g(x(t′)),

=

n−1∑
i=0

[Δtẋ(ti) + R1,i+1 − R1,i] g(x(t′)). (11.113)

Here, n ≡ �t/Δt�, t′ = ti + αΔt, and α ∈ [0, 1). In ordinary calculus, the result
of the quadrature is independent of the position t′ in the sub-interval at which
the integrand is evaluated. More precisely, different choices of α ∈ [0, 1) change
g(x(t′)) by an amount ∼ Δt, and the integral by an amount ∼ nΔ2

t ∼ Δt, which
is negligible in the limit Δt → 0. In the stochastic calculus this is not the case.

The two common choices yield

g(x(t′)) =

{
g(xi) + [αΔtẋ(ti) + R1,i]g

′(xi) + . . . , (Itô),

g(xi) + [αΔtẋ(ti) + (R1,i + R1,i+1)/2]g′(xi) + . . . , (Strat.)

(11.114)

The average of the difference between the respective quadratures is〈
GStrat(t) − GIto(t)

〉
=

n−1∑
i=0

〈
[Δtẋ(ti) + R1,i+1 − R1,i] [(R1,i+1 − R1,i)/2]g′(xi)

〉

=

n−1∑
i=0

kBqs
0(Δt)g

′(xi)

=

n−1∑
i=0

g′(xi)

{
kBq̈ s

0 (0)Δ2
t /2, (memory),

D|Δt|, (no memory).
(11.115)

For the no memory case, 〈R1(t)R1(t
′)〉 = 2D|t − t′|, it can be seen that this

is GStrat(t) − GIto(t) ∼ nΔt = t, which cannot be neglected in the limit that
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the time step goes to zero. However for the case of memory, 〈R1(t)R1(t
′)〉 =

2kBq̈ s
0 (t − t′) ∼ kBq̈ s

0 (0)[t − t′]2, [t′ − t] → 0, and hence GStrat(t) − GIto(t) ∼
nΔ2

t = tΔt, which is negligible when the time step goes to zero. Hence in the
case of memory, the choice of stochastic calculus is irrelevant.

Conclusion

To summarise the stochastic calculus, one has to distinguish between mathe-
matics and the physical sciences. As a mathematical discipline, it is perfectly
legitimate to define a Brownian process as one in which the variance of the ran-
dom force increment is linearly proportional to the time step for all values of the
time step, and to pursue the consequences of different choices for the internode
behaviour for the stochastic calculus.

In the physical sciences, one ought to recognise the real origins of the stochas-
tic force, and to distinguish between large time steps, when the displacement of
the Brownian particle is linear in the time step (the Einstein result), and small
time steps, when it is quadratic. The following remarks address the relevance
of the stochastic calculus to the physical sciences, and are not concerned with
its value as a mathematical pursuit in its own right.

If one has rapidly varying external or perturbing forces, then one has no
choice but to invoke small time steps, and under these circumstance the gener-
alised Langevin equation with memory is required. In this case the stochastic
calculus is not required.

A difficulty remains in the large time step, no memory case (slowly varying
external force), where the stochastic calculus is required. There is no firm
axiomatic basis for choosing between the Itô, Stratonovich, or other form for
the internode value of the stochastic variable, but the value of a quadrature
depends upon such a choice. It is axiomatic that physical values cannot have
such an ambiguity. Perhaps the resolution of the problem lies in the observation
that it is not only the external force that provides an upper bound on the time
step, but also any function whose estimate is required. In particular, for an
accurate quadrature, the variation of g(x) in a time step must be relatively
negligible. If one demands that |Dg′(x(t))| �

∣∣ẋ(t)g(x(t))
∣∣, then the stochastic

calculus is irrelevant. If the diffusion constant is not small enough to satisfy
this, then one must instead use a small time step and the memory function.

In non-equilibrium statistical mechanics, this ambiguity in the stochastic
calculus for the no memory case occurs in the relationship between the Fokker-
Planck equation and the Langevin equation, with the differences depending
upon the gradients of the diffusion constant, ∇ ·D.19 (Once again it is stressed
that this is not an issue for the generalised Langevin equation with memory.)
In the present derivation of the Fokker-Planck equation, §3.7.3, the problem
did not occur because the diffusion constant was independent of the stochas-
tic variable. Similarly in Ch. 10, such gradients did not appear because the
position variables were averaged out in obtaining the time correlation function

19See Eq. (11.86) et seq., and also Ermak and McCammon, (1978), Gardiner, (1983), Risken,
(1984), Tough et al. (1986), Keizer, (1987), Allen and Tildesley, (1987), and Mazo, (2008).
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and the consequent diffusion constant. The advanced Brownian dynamics pre-
sented above, §11.3.2, invoked a time correlation function that was conditional
upon the position of the Brownian particle at the beginning of the trajectory,
〈[x(t) − x0][x(t′) − x0]|x0〉. The configuration dependence of the diffusion con-
stant that results from this, D(x0), does not give rise to any dependence on
the stochastic calculus, ∂D(x0)/∂x(t) = 0, since, it is arguable, that in the no
memory limit, the dependence on the initial configuration ought to be forgotten.
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Index

adiabatic
definition, 106
derivative, 211
energy Ḣ0, 236
energy moment Ė0

1 , 106, 109,
305

entropy change, 238, 252, 264
momentum moment Ṗ 0

x1, 324
trajectory, 175, 356
velocity γ̇0, 250–252

average
definition, 178, 182, 227
entropy change, 288
heat flow, 315
trajectory, 227, 347
work, 294

Avogradro’s number, 69

barycentric velocity, 123
Bayes’ theorem, 17
Bénard, 145
Boltzmann, 1, 183

H-function, 19
constant kB, 2, 17

bond potential, 440, 442
Boussinesq approximation, 146
Brownian

dynamics, 435–450
advanced, 440–445
driven particle, 358–366
elementary, 437–440

particle
amplitude, 361
driven, 72–83
free, 64–66, 71–72, 331–342
numerical results, 358–366
perturbation theory, 343–355

phase lag, 363
pinned, 66–68
time correlation, 332–335
trajectory, 338–342, 364–366

process, 63, 67, 446–449

Caldeira-Leggett model, 383–388
canonical equilibrium

distribution, 28, 71, 186–188
rate of change, 212–214

system, 186–195
canonical non-equilibrium

system, 99
centre of mass velocity, 123
charge flow, 111–119
chemical affinity, 131
chemical potential, 98

gradient, 110
chemical reaction, 123
Clausius, 1
collective, 14
compressibility

isothermal χT, 141
phase space ∇ · Γ̇, 87, 93, 214–

216
conduction, heat flow, 125, 147–148
conductivity

electric, 114
conjugate

thermodynamic, 98, 101
trajectory, 223, 284–287, 293
velocity state, 20, 219

conservation
energy, 109, 125, 139, 175
mass, 125
material, 27, 85
momentum, 140

455



456 Index

number, 123, 139
probability, 94
weight, 22, 182, 241

constraint
free energy F (E|N, V, T ), 99, 190
heat flow, 310, 402
reservoir force, 260–262
shear flow, 327

contracted description, 13
convection

algorithm
cross roll, 157–161
straight roll, 154–157

entropy, 150–153
experiment, 156, 166, 171
heat flow, 125, 157, 166
hydrodynamic equations, 148–

150, 154, 157
phase transition, 161–163, 166,

171
velocity amplitude, 156

convective derivative, 124, 142
canonical probability, 210

Coriolis force, 58
correlation, see time correlation
cross roll

algorithm, 157–161
transition, 162, 166, 169–172

Curie symmetry principle, 134

density correlation, 229
diffusion constant, 65–67

generalised, 439
numerical, 337

diffusion equation, 68
dissipation

Brownian particle, 85
canonical equilibrium, 206, 211,

214
hydrodynamic, 132–134
mixed parity, 58
principle of maximum, 5, 48
principle of minimum, 5, 48
thermoelectric, 118

dissipative force
heat flow, 309

shear flow, 327
Doob’s theorem, 42
drag force, 65, 69, 79, 81, 83, 201,

257, 309, 327, 359
Dufour effect, 110

Einstein, 61, 67, 69
electric current, 111–119
energy

equation dT (r, t)/dt, 144, 147,
154, 157

internal, 127, 151
moment, 100, 105

molecular E1(Γ), 304
regression Ė1, 39, 102, 108,

299
ensemble, 9, 94
enthalpy, 127, 142
entropy, equilibrium

canonical, 187–192
constrained, 189
continuum, 25
convection, 128, 150–153, 163–

166, 170
definition, 2, 4, 17
density σ(ε, ρ), 98
history, 1, 12, 23
microcanonical, 185
phase space, 186
principle of maximum, 9, 19,

189
probability and, 2, 18
probability of ℘(ΔS), 232
rate of change, 83–86, 129, 132,

133, 148, 211, 214
reservoir

canonical, 195
definition, 27
steady state, 133
trajectory, 235

total, 18, 106, 136, 153, 189
heat flow, 307
shear flow, 326

entropy, first, see entropy, equilib-
rium

entropy, non-equilibrium
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Brownian, 74, 81
change

probability of ℘(�ΔSr), 287

transition �ΔSr, 263, 267, 290
convection, 150–153, 163–166,

170
dynamic, 275–280

backward change, 264
definition, 236
driven Brownian, 74, 81
fluctuation form, 240
heat flow, 306
shear flow, 325
steady state, 273

fluctuation form, 239–240
generic, 237
heat flow, 306
odd projection, 275–280, 316,

318–320, 416–422
rate of change, 262–266
shear flow, 324
static, 74

definition, 236
entropy, second, see second entropy
entropy, third, 50
entropy, trajectory, see trajectory,

entropy
entropy, transition, see second en-

tropy
equations of motion

Hamilton’s Γ̇0, 175
stochastic

canonical, 196–198, 202
heat flow, 308
non-equilibrium, 249, 252–255
perturbation, 348–353

equilibrium
definition, 4
dissipation �ΔSr, 206
equations of motion, 195–198,

202, 204
irreversibility, 206
probability, 192–194

canonical, 186–188
isolated, 176–186

reversibility, 218–225
second entropy, 198–205
trajectory, 226–232

equipartition theorem, 85, 86, 194–
195, 209

generalised, 91–92
heat flow, 310–313

ergodic hypothesis, 177
expansivity, 141

first energy moment, 99–101, 105,
297, 400

first entropy, see entropy, equilib-
rium

first momentum moment, 321
first temperature, 99–101, 105, 297,

400
first velocity, 320
fluctuation

definition, 33
energy, 99
equilibrium, 2
heat flow, 101
matrix, 38, 53, 79

asymptote, 39
definition, 35
small time, 43, 54, 101

non-equilibrium, 72
number, 124
probability, 35
regression, 39

small time, 40
fluctuation dissipation theorem

heat flow, 309
memory, 350, 353, 358, 437, 438,

444–446
harmonic oscillator, 386
mixed parity, 377

non-equilibrium, 249
shear flow, 327
simple, 64, 66, 70, 438

fluctuation theorem ℘(�ΔSr), 287–289,
294

flux
definition, 30, 102
energy, 125–127, 297
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momentum, 127–128, 321
number, 123–125
probability, 93, 183, 216

Fokker-Planck equation, 68, 449
canonical equilibrium, 207–210
derivation, 88–90
non-equilibrium, 258

Fourier expansion, convection, 154,
159

Fourier transform
definition, 352
Langevin equation, 352
memory function, 353, 355, 437

Fourier’s law, 97, 103, 110, 298, 404
free energy

definition, 29
equilibrium, 4
Gibbs, 141, 192
Helmholtz, 29, 99, 188–192, 294,

296
heat flow, 307
shear flow, 326

friction force, 65, 69, 79, 81, 83, 201,
257, 309, 327, 359

Gaussian Markov process, 63
Gaussian probability, 33, 35
Gibbs, 27
Glauber dynamics, 291
Green, linear response, 356
Green-Kubo, 46, 103, 261, 275, 280,

300, 323, 408
thermal conductivity, 313–318

Hamilton’s equations Γ̇0, 175
heat capacity CV, cp, 142

definition, 98, 99
heat flow, 102–103

conduction, 125
constraint, 402
convection, 125, 157
definition, 102
reservoir, 104–109
temperature profile, 405, 407

Heaviside step function, 352
hydrodynamic

derivative, see convective deriva-
tive

equations, 142–144
fluctuations, 139
variational principle, 137

incompressibility ∇ · Γ̇, 176
inductive reasoning, 9
intermolecular potentials, 176
irreversibility, 50

equations of motion, 205, 221,
253, 266

Itô, 90, 447

Jaynes, 9, 10, 19, 189
Joule effect, 114

Kawasaki dynamics, 291
Kelvin

second relation, 116
kinetic energy, 194
Kubo, linear response, 356

Lagrange multiplier, 261, 310, 327
Langevin equation

discrete, 438
driven particle, 359
generalised, 382, 437, 444, 445

derivation, 350, 352
harmonic oscillator, 384
mixed parity, 366–378
position, 358

simple, 80, 83, 343, 437, 438
leap frog algorithm, 392
Lennard-Jones potential, 402
linear response theory, 356–358
linear stability analysis, 156
Liouville operator L, 380
Liouville’s theorem

derivation, 93–96, 216–218
Lorentzian, 386
Lyaponov function, 49–50

macromolecule, 440
macrostate, definition, 14
magnetic field, 58
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Markov, 38–42, 63, 65, 69, 75, 82,
226, 282, 300, 323, 330, 387

non-, 42, 44, 49, 346
material derivative, see convective

derivative
maxent, see entropy, equilibrium, prin-

ciple of maximum
Maxwell-Boltzmann distribution, see

canonical, distribution
memory function, 437, 438, 444–446

exponential, 355, 386
harmonic oscillator, 385
mixed parity, 370
position, 346
velocity, 352

Metropolis algorithm, 410–414
microstate, definition, 14
molecular dynamics

driven particle, 361, 395–399
equations of motion, 394
equilibrium, 391–395
heat flow, 400–409
thermostat, 393

moment, 30
momentum

moment
regression Ṗx1, 322

momentum flux, 128
Monte Carlo

driven particle, 361, 417–429
algorithm, 423–424

equilibrium, 409–412
heat flow, 429–434
Metropolis, 410, 413
non-equilibrium, 412–417
umbrella sampling, 411, 412, 414,

415, 430, 431
Mori, 378

Navier-Stokes equation, 143, 147
neighbour table, 396, 402
non-Hamiltonian Γ̇det, 95, 181, 217,

218, 394, 409
non-linear

amplitude response, 362, 398,
428

force, 374
potential, 85
theory, 78, 93, 239, 254, 374,

382
thermal conductivity, 431, 434

non-Markov, see Markov, non-
non-reversible, see irreversible
Nosé-Hoover, 361, 397
number flux, 110–111
Nusselt number, 157, 166

Ohm’s law, 114
Onsager, 45

reciprocal, see reciprocal rela-
tion

regression, see regression, hy-
pothesis

Ornstein-Uhlenbeck process, 63
Oseen tensor, 439, 441

parity matrix, 51, 335, 367, 374
partition function

microcanonical, 185
time derivative, 269

path, see trajectory
peculiar velocity, 123
Peltier effect, 115
Perrin, 69
perturbation

average, 347
Brownian particle, 343–355
equations of motion, 348–353
mixed parity, 366–378
trajectory

entropy, 344, 375
most likely, 344

phase space, 174
average, 182
probability of, 181

phase transition, 150
conduction-convection, 156
convection wavelength, 163–172

Planck’s constant, 185
position autocorrelation

as memory, 446
Einstein, 65, 67
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small time, 71, 78
trapped particle, 75

power spectrum, 354
Prandtl number, 149
pressure

definition, 98
tensor, 127

Prigogine, 5, 48
probability

conservation, 94
definition, 2
entropy and, 18
equilibrium

Brownian, 71–72
fluctuation, 35
flux, 93, 183
frequency interpretation, 8
joint, 16
laws, 14–26, 240–243
measure interpretation, 11
nature of, 7–14
non-equilibrium

Brownian, 72–83
generic, 233–235
heat flow, 306
rate of change, 270–271
shear flow, 325

phase space, 177–184
rate of change, 86–96
subjective interpretation, 9–10
trajectory, see trajectory, prob-

ability
transition, 2, 3, 22, 37, 242

canonical, 196
reversibility, 220, 224

weight and, 15–17
projection, 13

phase function, 380
projector operator, 378–383

quantum statistical mechanics, 176

random walk, 67
randomness, nature of, 12
Rayleigh number, 149

critical, 156, 166

reaction rate, 123
reciprocal relation, 45, 60, 116
reduction condition, 25, 37, 53, 55,

109
canonical equilibrium, 199
non-equilibrium, 245
small time, 44
time dependent, 243
trajectory, 237
transition weight, 21, 241
weight, 16

regression
adiabatic dissipation Ṡ0

r,st, 278

energy moment Ė1, 39, 102, 108,
299

hypothesis, 31, 34, 45, 109, 303
magnitude of, 37
mixed parity, 54, 56, 78, 371–

372
momentum moment Ṗx1, 322
reservoir force, 257
small time, 44, 78
time correlation and, 38
trajectory, 279

reservoir
entropy, see entropy, reservoir
formalism, 26–31
harmonic oscillator, 383
heat, 28, 98, 104–109, 301–303
steady state, 29–31

reversibility, 34, 36
adiabatic, 219–220
canonical equilibrium, 220–225
definition, 20, 218
mixed parity, 52
non-, see irreversible
probability, 22
reciprocal relation, 46
trajectory, 229–232

Rugh, 194

second entropy
canonical equilibrium, 198–205
conditional, 24, 242
definition, 7, 24–25
heat flow, 101–119, 299–303
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hydrodynamic, 133–137
interpretation, 47–48, 57
mixed parity, 51–54, 79, 136

canonical equilibrium, 203
non-equilibrium, 244–247
quadratic, 36
reduction, 25, 37, 44, 55, 199
shear flow, 322–323
small time, 42–45, 54–58, 102
transition probability, 24
weight, 20, 242

Second Law, 1–5, 23
non-equilibrium, 6

Seebeck effect, 114
shear flow, 140, 143, 320–328
silicone oil, 156
simulation, see molecular dynamics

or Monte Carlo
small time

definition, 42
Smoluchowski equation, 343, 346

driven particle, 360
soft sphere potential, 396
Soret coefficient, 110, 135
stability, 48
state

definition, 1, 14
most likely, 24

steady state
formalism, 29–31
heat flow, 101–103
probability, 273–274

stochastic calculus, 90, 350, 439, 442,
445–450

stochastic process, 63
stoichiometric coefficient, 123
Stokes’ law, 67
Stratonovich, 90, 447

temperature
definition, 97
first, see first, temperature
gradient, 101

thermal conductivity, 97, 103, 135,
140, 431, 433

bulk, 431

molecular, 313–318
non-linear, 434
slit pore, 407, 431

thermodynamic force, 34, 44, 45, 48,
57, 64, 65, 107, 374, 375,
380, 382

Brownian particle, 66, 372
heat flow, 101, 108, 299, 302,

303
mixed parity, 57
shear flow, 322

thermoelectric effects, 113–119
Thomson effect, 116
time correlation

Brownian, 69–71, 332–335
canonical equilibrium, 227–228
definition, 34
density, 229
energy moment, 300
expansion, 42, 44, 55
exponential, 42, 355
fluctuation, 38, 53
mixed parity, 51–54, 366–368
momentum moment, 323
non-equilibrium, 247–249
velocity, 77, 333

time homogeneity
averages and, 228
correlation and, 34, 228, 231,

332, 333, 335, 368
dot transfer, 336, 382
equilibrium average and, 380
Hamiltonian trajectory and, 421
magnetic field, 59
mixed parity, 51, 52, 56, 244
second entropy and, 36

Toeplitz matrix, 339, 346, 351
trajectory

adiabatic, 175
Brownian

driven, 364–366
free, 338–342

conjugate, 23, 223, 230, 284–
287, 293

entropy, 235, 280–283, 292, 339
mixed parity, 369
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perturbation, 344, 375
irreversible, 50
macromolecule, 442, 444
most likely

perturbation, 344
probability, 283–284

canonical equilibrium, 226, 231
non-equilibrium, 293
ratio, 286, 293

reversibility, 229–232
transition

entropy, see second entropy
Markov, 41
path, see trajectory
phase, see phase transition
probability, 22, 37, 88

canonical, 196
non-equilibrium, 242, 258
reversibility, 220, 224
triplet, 41

weight, 20, 241
transport matrix, 42, 45, 49

mixed parity, 55, 56, 59, 79

umbrella sampling, 411, 412, 414,
430, 431

non-equilibrium, 415

van Hove function, 228
velocity autocorrelation, 77, 333

as memory, 346, 437, 441, 444,
445

conditional, 441, 443
macromolecule, 443
mixed parity, 367
Toeplitz matrix, 339, 346, 351

Verlet algorithm, 392
viscosity, 135, 140, 323
viscous dissipation, 143, 147

definition, 141

weight, see probability, weight
Weiner-Khintchine theorem, 354–355
work, 235, 292

path entropy, 289–294
work theorem

〈
e−βW

〉
, 287–289, 294

Zwanzig, 378
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