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Abstract. Many sociological networks, as well as biological and technological ones, can be represented
in terms of complex networks with a heterogeneous connectivity pattern. Dynamical processes taking
place on top of them can be very much influenced by this topological fact. In this paper we consider a
paradigmatic model of non-equilibrium dynamics, namely the forest fire model, whose relevance lies in
its capacity to represent several epidemic processes in a general parametrization. We study the behavior
of this model in complex networks by developing the corresponding heterogeneous mean-field theory and
solving it in its steady state. We provide exact and approximate expressions for homogeneous networks
and several instances of heterogeneous networks. A comparison of our analytical results with extensive
numerical simulations allows to draw the region of the parameter space in which heterogeneous mean-field
theory provides an accurate description of the dynamics, and enlights the limits of validity of the mean-field
theory in situations where dynamical correlations become important.

1 Introduction

The heterogeneous topology of a networked substrate has
been proven to have a large impact on dynamical pro-
cesses taking place on top of it [1,2]. These topological
effects are especially remarkable in the case of scale-free
(SF) complex networks [3,4], characterized by a degree
distribution P (k), defined as the probability that an ele-
ment in the network (vertex) is connected to k other ele-
ments, that exhibits a power-law behavior, P (k) ∼ k−2−γ ,
with 0 < γ ≤ 11. The diverging second moment 〈k2〉
of the degree distribution has thus been found to be at
the core of the peculiar behavior observed in a wide ar-
ray of non-equilibrium dynamical processes, ranging from
percolation [5,6], absorbing-state phase transitions [7],
self-organized criticality [8,9], synchronization phenom-
ena [10], opinion dynamics [11], etc.

The interplay between topology and dynamics has
been particularly studied in the case of epidemic pro-
cesses [12], where the relevant substrate is the network of
contacts through which the disease spreads [13]. Starting
from the first observations of an epidemic threshold scal-
ing as the inverse of the second moment of the degree dis-
tribution, and thus vanishing in the thermodynamic limit
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1 To ease the notation in our mathematical treatment, we

will use this definition of the degree exponent in a power-law
degree distribution.

of an infinite network size [14–17], a wealth of interest-
ing and relevant results have arisen, dealing, to mention
just a few, with immunization strategies [18,19], effects of
bipartite (heterosexual) populations [20] or epidemic fore-
casting [21].

The understanding of the features of epidemic spread-
ing is mainly based on the analysis of compartmental mod-
els [22], in which the population is divided into different
classes, according to the stage of the disease. Individuals
(the vertices in the network) are in this way classified as
susceptible (healthy and capable to contract the disease),
infected (sick, and capable to transmit the disease), re-
covered (immunized or dead), etc. With these definitions,
different epidemic models can be formulated, according to
the succession of states that the evolution of the disease
imposes on each individual, such as susceptible-infected-
susceptible (SIS), susceptible-infected-recovered (SIR),
susceptible-infected-removed-susceptible (SIRS), etc. The
theoretical analysis of the behavior of these compartmen-
tal models in complex networks starts from the applica-
tion of the heterogeneous mean-field (HMF) theory [1,2].
This formalism is based on the assumptions that all ver-
tices with the same number of connections (i.e. within the
same degree class) share the same dynamical properties,
and that fluctuations are not important, and therefore all
relevant variables can be described in terms of determin-
istic rate equations. The first assumption becomes natu-
ral once we admit that the degree is the only parameter
describing the state of a vertex. On the other hand, the
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second assumption finds support in the small-world prop-
erty shown by most complex networks [23], implying that
dynamical fluctuations take place so close together that
they can be washed away in very few time steps2. HMF
has proved to be extremely useful in providing an accurate
description of epidemic models on complex networks, and
has in fact become the de facto standard tool to analyze
general non-equilibrium processes on such substrates [1].

In this paper we will pay attention on a non-
equilibrium dynamical model with relevance both in epi-
demic modeling and other ambits of non-equilibrium sta-
tistical physics, namely the forest fire model (FFM). First
introduced in 1992 by Bak et al. [25], and further devel-
oped by Drossel and Schwabl [26], the FFM was elabo-
rated to show self-organized criticality and avalanche be-
havior in a specific limit of its defining parameters. Even
though its general status as a self-organized critical model
is under debate [27,28], it has found successful applica-
tions as a general disease propagation model [12,29], in
which susceptible individuals can get the disease either by
transmission from an infected neighbor or spontaneously
(because of a mosquito bite for instance), while recovered
individuals can become again susceptible. It is thus akin to
a SIRS model [12] with an external source of infected in-
dividuals. More interestingly, it encompasses several other
compartmental models, which can be recovered in a con-
venient way as certain limits of the parameters that define
the FFM.

Previous works on the FFM in complex networks
have reported, among other results, the presence of self-
sustained oscillations in small-world networks [30] and an-
alyzed the distribution of excitations depending on topol-
ogy [31]. From the perspective of the SIRS model, on the
other hand, its epidemiological implications have been dis-
cussed for certain ranges of its parameter space [32,33].
In the present paper we provide an extensive theoretical
analysis of the FFM, using the HMF formalism and fo-
cusing on the steady-state dynamics of the model in the
whole range of its parameter space. Our analysis allows to
emphasize its interpretation, in the different regimes, in
terms of known epidemic models, providing analytic ex-
pressions for the steady-state density of infected individ-
uals in certain limits of the relevant parameters. A com-
parison of the theoretical results with extensive numerical
simulations, allows finally to unveil the limitations of the
HMF approach in this and probably other epidemic mod-
els, hinting towards the break down of HMF theory when
dynamical correlations become relevant [24].

We organized our paper as follows: in Section 2 we de-
fine the FFM, discussing its relation to self-organized crit-
icality and disease propagation. In Section 3 we develop
the HMF theory of the FFM in general complex networks.
Section 4 deals with the steady-state solution of the HFM
equations obtained before. We show in particular how an
appropriate rescaling of the equations allows to simplify
the description and to conveniently reduce the number
of degrees of freedom. A general analysis is presented for

2 As a matter of fact, fluctuations can be shown to be irrel-
evant in some particular cases [24].

Fig. 1. (Color online) Representation of the three states
present in the forest fire model, and of its dynamical rules.
(n.n. stands for a “nearest neighbor” interaction).

both homogeneous networks and heterogeneous networks
with no spontaneous infection. An explicit analysis of un-
correlated SF networks is presented in Section 5. The nu-
merical simulations shown in Section 6 allow us to check
the validity of our theoretical results, as well as to draw
the limits of validity of general HMF approaches. Finally,
we present our conclusions in Section 7.

2 Forest fire model on complex networks

We consider the FFM on general complex networks which,
from a statistical point of view, are described at a coarse-
grained level by the degree distribution P (k) and the
degree-degree correlations, given by the conditional prob-
ability P (k′|k) that a vertex of degree k is connected to a
vertex of degree k′ [34].

In the FFM, each vertex in the network is in one of
three excluding states: E (empty), T (tree), F (burning
tree). The evolution of the model is defined in a continuous
time formulation in terms of the possible events that can
happen in a small time interval Δt (see Fig. 1)

1. E → T: a tree can grow on an empty vertex with prob-
ability pΔt.

2. T → F: for a tree, each of its burning neighbors (if
any) can light it with probability hΔt.

3. T → F: additionally, there is also a probability gΔt
for a tree to catch fire spontaneously (e.g. mediating
a lightning). These two burning events are considered
probabilistically independent.

4. F → E: a burning tree leaves an empty vertex with
probability �Δt.

The FFM was proposed to exhibit self-organized criticality
in the double limit p → 0 and g/p → 0, in which clusters
of trees are allowed to grow before burning down, leading
to a distribution of fire avalanches with an approximately
power-law form [35]. For finite p and g values, an acti-
vated dynamics with no evidence of avalanches is instead
observed [30,31].

From the point of view of disease modeling, trees, fires,
and empty sites represent, respectively, susceptible, in-
fected, and recovered individuals. Within this interpreta-
tion of the model, susceptible individuals can acquire the
disease by contact with one or more infected individuals
at rate h; infected individuals recover in a time scale of the



J.-D. Bancal and R. Pastor-Satorras: Steady-state dynamics of the ffm on complex networks 111

order ∼1/�; recovered individuals become again suscepti-
ble in a time scale ∼1/p; and healthy individuals become
spontaneously infected in a time scale ∼1/g. With a set
of 4 parameters, a unified description of the most usual
epidemic models is achieved. Thus, in the limit p = g = 0,
we recover the SIR model; the limit g = 0 and p → ∞
leads to the SIS model; while the limit g = 0 corresponds
to the SIRS model.

Note finally that our definition of the FFM considers
time as a continuous variable, in opposition to previous
approaches. This formulation is preferred in order to lead
more naturally to a continuous analytical description in
terms of differential equations, and will be taken into ac-
count when performing numerical simulations in Section 6.

3 Heterogeneous mean-field theory
for the FFM in complex networks

Within the HMF approach, a dynamical system is as-
sumed to be fully determined in terms of the relative prob-
abilities that a vertex of given degree k is in any one of the
states allowed by the dynamics [14,16]. In the case of the
FFM, this description invokes the partial densities ρα

k (t),
defined as the conditional probability that a vertex of de-
gree k is, at time t, in the state α, with α ∈ {E, T, F}.
Since each vertex must be in one of these states, the par-
tial densities satisfy the normalization condition

ρE
k (t) + ρT

k (t) + ρF
k (t) = 1. (1)

Therefore, only two independent partial densities, say
ρE

k (t) and ρF
k (t), must be considered in the analysis. On

the other hand, the density of vertices in each state at
time t is given by

ρα(t) =
∑

k

P (k)ρα
k (t). (2)

At the core of the HMF theory lie the rate equations ful-
filled by the partial densities. By considering the differ-
ent microscopic steps allowed in the model we can readily
write the change of the quantities ρα

k (t) in an infinitesimal
time step Δt, that are given by

ρE
k (t + Δt) = ρE

k (t) + ρF
k (t)Probk(F → E)

−ρE
k (t)Probk(E → T ), (3)

ρT
k (t + Δt) = ρT

k (t) + ρE
k (t)Probk(E → T )

−ρT
k (t)Probk(T → F ), (4)

ρF
k (t + Δt) = ρF

k (t) − ρF
k (t)Probk(F → E)

+ρT
k (t)Probk(T → F ), (5)

where Probk(α → β) is the probability that a vertex of
degree k experiences the transition from the state α to
the state β in a time interval Δt. From the definition of
the FFM in Section 2, we can immediately write down
Probk(E → T ) = pΔt and Probk(F → E) = �Δt. In
order to construct the term Probk(T → F ), we must

consider that rules 2 and 3 defining the model, which
represent a tree catching fire, are statistically indepen-
dent. Therefore if we define H as the event “A tree is
lighted by its neighbors” and G as the event “A tree
lights up spontaneously”, we have that Probk(T → F ) =
Probk(G∪H) = Probk(H)[1−Probk(G)]+Probk(G). Rule
3 gives Probk(G) = gΔt. Now, since in this description
vertices with the same degree are statistically equivalent,
the state of a given vertex is independent on the state of
its neighbors, and it only depends on its degree. This al-
lows us to write the probability for one neighbor of a tree
with degree k to be burning as

θk =
∑

k′
P (k′|k)ρF

k′ , (6)

given in terms of the average of the conditional probability
P (k′|k) that the vertex k is connected to a vertex of de-
gree k′, times the probability that this last vertex is burn-
ing, ρF

k′ . Notice that here we are assuming that the edge
through which k′ became burning is immediately available
to transmit again the fire. This assumption, in opposition
to the behavior of the SIR model [36], will thus be valid
only for p > 0.

From rule 2, the probability that a particular nearest
neighbor fire ignites a tree in a vertex of degree k is given
by hΔtθk. Therefore, the probability that a tree of degree
k is ignited by any of its nearest neighbors is Probk(H) =
1− [1−hΔtθk]k. Substituting this expressions in Eqs. (3)-
(5), and taking the limit Δt → 0, we obtain the final HMF
equations for the FFM,

⎧
⎪⎪⎨

⎪⎪⎩

ρ̇E
k (t) = ρF

k (t) − pρE
k (t)

ρ̇T
k (t) = pρE

k (t) − ρT
k (t)

[
hk

∑
k′ P (k′|k)ρF

k′ (t) + g
]
,

ρ̇F
k (t) = ρT

k (t)
[
hk

∑
k′ P (k′|k)ρF

k′ (t) + g
]− ρF

k (t)
(7)

where we have set � = 1, which amounts to a trivial rescal-
ing of time.

Equations (7) represent a complete description of the
FFM at the HMF level. Even though we have derived
them in a phenomenological way [14,37], they can also
be obtained from a microscopic point of view, considering
explicitly the state of each vertex evolving as a Poisson
random process [24,38]. The mean-field result is then re-
covered by averaging over the random processes and over
the vertices with same degree.

One final warning comment is in order here, concerning
the fact that, in writing equations (7), we have neglected
altogether dynamical correlations between adjacent ver-
tices, assuming explicitly that the state of a vertex is in-
dependent of the state of its nearest neighbors. As we will
see, this assumption is not correct, especially for low fire
(infection) densities, when the positions of different fires
are in fact strongly correlated, leading thus to a break-
down of the HMF theory predictions (see Sect. 6).
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Fig. 2. (Color online) Representation of the two states present
in the SIS+g model, and of its dynamical rules. Its steady-
state is directly related to that of the FFM. (n.n. stands for a
“nearest neighbor” interaction).

4 Steady-state solution in general networks

Let us consider the long time properties of the FFM. It
typically corresponds to the steady-state calculated by set-
ting ρ̇E

k = ρ̇T
k = ρ̇F

k = 0 ∀k in the HMF equations (7),
which yields the algebraic equations

⎧
⎪⎪⎨

⎪⎪⎩

0 = ρF
k − pρE

k

0 = pρE
k − ρT

k

[
hk

∑
k′ P (k′|k)ρF

k′ + g
]

0 = ρT
k

[
hk

∑
k′ P (k′|k)ρF

k′ + g
]− ρF

k

(8)

for the (now time-independent) variables ρα
k . We look for

nontrivial steady-states, so we will be concerned in search-
ing solutions with ρα

k �= 0.
The analysis of equations (8) can be simplified by

noticing that the empty state plays the role of a rest
state (cf. Appendix A), which the system enters and leaves
with constant rates. It can thus be factorized by writing
its population density, from the first equation in (8), as
ρE

k = ρF
k /p and substituting it in the other two equations.

Therefore, introducing the rescaling factor

η = 1 +
1
p

(9)

and defining the new variable and parameter

ρ̄F
k ≡ ηρF

k , ḡ ≡ ηg, (10)

we can consider the simplified set of equations
{

0 = ρ̄F
k − ρT

k

[
hk

∑
k′ P (k′|k)ρ̄F

k′ + ḡ
]

1 = ρ̄F
k + ρT

k

(11)

as characterizing the steady-state of the FFM in a general
complex network with a correlation pattern given by the
conditional probability P (k′|k).

From equation (11), we can see that the steady-state
of the FFM can be in general mapped to the steady-state
of an SIS model [14] with a random source of infected
individuals, arising from isolated susceptibles with rate ḡ.
We can thus refer to it as a SIS+g model, see Figure 2.
In particular, setting g = 0, the FFM becomes the SIRS
model, which is therefore exactly mappable to the SIS
model [32].

In order to solve the set of equations (11), one can
proceed to substitute its second equation into its first one,
to obtain ρ̄F

k as a function of θ̄k ≡ ηθk, namely

ρ̄F
k =

hkθ̄k + ḡ

1 + (hkθ̄k + ḡ)
. (12)

The equation is closed by expressing θ̄k self-consistently as

θ̄k =
∑

k′
P (k′|k)ρ̄F

k′ (t)

=
∑

k′
P (k′|k)

hk′θ̄k′ + ḡ

1 + (hk′θ̄k′ + ḡ)
. (13)

Solving this equation for θ̄k directly gives the steady-
state fire density, and thus the stationary solution of the
process.

Prior to solving these equations, however, notice that
equations (11) imply that the solution for ρ̄F

k takes the
functional form ρ̄F

k (ḡ, h), and is now independent of p
(namely of η). Therefore, we can write down a scaling
solution for the steady-state fire density in the FFM in
any network as

ρF (η, g, h) =
1
η
ρ̄F (ηg, h). (14)

This scaling solution implies that the factor p (growth of
new trees) affects the model only by a rescaling of the
fire density and of the rate of spontaneous lightning. This
justifies the fact that no more than 2 out of the 4 ini-
tial parameters are relevant to the study of the stationary
state of the FFM within the HMF theory approximation.
For the particular case g = 0, equation (14) leads to

ρF (η, g = 0, h) ≡ 1
η
F (h), (15)

that is, the fire density is a function of h, divided by η.
In the limit p → ∞ (η → 1), we recover the standard
SIS model. On the other hand, any finite p will lead to a
smaller value of the fire density. The fact that an upper
bound on ρF can be deduced from η is in general valid for
any g: since ρ̄F

k ≤ 1, given that it is a probability, we have
that

ρF ≤ 1
η

=
p

p + 1
. (16)

This upper bound on ρF has important consequences from
a numerical point of view. In fact, even in the regions of
the parameter space (h, g) where a nonzero value of ρF is
expected, a very small value of p will lead to a correspond-
ingly small fire density, which can be difficult to measure
unless in the limit of very large network sizes.

The factorization of the empty state, the functional
form of the fire density and its upper bound in terms of η
are in fact quite general features, that can be found in any
dynamical system having rest states, see Appendix A.

4.1 Homogeneous networks

Let us consider first the simplest situation of the FFM
taking place in a homogeneous network, in which the de-
gree distribution is peaked at an average degree 〈k〉 and
decays exponentially fast for k  〈k〉 and k � 〈k〉. We
can approximate all vertices as having the same degree
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k = 〈k〉. In this case, we have ρF
k ≡ ρF effectively inde-

pendent of k, and also θk = ρF . Equation (12) thus takes
the form

h〈k〉(ρ̄F )2 + (1 + ḡ − h〈k〉)ρ̄F − ḡ = 0, (17)

whose only positive solution is

ρ̄F =
h〈k〉 − 1 − ḡ +

√−4h〈k〉+ (1 + ḡ + h〈k〉)2
2h〈k〉 , (18)

as already shown in reference [39].
For g > 0 the fire density is strictly positive. This

results from the fact that the trees in the network can
always ignite themselves with some nonzero probability,
therefore always reviving the fire density. On the other
hand, for g = 0, the fire density takes the form

ρF =
|1 − h〈k〉| − (1 − h〈k〉)

2ηh〈k〉 . (19)

which is equal to 0 for h < 〈k〉−1 and positive otherwise.
That is, the FFM experiences an absorbing-state phase
transition [40] at a critical value hc = 〈k〉−1. For h > hc,
the systems is in an active phase, in which the fire activity
never stops, taking the asymptotic form

ρF ∼ h − hc

η
. (20)

On the other hand, for h < hc, the system reaches an
absorbing state, in which fire always ends up disappearing
by lack of transmissibility.

4.2 Phase transition for g = 0 on complex networks

For networks with a general degree distribution P (k) and
general correlation pattern P (k′|k), the explicit solution of
equations (12) and (13) becomes a quite difficult task. It is
possible, however, to obtain information for a general net-
work in the particular case g = 0. Setting g to 0 changes
the forest fire model to a SIRS model, whose stationary
state can be related to the one of the SIS model by removal
of the rest state, see equation (11). Therefore, in this par-
ticular limit, the FFM exhibits an absorbing-state phase
transition between an active (burning, infected) phase and
an absorbing (fire-free, healthy) phase, located at the crit-
ical point [41]

hc =
1

Λm
, (21)

where Λm is the largest eigenvalue of the connectivity ma-
trix Ckk′ = kP (k′|k). Interestingly, this threshold is in-
dependent of the rate p of creation of new trees, which
only affects the overall density of fires, as expressed in
equation (15).

5 Explicit solution for uncorrelated scale-free
networks

In order to obtain explicit analytical results for the HMF
equations of the FFM, we restrict ourselves to the case of
uncorrelated networks. In this case, the conditional prob-
ability P (k′|k) takes the form P (k′|k) = k′P (k′)/〈k〉 [4].
θ̄k thus becomes independent of k:

θ̄k ≡ θ̄ =
1
〈k〉

∑

k

kP (k)ρ̄F
k . (22)

From equation (12), ρ̄F
k is now an algebraic function of

k. For the interesting case of SF networks, with a degree
distribution P (k) = (γ + 1)mγ+1k−2−γ in the continu-
ous degree approximation, where m is the minimum de-
gree present in the network, equation (13) reads, replacing
summations by integrals,

θ̄ = γmγ

∫ ∞

m

dk
hθ̄k−γ + ḡk−1−γ

1 + η(hkθ̄ + ḡ)
(23)

= F

(
1, γ; γ + 1;−1 + ḡ

mhθ̄

)

+
γḡ

(γ + 1)mhθ̄
F

(
1, γ + 1; γ + 2;−1 + ḡ

mhθ̄

)
(24)

where

F (a, b; c; z) =
Γ (c)

Γ (b)Γ (c − b)

∫ 1

0

dt
tb−1(1 − t)c−b−1

(1 − tz)a
(25)

is the Gauss hypergeometric function [42]. Using the
power series development of the hypergeometric func-
tion [42] or the asymptotic expression

F (1, γ; 1 + γ;−z−1) = γ

∞∑

n=1

(−1)n zn

n − γ
+

γπ

sin(γπ)
zγ ,

(26)
valid for arg(z) < π and γ /∈ N, one finds the self-
consistent equation for θ̄ to be:

θ̄ =
ḡ

1 + ḡ
+

1
1 + ḡ

F

(
1, γ; γ + 1;−1 + ḡ

mhθ̄

)
, (27)

for all 1+ḡ
mhθ̄

> 0. This is the final equation we need to solve
in order to find the steady state fire density. Note that the
condition of validity γ /∈ N is no more a restriction here,
by analytical continuation of the hypergeometric function.

Before proceeding, let us express more explicitly the
dependence of the fire density (what we are ultimately
interested in) and the probability for a neighbor to burn,
θ̄. We can directly calculate it using equation (12) and a
similar reasoning as before, to obtain:

ρ̄F =
∑

k

P (k)ρ̄F
k = (γ + 1)mγ+1

∫ ∞

m

dk
hkθ̄ + ḡ

1 + η(hkθ̄ + ḡ)

=
ḡ

1 + ḡ
+

1
1 + ḡ

F

(
1, γ + 1; γ + 2;−1 + ḡ

mhθ̄

)
. (28)
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Now, using one of Gauss’s relations for contiguous hyper-
geometric functions [42], namely

(a − c)zF (a, b; c + 1; z) + cF (a, b − 1; c; z) =
c(1 − z)F (a, b; c; z) (29)

with a = 1, b = γ + 1 and c = γ + 1, the hypergeomet-
ric function can be re-expressed directly in terms of θ̄ as
obtained in equation (27) to get

ρ̄F =
ḡ

1 + ḡ
+

γ + 1
γ

mhθ̄

1 + ḡ
(1 − θ̄). (30)

In a general SF network without correlations, the fire den-
sity is thus a quadratic function of the probability θ̄.

5.1 Exact solution for γ = 1

In the case γ = 1 it is possible to solve exactly the self-
consistent equation (27), which, using [42]

F (1, 1, 2,−z) =
ln(1 + z)

z
(31)

takes the form

θ̄ =
ḡ

1 + ḡ
+

mhθ̄

(1 + ḡ)2
ln
(

1 +
1 + ḡ

mhθ̄

)
. (32)

Introducing the new variable y = ḡ + ḡ(1+ḡ)

mhθ̄
the equation

becomes
yey = ḡeḡ+ (1+ḡ)2

mh . (33)

Recognizing the solution of yey = x as y = W (x), where
W (x) is the W Lambert function [43], the following result
follows:

θ̄ =
1 + ḡ

mh

[
−1 + ḡ−1W

(
ḡeḡ+ (1+ḡ)2

mh

)]−1

. (34)

The value of the fire density is then obtained by plugging
this expression into equation (30). Expanding the fire den-
sity at first order for small ḡ, and using the expansion for
the Lambert function, valid for |z| < 1/e [44]

W (z) =
∞∑

n=1

(−1)n−1nn−2

(n − 1)!
zn, (35)

leads to the expression

ρ̄F �
2hm

(
e

1
hm − 1

)
− 2

hm
(
e

1
hm − 1

)2 +

⎡

⎢⎣3 +
8

h2m2
(
e

1
hm − 1

)3

+
8 − 10hm

h2m2
(
e

1
hm − 1

)2 − 8 − 2hm

hm
(
e

1
hm − 1

)

⎤

⎥⎦ ḡ, (36)

where the first term corresponds, obviously, to the SIS
result [14], recovered in the limit g → 0. The expansion

in terms of h leads, using the asymptotic expansion of the
Lambert function [44], to

ρ̄F � ḡ

1 + ḡ
+

2ḡm

(1 + ḡ)3
h, (37)

yielding a nonzero fire density (an infected steady-state)
for any value of h if ḡ > 0.

5.2 Asymptotic solution for γ �= 1

Let us now turn our attention to the behavior of the FFM
in the general case γ �= 1. To do so, we will study the limit
of low fire density, namely θ̄  1 and ḡ  1. In this limit,
equation (30) leads to

ρ̄F ∼ ḡ +
γ + 1

γ
mhθ̄, (38)

so we need to develop the self-consistent equation for θ̄,
equation (27), up to the first most relevant terms, using
the asymptotic expansion equation (26). For ḡ = 0 we
recover the known result ρ̄F ∼ (h − hc)β [37], where

hc =

{
0 for 0 < γ < 1
γ−1
γm for γ > 1

, (39)

and

β =

⎧
⎪⎨

⎪⎩

1
1−γ for 0 < γ < 1

1
γ−1 for 1 < γ < 2
1 for γ > 2

. (40)

For ḡ > 0, let us consider separately each possible value of
γ, performing an expansion of θ̄ using the series expression
for the Gauss hypergeometric function, equation (26).

(1) 0 < γ < 1:
In this case, the leading approximation for θ̄ is

θ̄ � ḡ

1 + ḡ
+

γπ

(1 + ḡ) sin(γπ)

(
mhθ̄

1 + ḡ

)γ

, (41)

which is valid for mhθ̄
1+ḡ  1. If ḡ �= 0, the solution of θ̄

depends in a nontrivial way on both ḡ and h as

θ̄ = κ

(
ḡ

1 + ḡ
,

γπ

(1 + ḡ) sin(γπ)

[
mh

1 + ḡ

]γ)
(42)

where the function κ(a, b) is defined as the solution of the
implicit equation κ(a, b) = a + b κ(a, b)γ . In Appendix B
we give an explicit expression for κ(a, b) in terms of a and
b. For small ḡ and h, two different regimes can be isolated
from the development of the κ function, equation (A.23)
in Appendix B:

– h  ḡ
1−γ

γ : the most significant terms are now :

θ̄ � ḡ

1 + ḡ
+

γπ

(1 + ḡ) sin(γπ)

(
mhḡ

(1 + ḡ)2

)γ

, (43)
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so that, to leading order in h, the fire density goes like:

ρ̄F � ḡ

1 + ḡ
+

γ + 1
γ

mḡ

(1 + ḡ)3
h. (44)

The introduction of an infinitesimal ḡ > 0 destroys
again the absorbing-state phase transition, since both
terms in equation (44) are positive.

– ḡ  h
γ

1−γ : in this case, the leading terms are:

θ̄ � θ̄0 + (1 − γ)−1ḡ, (45)

where θ̄0 =
(

γπ(mh)γ

sin(γπ)

) 1
1−γ

. Thus, equation (30) yields

ρ̄F � γ + 1
γ

mhθ0(1−θ̄0)+
[
1 +

(1 + γ)mh

γ(1 − γ)
(1 − 2θ0)

]
ḡ.

(46)
One should notice that in order to derive this last ex-
pression we used equation (41), which assumes mhθ̄

1+ḡ 
1, so not only do we need ḡ to be small in order for
this approximation to hold, but h cannot be too large
either.

(2) γ > 1:
The self-consistent equation (27) can be approximated

in this regime by:

θ̄ � ḡ

1 + ḡ
+

γ

γ − 1
mhθ̄

(1 + ḡ)2
. (47)

So we obtain:

θ̄ � (γ − 1)ḡ(1 + ḡ)
(γ − 1)(1 + ḡ)2 − γmh

. (48)

and to first order, the fire density is given by

ρ̄F � ḡ (1 − ḡ + 2mh) . (49)

To summarize, in all cases considered above the presence
of a fire lightning probability g > 0 eradicates any phase
transition in the model, just like on homogeneous net-
works, Section 4.1, rendering a nonzero steady-state that
grows, at lowest order, linearly with ḡ, with a numerical
prefactor which is a complex function of h, depending on
the particular value of γ considered.

6 Numerical simulations

In order to check the analytic predictions developed in the
previous sections, we performed extensive numerical sim-
ulations of the FFM on top of different network models,
both homogeneous and heterogeneous. Simulations were
implemented using a sequential update algorithm [40].
Given a substrate network, each vertex is first randomly
initialized in one of the three possible states, empty, tree,
or fire. In the dynamics, every time step a vertex is chosen
at random and its state is updated applying the rules de-
fined in Section 2 with given reaction rates �, p, g and h.

Fig. 3. (Color online) Steady state fire density in the FFM on
homogeneous WS networks of size N = 105. (a) Raw data for
different values of η as a function of g/�, and fixed h/� = 0.4.
(b) Data collapse of the previous plots as given by Eq. (50).
The functions agree very well with the prediction by HFM
theory for large values of the ratio ḡ ≡ ηg/�. The separation of
the curves at low ḡ indicates a possible non-mean-field regime.

In principle, to reproduce the exact dynamics a time step
would correspond to a time increment Δt = 1/N [40]. To
speed up the arrival to the stationary state, we chose Δt
larger, but still small enough so as to keep the process
random. Typically, the probabilities involved in the evo-
lution are such that max(�Δt, pΔt, gΔt, hΔt) ≤ 0.1.
We have checked that smaller probabilities do not affect
the properties of the steady state, but only slow down the
transient to reach it. We can recover the correct theoreti-
cal expressions from our HMF analysis just by substitut-
ing the model parameters by the rescaled values h/�, g/�,
p/�, and, correspondingly, η = 1 + �/p.

6.1 Homogeneous networks: the Watts-Strogatz
model

As an example of a homogeneous network, we consider
the small-world model proposed by Watts and Strogatz
(WS) [23]. Networks in this model are generated as fol-
lows: the starting point is a ring with N vertices, in which
every vertex is symmetrically connected to its 2K nearest
neighbors. Then, for every vertex, each edge connected to
a clockwise neighbor is rewired to a randomly chosen ver-
tex with probability prw, and kept with probability 1−prw.
This procedure generates a graph with a degree distribu-
tion that decays faster than exponentially for large k, and
average degree 〈k〉 = 2K. We considered here WS net-
works with prw=1 and K = 3.

In Figure 3 we show the numerical results obtained in
WS homogeneous networks of size N = 105, with fixed
parameters � = 10−3 and h/� = 0.4, and varying values of
p and g. We chose in particular a large value of h/�, larger
than hc/� = 〈k〉−1 = 1/6, in order to avoid possible prob-
lems in the vicinity of the critical point for small values of
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g. In this case, the theoretical prediction for the fire den-
sity is given by equation (18), with the correct rescaling
of parameters

ρF =
6h
� − 1 − η g

� +
√
−24h

� + (1 + η g
� + 6h

� )2

12h
� η

, (50)

indicating, as argued in Section 4, that ηρF should be a
scaling function of ηg/�. As we can observe in Figure 3b,
the theoretical prediction is very well satisfied by numer-
ical data for large values of ηg/�, collapsing all plots on
the functional form of equation (50) when the appropriate
rescaling is performed. However, for values of ηg/� ≤ 10,
we also observe a noticeable departure from the mean-field
prediction, which is more conspicuous for large values of
η. One could naively attribute this departure to a simple
numerical artifact: since we have in general that ρF ∼ η−1,
one could argue that, for fixed h, g, and �, larger values
of η lead to ever smaller fire densities. Therefore, for suf-
ficiently large η, we could expect such small fire density
that its steady state determination will incur in numerical
resolution problems, unless extremely large network sizes
are considered. But here the minimal fire density we find
is of the order ∼0.04 � 1

N = 10−5 and so the number of
burning trees still represents a significant fraction of the
total population.

A more thorough analysis, however, reveals that the
actual reason of this departure is the failure of the mean-
field assumption of lack of dynamical correlations between
vertices discussed in Section 3 in the limit of small ηg/�,
and for large η (small p/�). In this case, the fire den-
sity is very small, and therefore burning vertices are very
likely nearest neighbors of other fires, precisely those that
originated them. This fact introduces correlations between
the state of nearest neighbors which invalidate the whole
mean-field approximation. We can check this argument
in a homogeneous network by comparing the probability
P (α) that any vertex is in state α, with the conditional
probability P (α|β) that a vertex is in state α, provided
it is nearest neighbor of a vertex in state β. In Figure 4
we compare the numerical values of P (F ) ≡ ρF with the
corresponding conditional probabilities P (F |E), P (F |T )
and P (F |F ) in simulations performed for different values
of η, plotted as a function of g/�. The figure shows that
P (F |F ) is clearly larger that ρF in the areas of dissen-
sion: for small g/�, and especially for the largest values
of η. This results confirms the presence of strong dynam-
ical correlations between vertices, and hints towards the
failure of the HMF approximation in this region of the
parameter space.

6.2 Heterogeneous networks: the Barabási-Albert
model

The Barabási-Albert (BA) model is an algorithm to gen-
erate growing SF networks with degree exponent γ = 1,
based on the preferential attachment paradigm [3]. This
model is defined as follows: we start from a small num-
ber m0 of vertices, and at each time step, a new vertex is

Fig. 4. (Color online) Dependence of a vertex’s state on his
neighbors’ states in WS networks of size N = 105. The three
graphs correspond to the three different curves presented in
Figure 3: (a) η = 1.1, (b) η = 2, (c) η = 11. The red curve is the
fire density ρF in each case. In the absence of state correlations,
we should have P (F |E) = P (F |T ) = P (F |F ) = ρF .

introduced, with m edges that are connected to old ver-
tices i with probability Π(ki) = ki/

∑
j kj , where ki is the

degree of the ith vertex. After iterating this procedure
a large number of times, we obtain a network composed
by N vertices, minimum degree m, fixed average degree
〈k〉 = 2m, degree distribution P (k) = 2m2k−3 and almost
vanishing degree correlations [45,46]. The simulations con-
sidered here were perform with m = 2 and a network size
N = 106.

In the case of the BA network, we can check the ac-
curacy of the exact HMF solution for γ = 1, as given by
equations (30) and (34). This is a nontrivial function of
two variables, g and h. Therefore, to check it in a simple
way, we focused on the small g and h regimes, in which
expressions (36) and (37) should provide a good approxi-
mation. In particular, we computed the quantities ∂ρ̄F /∂ḡ
and ∂ρ̄F /∂h which, for small h/� and ḡ can be approxi-
mated from equations (36) and (37) by

∂ρ̄F

∂ḡ

∣∣∣∣
ḡ=0

= 3 +
8

h2m2
(
e

1
hm − 1

)3 +
8 − 10hm

h2m2
(
e

1
hm − 1

)2

− 8 − 2hm

hm
(
e

1
hm − 1

) ,

∂ρ̄F

∂h

∣∣∣∣
h=0

=
2ḡm

(1 + ḡ)3
.

(51)

To obtain those quantities numerically, we used computer
simulations to find the stationary fire density for several
values of the variable with respect to which we took the
partial derivative. Those values were chosen sufficiently
small (ḡ < 10−3 and h/� < 2×10−3) so that the expected
second order term is negligible. We then checked that the
points formed the expected straight line, on which we mea-
sured the slope. The error on this slope comes from sta-
tistical uncertainties on the measured fire density for the
points considered.
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Fig. 5. (Color online) Slope
dρ̄f

dḡ
as a function of h/� evaluated

at ḡ ≤ 0.001 on BA networks. The thick line is the mean field
prediction for ḡ = 0, equation (51).

Fig. 6. (Color online) Slope
dρ̄f

dh̄
as a function of ḡ evaluated

at h/� ≤ 0.002 on BA networks. The thick line is the mean
field prediction for h = 0, equation (51).

Figures 5 and 6 show these quantities, computed from
numerical simulations of the FFM in BA networks with
� = 10−2. In order to ensure that we are within the re-
gion of validity of the HMF prediction, we chose a small
value of η = 1.1 (p/� = 10). The good agreement observed
between numerical simulations and the theoretical HMF
predictions in equations (51) confirms the validity of the
HMF analysis in this parameter regime.

6.3 Heterogeneous networks: the uncorrelated
configuration model

To generate SF networks with an arbitrary degree expo-
nent γ �= 1, we used the uncorrelated configuration model
(UCM) [47]. This model is defined as follows: we start from
N initially disconnected vertices. Each vertex i is assigned
a degree ki, extracted from the probability distribution
P (k) ∼ k−2−γ , subject to the constraints m ≤ ki ≤ N1/2

and
∑

i ki even. Finally, the actual network is constructed
by randomly connecting the vertices with

∑
i ki/2 edges,

respecting the preassigned degrees and avoiding multiple

Fig. 7. (Color online) Steady state fire density in the FFM on
heterogeneous UCM networks with γ = 1/2 and size N = 106.
(a) Raw data for different values of η as a function of g/�, and
fixed h/� = 0.4. (b) Data collapse of the previous plots as given
in equation (14). The full line is a numerical solution to equa-
tion (27) plugged into (30) with the appropriate parameters
(m = 2, γ = 1/2, h/� = 0.4). For small ḡ ≡ ηg/�, deviations
from the mean field theory are observed.

and self-connections. Using this algorithm, it is possible
to create SF networks whose average maximum degree
(or cut-off) scales as kc(N) ∼ N1/2 for any degree expo-
nent γ, and which are completely uncorrelated [48]. In the
present simulations we chose a minimum degree m = 2,
� = 10−2 and sizes up to N = 106.

In Figure 7 we check the scaling of the fire density ηρF

as a function of ηg/� in UCM networks with degree ex-
ponent γ = 1/2. As in the case of the homogeneous WS
networks, the data collapse is very good for large values
of ηg/�, fitting perfectly the theoretical prediction (full
line) obtained by a numerical resolution of equations (27)
and (30). Again, deviations from the HMF prediction are
observed for small ηg/�, which must be attributed to the
presence of strong dynamical correlations between ver-
tices, which invalidate the HMF approximation.

The SF nature of this network model allows to explore
the role of the degree in the establishment of dynamical
correlations at small values of ηg/�. In order to do so, we
concentrate in this case on the conditional probabilities
Pk(α|β) that a vertex of degree k be in state α, provided
it is nearest neighbor of a vertex in state β. In absence
of dynamical correlations, we should expect Pk(α|β) ≡ ρα

k
in the steady-state of the dynamics. In Figure 8 we show
the theoretical value ρ̄F

k for ḡ = 10−2, calculated from
equations (27) and (12), compared with the conditional
rescaled probability ηPk(F |F ), evaluated from numerical
simulations and plotted as a function of k for different
values of η. In the absence of dynamical correlations, we
should observe the plots of ηPk(F |F ) to collapse onto the
theoretical curve ρ̄F

k for the different values of η. While
this scenario is correct for η ≤ 2, we observe very strong
deviations from the HMF prediction for large η, signaling
the non-mean-field behavior of the FFM in SF networks.



118 The European Physical Journal B

Fig. 8. (Color online) Dependence of a vertex’s state on his
neighbors’ states, as a function of the degree in UCM networks
with γ = 1

2
and size N = 106. The thick line corresponds

to the theoretical prediction ρ̄F
k , computed numerically from

equations (27) and (12). Data for h/� = 0.4, ḡ = 0.01.

In particular, the conditional probability Pk(F |F ) turns
out to be larger than the HMF average value ρF

k = η−1ρ̄F
k ,

the difference increasing for small degree values. The dis-
crepancy between Pk(F |F ) and the average fire density,
also observed in homogeneous networks (see Fig. 8), is
again due to the clustering at low fire densities of burning
vertices in connected regions of the network.

7 Conclusion

In this paper we have presented a detailed analytical study
of the forest fire model (FFM) in complex networks. From
the perspective of the modelization of epidemic spreading
processes, the FFM represents a generalization of several
well-known epidemic models previously studied, which can
be captured within the formalism of the FFM by the ap-
propriate selection of representative parameters. Applying
the now established HMF theory formalism, we have de-
rived a set of rate equations in continuous time that rep-
resent the dynamics of this model. Focusing in the long
term steady state behavior, we have defined a set of alge-
braic equations, whose analysis allows to discuss the role
of the different parameters in the model. Thus, the rate at
which empty sites become trees (the recovery rate of in-
fected individuals) p, turns out to be absorbed in a rescal-
ing of the fire density (density of infected individuals) and
of the spontaneous ignition (spontaneous infection) rate,
yielding in this way a fire density that is inversely propor-
tional to 1/p. In the case of homogeneous networks, we
recover the results previously obtained in the mean-field
analysis of the FFM [39]. In the case of heterogeneous SF
networks, on the other hand, we have been able to provide
exact explicit expressions for the fire density for a degree
exponent γ = 1, and approximate expressions for γ < 1,
valid for the cases of h or g very small.

A comparison of these theoretical predictions with
large scale simulations in homogeneous and heterogeneous

Fig. 9. (Color online) General dynamical process with a rest
state A1.

networks shows the HMF theory to provide a correct de-
scription of the steady state of the FFM for large p (small
η) and g, a regime in which the average fire density is suf-
ficiently large. For small p (large η) and g, on the other
hand, numerical simulations indicate the breakdown of
HMF theory. The origin of this failure can be traced back
to the build up of dynamical correlations between nearest
neighbor vertices, correlations which in fact are expected
to appear, due to the fact that fires accumulate with large
probability in connected clusters, and are therefore not
homogeneously distributed over the network as assumed
by mean-field approaches.

Apart from providing new insights into the behavior of
a dynamical model relevant in epidemiological modeling,
our results indicate a possible path to the understanding
of the failure of HMF theory observed in other kinds of
non-equilibrium processes in complex networks [7].
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Appendix A: Rest states play no role
in steady-state solutions

Let us consider a general dynamical process taking place
on S states where A1 is what we will call here a “rest
state”: every site Ai can evolve to A1 only with some fixed
rate �i and A1 evolves to A2 with some other fixed rate
p, see Figure 9. The dynamical equations of this process
take the general form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȧ1(t) =
∑S

i=2 �iai(t) − pa1(t)
ȧ2(t) = pa1(t) + f2[a2(t), . . ., aS(t)] − �2a2(t)

...
ȧi(t) = fi[a2(t), . . ., aS(t)] − �iai(t),

...
ȧS(t) = fS [a2(t), . . ., aS(t)] − �SaS(t)
1 =

∑S
i=1 ai

(A.1)

for some functions fi[a2(t), . . . , aS(t)], where ai(t) is the
probability of finding the system in state i at time t.
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Trying to solve this system for the stationary state by
setting ȧi(t) = 0 ∀i, one can get rid of the a1 variable
by substituting its value from the first equation into the
other ones, namely a1 =

∑
i �i/p ai. Then the last S − 1

equations form a set of S − 1 independent equations with
only S − 1 unknowns:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 =
∑S

i=2 �iai + f2(a2, . . ., aS) − �2a2(t)
...

0 = fi(a2, . . ., aS) − �iai(t).
...

0 = fS(a2, . . ., aS) − �aS

1 =
∑S

i=2 ai +
∑S

i=2 �i/p ai

(A.2)

Now if the introduced functions can be written as

fi(a2, . . ., aS) =
∑

n2,...,nS

cn2,...,nS

i · an2
2 · . . . · anS

S , (A.3)

then, performing the change of variable

āi = ηiai, c̄n2,...,nS

i = cn2,...,nS

i

∏

j

η
−nj

j , �̄i = �iη
−1
i ∀i

(A.4)
keeps all the first equalities in (A.2) true for any value of
the constants ηi. In particular, choosing

ηi = 1 + �i/p, (A.5)

then all equalities are verified and the last one becomes∑S
i=2 āi = 1.
In other words, the new variables āi, together with

equations (A.2) above, describe the stationary solution
of a dynamical system with analogous dynamics as the
first one (A.1), up to a constant for some parameters, and
without the rest state. Finding the stationary solution of
the original S-states system is thus equivalent to finding
the one for the new system with S − 1 states.

The new model has one parameter less, p, which has
been absorbed in the redefinition of all other parameters
and variables of the new system. So the stationary state
of the first model is somehow independent on p. This can
be stated as:

ηiai({ηj ,
∏

k

ηnk

k c̄n2,...,nS

j , ηj �̄j}j) = āi({c̄n2,...,nS

j , �̄j}j)

Indep. of p ∀i. (A.6)

Moreover, an upper bound for all densities ai can be de-
duced directly from this argument: since āi is the proba-
bility to be in state i in the new system, then

āi < 1 ⇒ ai < η−1
i . (A.7)

Notice that in the main text we chose the time scale so
that �̄ = 1. This has the effect of applying the η factor to
different coefficients (cf. Eq. (10)).

Appendix B: An explicit solution
to a transcendental equation

Let’s consider the equation

κ = a + bκγ (A.8)

for κ, where a, b ∈ R+ are given and 0 < γ < 1 is
fixed. This equation was already considered back in 1772
by Lambert [49].

If a �= 0 we can introduce the variable v = κ/a and
see that this new variable depends on a unique variable
β = baγ−1:

v = 1 + βvγ . (A.9)

Similarly, if b �= 0, the new variable u = κb
1

γ−1 only de-
pends on α = ab

1
γ−1 = β

1
γ−1 :

u = α + uγ . (A.10)

So if we know how to express explicitly v(β) or u(α), we
can conversely do so with κ(a, b). To achieve this, we use
the Lagrange inversion theorem [50] which states that the
reciprocal function x(y) of y = f(x) can be expressed
around y0 = f(x0) as

x = x0 +
∞∑

n=1

cn(y − y0)n (A.11)

with cn = dn−1

dxn−1

(
x−x0

f(x)−y0

)n∣∣∣
x=x0

1
n! , if f ′(x0) �= 0.

(1) Case a �= 0
In this case we have β(v) = v−γ(v − 1) and so around

v0 = 1 and β0 = 0, β′(1) �= 0 and we can calculate:

n!cn =
dn−1

dvn−1

(
v − v0

β(v) − β0

)n∣∣∣∣
v=v0

(A.12)

=
Γ (nγ + 1)

Γ (n(γ − 1) + 2)
. (A.13)

Thus we can write

v(β) = 1 +
∞∑

n=1

Γ (nγ + 1)
Γ (n(γ − 1) + 2)Γ (n + 1)

βn. (A.14)

This formulation of the function v(β) is true as long as
the series converges. To know what interval it corresponds
to, we calculate the convergence radius βc following its
definition:

β−1
c = lim sup

n→∞
n
√
|cn| (A.15)

= lim sup
n→∞

n

√∣∣∣∣sin(nπ(1 − γ))
Γ (nγ + 1)Γ (n(1 − γ) − 1)

Γ (n + 1)

∣∣∣∣
(A.16)

= lim
n→∞

n

√
Γ (nγ + 1)Γ (n(1 − γ) − 1)

Γ (n + 1)
, (A.17)
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where we have used the Euler reflection formula to avoid
an undefined valued of the Gamma function [51]. Using
the Stirling formula Γ (z) =

√
wπ
z

(
z
e

)z (1 + O(1
z )) and

limn→∞ n
√

n = 1 we find

β−1
c = γγ(1 − γ)1−γ . (A.18)

So equation (A.14) can be used to express κ explicitly, but
not for any value of its arguments.

(2) Case b �= 0:
Let’s find now a series representation of function u(α).

To simplify the calculation we introduce in this case w =
u1−γ so that

w
1

1−γ = α + w
γ

1−γ . (A.19)

We can now directly apply the same steps as before to
find a power series expression for the reciprocal function
of α(w) = w

γ
1−γ (w − 1) around w0 = 1, α = 0, since

α′(1) �= 0:

n!cn =
dn−1

dwn−1

(
w − w0

α(w) − α0

)n∣∣∣∣
w=w0

(A.20)

=
Γ (− nγ

1−γ + 1)

Γ (− n
1−γ + 2)

. (A.21)

Thus we have

u(α) =

[
1 +

∞∑

n=1

Γ (− nγ
1−γ + 1)

Γ (− n
1−γ + 2)Γ (n + 1)

αn

] 1
1−γ

. (A.22)

Again we can calculate the convergence radius and see

that it is αc = (1 − γ)γ
γ

1−γ = β
1

1−γ
c . In other words,

we found a complete description of the solution κ(a, b)
of equation (A.8): depending on whether the value of β is
smaller or greater than βc, development (A.14) or (A.22)
converges and gives an explicit value for κ(a, b):

κ(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
∞∑

n=0

Γ (nγ+1)
Γ (n(γ−1)+2)Γ (n+1)

(
baγ−1

)n

if β < βc

[
b

(
1 −

∞∑
n=1

(−1)n Γ( n
1−γ −1)

Γ( nγ
1−γ)Γ (n+1)

(
ab

1
γ−1

)n
)] 1

1−γ

if β > βc

(A.23)
with

βc = γ−γ(1 − γ)−(1−γ) ∈ ]1, 2[. (A.24)

Since κ depends smoothly on a and b, as can be seen from
equation (A.8), the case β = βc is deducible as the limit
of any of the two series.

This expression gives the value of the function κ(a, b)
whenever either a or b is different from zero. The solution
in the case a = b = 0 is trivially x = 0.
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