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The networked architecture of the brain promotes synchrony among
neuronal populations. These communication patterns can be mapped

using functional imaging, yielding functional connectivity (FC) networks.
While most studies use Pearson’s correlations by default, numerous
pairwise interaction statistics exist in the scientific literature. How does
the organization of the FC matrix vary with the choice of pairwise statistic?
Here we use a library of 239 pairwise statistics to benchmark canonical
features of FC networks, including hub mapping, weight-distance
trade-offs, structure-function coupling, correspondence with other neu-
rophysiological networks, individual fingerprinting and brain-behavior
prediction. We find substantial quantitative and qualitative variation across
FC methods. Measures such as covariance, precision and distance display
multiple desirable properties, including correspondence with structural
connectivity and the capacity to differentiate individuals and predict
individual differences in behavior. Our report highlights how FC mapping
canbe optimized by tailoring pairwise statistics to specific neurophys-
iological mechanisms and research questions.

The brain is a network of anatomically connected and perpetually
interacting neuronal populations’. Its spectrum of functions—
from perception to cognition to action—depends on interregional
signaling. Over the past 20 years, the dominant paradigm to infer
interregional signaling has been to estimate functional connectiv-
ity (FC)*”. Regional time series of metabolic, electromagnetic or
hemodynamic neural activity are first recorded, and systematic
coactivation between regions is then estimated and used to map
FC networks®™,

Perhaps the most widespread paradigm of estimating FC networks
is the use of task-free or resting-state functional magnetic resonance
imaging (fFMRI1)>'*, Neuronal population dynamics, in this setting,
are recorded without task instruction or stimulation; the result-
ing ‘intrinsic’ FC is thought to reflect spontaneous neural activity.
Intrinsic functional patterns are highly organized"¢, reproducible”,
individual-specific'®", correlated with structural connectivity*>* and
comparable to task-driven coactivation patterns**.

Unlike structural connectivity, which represents anatomical con-
nections, FCis astatistical construct and does not represent a physical
entity'>?**, Asaresult, there is no straightforward ‘ground truth’,and
how FC is estimated is a subjective methodological choice made by
each individual researcher. Although multiple methods have been
proposed, the most common method remains the simple zero-lag
linear (Pearson’s) correlation coefficient. Yet, the broader scientific
literature on estimating pairwise interactions among random variables
is rich and vast, including those that capture, for example, nonlinear
dependencies and time-lagged interactions? %, A prominent example
are methods based on inverse covariance, which attempt to model
and remove the common network influences on two nodes in order
to emphasize their direct relationships. Indeed, the brain mapping
community increasingly calls for methods that are sensitive to mul-
tiple underlying mechanisms®’. How FC matrices vary with the choice
of pairwise statistic is a fundamental methodological question that
affectsall studiesin this field, limiting our understanding of the brain’s
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functional organization, as well as our capacity to develop optimized
algorithms for structure-function coupling, individual fingerprinting
and brain-behavior prediction>*101430-40,

Here, we comprehensively benchmark multiple features of
resting-state FC using 239 pairwise interaction statistics. We first chart
the similarities and differences among broad families of statistics. We
theninvestigate how commonly studied features of the FC matrix—such
as hubs, relationships with physical distance and structural connec-
tivity—vary with the choice of pairwise statistic. We next show that
individual differences in FC organization, including fingerprinting and
brain-behavior relationships, also depend on the choice of pairwise
statistic. Finally, we use an information-theoretic decomposition to
study how pairwise statistics capture different mechanisms of infor-
mation flow.

Results

Pairwise statistics were derived for N =326 unrelated healthy young
adults from the Human Connectome Project (HCP)*. Functional time
serieswere taken fromthe HCPS1200 release. We used the pyspi package
to estimate 239 pairwise statistics from 49 pairwise interaction meas-
uresin 6 families of statistics, yielding 239 FC matrices® for each par-
ticipant. All maintextresults are shown for the undirected component
of the matrices (upper triangular vector), and in the Schaefer 100 x 7
atlas. For other atlases and alternative processing choices, see the
‘Sensitivity analyses’ section in the Methods.

Massive profiling of pairwise interaction statistics

Wefirst show edge-wise similarities between the 239 FC matrices (Fig. 1,
top). Pairwise statistics are stratified according to the broad model
family from which they are derived (for example, information theoretic,
spectral and so on). The 49 pairwise measures are listed on the right,
aswellas the number of variants of each measure, which we refer to as
pairwise statistics (239 total)*.

Pairwise statistics are highly organized and form clusters that
reflect families of statistics. For reference, the conventional zero-lag
Pearson’s correlation is shown as the covariance family, and partial
correlation is shown in the precision family in all figures. Some sta-
tistics are, by definition, highly similar to others. The most widely
used family of statistics for FC calculation, covariance estimators, for
example, are most correlated with correlation, distance correlation
and mutual information estimators. As expected, these measures of
similarity tend to be highly anticorrelated with measures of dissimi-
larity such as precision, distance and entropy. Others—for example,
spectral measures—show mild-to-moderate correlation with most
other measures. Importantly, the correlations among the pairwise
statistics distribute widely across the positive to negative range. For
example, eight sample FC matrices are shown in Fig. 1 (bottom), with
clear differences in organization, such as the extent to which they
display block-like structure. Collectively, this suggests that different
methods used to compute the FC matrix may yield networks with very
different configurations.

Benchmarking topological and geometric organization

If pairwise statistics yield FC matrices that look different, do these
matrices also have different topological and geometric features? We
start by inspecting the probability density of edge weights for each
matrix (Fig. 2a; each column represents a pairwise interaction statistic,
following the order in Fig. 1). Some densities are highly skewed while
others are more evenly distributed, suggesting differences in topo-
logical organization, such as the presence or nonpresence of hubs,
respectively. We next consider the weighted degree of every brain
region in each of the FC matrices (brain regions x pairwise statistics;
Fig.2b). Although there exist some patterns that are common to most
pairwise statistics (for example, high weighted degreesin dorsal atten-
tion, ventral attention, visual and somatomotor networks), there is

also considerable variability across pairwise statistics. For instance,
some families of statistics tend to have more spatially distributed hubs,
additionally emphasizing transmodal regions, such as precision-based
pairwise statistics that detect prominent hubsin default and frontopa-
rietal networks (Fig. 2b).

Next, we quantify to what extent each of the pairwise statistics
recapitulates two well-studied features of brain networks: (1) the
inverse relationship between physical proximity and edge weight?#**,
and (2) the positive relationship between structural connectivity and
FC**2454¢_For each pairwise statistic, we compute the correlation
betweentheinterregional Euclidean distance and the magnitude of FC
(Fig. 2c). Note that some pairwise statistics are defined as the distance
(dissimilarity) between time series (for example, precision, pairwise
distance and linear modelfit); inthose cases, greater valuesindicate dis-
similar time series, and we expect to see a positive correlationbetween
physical distance and FC. Overall, most pairwise statistics display a
moderate inverse relationship between physical proximity and pair-
wise association (0.2 < |r| < 0.3), although several display a weaker
relationship (|r] < 0.1). This findingillustrates how even a fundamental
feature of brain networks that has been reported across imaging and
tracing techniques, spatial scales, and species can vary substantially
depending on how FCis defined. This suggests that pairwise statistics
are differentially sensitive to different types of underlying mechanisms,
aquestionweexploreingreater detail in the ‘Decomposing FC matrices
into information flow patterns’ section.

For each pairwise statistic matrix, we evaluate the goodness of fit
between diffusion MRI-estimated structural connectivity and the mag-
nitude of FC (Fig. 2d). Here, we expect a positive relationship, reflecting
the fact that axonal projections support interregional signaling and
the emergence of coherent dynamics among neuronal populations?.
Again, we observe substantial variability across pairwise statistics, with
structure—function coupling ranging from 0 to 0.25 (measured by R?).
Pairwise statistics with the greatest structure-function couplinginclude
precision, stochasticinteractionand imaginary coherence. These results
parallel the findings above in two ways. First, they show gross compat-
ibility but also substantial variability for an observation that has been
reportedinmultiple studies. Second, we observe the strongest ‘expected’
results (inverse relationship with distance and positive relationship with
structural connectivity) for commonly used covariance-based pairwise
statistics and for some others, such as precision-based pairwise statistics.
These statistics may be well suited for optimizing structure-function
couplingbecause they seek to partial out or account for sharedinfluence
among multiple regions, emphasizing functional interactions that arise
from structural connections (Discussion).

Alignment with multimodal neurophysiological networks
The previous section demonstrates that even basic relationships with
geometry and anatomical connectivity can vary substantially depend-
ingonhow FCis estimated. Here, we extend this question and consider
how different types of FC correspond to other networks that reflect
biological similarity between brain regions. Specifically, we estimate
multiple forms of interregional similarity, including correlated gene
expression (Fig. 3a, derived from the Allen Human Brain Atlas microar-
ray data), laminar similarity (Fig. 3b, derived from the Merker-stained
BigBrain Atlas), neurotransmitter receptor similarity (Fig. 3c, derived
from multiple positron emission tomography (PET) tracers), electro-
physiological connectivity (Fig. 3d, derived from magnetoencepha-
lography (MEG)) and metabolic connectivity (Fig. 3e, derived from
dynamic ['®F]-fluorodeoxyglucose (FDG)-PET). For acomplete descrip-
tion of how each matrix is constructed, see the Methods. Our main
question hereis how well each FC matrix aligns with interregional bio-
logical relationships estimated at different spatial and temporal scales.
We show the correlation between each FC matrix and each bio-
logicalinterregional similarity matrixin Fig. 3. We observe the strong-
est correspondence with neurotransmitter receptor similarity and
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Fig.1|Massive profiling of pairwise interaction statistics for resting-state
functional activity across the brain. Pairwise statistics for functional time
series were estimated between all pairs of brain regions to generate 239 distinct
FC matrices. Top left: group-average similarity between all pairs of 239 pairwise
statistics. Edge-wise similarities between individual pairwise statistics were
quantified using Spearman’s rank correlation (p) for each participant and

then averaged across participants. The histogram of similarity values is shown
below the matrix. The color represents [-1,1], and the bar height represents
log-transformed count in each bin within the range of [-1, 1]. Bottom left: group-
average matrices for exemplar statistics calculated between pairs of time series.
The annotation above each matrix denotes the broader family of the statistic
and (in parentheses) details for the specific statistic. Right: alist of 239 pairwise

statistics grouped into 49 measures across 6 major model families, following the
categorization of ref. 26. Numbers in parentheses indicate the number of specific
variants of the statistics calculated for the measure. The color bar covers only
positive values (Oth to 97.5th percentile, in red) for statistics with only positive
values, and covers both negative values (Oth percentile to zero, in blue) and
positive values (zero to 97.5th percentile, in red) otherwise. A detailed list of the
239 pairwise statistics can be found in Supplementary Table 1. The variance of the
similarity matrix across participants and runs can be found in Supplementary
Fig.1.Info, information; Misc, miscellaneous; sq., squared; indep., independence;
crit., criterion; subseq., subsequence; reg., regression; info., information; cond.,
conditional; distrib., distribution; MI, mutual information; coh., coherence; dir.,
directed; func., function. k, k¢, [, It, fs and fare parameters for specific statistics.

electrophysiological connectivity. This is consistent with the previous
literature and potentially reflects the fact that regions with similar
chemoarchitectural profiles are subject to common neuromodulatory
influences, leading to coherent electrophysiological dynamics**°. We
find similar results when we estimate the alignment between pairwise
interaction statistics matrices and a ‘cognitive similarity’ matrix that
indexes how areas coactivate across cognitive tasks (derived from the
Neurosynth meta-analytic engine) (Supplementary Fig. 6). Perhaps
counterintuitively, we do not observe strong correspondence between
fMRI-estimated FC and FDG-PET-estimated metabolic connectivity,
despite the fact that the two methods should theoretically be measur-
ing related biological processes. Finally, in what is a recurring theme,
FCestimated using precision-based statistics generally continue to be
closely aligned with multiple biological similarity networks.

Quantifying individual differences

Acommonapplication of resting-state FCis to study individual differ-
ences’’. Here, we examine how FC estimated using different pairwise
statistics can be used for (1) identifying individuals (fingerprinting)'®*!
and (2) predicting individual differencesin cognitionand behavior*>*,
We show participantidentifiability for FC matrices computed using dif-
ferent pairwise statisticsin Fig. 4a. Theidentifiability index is ameasure
of effect size, where amagnitude of >0.8 is considered large**. In brief,
identifiability measures how similar an individual is to themselves
across multiple scans, compared with other individuals®**. Consistent
with previous reports, we find that covariance measures (for example,
Pearson’s correlation) generally perform well (identifiability ~1.5)>*.
Precision-based statistics outperform all others (identifiability >2.1),
mirroring the results in the previous section. The broad question of
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Fig.2|Benchmarking topological and geometric organization. a, Value
distribution for each interaction statistic. Values were min-max-normalized
within each statistic. Darker red denotes greater density. b, Ranking of hubs
quantified by weighted degree (strength) of the pairwise statistic matrices.
Absolute values are taken from the pairwise statistics before ranking. Note
that pairwise statistics with positive correlations with spatial distance (shown
inc) have flipped rankings to ensure a more consistent hub representation.
Regions are ordered by intrinsic functional networks from ref. 15 for left and
right hemispheres. Darker red means greater weighted degree (‘hubness’).
VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM,
limbic; FP, frontoparietal; DMN, default mode network. The organization of
hubs when considering positive and negative values separately can be found
inSupplementary Fig. 2. The similarity of hub organization across pairwise

statistics and their representation on the cortex are shown in Supplementary
Fig. 3. ¢, The weight-distance relationship quantified by computing the
Spearman’s rank correlation of each edge in each pairwise statistic matrix
withinterregional Euclidean distance (physical distance between brain
regions). Colors and bar height represent the magnitude of correlation. The
most extreme measures are labeled with text. d, Structure-function coupling
between matrices of interaction statistics and predictor matrices derived from
structural connectivity. Structure-function coupling is represented using the
coefficient of determination (adjusted R?), such that low values indicate poor
structure-function coupling and high values indicate strong structure-function
coupling***’, Colors and bar height represent the magnitude of coupling. The
most extreme measures are labeled with text. Full names for the statistics can be
foundin Supplementary Table 1.

whether FC organization persists across participants and scans is some-
times alternatively formulated as test-retest reliability. For complete-
ness, we also performatest-retest analysis using intraclass correlation,
yielding results consistent with previous literature"” and similar to
fingerprinting identifiability (Supplementary Fig. 7). In particular,
precision-based statistics have relatively low test-retest reliability,
suggesting its targeted ability toward capturing more of individual
differences than similarities.

We next consider how well different FC pairwise statistics can be
used for out-of-sample prediction of individual differences in cog-
nition and behavior. Following the approach outlined by Tian and
colleagues™, we apply independent component analysis (ICA) to 109
measures in the HCP dataset to derive a five-component solution.
The components broadly capture individual differences in cognition,
illicit substance use, tobacco use, personality-emotion and men-
tal health®. We then use kernel ridge regression in a nested tenfold
cross-validation setting to predictindividual component scores from
individual FC matrices®*°. The resulting mean correlation between
empirical and predicted scores across the test folds is shownin Fig. 4b.

We generally observe greater prediction for cognition and tobacco
use, and poor prediction for illicit substance use and mental health,
consistent with previous reports®***’, Pairwise statistics that perform
well for individual fingerprinting (for example, covariance, precision
and information theory-based statistics) also tend to perform well
for predicting cognition and behavior; likewise, pairwise statistics
that perform poorly for fingerprinting also perform poorly here (for
example, spectral statistics). Collectively, the substantial variation
inidentifiability and prediction accuracy suggests that the choice of
pairwise statistic for computing FC is an important one that could be
tailored or optimized for different research questions.

Decomposing FC matrices into information flow patterns

Up to now, we focused on associating FC matrices with other types
of interregional relationship (for example, structural connectivity,
spatial proximity and interregional biological similarity) and with exog-
enous measures (for example, individual identity or behavior). Here,
we ask whether FC computed using different pairwise statistics reflects
different underlying patterns of information flow. We estimate, for
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dominance analysis. In each column, darker red shows greater contribution from
aspecificinformation-dynamic atom. The 16 rows, grouped by the ‘past’ state,
correspond to the 16 information-dynamic atoms in the same order asb.

instance, ‘synergistic’interactions where two sources of information,
when considered together, provide new information that cannot be
retrieved from either source individually, and by contrast, ‘redundant’
interactions where the opposite is true, and each source provides the
sameinformationasthe other. Arecent information-theoretic frame-
work makes it possible to partition pairwise interactions into syner-
gistic, redundantand unique information, also known asinformation
atoms**® (Fig. 5a). Inbrief, for each pair of cortical regions (treated as
sources), we can ask how much information about their future neural
activity can be obtained from knowing their past activity—and whether
thisinformationis carried redundantly by each of them separately, or
uniquely by one of them or synergistically by both together. We can
then also askif the way thatinformation s carried changes over time,
giving rise to different types of information dynamics. For example,
ifinformation was initially provided uniquely by region A, and then it
is provided uniquely by region B, this is a case of information transfer
fromAtoB.

We show the 16 information flow patterns arising from this infor-
mation decomposition in Fig. 5b ref. 61. We then estimate the contri-
bution of each of the 16 information flow patterns to each FC matrix
(Fig. 5¢). We find that classic statistics, such as covariance, precision
and mutualinformation, mostly reflect the pattern whereby redundant
information stays redundant. Some spectral statistics, suchas directed
transfer function and partial coherence, predominantly reflect a pat-
tern where information that is provided exclusively by one region
stays unique to that region. While both of the cases above belong to a
pattern of information storage, whereby information is consistently
conveyed in the same way over time, a greater diversity of informa-
tion flow patterns exists. For example, we observe the presence of

information migration, duplication and deduplication in phase lag
value. We also observe information encryption and decryption (also
known as downward and upward causation®) in transfer entropy and
cointegration. Altogether, these results show that, while most statistics
captureredundantinformation storage, there exists awider landscape
ofinformation flow patterns that can potentially be selectively sampled
using specific pairwise statistics.

Summary rankings, sensitivity analyses and validation
Tosummarize the benchmarking findings so far, we compile the rank-
ings of pairwise statistics according to six criteria: (1) negative weight-
distance relationship, (2) positive structure-function coupling, (3)
close correspondence with biological similarity networks, (4) high indi-
vidual-participant identifiability, (5) high brain-behavior prediction
and (6) low susceptibility to participant motion (Supplementary Table 5
and Supplementary Fig.16). Broadly, inverse covariance measures tend
to have the greatest composite ranking, but the individual rankings vary
considerably between criteria. Collectively, these results suggest that
there is not necessarily a single optimal pairwise statistic, but rather
different options that can be used to target desired mechanisms.

We next seek to determine the extent to which the mainresultsare
sensitive to the several processing and data-handling choices that exist
inresting-state fMRI network modeling. We first test the stability of the
group-level similarity matrix (originally shown in Fig. 1). We perform
1,000 random splits of the sample into discovery and replication sets
and compute the correlation between them. The distribution of cor-
relation coefficients is centered above r=0.999 (Fig. 6), suggesting
close concordance. To test the effect of atlas, we compute the similarity
between matrices generated using a functional parcellation (Schaefer
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and validation sets for 1,000 random splits. b, The correlation between the
functionally derived atlas (Schaefer 100-node 7-network) used in the main
analyses and an anatomically derived atlas (Desikan-Killiany). ¢, The correlation
between the 100-node atlas (Schaefer 100-node 7-network, Schaefer 100 x 7)
used in the main analyses and a higher-resolution atlas (Schaefer 200-node
7-network, Schaefer 200 x 7). A subset of 179 interaction statistics were used in

Schaefer 200 x 7

Higher-resolution parcellation d Global signal regression

With GSR

Schaefer 100 x 7 Without GSR

this panel for faster calculation and can be found in Supplementary Table 2.

d, The correlation between functional time series without global signal removal
used in the main analyses and with global signal removal. GSR, global signal
regression. The dimensions of the similarity matrices are the same as the number
of pairwise interaction statistics (239), except for ¢, where areduced set of
measures (179) was used. Additional analyses regarding the effect of participant
motion can be found in Supplementary Fig. 11. Spearman’s rank correlation is
usedinall panels.

100 x 7) and an anatomical parcellation (Desikan-Killiany), revealing a
correlation of r= 0.96. To test the effect of atlas resolution, we compute
the similarity between matrices generated using a lower-resolution
atlas (Schaefer100 x 7) and a higher-resolution atlas (Schaefer 200 x 7),
revealing a correlation of r= 0.98. To test the effect of global signal
regression, we compute the similarity between matrices generated with
and without global signal regression, revealing a correlation of r= 0.82.
Similar results were observed when repeating all sensitivity analyses
at theindividual participant level (Supplementary Figs.13 and 14).
Finally, we ask whether the present results generalize to other
datasets and acquisitions. We apply the same analytic procedure to
sixadditional fMRI datasets that including a wide range of acquisitions
(single- and multiband, as well as a range of voxel sizes, repetition
time and scan durations) and preprocessing pipelines: (1) HCP-retest
(N=20), (2) AOMIC-PIOP1 (N =216), (3) AOMIC-PIOP2 (N =226),
(4) MSC (N=10), (5) MPI-MBB (N =126) and (6) RBC-NKI (N=592)
(see the Methods for more details). Supplementary Fig. 17 shows a
conserved similarity structure of pairwise statistics across datasets,
while Supplementary Fig. 18 shows a conserved similarity structure
of pairwise statistics for a single dataset using three different acquisi-
tion protocols and two different motion correction methods. Finally,
Supplementary Figs. 19 and 20 show the stability of each individual
pairwise statistic across the datasets. Collectively, these sensitivity
checks suggest that the global relationships among pairwise statistics
arerelatively stable with respect to multiple methodological choices.

Discussion

Resting-state FCis rapidly becoming one of the most widely used brain
imaging phenotypes. Despite its popularity, the operational definition
of FCis arbitrary, and most groups use simple zero-lag linear correla-
tions by default. In the present report, we benchmark the network
architecture, biological underpinnings and brain-behavior associa-
tions of FC matrices computed using alarge library of pairwise interac-
tion statistics. Our results reveal arich landscape of methods that are
sensitive to different features of brain organization.

Even for well-studied phenomena, we observe substantial vari-
ability across methods. The arrangement of highly connected hub
regions, a topic of great interest over the past 10-15 years®**, sys-
tematically varies depending on the method, with some localizing
hubs in unimodal cortex and others more widespread across the uni-
modal-transmodal axis. The weight-distance relationship, reported
notonly for FC-fMRIbut also for diffusion MRI**®, and tract tracingin
multiple species®®, is captured by most methods, but the magnitude
oftheeffect varies considerably. Finally, asimilar resultis observed for

structure—function coupling, whereby most methods identify an over-
all positive relationship, but the effect size displays variability across
methods. In other words, the choice of pairwise interaction statistics
has substantial influence on the spatial and topological organization
of reconstructed functional networks.

Onereason for the observed variability is that pairwise statistics
are sensitive to different underlying mechanisms of interregional
signaling®. We find that different FC methods often align with dif-
ferent forms of interregional biological similarity, from microscale
correlated gene expression or receptor similarity, to macroscale elec-
trophysiological coupling. Indeed, numerous reports have found
evidence of association between resting-state BOLD FC and corre-
lated gene expression®®, receptor similarity*’ and electrophysiological
rhythms**%%° Indeed, the different pairwise statistics are optimized
to capture different types of communication process’. Resting-state
functional dynamics are thought to be mostly macroscopically linear”,
and asaresult, many conventional FC methods are designed to capture
linear effects. However, the complexity of functional dynamics extends
beyond simplelinear effects, and abroader set of pairwise statistics is
necessary to completely capture the rich spectrum of interactions in
fMRIBOLD neural dynamics??%4°,

Ultimately, one of the main reasons why neuroscientists study
statistical relationships between regional BOLD time series is the belief
that brain regions exchange, store and process information and that
thisinformation can be reflected by statistical relationships. However,
thereisagrowing understanding thatinformation can be transmitted,
processed and stored in different ways—raising the question of how
each pairwise statistic captures (or fails to capture) these different
kinds of information dynamics. To directly address this question,
we applied information decomposition and found that different FC
methods align with different forms of information dynamics. Most
FC methods appear to capture storage of redundant information,
whereby both regions convey the same information—as previously
observed for Pearson correlation®”’>. However, some measures are
sensitive to other forms of communication, including synergistic and
unique information flow. These results demonstrate a multitude of
communication patterns between brainregions that are explored less
often but that should be taken into account foramore comprehensive
mapping of the functional connectome and more nuanced inferences
about what FC represents®”>,

Across the benchmark criteria tested, there is not necessarily a
single optimal pairwise statistic. In this sense, our results can be seen
as arough guide for matching a pairwise statistic to an experimental
question. Asalient example is how the choice of FC method is context
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dependentinindividual differences and brain-behavior relationships,
where we find that the predictive utility of aFC method depends onthe
phenotype that one seeks to predict®****". More broadly, our results
highlight the idea that, in the absence of any ground truth, picking a
pairwise statistic is an important question that strongly depends on
the research question at hand>*7>7%,

What recommendations can be derived from the present find-
ings? Although we sampled a limited set of possible analyses, some
broad arcs come into focus. First, as discussed above, a pairwise
statistic should be matched to the experimental question. Second,
covariance (distance)-based methods appear to have many desirable
properties, including robust relationships with physical proximity,
structural connectivity and biological interregional similarity, as
wellas the capacity to differentiate individuals and predictindividual
differences in multiple phenotypes. Methods based on precision
(inverse covariance or partial correlation) stand out. Indeed, these
measures have often been touted as the superior alternative to the
Pearson’s correlation for estimating FC*’*”7°. By removing mutual
dependencies on common influences from other areas, precision
has the theoretical advantage of more directly measuring directed,
anatomically mediated interactions among brain areas®?%*>*>2880-83,
An exciting future avenue would be to combine multiple FC matrices
to engineer new types of FC that are potentially sensitive to a wider
range of desirable properties®*.

Itisalsoimportant to consider whether the assumptionsinherent
inapairwise statistic match the acquisition and processing of a dataset.
Proceduresthatalter the temporal sequence of frames, such as censor-
ing or concatenation, can be problematic because they result in an
irregular sampling rate in a time series and violate basic assumptions
of many frequency-based measures (for example, phase synchrony)
but do not affect measures that tolerate temporal exchangeability (for
example, Pearson’s correlation). In this sense, processing strategies
thatdonotremove entire frames (for example, ICA-FIX) may potentially
circumvent this problem. Inasimilar vein, acquisitions that use faster
sampling rates (for example, multiband) theoretically allow more
optimal deployment of some pairwise statistics, such as those based
on phaserelationships.

Finally, the present results should be interpreted in light of multi-
ple methodological limitations. First, we considered only undirected
components of pairwise statistics, effectively ignoring directed or
causal mechanisms®®. Second, the main text analyses are based on the
well-studied HCP dataset which involves aspecially designed acquisi-
tionsequence and processing pipeline. To ensure generalizability, we
repeated all benchmarks for six additional datasets but more work is
needed to understand how acquisition affects the reconstruction of
functional connectomes. Third, although we ensured robustness to
common preprocessing choices such as parcellation type and size,
removal of the global signal and alternative motion correction meth-
ods, we did not exhaustively consider the effects of all processing
choices®***, Fourth, we did not exhaustively consider all common
research questions, such as the lifespan trajectory of FC or the effects
of psychiatricand neurological disease on FC*. Fifth, we focused only
on descriptive pairwise interaction statistics and did not explicitly
consider model-based ‘effective connectivity’ methods, suchas struc-
tural equation modeling or path analysis, dynamic causal modeling or
biophysical neural mass modeling®*¥’.

Insummary, the present report comprehensively benchmarks the
architecture of resting-state BOLD FC using a large library of pairwise
statistics. We observe substantial variation across FC methods and
across a wide array of analyses, reflecting differential sensitivity to
biological features and to types of information flow. As FC continues to
grow in popularity as a neuroimaging phenotype, our results provide
the foundation for future studies to tailor their choice of FC method
to the neurophysiological mechanism they are targeting and to their
research question.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-025-02704-4.
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Methods

Resting-state functional MRI

Resting-state functional time series from 326 unrelated participants
were obtained from the HCP Young Adults cohort (HCP-YA; S1200
release’). Structural and functional MRI data were preprocessed using
HCP minimal preprocessing pipelines*"”. High-resolution T1-weighted
and T2-weighted structural images were corrected for gradient dis-
tortion and registered to the MNI152 atlas. Cortical surfaces were
constructed using the FreeSurfer recon-all procedure. Resting-state
BOLD functional images (four scans approximately 15 min long for
each participant) were corrected for slice timing, gradient distortion,
motion, echo planar imaging (EPI) distortion and registered to the
high-resolution T1-weighted structural image, which further under-
wentintensity normalization and bias removal. The surface represen-
tations were then created by mapping the volumetric BOLD signal to
the fsLR grayordinate space using MSMAII, amultimodal surface-based
functional alignment algorithm®*. Physiological noise and confounds
were removed with the ICA-FIX procedure®. Details of the preprocess-
ing steps can be found in the original technical reports®,

Calculating pairwise interactions with pyspi

We used the recently developed Python Toolkit of Statistics for Pairwise
Interactions (pyspi; v0.4.1, commit c19d06) to calculate the alternative
measures (statistics of pairwise interactions; SPIs) of FC*. Resting-state
fMRItime series derived in the previous step were parcellated using the
Schaefer 100-node 7-network atlas’® and normalized (z-scored along the
time dimension) before pyspi calculation. Starting with the original list
of SPIs, we derived a subset of SPIs with a reasonable calculation time
(<30 min)forasingle participant and calculated the SPIs for allindividual
participants and resting-state runs. After aggregating the results, we
further excluded the SPIs with (1) zero variance or (2) infinity or NaN
(notanumber) values for at least 1/4 of all participants and runs, finally
obtaining 239 SPIs from 49 pairwise interaction measures across 6 major
categories (see Supplementary Table 1for the full list of SPIs used).

The calculation resulted in 239 node-by-node matrices for each
participantand run. A group consensus matrix was calculated for each
statistic by taking the average across all participants and runs (shownin
Fig.1;see Supplementary Fig.1for variance). A total of 239 group con-
sensus matrices were generated, which we refer to as group-averaged
measure matrices. We also calculated the similarity of the statistics by
taking the Spearman’srank correlation between pairs of statistic matri-
cesforeach participantand run, which we refer to as similarity profile
matrices. A group consensus similarity profile matrix was calculated
by taking the average across participants and runs.

Unless otherwise noted, we used the upper triangular values for
the analyses (see Supplementary Fig.12 for a brief account of directed
pairwise statistics) and using Spearman’s rank correlation coefficient
to assess the relationships between SPIs and other measures.

Structure-function relationship

Structural network reconstruction. Structural network of the cohort
was reconstructed from diffusion MRItractography. Diffusion MRIscans
were processed using the MRtrix3 package”). Fiber orientation distribu-
tions were modeled using multishell multitissue constrained spherical
deconvolution algorithm®®*°, White-matter streamlines were then recon-
structed'*° and optimized'” to provide robust estimate of tract weights.
We estimated a binary group consensus structural connectivity matrix
usingadistant-dependentalgorithm that approximates the group-level
average edge length distribution'. The final weighted group consensus
matrix was then calculated by applying the binary matrix on the simple
average of structural connectivity matrices of all participants.

Structure-function coupling estimation. Following previous prac-
tices of quantifying structure-function relationships***’, we used a
multilinear regression model with network communication predictors

to quantify the correspondence between structural and functional
networks. This approach takes into account of potential dynamics
processes happening on the network and provides a multi-faceted
view of structure-function correspondence than using the structural
connectivity alone. We adopted Euclidean distance and five commonly
used network communication measures derived from the group con-
sensus structural connectivity matrix as predictors. They represent a
spectrum of routing strategies ranging from centralized, globally opti-
mized shortest path to decentralized, locally focused diffusion'®™°¢,
We estimated the goodness of fit, adjusted R to quantify the extent of
structure-function coupling in this case.

Wec = Bo + ), BiWi
%

where W;- denotes the pairwise interaction measures and W denotes
predictor matrices: Euclidean distance, shortest path length, naviga-
tion efficiency, search information, communicability and diffusion
efficiency.

We also calculated a more direct version of structure-function
couplingusing Spearman’s rank correlation between nonzero elements
of the structural connectivity and the pairwise interaction statistic
matrices (Supplementary Fig. 4)'”".

Network communication measures. We used the Euclidean distance
betweenregion centroids as the physical distance between nodes. We
alsoderived aconnectionlength matrix L from the structural connec-
tivity matrix when it came to quantifying the cost of traversing the
edges. We used a monotonic weight-to-length transform in the form
of L = —log W+1. Theresulting connection length matrix (L) will have

infinity values between a pair of regions that do not have a direct struc-
tural connection.

Theshortest path length represents the shortest distance to travel
from a source and a target node'*®, We calculated the shortest path
lengths using the Floyd-Warshall algorithm'*® with the connection
length matrix L.

Network navigation was introduced to brain networks by Seguin
and colleges"’ ™, quantifying routing without global optimization by
simulating a walker that steps toward the neighbor node that is closest
indistance tothetarget node. Here, we used Euclidean distance as the
distance metric, and navigation efficiency is calculated as the inverse
of the navigation path length.

Search information measures the amount of information neces-
sary for arandom walker on the network to travel along a specific path
and does not take detours. The measures were adapted to the brain
networks and the shortest path on weighted network inrefs. 113-116.

Communicability measures the number of possible routes
between a source and a target node pair. It is defined as the weighted
sum of all paths and walks between those nodes'""'®,

Diffusion efficiency is calculated as the inverse of the mean first
passage time, which quantifies the time (number of steps) expected
forarandom walker to travel fromasourcetoatarget node. For asym-
metric measures, we symmetrized the matrix by taking the average of
the matrix with its transpose*!>1"%,

The network measures were implemented using the Brain Con-
nectivity Toolbox™° (https://sites.google.com/site/bctnet, version
2019-03-03), Brainconn (https://github.com/FIU-Neuro/brainconn,
master branchat commit 8cd436) and netneurotools (https://github.
com/netneurolab/netneurotools, v0.2.3).

Biological networks

We adopted annotated networks from multiple modalities to con-
textualize the functional relationships. Here, we briefly describe how
we acquire the networks. More technical details can be found in the
previous reports®.
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Electrophysiology connectivity was derived from resting-state
MEG recordings'”. Resting-state MEG data (approximately 6 min for
each participant) for N =33 healthy unrelated participants were taken
from HCP. Preprocessing was carried out using open-source Brain-
stormsoftware (https://neuroimage.usc.edu/brainstorm/ (ref.122)).In
brief, raw MEG recordings were registered to high-resolution anatomi-
cal space before being submitted to notch filtering (60,120,180, 240
and 300 Hz), high-pass filtering (0.3 Hz), band channel removal and
automatic artifact removal. Artifacts including heartbeats from elec-
trocardiogram, eye blinks from electrooculogram, saccades, muscle
movements as low-frequency (1-7 Hz) and high-frequency (40-240 Hz)
components and noisy segments were removed using signal-space
projections. Sensor-level data were then submitted to source estima-
tion using a linearly constrained minimum variance beamformer on
the HCP fsLR4K surface. The ‘median eigenvalue’ method from Brain-
stormwas used toreduce the variable source depth effect. Time series
on fsLR4k surface were parcellated to the Schaefer 100 x 7 atlas using
the first principal component of the corresponding vertices. MEG FC
matrices were estimated using amplitude envelope correlation'** for
thesix canonical frequency bands: delta (6; 2-4 Hz), theta (6; 5-7 Hz),
alpha(a; 8-12 Hz), beta (f;15-29 Hz), low gamma (lo-y; 30-59 Hz) and
high gamma (hi-y; 60-90 Hz). The spatial leakage effect was corrected
using an orthogonalization process'**. The final electrophysiology
connectivity matrix used in this projectis derived as thefirst principal
component of the connectivity matrices for the six canonical bands.
Details of preprocessing can be found in refs. 48,84.

The correlated gene expression network quantifies the transcrip-
tional similarity between cortical regions. Spatially resolved microarray
geneexpression datawere obtained from the Allen Human Brain Atlas®®,
preprocessed and mappedto the Schaefer 100 x 7 atlas using the abagen
toolbox'?. Inbrief, the preprocessing procedure includes intensity-based
filtering, representative probe selection, tissue sample matching, nor-
malization and aggregation'®. The final region-by-region correlated gene
expression matrix was estimated by calculating the Pearson’s correlation
coefficient using normalized gene expression profiles across regions.

The laminar similarity network measures the similarity of cel-
lular profiles across the cortical layers between pairs of regions.
Histology-based cell-staining intensity values were derived from
a postmortem brain, quantifying cell density and soma size’*'*"'?5,
Depth-resolved intensity values were sampled from 50 equivolumetric
surfaces fromwhite to pial surface. The intensity profiles were acquired
on fsaverage surface using the BigBrainWarp toolbox®*'*, and subse-
quently parcellated to the Schaefer 100 x 7 atlas. The region-by-region
laminar similarity network was calculated using partial correlation,
correcting for mean intensity across cortical regions.

Metabolic connectivity represents the cofluctuation of glucose
metabolism between cortical regions. Volumetric FDG-PET images
were recorded over time for 26 healthy participants®°, PET images
were reconstructed and preprocessed using a previously reported
pipeline, resultingin22516-s fPET volumes for each recording™’. They
were subsequently motion corrected, underwent a spatial temporal
gradient filter and wereregistered to the MNI152 template. Finally, they
were parcellated to the Schaefer 100 x 7 atlas, and the metabolic con-
nectivity matrix was calculated as Pearson’s correlation coefficient for
each participant. The group-averaged matrix was used in this project.

Thereceptor similarity network measures the similarity of recep-
tor density profiles between regions. PET tracer data for 18 neuro-
transmitter receptors and transporters were taken from ref. 49 and
neuromaps (v0.0.1, https://github.com/netneurolab/neuromaps
(ref.132)). The neurotransmitter systems include dopamine (D,'*,
D,"* " and DAT, dopamine transporter’*®), norepinephrine (NET,
norepinephrine transporter®'*?), serotonin (5-HT,;,'*, 5-HT"* ",
5-HT,"", 5-HT,/”', 5-HT">"* and 5-HTT""), acetylcholine (a,[3,"%"*,
M,"** and VAChT, vesicular acetylcholine transporter***’), gluta-
mate (mGIuR;"*"*°), GABA (GABA,'°), histamine (H,'*"), cannabinoid

(CB;**") and opioid (MOR, mu opioid receptor'®®). Each PET image was
parcellated to the Schaefer 100 x 7 atlas. The final receptor similarity
matrix was calculated as Pearson’s correlation coefficient between the
receptor profiles for pairs of regions.

Fingerprinting
Fingerprinting of individual differences was calculated using the iden-
tifiability metric proposed inrefs. 51,54.

Identifiability = intra ~ Hinter| ;”‘"‘ef'.

For each pairwise statistic, four matrices from BOLD runs per partici-
pant were used to calculate the mean values of within-participant cor-
relations y;,., and between-participant correlations p;,.,. The pooled
standard deviation sis also estimated. The resulting measure of iden-
tifiability is analogous to an effect size statistic>*.

Behavior prediction

We used arobust set of ICA-derived cognitive-behavioral phenotypes
derived by*. Briefly, HCP behavioral dataset were filtered for measures
related to alertness, cognition, emotion, sensory-motor function,
personality, psychiatric symptoms, substance use, and life function. A
total of 109 measures were selected and subjected toan ICA procedure.
Before the ICA procedure, normalization (87 out 0f109) and confound
regression (age and sex) were carried out to clean the raw behavioral
data. The consistency and reliability of the ICA procedure was validated
with bootstrapping and agglomerative clustering, followed by a sam-
pling and matching process. A five-component model emerged as the
most robust and concise representation of the original datastructure:
cognitive performance, illicit substance use, tobacco use, personality
and emotion traits, and mental health. Details of the can be found in
ref. 55. Theintersecting N = 310 participants were used for this study.

For the pairwise interaction measures, we used the vectorized
upper triangular values of the SPI matrices for each participant, aver-
aged across the four BOLD runs. To make the prediction more robust,
we filtered the data using quartile coefficient of dispersion (QCoD)
to provide a conservative representation of the predictor vector. We
first calculated QCoD across participants for each SPl and excluded
those with minimal variance for all region pairs (absolute maximum
QCoD <0.01; pli_multitaper_max_fs-1_ fmin-0_fmax-0-25, pli_multita-
per_max_fs-1_fmin-0-25_fmax-0-5, wpli_multitaper_max_fs-1_fmin-0_
fmax-0-25). For each prediction, we further calculated the 10th and
90th QCoD percentile and included only the region pairs within this
range to avoid spurious values with very large or little variance that
may affect the prediction.

Following previous best practices , we used kernel ridge
regression with linear kernel for behavior prediction. We set up the
prediction pipeline with nested k-fold cross-validation. The inner ten-
fold cross-validationloop was used to select the optimal regularization
parameter a, and the final performance was evaluated intheindepend-
ent test split in the outer tenfold cross-validation loop. Both training
and testing data were standardized using statistics estimated only from
the training datato avoid leakage. We calculated Pearson’s correlation
between empirical and predicted values for the final evaluation. The
same process was alsorepeated with kernel ridge regression with cosine
kernel, linear ridge regression and LASSO regression. Acomparison of
average performance and variability across the 49 pairwise measures is
showninSupplementary Fig. 8 and Supplementary Fig. 9, respectively.
The performance details for each of the 239 individual statistics are
shownin Supplementary Fig. 10.

52,53,56,167

Integrated information decomposition (®ID)

We used integrated information decomposition (®ID**"®"), atemporally
extended framework of partial information decomposition (PID*1¢31¢%)
to estimate the information flow patterns (‘information flow atoms’).
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The original PID framework aims to study the multivariate informa-
tion by jointly considering multiple source variables with an additional
target variable. As shown in Fig. 5a, in a two-variable scenario, I(R;; X),
I(R,; X) and I(R,, R,; X) represent their specificinformation, quantifying
the information provided by the source variables when provided the
information about the target variable X. PID decomposes the informa-
tion contents into their unique information components (Unq(R;; X)
and Unq(R,; X)), aredundant information component (RED(R,, R,; X))
and a synergistic information component (SYN(R,, R,; X)). Here, the
term ‘redundant’ suggests information identically provided by each
of the two variables individually, and the term ‘synergistic’ suggests
new information that emerges when the two variables are considered
together (seerefs. 58,60,61,168 for formal definitions).

®ID extends this framework by introducing atemporal dimension.
Taking a pair of time series as inputs, ®ID defines a past and a future
state, and derives 16 information flow atoms, denoted as pairwise
transitions between the initial four information atoms. The 16 types
of information flow can be mechanistically categorized into several
types: storage (information that remains carried in the same way over
time; Red > Red, Un' > Un?, Un?> Un?*and Syn - Syn), duplication (infor-
mation that becomes redundantly available from both variables, and
was not before; Un'-> Red and Un? - Red), migration (information that
moves between variables, such thatit was uniquely presentinasingle
variable, and subsequently it is uniquely present in the other; Un' >
Un?and Un? - Un'), deduplication (information that is pruned from
duplication, such that it is no longer redundant; Red » Un' and Red »>
Un?), decryption (collective/distributed information that becomes
individual information in the future, also known as downward causa-
tion; Syn > Un', Syn » Un? and Syn - Red), and encryption (individual
information that becomes collective/distributed information in the
future, also known as upward causation; Un' > Syn, Un*-> Syn and Red
- Syn) (see refs. 59-61for more rigorous definitions).

Technically, ®ID requires a choice of how redundancy is defined,
justlike PID. Here, we chose the minimum mutual information defini-
tion of redundancy, following previous work>*"7%'"!_Qverlapping
segments of the functional time series with one time step delay were
used to define the past and future states. We calculated ®ID for every
pair of the original functional time series using time-delayed mutual
information (mutualinformation between the past and future states)
under the Gaussian assumption for continuous variables. This process
generated 16 information flow matrices (Fig. 5b). Note that there are
many potentialimplementations of redundancy and temporal states;
here we adopt a straightforward definition as previously validated in
refs. 59-61. An open-source implementation can be found at https://
github.com/Imperial-MIND-lab/integrated-info-decomp.

To establish the relationship between information flow atoms
and pairwise interaction statistics (Fig. 5c), we constructed linear
models utilizing the former as predictors and the latter as the out-
come. We used dominance analysis”’>"”* to quantify the contribution
of individual predictors in the presence of potential multicollinear-
ity'”*. The ‘total dominance’ statistic is used to calculate the relative
contribution of each predictor compared with the goodness of fit
(R?) of the full linear model. The function is implemented in netneu-
rotools (https://github.com/netneurolab/netneurotools), which is
adapted from the Dominance-Analysis package (https://github.com/
dominance-analysis/dominance-analysis).

Sensitivity analyses

For sensitivity analyses, the time series were additionally parcellated
into the Desikan-Killiany atlas'” and Schaefer 200-node 7-network
atlas’®. They also underwent global signal removal. To effectively cal-
culate the sensitivity analysis using a higher atlas resolution with 200
regions, we generated a minimized list of SPIs by removing those taking
more than 30 min to calculate for asingle participant, resulting in 197
SPIs calculated. After taking the intersection with the list of SPIs above,

179 SPIs were used for the sensitivity analysis (see Supplementary
Table2for thefulllist of SPIsused). The group-average measure similar-
ity matrix showninFig.1was calculated for each scenario. The similarity
matrices were 239 by 239 in dimension, except when the reduced set of
measures was used, which gives matrices of 179 by 179 in dimension,
and matched elements from the 239-by-239 matrix were extracted for
comparison. Spearman’s rank correlation coefficient was calculated
between the upper triangular elements to quantify the correlation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The HCP dataare available at https://db.humanconnectome.org/data/
projects/HCP_1200 (ref. 41). Multimodal neurophysiological networks
(including the Neurosynth-derived cognitive similarity network) are
available via GitHub at https://github.com/netneurolab/hansen_many_
networks (ref. 84). Behavioral phenotypes are available via GitHub
at https://github.com/yetianmed/subcortex (ref. 55). The raw pyspi
outputsand the singularity container used for calculationare available
at https://osf.io/75je2/.

Code availability

The code and scripts used for analysis are available via GitHub at
https://github.com/netneurolab/liu_fc-pyspi, distributed under the
BSD 3-Clause license. The calculation was performed using asingularity
containeravailable (https://osf.io/75je2/) for reproducibility. The pyspi
package is available via GitHub at https://github.com/DynamicsAnd-
NeuralSystems/pyspi (ref.26) under GNU General Public License v3.0.
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