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Benchmarking methods for mapping 
functional connectivity in the brain
 

Zhen-Qi Liu    1, Andrea I. Luppi    1, Justine Y. Hansen    1, Ye Ella Tian2, 
Andrew Zalesky    2, B. T. Thomas Yeo    3, Ben D. Fulcher4 & Bratislav Misic    1 

The networked architecture of the brain promotes synchrony among 
neuronal populations. These communication patterns can be mapped 
using functional imaging, yielding functional connectivity (FC) networks. 
While most studies use Pearson’s correlations by default, numerous 
pairwise interaction statistics exist in the scientific literature. How does 
the organization of the FC matrix vary with the choice of pairwise statistic? 
Here we use a library of 239 pairwise statistics to benchmark canonical 
features of FC networks, including hub mapping, weight–distance 
trade-offs, structure–function coupling, correspondence with other neu
rophysiological networks, individual fingerprinting and brain–behavior 
prediction. We find substantial quantitative and qualitative variation across 
FC methods. Measures such as covariance, precision and distance display 
multiple desirable properties, including correspondence with structural 
connectivity and the capacity to differentiate individuals and predict 
individual differences in behavior. Our report highlights how FC mapping 
can be optimized by tailoring pairwise statistics to specific neurophys
iological mechanisms and research questions.

The brain is a network of anatomically connected and perpetually 
interacting neuronal populations1. Its spectrum of functions—
from perception to cognition to action—depends on interregional 
signaling. Over the past 20 years, the dominant paradigm to infer 
interregional signaling has been to estimate functional connectiv-
ity (FC)2–7. Regional time series of metabolic, electromagnetic or 
hemodynamic neural activity are first recorded, and systematic 
coactivation between regions is then estimated and used to map 
FC networks8–13.

Perhaps the most widespread paradigm of estimating FC networks 
is the use of task-free or resting-state functional magnetic resonance 
imaging (fMRI)12,14. Neuronal population dynamics, in this setting, 
are recorded without task instruction or stimulation; the result-
ing ‘intrinsic’ FC is thought to reflect spontaneous neural activity. 
Intrinsic functional patterns are highly organized15,16, reproducible17, 
individual-specific18,19, correlated with structural connectivity20,21 and 
comparable to task-driven coactivation patterns22,23.

Unlike structural connectivity, which represents anatomical con-
nections, FC is a statistical construct and does not represent a physical 
entity12,24,25. As a result, there is no straightforward ‘ground truth’, and 
how FC is estimated is a subjective methodological choice made by 
each individual researcher. Although multiple methods have been 
proposed, the most common method remains the simple zero-lag 
linear (Pearson’s) correlation coefficient. Yet, the broader scientific 
literature on estimating pairwise interactions among random variables 
is rich and vast, including those that capture, for example, nonlinear 
dependencies and time-lagged interactions26–28. A prominent example 
are methods based on inverse covariance, which attempt to model 
and remove the common network influences on two nodes in order 
to emphasize their direct relationships. Indeed, the brain mapping 
community increasingly calls for methods that are sensitive to mul-
tiple underlying mechanisms29. How FC matrices vary with the choice 
of pairwise statistic is a fundamental methodological question that 
affects all studies in this field, limiting our understanding of the brain’s 
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also considerable variability across pairwise statistics. For instance, 
some families of statistics tend to have more spatially distributed hubs, 
additionally emphasizing transmodal regions, such as precision-based 
pairwise statistics that detect prominent hubs in default and frontopa-
rietal networks (Fig. 2b).

Next, we quantify to what extent each of the pairwise statistics 
recapitulates two well-studied features of brain networks: (1) the 
inverse relationship between physical proximity and edge weight21,42–45, 
and (2) the positive relationship between structural connectivity and 
FC20,21,45,46. For each pairwise statistic, we compute the correlation 
between the interregional Euclidean distance and the magnitude of FC 
(Fig. 2c). Note that some pairwise statistics are defined as the distance 
(dissimilarity) between time series (for example, precision, pairwise 
distance and linear model fit); in those cases, greater values indicate dis-
similar time series, and we expect to see a positive correlation between 
physical distance and FC. Overall, most pairwise statistics display a 
moderate inverse relationship between physical proximity and pair-
wise association (0.2 < ∣r∣ < 0.3), although several display a weaker 
relationship (∣r∣ < 0.1). This finding illustrates how even a fundamental 
feature of brain networks that has been reported across imaging and 
tracing techniques, spatial scales, and species can vary substantially 
depending on how FC is defined. This suggests that pairwise statistics 
are differentially sensitive to different types of underlying mechanisms, 
a question we explore in greater detail in the ‘Decomposing FC matrices 
into information flow patterns’ section.

For each pairwise statistic matrix, we evaluate the goodness of fit 
between diffusion MRI-estimated structural connectivity and the mag-
nitude of FC (Fig. 2d). Here, we expect a positive relationship, reflecting 
the fact that axonal projections support interregional signaling and 
the emergence of coherent dynamics among neuronal populations21. 
Again, we observe substantial variability across pairwise statistics, with 
structure–function coupling ranging from 0 to 0.25 (measured by R2). 
Pairwise statistics with the greatest structure–function coupling include 
precision, stochastic interaction and imaginary coherence. These results 
parallel the findings above in two ways. First, they show gross compat-
ibility but also substantial variability for an observation that has been 
reported in multiple studies. Second, we observe the strongest ‘expected’ 
results (inverse relationship with distance and positive relationship with 
structural connectivity) for commonly used covariance-based pairwise 
statistics and for some others, such as precision-based pairwise statistics. 
These statistics may be well suited for optimizing structure–function 
coupling because they seek to partial out or account for shared influence 
among multiple regions, emphasizing functional interactions that arise 
from structural connections (Discussion).

Alignment with multimodal neurophysiological networks
The previous section demonstrates that even basic relationships with 
geometry and anatomical connectivity can vary substantially depend-
ing on how FC is estimated. Here, we extend this question and consider 
how different types of FC correspond to other networks that reflect 
biological similarity between brain regions. Specifically, we estimate 
multiple forms of interregional similarity, including correlated gene 
expression (Fig. 3a, derived from the Allen Human Brain Atlas microar-
ray data), laminar similarity (Fig. 3b, derived from the Merker-stained 
BigBrain Atlas), neurotransmitter receptor similarity (Fig. 3c, derived 
from multiple positron emission tomography (PET) tracers), electro-
physiological connectivity (Fig. 3d, derived from magnetoencepha-
lography (MEG)) and metabolic connectivity (Fig. 3e, derived from 
dynamic [18F]-fluorodeoxyglucose (FDG)-PET). For a complete descrip-
tion of how each matrix is constructed, see the Methods. Our main 
question here is how well each FC matrix aligns with interregional bio-
logical relationships estimated at different spatial and temporal scales.

We show the correlation between each FC matrix and each bio-
logical interregional similarity matrix in Fig. 3. We observe the strong-
est correspondence with neurotransmitter receptor similarity and 

functional organization, as well as our capacity to develop optimized 
algorithms for structure–function coupling, individual fingerprinting 
and brain–behavior prediction3,9,10,14,30–40.

Here, we comprehensively benchmark multiple features of 
resting-state FC using 239 pairwise interaction statistics. We first chart 
the similarities and differences among broad families of statistics. We 
then investigate how commonly studied features of the FC matrix—such 
as hubs, relationships with physical distance and structural connec-
tivity—vary with the choice of pairwise statistic. We next show that 
individual differences in FC organization, including fingerprinting and 
brain–behavior relationships, also depend on the choice of pairwise 
statistic. Finally, we use an information-theoretic decomposition to 
study how pairwise statistics capture different mechanisms of infor-
mation flow.

Results
Pairwise statistics were derived for N = 326 unrelated healthy young 
adults from the Human Connectome Project (HCP)41. Functional time 
series were taken from the HCP S1200 release. We used the pyspi package 
to estimate 239 pairwise statistics from 49 pairwise interaction meas-
ures in 6 families of statistics, yielding 239 FC matrices26 for each par-
ticipant. All main text results are shown for the undirected component 
of the matrices (upper triangular vector), and in the Schaefer 100 × 7  
atlas. For other atlases and alternative processing choices, see the 
‘Sensitivity analyses’ section in the Methods.

Massive profiling of pairwise interaction statistics
We first show edge-wise similarities between the 239 FC matrices (Fig. 1, 
top). Pairwise statistics are stratified according to the broad model 
family from which they are derived (for example, information theoretic, 
spectral and so on). The 49 pairwise measures are listed on the right, 
as well as the number of variants of each measure, which we refer to as 
pairwise statistics (239 total)26.

Pairwise statistics are highly organized and form clusters that 
reflect families of statistics. For reference, the conventional zero-lag 
Pearson’s correlation is shown as the covariance family, and partial 
correlation is shown in the precision family in all figures. Some sta-
tistics are, by definition, highly similar to others. The most widely 
used family of statistics for FC calculation, covariance estimators, for 
example, are most correlated with correlation, distance correlation 
and mutual information estimators. As expected, these measures of 
similarity tend to be highly anticorrelated with measures of dissimi-
larity such as precision, distance and entropy. Others—for example, 
spectral measures—show mild-to-moderate correlation with most 
other measures. Importantly, the correlations among the pairwise 
statistics distribute widely across the positive to negative range. For 
example, eight sample FC matrices are shown in Fig. 1 (bottom), with 
clear differences in organization, such as the extent to which they 
display block-like structure. Collectively, this suggests that different 
methods used to compute the FC matrix may yield networks with very 
different configurations.

Benchmarking topological and geometric organization
If pairwise statistics yield FC matrices that look different, do these 
matrices also have different topological and geometric features? We 
start by inspecting the probability density of edge weights for each 
matrix (Fig. 2a; each column represents a pairwise interaction statistic, 
following the order in Fig. 1). Some densities are highly skewed while 
others are more evenly distributed, suggesting differences in topo-
logical organization, such as the presence or nonpresence of hubs, 
respectively. We next consider the weighted degree of every brain 
region in each of the FC matrices (brain regions × pairwise statistics; 
Fig. 2b). Although there exist some patterns that are common to most 
pairwise statistics (for example, high weighted degrees in dorsal atten-
tion, ventral attention, visual and somatomotor networks), there is 
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electrophysiological connectivity. This is consistent with the previous 
literature and potentially reflects the fact that regions with similar 
chemoarchitectural profiles are subject to common neuromodulatory 
influences, leading to coherent electrophysiological dynamics47–49. We 
find similar results when we estimate the alignment between pairwise 
interaction statistics matrices and a ‘cognitive similarity’ matrix that 
indexes how areas coactivate across cognitive tasks (derived from the 
Neurosynth meta-analytic engine) (Supplementary Fig. 6). Perhaps 
counterintuitively, we do not observe strong correspondence between 
fMRI-estimated FC and FDG–PET-estimated metabolic connectivity, 
despite the fact that the two methods should theoretically be measur-
ing related biological processes. Finally, in what is a recurring theme, 
FC estimated using precision-based statistics generally continue to be 
closely aligned with multiple biological similarity networks.

Quantifying individual differences
A common application of resting-state FC is to study individual differ-
ences50. Here, we examine how FC estimated using different pairwise 
statistics can be used for (1) identifying individuals (fingerprinting)18,51 
and (2) predicting individual differences in cognition and behavior52,53. 
We show participant identifiability for FC matrices computed using dif-
ferent pairwise statistics in Fig. 4a. The identifiability index is a measure 
of effect size, where a magnitude of ≥0.8 is considered large54. In brief, 
identifiability measures how similar an individual is to themselves 
across multiple scans, compared with other individuals51,54. Consistent 
with previous reports, we find that covariance measures (for example, 
Pearson’s correlation) generally perform well (identifiability ~1.5)54. 
Precision-based statistics outperform all others (identifiability >2.1), 
mirroring the results in the previous section. The broad question of 
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Fig. 1 | Massive profiling of pairwise interaction statistics for resting-state 
functional activity across the brain. Pairwise statistics for functional time 
series were estimated between all pairs of brain regions to generate 239 distinct 
FC matrices. Top left: group-average similarity between all pairs of 239 pairwise 
statistics. Edge-wise similarities between individual pairwise statistics were 
quantified using Spearman’s rank correlation (ρ) for each participant and 
then averaged across participants. The histogram of similarity values is shown 
below the matrix. The color represents [−1, 1], and the bar height represents 
log-transformed count in each bin within the range of [−1, 1]. Bottom left: group-
average matrices for exemplar statistics calculated between pairs of time series. 
The annotation above each matrix denotes the broader family of the statistic 
and (in parentheses) details for the specific statistic. Right: a list of 239 pairwise 

statistics grouped into 49 measures across 6 major model families, following the 
categorization of ref. 26. Numbers in parentheses indicate the number of specific 
variants of the statistics calculated for the measure. The color bar covers only 
positive values (0th to 97.5th percentile, in red) for statistics with only positive 
values, and covers both negative values (0th percentile to zero, in blue) and 
positive values (zero to 97.5th percentile, in red) otherwise. A detailed list of the 
239 pairwise statistics can be found in Supplementary Table 1. The variance of the 
similarity matrix across participants and runs can be found in Supplementary  
Fig. 1. Info, information; Misc, miscellaneous; sq., squared; indep., independence; 
crit., criterion; subseq., subsequence; reg., regression; info., information; cond., 
conditional; distrib., distribution; MI, mutual information; coh., coherence; dir., 
directed; func., function. k, kt, l, lt, fs and f are parameters for specific statistics.
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whether FC organization persists across participants and scans is some-
times alternatively formulated as test–retest reliability. For complete-
ness, we also perform a test–retest analysis using intraclass correlation, 
yielding results consistent with previous literature17 and similar to 
fingerprinting identifiability (Supplementary Fig. 7). In particular, 
precision-based statistics have relatively low test–retest reliability, 
suggesting its targeted ability toward capturing more of individual 
differences than similarities.

We next consider how well different FC pairwise statistics can be 
used for out-of-sample prediction of individual differences in cog-
nition and behavior. Following the approach outlined by Tian and 
colleagues55, we apply independent component analysis (ICA) to 109 
measures in the HCP dataset to derive a five-component solution. 
The components broadly capture individual differences in cognition, 
illicit substance use, tobacco use, personality–emotion and men-
tal health55. We then use kernel ridge regression in a nested tenfold 
cross-validation setting to predict individual component scores from 
individual FC matrices52,56. The resulting mean correlation between 
empirical and predicted scores across the test folds is shown in Fig. 4b. 

We generally observe greater prediction for cognition and tobacco 
use, and poor prediction for illicit substance use and mental health, 
consistent with previous reports54,55,57. Pairwise statistics that perform 
well for individual fingerprinting (for example, covariance, precision 
and information theory-based statistics) also tend to perform well 
for predicting cognition and behavior; likewise, pairwise statistics 
that perform poorly for fingerprinting also perform poorly here (for 
example, spectral statistics). Collectively, the substantial variation 
in identifiability and prediction accuracy suggests that the choice of 
pairwise statistic for computing FC is an important one that could be 
tailored or optimized for different research questions.

Decomposing FC matrices into information flow patterns
Up to now, we focused on associating FC matrices with other types 
of interregional relationship (for example, structural connectivity, 
spatial proximity and interregional biological similarity) and with exog-
enous measures (for example, individual identity or behavior). Here, 
we ask whether FC computed using different pairwise statistics reflects 
different underlying patterns of information flow. We estimate, for 
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Fig. 2 | Benchmarking topological and geometric organization. a, Value 
distribution for each interaction statistic. Values were min–max-normalized 
within each statistic. Darker red denotes greater density. b, Ranking of hubs 
quantified by weighted degree (strength) of the pairwise statistic matrices. 
Absolute values are taken from the pairwise statistics before ranking. Note 
that pairwise statistics with positive correlations with spatial distance (shown 
in c) have flipped rankings to ensure a more consistent hub representation. 
Regions are ordered by intrinsic functional networks from ref. 15 for left and 
right hemispheres. Darker red means greater weighted degree (‘hubness’). 
VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, 
limbic; FP, frontoparietal; DMN, default mode network. The organization of 
hubs when considering positive and negative values separately can be found 
in Supplementary Fig. 2. The similarity of hub organization across pairwise 

statistics and their representation on the cortex are shown in Supplementary 
Fig. 3. c, The weight–distance relationship quantified by computing the 
Spearman’s rank correlation of each edge in each pairwise statistic matrix 
with interregional Euclidean distance (physical distance between brain 
regions). Colors and bar height represent the magnitude of correlation. The 
most extreme measures are labeled with text. d, Structure–function coupling 
between matrices of interaction statistics and predictor matrices derived from 
structural connectivity. Structure–function coupling is represented using the 
coefficient of determination (adjusted R2), such that low values indicate poor 
structure–function coupling and high values indicate strong structure–function 
coupling46,47. Colors and bar height represent the magnitude of coupling. The 
most extreme measures are labeled with text. Full names for the statistics can be 
found in Supplementary Table 1.
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regression is performed under a nested tenfold cross-validation setting. The 

heatmap colors display the mean Pearson’s correlation between the empirical 
and predicted behavior scores across the test folds. The colorbar covers both 
negative values (0th percentile to zero, in blue) and positive values (zero to 
97.5th percentile, in red). Sensitivity analyses, using alternative machine learning 
algorithms (kernel ridge regression with a cosine kernel, linear ridge regression 
and LASSO regression) are shown in Supplementary Figs. 8–10. Pos, positive; 
Neg, negative.

http://www.nature.com/naturemethods


Nature Methods

Analysis https://doi.org/10.1038/s41592-025-02704-4

instance, ‘synergistic’ interactions where two sources of information, 
when considered together, provide new information that cannot be 
retrieved from either source individually, and by contrast, ‘redundant’ 
interactions where the opposite is true, and each source provides the 
same information as the other. A recent information-theoretic frame-
work makes it possible to partition pairwise interactions into syner-
gistic, redundant and unique information, also known as information 
atoms58–61 (Fig. 5a). In brief, for each pair of cortical regions (treated as 
sources), we can ask how much information about their future neural 
activity can be obtained from knowing their past activity—and whether 
this information is carried redundantly by each of them separately, or 
uniquely by one of them or synergistically by both together. We can 
then also ask if the way that information is carried changes over time, 
giving rise to different types of information dynamics. For example, 
if information was initially provided uniquely by region A, and then it 
is provided uniquely by region B, this is a case of information transfer 
from A to B.

We show the 16 information flow patterns arising from this infor-
mation decomposition in Fig. 5b ref. 61. We then estimate the contri-
bution of each of the 16 information flow patterns to each FC matrix 
(Fig. 5c). We find that classic statistics, such as covariance, precision 
and mutual information, mostly reflect the pattern whereby redundant 
information stays redundant. Some spectral statistics, such as directed 
transfer function and partial coherence, predominantly reflect a pat-
tern where information that is provided exclusively by one region 
stays unique to that region. While both of the cases above belong to a 
pattern of information storage, whereby information is consistently 
conveyed in the same way over time, a greater diversity of informa-
tion flow patterns exists. For example, we observe the presence of 

information migration, duplication and deduplication in phase lag 
value. We also observe information encryption and decryption (also 
known as downward and upward causation61) in transfer entropy and 
cointegration. Altogether, these results show that, while most statistics 
capture redundant information storage, there exists a wider landscape 
of information flow patterns that can potentially be selectively sampled 
using specific pairwise statistics.

Summary rankings, sensitivity analyses and validation
To summarize the benchmarking findings so far, we compile the rank-
ings of pairwise statistics according to six criteria: (1) negative weight–
distance relationship, (2) positive structure–function coupling, (3) 
close correspondence with biological similarity networks, (4) high indi-
vidual–participant identifiability, (5) high brain–behavior prediction 
and (6) low susceptibility to participant motion (Supplementary Table 5 
and Supplementary Fig. 16). Broadly, inverse covariance measures tend 
to have the greatest composite ranking, but the individual rankings vary 
considerably between criteria. Collectively, these results suggest that 
there is not necessarily a single optimal pairwise statistic, but rather 
different options that can be used to target desired mechanisms.

We next seek to determine the extent to which the main results are 
sensitive to the several processing and data-handling choices that exist 
in resting-state fMRI network modeling. We first test the stability of the 
group-level similarity matrix (originally shown in Fig. 1). We perform 
1,000 random splits of the sample into discovery and replication sets 
and compute the correlation between them. The distribution of cor-
relation coefficients is centered above r = 0.999 (Fig. 6), suggesting 
close concordance. To test the effect of atlas, we compute the similarity 
between matrices generated using a functional parcellation (Schaefer 
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100 × 7) and an anatomical parcellation (Desikan–Killiany), revealing a 
correlation of r = 0.96. To test the effect of atlas resolution, we compute 
the similarity between matrices generated using a lower-resolution 
atlas (Schaefer 100 × 7) and a higher-resolution atlas (Schaefer 200 × 7), 
revealing a correlation of r = 0.98. To test the effect of global signal 
regression, we compute the similarity between matrices generated with 
and without global signal regression, revealing a correlation of r = 0.82. 
Similar results were observed when repeating all sensitivity analyses 
at the individual participant level (Supplementary Figs. 13 and 14).

Finally, we ask whether the present results generalize to other 
datasets and acquisitions. We apply the same analytic procedure to 
six additional fMRI datasets that including a wide range of acquisitions 
(single- and multiband, as well as a range of voxel sizes, repetition 
time and scan durations) and preprocessing pipelines: (1) HCP–retest 
(N = 20), (2) AOMIC–PIOP1 (N = 216), (3) AOMIC–PIOP2 (N = 226),  
(4) MSC (N = 10), (5) MPI–MBB (N = 126) and (6) RBC–NKI (N = 592) 
(see the Methods for more details). Supplementary Fig. 17 shows a 
conserved similarity structure of pairwise statistics across datasets, 
while Supplementary Fig. 18 shows a conserved similarity structure 
of pairwise statistics for a single dataset using three different acquisi-
tion protocols and two different motion correction methods. Finally, 
Supplementary Figs. 19 and 20 show the stability of each individual 
pairwise statistic across the datasets. Collectively, these sensitivity 
checks suggest that the global relationships among pairwise statistics 
are relatively stable with respect to multiple methodological choices.

Discussion
Resting-state FC is rapidly becoming one of the most widely used brain 
imaging phenotypes. Despite its popularity, the operational definition 
of FC is arbitrary, and most groups use simple zero-lag linear correla-
tions by default. In the present report, we benchmark the network 
architecture, biological underpinnings and brain–behavior associa-
tions of FC matrices computed using a large library of pairwise interac-
tion statistics. Our results reveal a rich landscape of methods that are 
sensitive to different features of brain organization.

Even for well-studied phenomena, we observe substantial vari-
ability across methods. The arrangement of highly connected hub 
regions, a topic of great interest over the past 10–15 years62–64, sys-
tematically varies depending on the method, with some localizing 
hubs in unimodal cortex and others more widespread across the uni-
modal–transmodal axis. The weight–distance relationship, reported 
not only for FC-fMRI but also for diffusion MRI44,65, and tract tracing in 
multiple species66, is captured by most methods, but the magnitude 
of the effect varies considerably. Finally, a similar result is observed for 

structure–function coupling, whereby most methods identify an over-
all positive relationship, but the effect size displays variability across 
methods. In other words, the choice of pairwise interaction statistics 
has substantial influence on the spatial and topological organization 
of reconstructed functional networks.

One reason for the observed variability is that pairwise statistics 
are sensitive to different underlying mechanisms of interregional 
signaling67. We find that different FC methods often align with dif-
ferent forms of interregional biological similarity, from microscale 
correlated gene expression or receptor similarity, to macroscale elec-
trophysiological coupling. Indeed, numerous reports have found 
evidence of association between resting-state BOLD FC and corre-
lated gene expression68, receptor similarity49 and electrophysiological 
rhythms47,48,69. Indeed, the different pairwise statistics are optimized 
to capture different types of communication process70. Resting-state 
functional dynamics are thought to be mostly macroscopically linear71, 
and as a result, many conventional FC methods are designed to capture 
linear effects. However, the complexity of functional dynamics extends 
beyond simple linear effects, and a broader set of pairwise statistics is 
necessary to completely capture the rich spectrum of interactions in 
fMRI BOLD neural dynamics26,28,40.

Ultimately, one of the main reasons why neuroscientists study 
statistical relationships between regional BOLD time series is the belief 
that brain regions exchange, store and process information and that 
this information can be reflected by statistical relationships. However, 
there is a growing understanding that information can be transmitted, 
processed and stored in different ways—raising the question of how 
each pairwise statistic captures (or fails to capture) these different 
kinds of information dynamics. To directly address this question, 
we applied information decomposition and found that different FC 
methods align with different forms of information dynamics. Most 
FC methods appear to capture storage of redundant information, 
whereby both regions convey the same information—as previously 
observed for Pearson correlation59,72. However, some measures are 
sensitive to other forms of communication, including synergistic and 
unique information flow. These results demonstrate a multitude of 
communication patterns between brain regions that are explored less 
often but that should be taken into account for a more comprehensive 
mapping of the functional connectome and more nuanced inferences 
about what FC represents25,73.

Across the benchmark criteria tested, there is not necessarily a 
single optimal pairwise statistic. In this sense, our results can be seen 
as a rough guide for matching a pairwise statistic to an experimental 
question. A salient example is how the choice of FC method is context 
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dependent in individual differences and brain–behavior relationships, 
where we find that the predictive utility of a FC method depends on the 
phenotype that one seeks to predict54,55,57. More broadly, our results 
highlight the idea that, in the absence of any ground truth, picking a 
pairwise statistic is an important question that strongly depends on 
the research question at hand25,29,73–75.

What recommendations can be derived from the present find-
ings? Although we sampled a limited set of possible analyses, some 
broad arcs come into focus. First, as discussed above, a pairwise 
statistic should be matched to the experimental question. Second, 
covariance (distance)-based methods appear to have many desirable 
properties, including robust relationships with physical proximity, 
structural connectivity and biological interregional similarity, as 
well as the capacity to differentiate individuals and predict individual 
differences in multiple phenotypes. Methods based on precision 
(inverse covariance or partial correlation) stand out. Indeed, these 
measures have often been touted as the superior alternative to the 
Pearson’s correlation for estimating FC4,76–79. By removing mutual 
dependencies on common influences from other areas, precision 
has the theoretical advantage of more directly measuring directed, 
anatomically mediated interactions among brain areas9,29,33,37,38,80–83. 
An exciting future avenue would be to combine multiple FC matrices 
to engineer new types of FC that are potentially sensitive to a wider 
range of desirable properties84.

It is also important to consider whether the assumptions inherent 
in a pairwise statistic match the acquisition and processing of a dataset. 
Procedures that alter the temporal sequence of frames, such as censor-
ing or concatenation, can be problematic because they result in an 
irregular sampling rate in a time series and violate basic assumptions 
of many frequency-based measures (for example, phase synchrony) 
but do not affect measures that tolerate temporal exchangeability (for 
example, Pearson’s correlation). In this sense, processing strategies 
that do not remove entire frames (for example, ICA-FIX) may potentially 
circumvent this problem. In a similar vein, acquisitions that use faster 
sampling rates (for example, multiband) theoretically allow more 
optimal deployment of some pairwise statistics, such as those based 
on phase relationships.

Finally, the present results should be interpreted in light of multi-
ple methodological limitations. First, we considered only undirected 
components of pairwise statistics, effectively ignoring directed or 
causal mechanisms29,35. Second, the main text analyses are based on the 
well-studied HCP dataset which involves a specially designed acquisi-
tion sequence and processing pipeline. To ensure generalizability, we 
repeated all benchmarks for six additional datasets but more work is 
needed to understand how acquisition affects the reconstruction of 
functional connectomes. Third, although we ensured robustness to 
common preprocessing choices such as parcellation type and size, 
removal of the global signal and alternative motion correction meth-
ods, we did not exhaustively consider the effects of all processing 
choices36,74,85. Fourth, we did not exhaustively consider all common 
research questions, such as the lifespan trajectory of FC or the effects 
of psychiatric and neurological disease on FC86. Fifth, we focused only 
on descriptive pairwise interaction statistics and did not explicitly 
consider model-based ‘effective connectivity’ methods, such as struc-
tural equation modeling or path analysis, dynamic causal modeling or 
biophysical neural mass modeling5,8,87.

In summary, the present report comprehensively benchmarks the 
architecture of resting-state BOLD FC using a large library of pairwise 
statistics. We observe substantial variation across FC methods and 
across a wide array of analyses, reflecting differential sensitivity to 
biological features and to types of information flow. As FC continues to 
grow in popularity as a neuroimaging phenotype, our results provide 
the foundation for future studies to tailor their choice of FC method 
to the neurophysiological mechanism they are targeting and to their 
research question.
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Methods
Resting-state functional MRI
Resting-state functional time series from 326 unrelated participants 
were obtained from the HCP Young Adults cohort (HCP-YA; S1200 
release92). Structural and functional MRI data were preprocessed using 
HCP minimal preprocessing pipelines41,93. High-resolution T1-weighted 
and T2-weighted structural images were corrected for gradient dis-
tortion and registered to the MNI152 atlas. Cortical surfaces were 
constructed using the FreeSurfer recon-all procedure. Resting-state 
BOLD functional images (four scans approximately 15 min long for 
each participant) were corrected for slice timing, gradient distortion, 
motion, echo planar imaging (EPI) distortion and registered to the 
high-resolution T1-weighted structural image, which further under-
went intensity normalization and bias removal. The surface represen-
tations were then created by mapping the volumetric BOLD signal to 
the fsLR grayordinate space using MSMAll, a multimodal surface-based 
functional alignment algorithm94. Physiological noise and confounds 
were removed with the ICA-FIX procedure95. Details of the preprocess-
ing steps can be found in the original technical reports93.

Calculating pairwise interactions with pyspi
We used the recently developed Python Toolkit of Statistics for Pairwise 
Interactions (pyspi; v0.4.1, commit c19d06) to calculate the alternative 
measures (statistics of pairwise interactions; SPIs) of FC26. Resting-state 
fMRI time series derived in the previous step were parcellated using the 
Schaefer 100-node 7-network atlas96 and normalized (z-scored along the 
time dimension) before pyspi calculation. Starting with the original list 
of SPIs, we derived a subset of SPIs with a reasonable calculation time 
(<30 min) for a single participant and calculated the SPIs for all individual 
participants and resting-state runs. After aggregating the results, we 
further excluded the SPIs with (1) zero variance or (2) infinity or NaN 
(not a number) values for at least 1/4 of all participants and runs, finally 
obtaining 239 SPIs from 49 pairwise interaction measures across 6 major 
categories (see Supplementary Table 1 for the full list of SPIs used).

The calculation resulted in 239 node-by-node matrices for each 
participant and run. A group consensus matrix was calculated for each 
statistic by taking the average across all participants and runs (shown in 
Fig. 1; see Supplementary Fig. 1 for variance). A total of 239 group con-
sensus matrices were generated, which we refer to as group-averaged 
measure matrices. We also calculated the similarity of the statistics by 
taking the Spearman’s rank correlation between pairs of statistic matri-
ces for each participant and run, which we refer to as similarity profile 
matrices. A group consensus similarity profile matrix was calculated 
by taking the average across participants and runs.

Unless otherwise noted, we used the upper triangular values for 
the analyses (see Supplementary Fig. 12 for a brief account of directed 
pairwise statistics) and using Spearman’s rank correlation coefficient 
to assess the relationships between SPIs and other measures.

Structure–function relationship
Structural network reconstruction. Structural network of the cohort 
was reconstructed from diffusion MRI tractography. Diffusion MRI scans 
were processed using the MRtrix3 package97). Fiber orientation distribu-
tions were modeled using multishell multitissue constrained spherical 
deconvolution algorithm98,99. White-matter streamlines were then recon-
structed100 and optimized101 to provide robust estimate of tract weights. 
We estimated a binary group consensus structural connectivity matrix 
using a distant-dependent algorithm that approximates the group-level 
average edge length distribution102. The final weighted group consensus 
matrix was then calculated by applying the binary matrix on the simple 
average of structural connectivity matrices of all participants.

Structure–function coupling estimation. Following previous prac-
tices of quantifying structure–function relationships46,47, we used a 
multilinear regression model with network communication predictors 

to quantify the correspondence between structural and functional 
networks. This approach takes into account of potential dynamics 
processes happening on the network and provides a multi-faceted 
view of structure–function correspondence than using the structural 
connectivity alone. We adopted Euclidean distance and five commonly 
used network communication measures derived from the group con-
sensus structural connectivity matrix as predictors. They represent a 
spectrum of routing strategies ranging from centralized, globally opti-
mized shortest path to decentralized, locally focused diffusion103–106. 
We estimated the goodness of fit, adjusted R2 to quantify the extent of 
structure–function coupling in this case.

WFC = β0 +∑
k
βkWk,

where WFC denotes the pairwise interaction measures and Wk denotes 
predictor matrices: Euclidean distance, shortest path length, naviga-
tion efficiency, search information, communicability and diffusion 
efficiency.

We also calculated a more direct version of structure–function 
coupling using Spearman’s rank correlation between nonzero elements 
of the structural connectivity and the pairwise interaction statistic 
matrices (Supplementary Fig. 4)107.

Network communication measures. We used the Euclidean distance 
between region centroids as the physical distance between nodes. We 
also derived a connection length matrix L from the structural connec-
tivity matrix when it came to quantifying the cost of traversing the 
edges. We used a monotonic weight-to-length transform in the form 
of L = − log W

Wmax+1
. The resulting connection length matrix (L) will have 

infinity values between a pair of regions that do not have a direct struc-
tural connection.

The shortest path length represents the shortest distance to travel 
from a source and a target node108. We calculated the shortest path 
lengths using the Floyd–Warshall algorithm109 with the connection 
length matrix L.

Network navigation was introduced to brain networks by Seguin 
and colleges110–113, quantifying routing without global optimization by 
simulating a walker that steps toward the neighbor node that is closest 
in distance to the target node. Here, we used Euclidean distance as the 
distance metric, and navigation efficiency is calculated as the inverse 
of the navigation path length.

Search information measures the amount of information neces-
sary for a random walker on the network to travel along a specific path 
and does not take detours. The measures were adapted to the brain 
networks and the shortest path on weighted network in refs. 113–116.

Communicability measures the number of possible routes 
between a source and a target node pair. It is defined as the weighted 
sum of all paths and walks between those nodes117,118.

Diffusion efficiency is calculated as the inverse of the mean first 
passage time, which quantifies the time (number of steps) expected 
for a random walker to travel from a source to a target node. For asym-
metric measures, we symmetrized the matrix by taking the average of 
the matrix with its transpose114,115,119.

The network measures were implemented using the Brain Con-
nectivity Toolbox120 (https://sites.google.com/site/bctnet, version 
2019-03-03), Brainconn (https://github.com/FIU-Neuro/brainconn, 
master branch at commit 8cd436) and netneurotools (https://github.
com/netneurolab/netneurotools, v0.2.3).

Biological networks
We adopted annotated networks from multiple modalities to con-
textualize the functional relationships. Here, we briefly describe how 
we acquire the networks. More technical details can be found in the 
previous reports84.
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Electrophysiology connectivity was derived from resting-state 
MEG recordings121. Resting-state MEG data (approximately 6 min for 
each participant) for N = 33 healthy unrelated participants were taken 
from HCP. Preprocessing was carried out using open-source Brain-
storm software (https://neuroimage.usc.edu/brainstorm/ (ref. 122)). In 
brief, raw MEG recordings were registered to high-resolution anatomi-
cal space before being submitted to notch filtering (60, 120, 180, 240 
and 300 Hz), high-pass filtering (0.3 Hz), band channel removal and 
automatic artifact removal. Artifacts including heartbeats from elec-
trocardiogram, eye blinks from electrooculogram, saccades, muscle 
movements as low-frequency (1–7 Hz) and high-frequency (40–240 Hz) 
components and noisy segments were removed using signal-space 
projections. Sensor-level data were then submitted to source estima-
tion using a linearly constrained minimum variance beamformer on 
the HCP fsLR4K surface. The ‘median eigenvalue’ method from Brain-
storm was used to reduce the variable source depth effect. Time series 
on fsLR4k surface were parcellated to the Schaefer 100 × 7 atlas using 
the first principal component of the corresponding vertices. MEG FC 
matrices were estimated using amplitude envelope correlation123 for 
the six canonical frequency bands: delta (δ; 2–4 Hz), theta (θ; 5–7 Hz), 
alpha (α; 8–12 Hz), beta (β; 15–29 Hz), low gamma (lo-γ; 30–59 Hz) and 
high gamma (hi-γ; 60–90 Hz). The spatial leakage effect was corrected 
using an orthogonalization process124. The final electrophysiology 
connectivity matrix used in this project is derived as the first principal 
component of the connectivity matrices for the six canonical bands. 
Details of preprocessing can be found in refs. 48,84.

The correlated gene expression network quantifies the transcrip-
tional similarity between cortical regions. Spatially resolved microarray 
gene expression data were obtained from the Allen Human Brain Atlas88, 
preprocessed and mapped to the Schaefer 100 × 7 atlas using the abagen 
toolbox125. In brief, the preprocessing procedure includes intensity-based 
filtering, representative probe selection, tissue sample matching, nor-
malization and aggregation126. The final region-by-region correlated gene 
expression matrix was estimated by calculating the Pearson’s correlation 
coefficient using normalized gene expression profiles across regions.

The laminar similarity network measures the similarity of cel-
lular profiles across the cortical layers between pairs of regions. 
Histology-based cell-staining intensity values were derived from 
a postmortem brain, quantifying cell density and soma size90,127,128. 
Depth-resolved intensity values were sampled from 50 equivolumetric 
surfaces from white to pial surface. The intensity profiles were acquired 
on fsaverage surface using the BigBrainWarp toolbox89,129, and subse-
quently parcellated to the Schaefer 100 × 7 atlas. The region-by-region 
laminar similarity network was calculated using partial correlation, 
correcting for mean intensity across cortical regions.

Metabolic connectivity represents the cofluctuation of glucose 
metabolism between cortical regions. Volumetric FDG-PET images 
were recorded over time for 26 healthy participants91,130. PET images 
were reconstructed and preprocessed using a previously reported 
pipeline, resulting in 225 16-s fPET volumes for each recording131. They 
were subsequently motion corrected, underwent a spatial temporal 
gradient filter and were registered to the MNI152 template. Finally, they 
were parcellated to the Schaefer 100 × 7 atlas, and the metabolic con-
nectivity matrix was calculated as Pearson’s correlation coefficient for 
each participant. The group-averaged matrix was used in this project.

The receptor similarity network measures the similarity of recep-
tor density profiles between regions. PET tracer data for 18 neuro-
transmitter receptors and transporters were taken from ref. 49 and 
neuromaps (v0.0.1, https://github.com/netneurolab/neuromaps  
(ref. 132)). The neurotransmitter systems include dopamine (D1

133, 
D2

134–137 and DAT, dopamine transporter138), norepinephrine (NET, 
norepinephrine transporter139–142), serotonin (5-HT1A

143, 5-HT1B
143–150, 

5-HT2
151, 5-HT4

151, 5-HT6
152,153 and 5-HTT151), acetylcholine (α4β2

150,154, 
M1

155 and VAChT, vesicular acetylcholine transporter156,157), gluta-
mate (mGluR5

158,159), GABA (GABAA
160), histamine (H3

161), cannabinoid 

(CB1
162–165) and opioid (MOR, mu opioid receptor166). Each PET image was 

parcellated to the Schaefer 100 × 7 atlas. The final receptor similarity 
matrix was calculated as Pearson’s correlation coefficient between the 
receptor profiles for pairs of regions.

Fingerprinting
Fingerprinting of individual differences was calculated using the iden-
tifiability metric proposed in refs. 51,54.

Identifiability = |μintra − μinter|
s .

For each pairwise statistic, four matrices from BOLD runs per partici-
pant were used to calculate the mean values of within-participant cor-
relations μintra and between-participant correlations μinter. The pooled 
standard deviation s is also estimated. The resulting measure of iden-
tifiability is analogous to an effect size statistic54.

Behavior prediction
We used a robust set of ICA-derived cognitive-behavioral phenotypes 
derived by55. Briefly, HCP behavioral dataset were filtered for measures 
related to alertness, cognition, emotion, sensory-motor function, 
personality, psychiatric symptoms, substance use, and life function. A 
total of 109 measures were selected and subjected to an ICA procedure. 
Before the ICA procedure, normalization (87 out of 109) and confound 
regression (age and sex) were carried out to clean the raw behavioral 
data. The consistency and reliability of the ICA procedure was validated 
with bootstrapping and agglomerative clustering, followed by a sam-
pling and matching process. A five-component model emerged as the 
most robust and concise representation of the original data structure: 
cognitive performance, illicit substance use, tobacco use, personality 
and emotion traits, and mental health. Details of the can be found in 
ref. 55. The intersecting N = 310 participants were used for this study.

For the pairwise interaction measures, we used the vectorized 
upper triangular values of the SPI matrices for each participant, aver-
aged across the four BOLD runs. To make the prediction more robust, 
we filtered the data using quartile coefficient of dispersion (QCoD) 
to provide a conservative representation of the predictor vector. We 
first calculated QCoD across participants for each SPI and excluded 
those with minimal variance for all region pairs (absolute maximum 
QCoD <0.01; pli_multitaper_max_fs-1_fmin-0_fmax-0-25, pli_multita-
per_max_fs-1_fmin-0-25_fmax-0-5, wpli_multitaper_max_fs-1_fmin-0_
fmax-0-25). For each prediction, we further calculated the 10th and 
90th QCoD percentile and included only the region pairs within this 
range to avoid spurious values with very large or little variance that 
may affect the prediction.

Following previous best practices52,53,56,167, we used kernel ridge 
regression with linear kernel for behavior prediction. We set up the 
prediction pipeline with nested k-fold cross-validation. The inner ten-
fold cross-validation loop was used to select the optimal regularization 
parameter α, and the final performance was evaluated in the independ-
ent test split in the outer tenfold cross-validation loop. Both training 
and testing data were standardized using statistics estimated only from 
the training data to avoid leakage. We calculated Pearson’s correlation 
between empirical and predicted values for the final evaluation. The 
same process was also repeated with kernel ridge regression with cosine 
kernel, linear ridge regression and LASSO regression. A comparison of 
average performance and variability across the 49 pairwise measures is 
shown in Supplementary Fig. 8 and Supplementary Fig. 9, respectively. 
The performance details for each of the 239 individual statistics are 
shown in Supplementary Fig. 10.

Integrated information decomposition (ΦID)
We used integrated information decomposition (ΦID59–61), a temporally 
extended framework of partial information decomposition (PID58,168,169) 
to estimate the information flow patterns (‘information flow atoms’).
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The original PID framework aims to study the multivariate informa-
tion by jointly considering multiple source variables with an additional 
target variable. As shown in Fig. 5a, in a two-variable scenario, I(R1; X), 
I(R2; X) and I(R1, R2; X) represent their specific information, quantifying 
the information provided by the source variables when provided the 
information about the target variable X. PID decomposes the informa-
tion contents into their unique information components (Unq(R1; X) 
and Unq(R2; X)), a redundant information component (RED(R1, R2; X)) 
and a synergistic information component (SYN(R1, R2; X)). Here, the 
term ‘redundant’ suggests information identically provided by each 
of the two variables individually, and the term ‘synergistic’ suggests 
new information that emerges when the two variables are considered 
together (see refs. 58,60,61,168 for formal definitions).

ΦID extends this framework by introducing a temporal dimension. 
Taking a pair of time series as inputs, ΦID defines a past and a future 
state, and derives 16 information flow atoms, denoted as pairwise 
transitions between the initial four information atoms. The 16 types 
of information flow can be mechanistically categorized into several 
types: storage (information that remains carried in the same way over 
time; Red → Red, Un1 → Un1, Un2 → Un2 and Syn → Syn), duplication (infor-
mation that becomes redundantly available from both variables, and 
was not before; Un1 → Red and Un2 → Red), migration (information that 
moves between variables, such that it was uniquely present in a single 
variable, and subsequently it is uniquely present in the other; Un1 → 
Un2 and Un2 → Un1), deduplication (information that is pruned from 
duplication, such that it is no longer redundant; Red → Un1 and Red → 
Un2), decryption (collective/distributed information that becomes 
individual information in the future, also known as downward causa-
tion; Syn → Un1, Syn → Un2 and Syn → Red), and encryption (individual 
information that becomes collective/distributed information in the 
future, also known as upward causation; Un1 → Syn, Un2 → Syn and Red 
→ Syn) (see refs. 59–61 for more rigorous definitions).

Technically, ΦID requires a choice of how redundancy is defined, 
just like PID. Here, we chose the minimum mutual information defini-
tion of redundancy, following previous work59,61,170,171. Overlapping 
segments of the functional time series with one time step delay were 
used to define the past and future states. We calculated ΦID for every 
pair of the original functional time series using time-delayed mutual 
information (mutual information between the past and future states) 
under the Gaussian assumption for continuous variables. This process 
generated 16 information flow matrices (Fig. 5b). Note that there are 
many potential implementations of redundancy and temporal states; 
here we adopt a straightforward definition as previously validated in 
refs. 59–61. An open-source implementation can be found at https://
github.com/Imperial-MIND-lab/integrated-info-decomp.

To establish the relationship between information flow atoms 
and pairwise interaction statistics (Fig. 5c), we constructed linear 
models utilizing the former as predictors and the latter as the out-
come. We used dominance analysis172,173 to quantify the contribution 
of individual predictors in the presence of potential multicollinear-
ity174. The ‘total dominance’ statistic is used to calculate the relative 
contribution of each predictor compared with the goodness of fit 
(R2) of the full linear model. The function is implemented in netneu-
rotools (https://github.com/netneurolab/netneurotools), which is 
adapted from the Dominance-Analysis package (https://github.com/
dominance-analysis/dominance-analysis).

Sensitivity analyses
For sensitivity analyses, the time series were additionally parcellated 
into the Desikan–Killiany atlas175 and Schaefer 200-node 7-network 
atlas96. They also underwent global signal removal. To effectively cal-
culate the sensitivity analysis using a higher atlas resolution with 200 
regions, we generated a minimized list of SPIs by removing those taking 
more than 30 min to calculate for a single participant, resulting in 197 
SPIs calculated. After taking the intersection with the list of SPIs above, 

179 SPIs were used for the sensitivity analysis (see Supplementary 
Table 2 for the full list of SPIs used). The group-average measure similar-
ity matrix shown in Fig. 1 was calculated for each scenario. The similarity 
matrices were 239 by 239 in dimension, except when the reduced set of 
measures was used, which gives matrices of 179 by 179 in dimension, 
and matched elements from the 239-by-239 matrix were extracted for 
comparison. Spearman’s rank correlation coefficient was calculated 
between the upper triangular elements to quantify the correlation.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The HCP data are available at https://db.humanconnectome.org/data/
projects/HCP_1200 (ref. 41). Multimodal neurophysiological networks 
(including the Neurosynth-derived cognitive similarity network) are 
available via GitHub at https://github.com/netneurolab/hansen_many_
networks (ref. 84). Behavioral phenotypes are available via GitHub 
at https://github.com/yetianmed/subcortex (ref. 55). The raw pyspi 
outputs and the singularity container used for calculation are available 
at https://osf.io/75je2/.

Code availability
The code and scripts used for analysis are available via GitHub at 
https://github.com/netneurolab/liu_fc-pyspi, distributed under the 
BSD 3-Clause license. The calculation was performed using a singularity 
container available (https://osf.io/75je2/) for reproducibility. The pyspi 
package is available via GitHub at https://github.com/DynamicsAnd-
NeuralSystems/pyspi (ref. 26) under GNU General Public License v3.0.
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