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Abstract

Network models are increasingly used to study infectious disease spread.

Exponential Random Graph models have a history in this area, with

scalable inference methods now available. An alternative approach uses

mechanistic network models. Mechanistic network models directly capture

individual behaviors, making them suitable for studying sexually transmit-

ted diseases. Combining mechanistic models with Approximate Bayesian

Computation allows flexible modeling using domain-specific interaction

rules among agents, avoiding network model oversimplifications. These

models are ideal for longitudinal settings as they explicitly incorporate

network evolution over time. We implemented a discrete-time version of a

previously published continuous-time model of evolving contact networks

for men who have sex with men (MSM) and proposed an ABC-based
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approximate inference scheme for it. As expected, we found that a two-wave

longitudinal study design improves the accuracy of inference compared to

a cross-sectional design. However, the gains in precision in collecting data

twice, up to 18%, depend on the spacing of the two waves and are sen-

sitive to the choice of summary statistics. In addition to methodological

developments, our results inform the design of future longitudinal network

studies in sexually transmitted diseases, specifically in terms of what data

to collect from participants and when to do so.

Keywords: mechanistic model, networks, HIV, ABC, inference, MSM, agent based
modeling

1 Introduction

Networks are used to study a range of systems with interactions or dependencies among

their agents, such as the behavior in supply chains and the stock market [1], protein-

protein interactions in biological systems [2], and disease transmission on local and

global scales [3]. In the study of disease transmission dynamics, the contact structure

of a population can be naturally represented as a network, and this representation

is especially useful if the contacts persist over time, as is often the case for sexual

interactions. Disease dynamics are then driven by interactions (represented by edges)

among susceptible and infectious individuals (represented by nodes). More generally,

many of these systems arise from stochastic processes forming or dissolving interactions

over time that must be accounted for when doing inference.

There are (at least) two main paradigms of networks models: statistical and mecha-

nistic. Statistical network models prioritize tractable likelihoods to facilitate inference

at the expense of model flexibility. For example, the Erdős–Rényi graph, also known
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as the Bernoulli random graph, assumes that each node pair is connected indepen-

dently and with identical probability. Hence, the likelihood of the number of edges

is the standard binomial likelihood with a fixed number of nodes and inference read-

ily follows because a graph is completely identified by its node and edge sets. It also

follows that Erdős–Rényi has a binomial (approximately Poisson) degree distribution.

This generative mechanism however clearly does not map well to most real-world

networks. This is easily seen in the World Wide Web (WWW). In this scenario, each

website is represented by a node and a directed connection (hyperlink) between web-

sites occurs when one links to the other. Unlike Erdős–Rényi networks, where the

degree distribution follows a binomial distribution, the degree distribution here fol-

lows a power-law where more successful websites tend to grow their connections faster

than others [4]. Exponential Random Graph Models (ERGMs) are generalizations of

the Erdős–Rényi model. They represent a probability distribution of graphs on a fixed

node set, where the probability of observing a graph is dependent on the presence of

the various configurations specified by the model [5]. A typical graph in this distribu-

tion can be interpreted as the aggregate of the local configurations, and slight errors

in estimating the local configuration counts can alter beliefs about the distribution [6].

Mechanistic models assume that the observed network is generated by a small

set of mechanistic rules. The canonical example is the Barabási-Albert (BA) model.

Nodes are added one by one to a growing network and each node connects to m pre-

viously existing nodes with probability proportional to the nodes’ current degree [7].

This so-called preferential attachment mechanism readily generates power-law degree

distributions, which are a type of broad-tailed degree distribution that are character-

istic of many empirical networks, including that of the WWW. Apart from the target

number of nodes, n, the classic BA model only has one free parameter, m. In this case,

the fully grown graph has approximately nm edges, and m can be inferred by divid-

ing the number of edges by the number of nodes n, i.e., m is approximately equal to
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the average degree of the network. However, even for moderately complex models, the

likelihood of the full network becomes intractable due to the fact that the insertion

order of the nodes is (usually) not known. Because the graph is sequentially depen-

dent on the previous iteration as it grows, the number of possible graph realizations

grows exponentially with the number of added nodes.

Networks have provided insights to major public health problems such as the spread

of HIV [8], the opioid crisis [9], and interventions with people who inject drugs [10].

Wertheim et al. noted that HIV is an evolving disease and constructed a disease

transmission network using gene sequencing by tracking the evolutionary path of the

virus and inferring edges by measuring the similarity of the virus within different

individuals. Using an inferred transmission network, they developed a network statistic

that was able to detect community level effects of HIV in a clinical trial setting that

could help thwart future infections [8]. Aroke et al. showed the benefit of peer influence

and concluded that individuals who have a diagnosis of opioid use disorder or use

many prescribers may help promote positive health behaviors in an opioid prescription

network due to the influence of their direct peers on the network structure. They came

to this conclusion by showing the type of opioid that an individual uses and their

number of prescribers were identified as significant predictors of high betweenness

centrality giving them influence over the network at large [9]. Rolls et al. model network

data involving people who inject drugs, using validation techniques, so that these

networks can be simulated and intervention strategies could be explored [10].

There are several mechanistic models for studying the impact of men who have

sex with men (MSM) contact networks and their impact on HIV transmission [11–

13]. Birkett et al. used a data-driven simulation model to understand the impact of

network-level mechanisms and STI infections on the spread of HIV among Young Men

who have Sex with Men (YMSM) [11]. Mei et al. introduced the concept of a Complex
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Agent Network (CAN) to model the HIV epidemics by combining agent-based mod-

elling and complex networks [12]. An especially interesting model was introduced by

Hansson et al. to study the role of casual contacts on the HIV epidemic in Stockholm,

Sweden. Their research was used to recommend interventions to reduce transmission

rates [13]. Padeniya et al. notes Hansson and others’ contribution to intervention

strategies as they sought to mathematically model the role of female-sex-worker-client

interactions for gonorrhoea transmission [14]. Vajdi et al. noted Hansson’s choice to

model instantaneous casual relationships, and investigated a dynamic model for casual

relationships, a two-layer temporal network model, and SIS mean-field equations [15].

A common approach for inference in these papers is to propose mechanisms for con-

tact formation, simulate the spread of disease on the network, and modify parameter

values to match disease prevalence to that observed in their respective populations

without directly validating their mechanism.

Most scientific studies involving human subjects can be divided into cross-sectional

and longitudinal. In cross-sectional studies, measurements are obtained at only a single

point in time. The distinguishing feature of longitudinal studies is that the study

participants are measured repeatedly (at least twice) throughout the duration of the

study, thereby permitting the direct assessment of changes in the response variable

over time [16]. To illustrate, participants in a cross-sectional study likely vary in age;

however, this type of design cannot be used to study the effect of aging because the

effect of aging is potentially confounded with cohort effects. It is important to note

here that although we are sampling the evolving network at multiple time points, we

are only asking participant information that can maintain privacy.

One example of a longitudinal network study is the work by Birkett et al. [11].

The authors studied the impact of network-level mechanisms and STI infections on

the spread of HIV and found that network-level mechanisms and STI infections play

a significant role in the spread of HIV and in racial disparities among (YMSM). Their
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work shows HIV prevention efforts should target YMSM across race, and interventions

focusing on YMSM partnerships with older MSM might be highly effective. In general,

one would expect observing a network multiple times to provide more information, and

therefore improve accuracy of inference, compared to observing the network just once.

In addition, one may address questions that can only be interrogated in a longitudinal

study. When growing a network in a simulation, we can track every iteration of the

dynamic network and have arbitrarily many observations at our disposal. In an actual

study, one is of course constrained by resources and logistics. If the data are obtained

from self-administered or staff-administered surveys, too frequent reporting may lead

to participant burden and reduce his or her willingness to continue participation,

whereas too infrequent reporting may lead to recall bias and participants may be lost

to follow up. For example, a person may not remember each individual whom they

dated over a five-year period and may not be able to reliably recall the timing of the

relationships. Collecting data at different time points that are optimally spaced helps

alleviate recall bias while still maintaining an avenue for accurate inference.

Our goal in this paper is to implement a discrete-time version of the mechanistic

network model introduced by Hansson et al. and use the model to identify optimal

spacing between two data collection points (waves) in a longitudinal network study

such that we can achieve the dual goal of accurate inference (learning model param-

eters as precisely as possible) while minimizing participant burden (using network

features that in practice could be elicited from participants with a minimal number

of survey questions). These results have implications for study design for HIV and

other sexually transmitted diseases, and more broadly they can inform other research

questions involving (longitudinal) network data.

This paper is structured as follows. We discuss the discrete-time mechanistic net-

work model in Section 2.1 and explain our ABC-based approach to approximate

parameter inference in Section 2.2. We show our results in Section 3 and conclude

with a discussion in Section 4.
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2 Methods

2.1 Mechanistic network model

As noted in the Introduction, there are several mechanistic models for MSM contact

formation in specific populations. We focus on the mechanistic model introduced to

study MSM contact networks in Stockholm, Sweden [13]. The model incorporates

specific behaviors that guide the formation and dissolution of sexual contacts as well

as migration of individuals in and out of the population. While the original model was

formulated in continuous time, we consider a discrete time version of the model. This

means that rates in the original formulation correspond to probabilities in ours. We

note that as the number of the potential discrete time events tends to infinity and the

event probabilities tend to zero, our formulation of the model converges to the original.

Throughout this paper, each discrete model time step iteration is taken to correspond

to one calendar month, and all events are recorded at the end of each iteration. While a

constant number of individuals enter the population at each iteration, each individual

leaves the population with a fixed probability at each iteration. The size of the network

therefore fluctuates around n nodes, where n is the initial number of nodes in the

network.

The model incorporates two types of partnerships: steady and casual. Casual rela-

tionships are defined to only last one iteration at onset while steady relationships are

defined to have the potential to last longer. An individual can have at most one steady

partner at any given time. The probability that a single person enters a steady rela-

tionship at a given iteration is ρP0, where P0 is the proportion of single individuals

in the present iteration. In the original model, where ρ is a rate of steady partnership

formation, P0 fluctuates around an equilibrium; in our version, we fix this parameter

and absorb it into ρ for simplicity and to improve identification of model parameters.

Our modified probability of a single person entering a steady relationship at a given

iteration is therefore ρ. While the number of people willing to form relationships varies
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from iteration to iteration, the probability a single person joining a relationship stays

the same. In the Hansson paper, the differential equation formulation of the model

explicitly considers the fluctuation of the likelihood of new relationships while we do it

implicitly as the number of singles changes. The probability of said steady relationship

dissolving at each iteration is σ.

In addition to a steady relationship, an individual may also have one casual

partnership at each iteration. These casual relationships may occur alongside steady

partnerships or during times when the person is single. A single individual enters a

casual relationship with probability ω0 while an individual who is currently in a steady

relationship forms a casual relationship with probability ω1. For any partnership to

form, both individuals must be willing to join that relationship. In the scenario where

an odd number of individuals would like to form a relationship, one of them (chosen at

random) is left out. Each person migrates from the population with probability µ, and

individuals enter into the population at constant rate nµ. The migration of an individ-

ual and the formation and dissolution of a sexual contacts are all determined by the

outcome of independent Bernoulli trials. In the original continuous time formulation of

the model, duration of steady relationships and the time spent in the population both

follow exponential distributions. In contrast, for our discrete time formulation both

are geometrically distributed. Starting from an empty graph with n nodes, we first run

the model until we are confident that it has converged to the target distribution. We

set our migration probability to 0 to ensure we are sampling individuals longitudinally

and to maintain a closed cohort design. We note that the ’constant’ number of nodes

being added is largely dependent on only µ and n and easily recoverable. The model is

described in Algorithm 1 and a few graph realizations from the model are illustrated

in Figure 1. We chose 1000 iterations to ensure we are past the burn-in [13].
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Fig. 1 Network visualizations containing cumulative (from iteration 1) steady (red dashed) and
casual (blue solid) edges for iterations 1 (left), 6 (middle), and 12 (right). We used the following
parameter values: µ = 0, ρ = 0.3, σ = 0.1, w1 = 0.2, w0 = 0.4.

Algorithm 1 Hansson MSM model [13]

1: Inputs:
2: n := number of nodes
3: G := (V, E) the graph has no edges
4: ρ := scaling parameter for partnership formation probability
5: σ := separation probability for steady relationships
6: ω0 := the probability someone who is single enters into a casual relationship
7: ω1 := the probability someone who is in a partnership enters into a casual

relationship
8: iterations := the number of iterations to run algorithm
9: Algorithm:

10: for i in 1:iterations do
11: Dissolve all casual relationships generated from the previous iteration if

applicable
12: Identify all current steady relationships
13: if there are a positive number of steady relationships then
14: Dissolve each with probability σ
15: end if
16: Identify all nodes with degree 0
17: Set willingness to form a steady relationship with probability ρ
18: Randomly match the maximum number of even nodes that are willing to form

a steady relationship into edges
19: Identify single nodes := nodes with degree 0
20: Set willingness to form a casual relationship with probability ω0

21: Identify steady nodes := nodes with degree 1
22: Set willingness to form a casual relationship with probability ω1

23: Randomly match the maximum number of even nodes among the single and
steady nodes together that are willing to form a casual relationship

24: Record Network
25: end for
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2.2 Inference of model parameters

In Bayesian inference, complete knowledge of the model parameters, given the observed

data, is contained in the posterior distribution. Typically, in mechanistic models, the

complexity of the model means that the likelihood and corresponding posterior dis-

tribution is not available in closed form. In mechanistic models one can nevertheless

forward simulate data from the model given parameters, and these parameter values

may be obtained from a prior distribution. ABC is an inference framework that has

been developed to deal with models that have intractable likelihoods. There are sev-

eral ABC methods to generate samples from an approximate posterior distribution.

For clarity of our objective, we use the simple accept/reject algorithm. In accept/re-

ject, we propose parameter values from a prior distribution to generate data and retain

parameter values that produce data that resembles the observed data [17]. If we only

kept parameter values that reproduced the observed data exactly, this approach would

recover the exact posterior for discrete data. This approach is however impossible for

continuous data because the probability of sampling a continuous value exactly is 0.

To ensure that our prior distribution’s support is realistic to MSM relationship char-

acteristics, we utilize a uniform distribution on the duration of average time spent for

people to be open to joining a relationship 1
ρ [1 month, 50 months], average time a

steady relationship lasts 1
σ [1 month, 90 months], average time for a single individ-

ual to partake in a casual relationship 1
ω0

[1 month, 40 months], and average time

for an individual in a relationship to partake in a casual relationship 1
ω1

[1 month, 61

months]. Figure 2 shows the prior distributions on these inverse parameters and the

corresponding implied prior distributions on the parameters themselves. We recognize

a variety of definitions for steady and casual relationships in MSM contact networks,

as well as a variety of estimates for the support of each duration [18–25]. We chose

our support to be consistent with the data the model was originally trained on [13],
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Fig. 2 Prior distributions on the inverse parameters and the corresponding implied prior distribu-
tions on parameters themselves. The top row shows the distributions of the inverse parameters, which
can be interpreted as distributions of the average values of geometric distributions. The bottom row
shows the distributions of the parameter values themselves for our discrete time mechanistic network
model for the following parameters: ρ, σ, ω1, ω0.

and calculate the reciprocal of each parameter sampled from the prior as an input to

our model.

There are at least three major considerations in the ABC accept/reject framework:

summary statistics, distance measure, and similarity threshold [26]. Given the mecha-

nistic network model of interest, we manually chose a set of summary statistics needed

for inference, which renders the network space more manageable [26]. The choice of

network summary statistics was guided by the principle that it should be possible to

obtain this information from study participants using a questionnaire and they should

be informative of the model parameters. At a minimum, one needs at least as many

summary statistics as there are parameters to be inferred [26]. Although the model

has five parameters (six if one counts n), as previously mentioned, we opted to fix
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one of them, the migration probability µ = 0. This leaves us with four parameters

to recover: probability of a single person entering a steady relationship ρ, probabil-

ity of dissolving a steady relationship σ, probability of a single individual to enter a

casual relationship ω0, and probability of an individual in steady relationship to enter

a casual relationship ω1. More information on parameters can be found in Table 1. We

chose the four summaries, denoted s1 through s4, as listed in Table 2. We chose sum-

maries that could be elicited by asking participants to consider their sexual history in

the past year only. Longer histories could potentially be more informative, but longer

look-back periods would likely increase recall bias.

Since the mechanistic network model is outside the exponential family, we have no

guarantee of sufficiency, i.e., that our summary statistics fully summarize our network.

However, we still require the summary statistics to be informative of the model param-

eters. An informal way to assess the extent of informativeness is to investigate plots of

network summary statistics against model parameters. We denote these relationships

as si(θ) where i ∈ {1, 2, 3, 4} and θ ∈ {ρ, σ, w0, w1}. We refer to these relationships as

mapping functions, and we estimate them using simulations where si,k(θ) represents

the value of summary statistic si with respect to generative parameter θ in simula-

tion run k. The value of si(θ) is given as the median value of si,k(θ) taken across all

simulations k.

We measured the distance between a simulated network and the observed network

by calculating the Euclidean distance within the normalized summary statistic space.

The normalized summary statistic value is obtained by first subtracting the mean of

the summary statistic from each value and then dividing each value by the standard

deviation of the summary statistic. We populated an ABC reference table for each

lag by generating 10,000 graphs by sampling parameters from their joint priors and

varying the lag between the two network observations between zero and 150 iterations.

Next, taking a sample per lag from our joint prior density and its corresponding
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graph as our ground truth, we simulated samples from the corresponding approximate

posterior distribution. We retained the parameters associated with the 100 (top 1%)

smallest distances in the normalized summary statistic space between the observed

and generated graphs.

Finally, we performed a regression adjustment on samples from the approximate

posterior distribution [27, 28]. The goal of the regression adjustment is to improve

our ABC posterior’s convergence to our target posterior. The basis of the method is

that we can obtain an estimate of our expected parameter values given the summaries

using linear regression in the localized neighborhood around our observed data that we

get from the approximate posterior. Then, we can use this relationship to adjust our

approximate posterior distribution [27]. We normalized the parameters in our reference

table, and utilized the root mean squared error (RMSE) of the approximated posteriors

for a fixed set of 500 ground truth parameters to measure accuracy of inference. Then,

we averaged over all 500 parameter sets for an estimate of the RMSE, for a given lag,

over our prior space [29]. For clarity, consider θi as the ith ground truth parameter

and θ̂i,k as the kth sample from the approximate posterior estimating θi. Our estimate

of RMSE is then

ˆRMSE =
1

500
Σ500

i=1

√
1

100
Σ100

k=1(θi − θ̂i,k)2. (1)

Finally, we fitted a locally weighted regression (loess) with a 95% confidence inter-

val to the data. We note that while the values of the parameters in the reference table

are normalized, the resulting approximate posterior distributions are not. Individually

normalizing the reference table parameters is useful because it places all parameters

on the same scale when calculating the RMSE. However, the posteriors are displayed

on the original scale for ease of interpretation.
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Parameter Hansson et. al [13] Current Paper

n Average population size Population size
µ Rate of leaving the sexually active pop-

ulation
Probability of leaving the sexually active popula-
tion

ρ Partnership desire scale rate Probability of a single person entering a steady
relationship

σ Separation rate Probability of dissolving a steady relationship
ω0 Rate at which an individual who is single

tries to have casual sex
Probability of a single individual to enter a casual
relationship

ω1 Rate at which an individual who is in a
relationship tries to have casual sex

Probability of an individual in a steady relation-
ship to enter a casual relationship

Table 1 Parameter And Their Interpretation

Name Description

s1 The proportion of single individuals
s2 The average length of steady relationships that start and end in the course of the study
s3 The proportion of individuals in steady relationships who are also in casual relationships
s4 The proportion of steady relationships among all relationships

Table 2 Summary Statistic Descriptions

3 Results

We evaluated the mapping functions on a grid along the unit interval by generating

100 graphs per parameter value and using box plots to summarize the results. We

investigated mapping functions in two different scenarios. First, we varied each param-

eter in turn while keeping all others fixed at the values reported in [13], i.e., we fixed

ρ = 0.3, σ = 0.1, ω0 = 0.4, and ω1 = 0.2, and we also set µ = 0 to keep the cohort

closed. Second, we sampled each free parameter from its respective prior distribution.

These plots were used to ensure that the chosen summary statistics are informative

about the model parameters as can be seen in Figures 3 and 4.

While more summaries could be included, that would increase the computational

burden and likely would not significantly increase accuracy. We considered several

extra summaries during discovery. Since we would like to obtain the data from ques-

tionnaires, one also needs to consider participant burden: all else equal, we would

like to ask as few questions as needed to address the scientific question at hand. It
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is also worth emphasizing that each of the listed summaries can be obtained using

privacy preserving questions only in data collection, i.e., participants do not need to

disclose their identity nor the identity of their steady or casual partners. This arguably

improves the quality of the collected data as respondents would be expected to be

more likely to report their behavior accurately. We note that while a regression adjust-

ment generally improves the results, it can at times generate functionally impossible

values, such as negative probabilities, or worsen our inference when the summaries do

not accurately represent the network. In the rare occasion the regression adjustment

proposes a negative number, we opt to take a conservative approach and set the value

at 0. In this study, we did not see any adjusted proposal probabilities above 1.

We visualized the regression adjusted approximate posteriors when looking at the

graph once or twice with a lag of 50 iterations in Figure 5. Furthermore, as expected,

and as shown in Figure 6, observing a network twice results in a smaller average error

compared to observing a network only once. The improvement is largely driven by our

ability to recover σ and ρ parameters as shown in Figure 7. We also see the average

error steadily decreases with the lag between the two network observations until about

40 to 50 iterations. This lag between the two network observations (data collection

waves) is optimal in the sense that extending the gap further does not greatly increase

accuracy of inference but does lengthen the duration of the study. In a closed cohort

study, all else equal, the longer the duration of the study, the greater the expected

attrition of study participants. Attrition of study participants in a setting like ours

would lead to incomplete ascertainment of network structure and therefore introduce

an additional error to network summary statistics. We also see that implementing a

regression adjustment does reduce our average error by nearly an additional 2.6%,

while maintaining the overall trend and optimal lag. Finally, we note our overall ability

to discern parameters from our joint prior distribution when collecting data twice after
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Fig. 3 Pairwise relationships between the model parameters (horizontal axes) and the summary
statistics (vertical axes) used in our ABC inference scheme. Free parameters are fixed at µ = 0, ρ =
0.3, σ = 0.1, ω0 = 0.4, ω1 = 0.2. The lag between two consecutive network observations is fixed at
15 iterations. Each box plot consists of 100 samples.

a regression adjustment with an optimal drop of roughly 62% from our average prior

error and 18% when only collecting data once.
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Fig. 4 Pairwise relationships between the model parameters (horizontal axes) and the summary
statistics (vertical axes) used in our ABC inference scheme. Free parameters are sampled from the
prior distributions. The lag between two consecutive network observations is fixed at 15 iterations.
Each box plot consists of 100 samples.

4 Discussion

In this paper, we investigated the accuracy of an approximate inference scheme applied

to an evolving mechanistic network model in a setting where the network, represent-

ing sexual contacts among people in a closed population, is observed at two different
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Fig. 5 Approximate marginal posterior distributions of model parameters obtained by retaining
the top 1% of proposed prior samples in our ABC accept/reject inference scheme. Different rows
correspond to comparing the prior (top), observing the graph once (middle), and observing the graph
twice with a lag of 50 iterations (bottom). All posteriors include a regression adjustment. The blue
solid lines represent the 95% credible intervals and the red dotted lines represent the true parameter
values.

time points. As expected, observing the network twice improves the accuracy of infer-

ence, but this reduction in inferential error depends on the time lag between the two

observations. Given that collection of real-world sexual network data is expensive and

logistically challenging, it pays off to optimize the gap between the two time points to

maximize accuracy of inference. If the two network observations are too close in time,
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Fig. 6 Estimated average RMSE, where the average is taken across multiple network realizations, as
a function of the lag between the two network observations. We also include a loess curve with a 95%
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corresponding regression adjusted error for a network observed only once is 1.03 that for a network
observed twice with a lag of 50 iterations is 0.84.

there may have been only minimal changes in the network structure, and therefore

the second observation adds little information. However, if the two network observa-

tions are too far apart in time, the study may be logistically difficult to carry out in

practice and the population is likely to experience significant churn.
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Fig. 7 Estimated regression adjusted average RMSE for the total error (top curve) and separately
for the four parameters considered in our study (bottom four curves). These results show that when
observing a network twice, the reduction in total RMSE is mainly due to the reduction of RMSE for
ρ and σ.

There are a total of six parameters in the model, but we fixed two of them to focus

on a closed, fixed-sized cohort. When considering the contribution of the remaining

four parameters to inferential error, we observed that the σ (probability of dissolv-

ing a steady relationship) and ρ (probability of a single person entering a steady

relationship) parameters benefited the most from the lag between the two network
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observations. This finding is intuitive as these two parameters influence multiple rela-

tionship iterations. However, ω0 (probability of a single individual to enter a casual

relationship) and ω1 (probability of an individual in steady relationship to enter a

casual relationship) both correspond to one-time events and do not benefit as much

from a lag. In particular, ω1 is relatively accurate at all lags while ω0 would likely see

more relative improvement through the consideration of another summary statistic.

The set of summary statistics that may be considered in inference depends on the

information obtained from subjects through study questionnaires. The informative-

ness of questions themselves depends on the mechanisms that drive contact formation

in the study population. Depending on the mechanisms, it is possible that any set

of individual-level questions (giving rise to so-called egocentric samples of the net-

work) may be inadequate for network inference and instead one may need information

about the full network structure. While this type of network-level information could

be obtained using a sociocentric design, it is very challenging, and we are aware of

only one study that has implemented this in practice. The Likoma Network Study

was based on a sociocentric survey of sexual partnerships aimed to investigate the

population-level structure of sexual networks connecting the young adult population

of several villages on Likoma Island, Malawi [30]. We stress that this notable study

is cross-sectional and therefore corresponds to a one-time observation of the network

(even if the data collection in this study occurred in two stages for logistical reasons).

Obtaining two observations of the network would be logistically nearly impossible,

and doing so in larger populations is not feasible.

Our results highlight the importance of using simulation to investigate the hypoth-

esized generative mechanisms of network formation to inform future study designs,

here specifically 1) what questions to ask so that maximally informative network sum-

mary statistics may be constructed and 2) how to space the two (or possibly more)

data collection waves. For example, in our setting, introducing extensive migration in
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the population leads to a shorter optimal lag between the two network observations.

Our approach is compatible with the recommended paradigm of using simulations for

designing and interpreting intervention trials in infectious diseases, particularly with

regard to emerging infectious diseases [31]. One of the main goal of such simulations is

to more accurately reflect the dynamics of the transmission process. For sexually trans-

mitted diseases, learning about the mechanisms of network formation is an important

step in that direction.

In this paper, we have used basic ABC and basic regression adjustment techniques

because our goal here is to see whether the ABC approach is effective in its simplest

and most interpretable form. More refined variants of these methods, which can sub-

stantially improve computational performance, can be studied later on. Finally, at

the time of writing, we came across related work on how design choices for egocen-

tric network studies impact statistical estimation and inference for ERGMs [32]. This

investigation is relevant for ours, although our focus is specifically on the multiple

observation of the evolving network. For a suitably chosen ERGM, i.e., an ERGM with

reasonably simple dependence assumptions, it is possible to attain sufficient summary

statistics from egocentric network samples. This allows for exact statistical inference,

but at the cost of making distributional assumptions that may not hold. For that rea-

son, it is valuable for investigators to have various methods at their disposal so that

they may choose the tool that best fits the scientific problem at hand.
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[17] Csilléry, K., Blum, M.G., Gaggiotti, O.E., François, O.: Approximate bayesian

computation (ABC) in practice. Trends in Ecology & Evolution 25(7), 410–418

(2010)

[18] Malone, J., Syvertsen, J.L., Johnson, B.E., Mimiaga, M.J., Mayer, K.H., Bazzi,

A.R.: Negotiating sexual safety in the era of biomedical HIV prevention: rela-

tionship dynamics among male couples using pre-exposure prophylaxis. Culture,

Health & Sexuality 20(6), 658–672 (2018)

[19] Down, I., Ellard, J., Bavinton, B.R., Brown, G., Prestage, G.: In Australia,

most HIV infections among gay and bisexual men are attributable to sex with

‘new’partners. AIDS and Behavior 21(8), 2543–2550 (2017)

25



[20] Vroome, E.M., Stroebe, W., Sandfort, T.G., WIT, J.B., Griensven, G.J.: Safer sex

in social context: Individualistic and relational determinants of AIDS-preventive

behavior among gay men 1. Journal of Applied Social Psychology 30(11), 2322–

2340 (2000)

[21] Wall, K.M., Stephenson, R., Sullivan, P.S.: Frequency of sexual activity with most

recent male partner among young, internet-using men who have sex with men in

the United States. Journal of Homosexuality 60(10), 1520–1538 (2013)

[22] Davidovich, E.: Liaisons dangereuses: HIV risk behavior and prevention in steady

gay relationships (2006)

[23] Weiss, K.M., Goodreau, S.M., Morris, M., Prasad, P., Ramaraju, R., Sanchez, T.,

Jenness, S.M.: Egocentric sexual networks of men who have sex with men in the

United States: Results from the ARTnet study. Epidemics 30, 100386 (2020)

[24] Bavinton, B.R., Duncan, D., Grierson, J., Zablotska, I.B., Down, I.A., Grulich,

A.E., Prestage, G.P.: The meaning of ‘regular partner’in HIV research among gay

and bisexual men: implications of an australian cross-sectional survey. AIDS and

Behavior 20(8), 1777–1784 (2016)

[25] Myers, T., Allman, D., Calzavara, L., Morrison, K., Marchand, R., Major, C.: Gay

and bisexual men’s sexual partnerships and variations in risk behaviour (1999)

[26] Sisson, S.A., Fan, Y., Beaumont, M.: Handbook of approximate bayesian compu-

tation (2018)

[27] Beaumont, M.A.: Approximate bayesian computation. Annual Review of Statis-

tics and its Application 6, 379–403 (2019)

[28] Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate bayesian computation

26



in population genetics. Genetics 162(4), 2025–2035 (2002)

[29] Fearnhead, P., Prangle, D.: Constructing summary statistics for approximate

bayesian computation: semi-automatic approximate bayesian computation. Jour-

nal of the Royal Statistical Society: Series B (Statistical Methodology) 74(3),

419–474 (2012)

[30] Helleringer, S., Kohler, H.-P.: Sexual network structure and the spread of HIV in

Africa: evidence from Likoma Island, Malawi. Aids 21(17), 2323–2332 (2007)

[31] Halloran, M.E., Auranen, K., Baird, S., Basta, N.E., Bellan, S.E., Brookmeyer,

R., Cooper, B.S., DeGruttola, V., Hughes, J.P., Lessler, J., et al.: Simulations

for designing and interpreting intervention trials in infectious diseases. BMC

Medicine 15(1), 1–8 (2017)

[32] Krivitsky, P.N., Morris, M., Bojanowski, M.: Impact of survey design on esti-

mation of exponential-family random graph models from egocentrically-sampled

data. Social Networks 69, 22–34 (2022)

27


	Introduction
	Methods
	Mechanistic network model
	Inference of model parameters

	Results
	Discussion
	Declarations
	Availability of data and materials
	Competing Interests
	Funding
	Authors' contributions
	Acknowledgments


