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Auxiliary Variable Methods for Markov Chain
Monte Carlo With Applications

David M. HIGDON

Suppose that one wishes to sample from the density rr(x) using Markov chain Monte Carlo (MCMC). An auxiliary variable u
and its conditional distribution rr(ulx) can be defined, giving the joint distribution rr(x, u) = rr(x)rr(ulx). A MCMC scheme that
samples over this joint distribution can lead to substantial gains in efficiency compared to standard approaches. The revolutionary
algorithm of Swendsen and Wang is one such example. Besides reviewing the Swendsen-Wang algorithm and its generalizations,
this article introduces a new auxiliary variable method called partial decoupling. Two applications in Bayesian image analysis are
considered: a binary classification problem in which partial decoupling out performs Swendsen-Wang and single-site Metropolis
methods, and a positron emission tomography (PET) reconstruction that uses the gray level prior of Geman and McClure. A
generalized Swendsen-Wang algorithm is developed for this problem, which reduces the computing time to the point where
MCMC is a viable method of posterior exploration.

KEY WORDS: Please supply.

1. INTRODUCTION

The introduction of auxiliary variables to a Markov chain
Monte Carlo (MCMC) scheme (Besag and Green 1993; Ed­
wards and Sokal 1988) may allow one to construct Markov
chains that mix faster and are easier to simulate than stan­
dard single site algorithms. The idea was given formally
in the aforementioned references but was alluded to in the
ideas of conditional simulation advanced by Hammersley
(1956) and Trotter and Tukey (1956). In the method of aux­
iliary variables, one seeks to generate realizations from a
complicated distribution with density 1f(x). The variable of
interest x E X is augmented by one or more additional
variables u E U; in some contexts u may have a physical
interpretation in the original process, such as temperature or
an unobserved measurement, though this is not necessary.
To generate realizations from 1f(x), one specifies the condi­
tional distribution 1f(ulx) and writes 1f(x,u) = 1f(x)1f(ulx)
with marginal distribution 1f(x). A Markov chain is then
constructed on X x U by alternately updating u and x
via Gibbs sampling or some other method that maintains
1f(x,u), and hence 1f(x). Note that lower case x and u are
used to represent random and standard variables.

The general auxiliary variable method may be imple-
mented as follows:

1. Specify u and conditional distribution 1f(ulx).
2. Form joint distribution 1f(x,u) = 1f(x)1f(ulx).
3. Define transition kernels Pu((x, u) -+ (x, u')) and

Px((x, u) -+ (x', u)) such that both kernels maintain 1f(x,u).
Typically, u is updated with a Gibbs step,

Pu((x, u) -+ (x, u')) = 1f(u'lx),

and Px is specified so that detailed balance is maintained,

1f(X, u)Px((x, u) -+ (x', u)) = 1f(x', u)Px((x', u) -+ (x, u)).
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4. Generate realizations (xl,u1 ) , ... , (XN,u N) via the
systematic scan transition kernel PxPu or some other up­
dating schedule.

This article gives examples of auxiliary variable algo­
rithms in Section 2 that show how auxiliary variable meth­
ods can lend insight into simple MCMC algorithms, and
how they can lead to improvements over standard algo­
rithms. In particular, I discuss the Swendsen-Wang algo­
rithm (Swendsen and Wang 1987) for Ising (1925) mod­
els and introduce partial decoupling, a modification that is
more relevant to statistical inference. In Section 3 two ap­
plications in Bayesian image analysis are presented where
standard MCMC algorithms are impractical because they
move so slowly through the sample space.

2. EXAMPLES

2.1 Metropolis

Auxiliary variables lend insight into the algorithm of
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller
(1953), which can be regarded as an auxiliary variable al­
gorithm itself. As an example, I consider a Markov chain
defined on the set B = {xo, ... ,xn}, where the transi­
tion probability matrix (TPM) P( Xi -+ .) is a symmetric
probability mass function centered at Xi with support on
{Xi-2,"" Xi+2}, as shown in Figure 1. If B is periodic,
then one-step transitions between Xn or Xn-l and Xo are
possible. In this case the stationary distribution is trivially
uniform.

But when B has edges, the point xo, for example, can
no longer be reached from Xn or Xn-l' In addition, the
TPM P allows transitions outside the set B. To maintain
the uniform distribution over B obtained in the aperiodic
case, the Metropolis algorithm allows the chain to occa­
sionally remain where it is for Xi near the boundary. This
compensates for the loss of transitions over the boundary
that occurred in the periodic case. A schematic is given in
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where 7ro(x) is a simple distribution, perhaps with inde­
pendence for the components of x. By specifying u =
(Ul' ... , Uk) and its conditional distribution,

1
7r(ulx) = 1] bk(x) 1[0 s Uk < bk(x)], (3)

(4)

(2)7r(X) ex 7ro(x) II bk(X),
k

Now xlu is distributed according to 7ro(x), subject to the
constraints, Uk ~ bk(x) for all k. In Bayesian image anal­
ysis, 7ro(x) typically denotes the likelihood component of
the posterior distribution. For simple Ising and Potts mod­
els, the constraints are quite simple to deal with, as shown
in the following example. But in general, the constraints
can make simulating from 7r(xlu) a difficult task.

2.2.1 Swendsen-Wang for Binary Markov Random
Fields. Let S denote the set of pixels or lattice sites, with
pairwise adjacencies indicted by i ,...., j. On a finite lattice
consisting of n sites, the distribution of the Ising model
with a likelihood or external field term can be written as

models from statistical physics. The original SW algorithm
was designed to speed up simulation of very large Ising
models near criticality. This algorithm uses auxiliary bond
variables and provides a simple means of moving through
the state space in a way that cannot be done with single­
site updating. It is also applicable when the model contains
a likelihood term as well as when the neighbor interactions
are edge-dependent.

Because of the SW algorithm's success with Ising and
Potts models, much effort has been spent on generalizing it
to a wider class of models. Examples include continuous­
spin models (De Meo and Oh 1992; Wolff 1989) and gray­
level imaging (Green 1992). Here I describe the general
form of the SW algorithm due to Edwards and Sokal (1988).

Suppose that the distribution of interest 7r (x) can be writ­
ten in the form

one can knock out interactions among the components of
x. Given x, the components of u are independent, with each
Uk""" U[O, bk(x)]. The distribution of X given u is then

1
7r(xlu) = 7ro(x) If bk(x) bk(x) 1[0 ~ Uk < bk(x)]

= 7ro(x) II I[uk < bk(x)].
k

Figure 1. Here the uniform Metropolis kernel is defined by

7r(X, u) ex I[(x, u) : a~ U~ 7r(x)],

1. ulx,...., U[O, 7r(x)].
2. Replace X by x' sampled from PMU(x -+ x') with

B u = {x: 7r(x) ~ u}:
a. Sample XC from the symmetric kernel P(x -+ XC).
b. Set

whose marginal density for X is 7r(X). A Gibbs sampler for
this distribution consists of two uniform updates:

1. ulx,...., UfO, 7r(x)].
2. xlu""" U{x: 7r(x) ~ u}.

This auxiliary variable scheme, often called slice sampling,
has been shown by Damien, Wakefield, and Walker (1997)
to be quite useful in a number of applications. If 7r(x) is not
readily invertible, then an alternative is to use an adaptive
approach to sample from 7r(xlu).

The Metropolis algorithm simply replaces the foregoing
step 2 with an edge-correction update for uniform distri­
butions PMU. Hence the resulting updates are as follows:

The term L:xk\tB P(Xi -+ Xk) causes the chain to remain
at Xi whenever P proposes a value Xk tf- B. To see that
this mimics transitions in the periodic case, consider Xi
near the boundary and Xk tf- B. In the case where B has
edges, P(Xi -+ Xk) = P(Xk -+ Xi), which is equal to
P(Xkmodn+l -+ Xi) when B is periodic. Hence each term
P(Xi -+ Xk) with Xk tf- B mimics the term P(Xkmodn+l
-+ Xi) from the periodic sampler. This simple example read­
ily extends to continuous B with any symmetric transition
kernel P.

To demonstrate how Metropolis works for arbitrary den­
sities 7r(x), first consider an auxiliary variable Gibbs sam­
pler for 7r(x). Defining ulx ,...., U[O, 7r(x)] leads to a uniform
joint distribution

= {P(Xi -+ Xi) + L:xk\tB P(Xi -+ Xk) for i = j (1)

P(Xi -+ Xj) for i -=I- j.

I {XC if XC E {x:7r(x) ~ u}
X = X if XC tf- {x:7r(x) ~ u}.

A candidate XC is drawn from the symmetric kernel P(x
-+ .); the chain moves to XC if XC is in the set B u = {x:
7r(x) ~ u} and remains at X if XC falls outside of Bu. On
reordering the steps, one recognizes this as the standard
Metropolis algorithm for 7r(x),as described in the statistical
literature (see, e.g., Besag, Green, Higdon, and Mengersen
1995 or Tierney 1994).

2.2 The Swendsen-Wang Algorithm

The advent of the Swendsen-Wang (SW) algorithm for
Ising and Potts models has led to a number of more general
auxiliary variable methods to combat slow mixing in lattice

7r(X) ex exp {L (}i(Xi)} x exp {I: ,BijI[xi = Xj]} ,
'ES '~J

X E {a, ij-. (5)

Note that the Potts (1952) model has identical form, except
that each Xi may take on more than two unordered states. I
assume that ,Bij > 0, so this distribution invites clustering of
like-colored pixels. In the case of no external field ((}i (.) ==
a for all i), I refer to (5) as the Ising model.

In applying SW, we define u with components Uij cor­
responding to each adjacency i ,...., j in the lattice. Given
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With periodic B, one-step transitions from X n or Xn-I to Xo are possible .

• • • • • • •• • • •,• .,
• • 0 0 • •til .. •.. • •

X n - 1 X n XQ

Here the stationary distribution using transition kernel P is trivially uniform.

When B is no longer periodic. points near the edge lose contribution from points

beyond the edge.

• • • • • • •• • • •I·
0

••
• 0 • •• til •• 0 •x n - 1 Xn

I •0
~ .. III Ell •
X-2 X - 1 Xo

At xo. the Metropolis kernel PMl! mimics the contribution from X n and Xn-I in the
perriodic sampler by sticking at Xo when P proposes transitions to X_lor X-2:

587

for Xj = Xo

for Xj f= Xo

Figure 1. Metropolis on a Uniform Distribution Acts as a Method for Correcting Edge Effects. Consider the space B = {xo • . . . • Xn} given by
the black dots in the two diagrams above and TPM P(x --+ -) which is a symmetric PMF centered at x. If the space B is periodic (a). then Xo
receives support from Xn and Xn- l . However when B has edges (b). a transition from Xn or Xn- l to Xo is no longer possible, To maintain the uniform
distribution over B. the Metropolis kernel mimics support from Xn or Xn- l in the periodic case by sticking at Xo when a realization from P(xo --+ -)
hits x.i s or X-2'

:T, the components lIij are then specified to be independent
and uniformly distributed,

r.(uijl:r) = exp] -(i;,J[Xi = :rJ}

x 1[0::; Vij ::; exp{Bijl[:ri = :Dj]}], (6)

so that

r.(:rlu) ex exp {L:: O:i(:ri)}
iES

x II 1[0::; Ui,j <exp{[3i.J[:ri = :rj]}]. (7)

If l1ij > 1, then exp{L:ii jl[xi = :rj]} > 1, so the condition
l1ij > 1 implies that x, = Xj. Like-colored neighbors, i
and i, are bonded (i.e., constrained to be equal) with prob­
ability 1 - exp] -f1ij }. The bond variable 11 partitions S
into like-colored clusters. For a particular cluster, C, the
probability of color k E {O, I} is ex exp{2:iEc O'i(k)}, so
each cluster can be updated independently according to its
conditional distribution. The bond variables completely de­
couple the external field term, exp{2:'iEs Cti(:ri)}, from the
interaction term, exp{2:i~j{jijl[xi = Xj]}' Updating u es­
sentially grows clusters, and updating :r colors them. Figure
2 illustrates the SW algorithm on an 8 x 8 lattice with first-

order neighborhood structure and no external field. Figure
3 shows successive realizations of the SW algorithm and
Gibbs sampling on a 100 x 100 lattice with all [Jij set to
the critical value {3* for the infinite lattice, [3* ~ .88.

2.2.2 Swendsen-Wang for a Gray-Level Model. For
the Ising model, SW gives the most improvement of single­
site Metropolis when (3 is at the critical value, so that re­
alizations are patchy as in Figure 3. This suggests that SW
may give substantial improvement for gray-level priors that
also yield patchy realizations. Although the commonly used
Gaussian pairwise difference prior (Besag et al. 1995, sec.
3) does not exhibit this behavior, the prior model of Geman
and McClure (1987),

.(.rIO. A) cc exp {O~ [1 + A(x, ~ Xj l'r' } .

x E [0, Mr, (8)

does show some similarities to the Ising model, which sug­
gests that SW may be effective in sampling from such
a model. Figure 4 shows every 20th realization from (8)
after reaching the stationary distribution under a single­
site Metropolis algorithm and a SW implementation with
((3, >.., IV!) = (.96, .005, 300). These parameter values result
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• • • 0 0 0 0 0

Given u, update xr.--.-.___ 0 0 0 o@

• • • 0 0 0 0 0

o

o

o

o

o

o 0

•
•
••

•
•

•

•
•
•

(b)

Given x, update bond variables u.
@

(a)

Current image x

Figure 2. The Swendsen-Wang Algorithm for the Ising Madelon the 8 x 8 Lattice, (a) Initial image x and Markov random field graph for 7r(x}.
(b) Given the current image x , the bond variables u are generated uniformly over the interval (0. elll[x; ~xJl), If uij > 1 (marked by the thick lines).
Xi is constrained to equal Xj' These constraints partition the image into clusters of like-colored sites. Clusters induced by this realization of ulx
are outlined. The Markov random field graph for xlu differs from that of x, marginally; the auxiliary vector u strengthens the dependence between
some neighboring sites. while completely removing it from others. (c) Given the bond variables u, x is now a coarse image of independent clusters.
Because there is no external field in this example. each cluster is recolored black or white with probability .5.

I. Update each bond variable according to a uniform dis­
tribution:

of the :rj's within a cluster remain in the interval [0,1\1]
when updating. Thus the SW implementation for (8) can be
described as follows:

1L/:il-1: rv U[O, exp {!:i[1 +)..(.1:; -.1:J)2J-l}J.

successive realizations

in patchy realizations for x. As in standard SW applied to
the Ising model, conditioning on ?L leads to independence
between clusters and dependence within clusters through
the cumbersome constraints (4). Rather than attempt to up­
date within a cluster, we consider shifting the level of the
cluster, leaving the relative pairwise differences within each
cluster unchanged. The level of the cluster follows a uni­
form distribution, though some care must be taken that all

Gibbs

Swendsen - Wang

Figure 3. Successive Realizations of the Ising Model at Critical Temperature From the Single-Site Metropolis and Swendsen-Wang Algorithms.
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every 20th realization

589

Metropolis

Swendsen - Wang

Figure 4. Successive Realizations of the Geman and McClure Prior at "Critical Temperature" From the Single-Site Metropolis and the Generalized
Swendsen-Wang Algorithms.

2. Determine clusters :rcl , ... , :rc" induced by bond
variable u.

3. Replace each :rei by :rCi +T;, where T;is a single uni­
form draw from the interval [- min(;I:C;), A£ - IIlax(:rcJ].

Although this algorithm results in an irreducible Markov
chain, I alternate the SW step above with a single-site
Metropolis step to ensure movement within large patches.
Figure 5 shows a time series plot of u(:I:) = L;~.7[l +
>.(:r; ~ :rj?]-l and the mean level of :r by iteration. Be­
cause the SW algorithm alternates with single-site Metropo­
lis sweeps, values at every second iteration are plotted for
the single-site Metropolis algorithm to make a fairer com­
parison. This new SW implementation is a huge improve­
ment over single-site Metropolis and is key in the example
of Section 3.2, where required draws from both the prior
and posterior distributions would be impossible to obtain
with single-site methods.

2.3 The Partial Decoupling Method

The method of partial decoupling was first given by Hig­
don (1993). The algorithm can be laid out in a slightly more
general form by replacing (3) with

leading to the conditional distribution of :rlu,

7I(:eln) = 710(:r) II bd:e)1-8, I[uk :$ bk,(;r)1-8,].

k

This method has been used successfully for sampling from
posterior distributions resulting from binary imaging appli­
cations. In such problems the likelihood term breaks the
symmetry of the prior model, so that it is typically ineffi­
cient to allow clusters to grow without regard to the likeli­
hood and then to allow the clusters to be updated without
regard to the prior as occurs in SW. In partial decoupling,
7I( 711:r) is modified so that the prior is only partially decou­
pled from the likelihood term when considering 7I(:rln). In
what follows I give the details of applying partial decou­
piing to binary Markov random fields.

2.3.1 Partial Decoupling for Binary Markov Random
Fields. The method of partial decoupling was originally
developed for binary image applications that result in a pos­
terior distribution of the form (5). Set

7I(Uij I:r) = exp] -6i j !JiJ[:ri = :rj]}

x 1[0:$ U;j :$ exp{6ii/3ij1[:ri = :1:j]}],

which yields

7I(:rlu) ex exp {I:, Ct; (:r;) + l: (1 - s;)/J;j1[:ri = :rj] }
lES 1~.7

x II 1[0:$ 'll;j :$ exp{6ij!3;j1[;I:j = :rj]}].
i~.7

The term Il.,., 1[0:$ nij <exp{6;j/3;j1[:1:j = :ej]}] induces
clusters as in the SW algorithm, but here like-colored neigh­
bors i and j bond with probability 1 - exp{-6ij i3i.d . Con­
ditional on the bond variables u, the clusters are no longer
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Figure 5. Comparison of Time Series Plots of u(x) = L.;~J1 +>,(x; - Xjlr1 and L.xln From MCMC Simulation of the Geman-McClure

Prior Using Swendsen-Wang {(a), (c)Jand Single-Site Metropolis {(b), (d)J Updating.

independent of one another, and hence it is necessary to
update clusters conditionally on their neighbors. Note that
7f(:rlu) is a stochastically coarsened version of the original
Ising model; updating xlu can be done sitewise by cluster
via a Gibbs, a Metropolis, or an auxiliary variable method
for this coarsened model. The bonding probability is con­
trolled by the r5;j'S; note that all r5;j = 0 corresponds to
Gibbs sampling, whereas all r5 i j = 1 corresponds to the SW
algorithm. Figure 6 illustrates the partial decoupling algo­
rithm. For simplicity, all r5;j = 15,0 < 15 < 1, and no external
field is considered. Again, the image resides on an 8 x 8
lattice with first-order neighborhood structure.

2.3.2 Choosing 8. In practice, one is left to specify
the constants r5;j. The basic strategy behind any choice is
to grow clusters that improve mixing when updating :rlii.
Depending on the nature of the likelihood for :1:, numerous
strategies may be used. If certain components of :1: are fixed,
or nearly fixed by the likelihood, then SW updating can
fare very poorly. The problem arises because most of the
sites belong to a cluster that contains one or more of the
fixed sites. Because the cluster contains the fixed site, the
probability of the cluster changing color is O. Hence most
of the image remains unchanged after each iteration. If :r;
is fixed at 0, for instance, then setting r5i j = 0 for all j E oi,
and leaving the remaining r5's at 1 will keep any neighboring
site from bonding with the fixed site, while using the
SW scheme away from the fixed site (Higdon 1994 for an
example).

Another setting in which the SW algorithm can lead to
slow mixing is when the external field term of the Ising
model results in a multimodal distribution for :1:. The origi­
nal SW algorithm fares very well when there is no external
field to break stationarity and symmetry properties of the
distribution. Because the clusters form without regard to the
external field term in the SW algorithm, the clusters that
form may have very little chance of changing in the pres­
ence of the external field. Perhaps the simplest approach is
to set r5;j = 15. Because 15 controls the chance that neighbor­
ing pixels will bond, setting 15 to a sufficiently small constant
will ensure that clusters do not grow too large. An alterna­
tive is to choose the r5 i j ' s to prevent clusters from growing
too large or across certain boundaries. For example, the lat­
tice may be broken into sublattices. Setting r5;j = 0 for adja­
cencies linking sublattices, while leaving the remaining r5's
at 1, prevents clusters from growing beyond these bound­
aries. Conditional on the bond variable 11, these clusters will
no longer be independent as they were in the standard SW.
Note that one may change the values for 15 at each itera­
tion according to some deterministic schedule. (See Hum
1997 for an application that adaptively blocks the array into
successively coarser sublattices.)

Perhaps the most appealing method for determining 15
in imaging applications is by considering the likelihood.
Often the likelihood is a function of the absolute difference
between the data records Y and the restored image z. For
adjacent pixelsi and i, choose r5 i j to be near I if Yi and Yj
are similar; choose r5 i j to be near 0 if Yi and Yj are disparate.
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This strategy gives clusters that are more likely to change
when updating :rlii. The choice of 6;j = qJ(ly; - Yjl), where
1)(') is a decreasing function ranging from I to 0, has proven
fruitful in a number of binary imaging applications. With
the binary records in Section 3.1, I use 1)(11) = aI[u =
0], where a is a chosen constant. In cases where the data
records are gray levels, ¢(u) = (1 + lul)-1 works well in
the example of Higdon (993).

3. APPLICATIONS

in their discussion, I take a Bayesian imaging approach,
basing the likelihood on the original image Y and assigning
a simple Ising model prior to the unknown binary image
:r. As in the original application, the LANDSAT image is
thresholded so that the data records 11 are also binary, as
shown in Figure 7a. distribution is

This section considers two applications from Bayesian
image analysis using the Ising prior and the gray level prior
of Geman and McClure (1986) discussed earlier. The appli­
cation first is binary classification problem in which a sim­
ple Ising prior is used to aid in the identification of ice floes.
The resulting posterior distribution is multimodal, and pos­
terior exploration via standard Metropolis or SW gives mis­
leading results. Partial decoupling seems to avoid the pit­
falls of the other MCMC schemes. The second application
is a positron emission tomography (PET) reconstruction of
cerebral blood flow. The fuIIy Bayesian analysis conducted
would be infeasible without making heavy use of the SW al­
gorithm constructed in Section 2.2 for the Geman-McClure
prior. The sampling scheme allows the interaction parame­
ter to vary throughout the MCMC run. Both unknown nor­
malizing constants and critical behavior of these two priors
pose difficulty in implementation and require simulation via
the cluster algorithm described in Section 2.2.

3.1 Identification of Ice Floes

To highlight partial decoupling, an application from Ban­
field and Raftery (992) is considered. Here the goal is to
identify ice floes in a polar LANDSAT image. As suggested

for z E {O, 1)l94x2oo. The spatial prior for z uses horizon­
tal, vertical, and diagonal adjacencies, so that each interior
pixel has eight neighbors.

The parameters (CY ,(3) are fixed at (l., .8). The value for
the Ising parameter /3 is specified so that the posterior re­
alizations :1: wiII contain very little speckle, whereas the
value for o is set so that the prior influence wiII polish
large patches of ice and remove small, irregular patches that
are present in the data records y. Although these parameter
values lead to appealing realizations from 71'(:rly), the poste­
rior is multimodal-occasional smaIIer patches are present
in some realizations and absent in others. This is exactly the
situation in which single-site Metropolis and SW perform
very poorly. Figure 7b shows the estimated posterior mean
for :r from a partial decoupling run of 40,000 iterations.

I tried a number of partial decoupling schemes on this
posterior distribution. Of these, the most successful uses a
simple recipe for which 6ij = aI[y; = Yj]. At a = 0, the al­
gorithm is single-site Metropolis; at a = 1, it is a "blocked"
SW scheme, where bonds may not form between adjacent
sites i and j if Yi i= Yj' To evaluate performance at various
a, I focus on a subset of the image marked by the 20 x 20
square outlined in Figure 7b. This square S is one of the

Given u, update x
~ r;~
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r;~ ~
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(a) (b) (e)

Figure 6. The Partial Decoupling Algorithm With 0 < liij = Ii < 1 for the Ising Model on the 8 x 8 Lattice. (a) Initial image x and Markov
random field graph for 7f(x). (b) Given the current image x , the bond variables u are generated uniformly over the interval (0, eO/J1{X;=x;]). If uij >

1 (marked by the thick lines), Xi is constrained to equal Xj' In the partial-decoupling scheme, Pr(uij > 1) is smaller than in Swendsen-Wang, so
these constraints are less likely to form. As in Swendsen-Wang, the constraints partition the image into clusters of like-colored sites. Clusters
induced by this realization of ulx are outlined. The Markov random field graph for xlu is also different; although the auxiliary vector u may still
lead to constraints, the dependence between neighboring sites is never completely removed. (c) Because the bond variable u does not remove
dependence between clusters, 7f(xlu) is now a coarsened version of the original Ising model. Each cluster is updated conditionally on its neighboring
clusters. This coarser Ising model may be updated via Gibbs, Metropolis, or even partial-decoupling again.
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(b)
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Figure 7. Data Records y (a) and Posterior Mean Estimate of x From a Partial Decoupling Run of 40,000 Iterations (b). The box marks a 20
x 20 pixel region that exhibits multimodality.

regions that exhibits multimodality. Some realizations show
a sizable patch of about 50-80 pixels; other realizations do
not. For various samplers, I monitor the number of transi­
tions between the two modes; the results are summarized
in Table I. For this particular example, a value of (J = .6 is
close to optimal and vastly superior to single-site Metropo­
lis, SW, or even blocked SW (a = 1).

corresponding to bin b and angle a. For this application, the
probabilities ]Jabi were determined through previous exper­
imentation with the imaging system. Thus the counts Yab

have a Poisson distribution with mean

3.2 A Positron Emission Tomography Application

This final application comes from medical imaging us­
ing PET, which constructs an emission intensity map of an
object using photon counts detected by a gamma camera
ring, or photon detector ring. This application considers re­
constructing a two-dimensional slice of a three-dimensional
object. Figure 8 gives a diagram of the information obtained
during a PET scan. As a positron is emitted, it is immedi­
ately annihilated by an electron, causing two photons to be
emitted in directly opposite directions. When the detector
ring registers simultaneous "hits," this defines a thin column
or slice through the object that must contain the emission
source, pixel i, Columns are indexed by their angle a and
bin b. as shown in Figure 8. The total number of simul­
taneous "hits" for each angle and bin are collected. This
example uses 512 angles and 96 bins to index the possible
columns.

The data consist of counts Yab obtained from the column
corresponding to angle a and bin b. Physical characteristics
of the object and imaging system determine the chance of
a photon pair emanating from pixeli registers on a column

Given the object intensities :Ti, the likelihood can be written
as

L(I'jIT) ex: II/IYabe-flal,. . ~ 'ab"

of,

A more detailed derivation of the likelihood for emission­
computed tomography has been given by Shepp and Vardi
(J 982).

I use the prior distribution of Geman and McClure (1987)
given in (8) to induce prior structure on the source intensi­
ties z. Rather than condition on a single value of (1, I specify
a hierarchical prior for the interaction parameter so that it
may vary throughout the MCMC simulation. To match the
previous example in Section 2.2, the pixel intensities are re­
stricted to lie between 0 and AI = :~OO, and the parameter ..\
is held fixed at .005. Of course, one could rescale the distri­
bution for z without changing Zed) by setting AI = 300· a
and ..\ = .005/a2 for arbitrary a > O.

From simulation experiments, if ..\ and 1111 are fixed at the
foregoing values, then the "critical" value rr is near .95.
Because the posterior distribution for /1 would be expected
to be near ,I specify Ti(/"i) to be uniform over S, which
contains equally spaced values for {1 between .8 and 1.2.

Table 1. Mean Number of Iterations Between Mode Swaps

Metropolis

a=O a = .4 a = .5

Partial decoupling, 8ij = allY; = Y}1

a = .6 a = .7 a = .8 a = .9 a = 1 SW

20,000 2,778 758 529 680 741 1,818 3,448
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Positron Emission Tomography (PET)

photon detector ring

Figure 8. PET Reconstructions. A pixilated object emits positrons
with location-dependent intensities Xi' Immediately after a positron is
emitted from pixel i, an annihilation event causes two photons to be
emitted in directly opposite directions, so that pixel i must be contained
within a thin column determined by the photon paths. Each pair of "hits"
corresponds to a column indexed by angle of the column a and the bin
number b, giving binned counts Yab. Because a photon may be scattered,
absorbed, miss the gamma camera, or otherwise fail to be detected, the
probability map Pabi gives the probability of an emission from pixel i
being detected at angle a and column bin b.

Because Z((1) is analytically intractable, prior simulation
via MCMC is required to estimate Z(3) over S using re­
verse logistic regression (Geyer 1991, 1997). Alternatively,
thermodynamic integration (Ogata and Tanemura 1984) or
path sampling (Gelman and Meng 1996) could have been
used. All of these methods require draws from the prior
(8), which could not be done in a reasonable amount of
time without the SW algorithm devised in Section 2.2.
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The resulting posterior distribution is

{
"" 2 -1 }X exp /3~ [1 + A(.ri - x})] . ,
1.~J

X E [o,M]n, /3 E S.

The full conditional for x is handled using the generalized
SW algorithm. Because of the dependence between com­
ponents of :r induced by the PET likelihood term, sampling
directly from 7f (x Ill) is impossible. Instead, each cluster is
updated conditional on the current value of all Xi'S. Once
the clusters have been determined, a separate Metropolis
proposal is made to adjust the overall level of the clus­
ter. For a given cluster xc, a symmetric proposal is made,
x~ = Xc + v, where v is a U[-110, 110] random variable
divided by the square root of the size of the cluster. Pro­
vided that all components of x~7 are between 0 and M; the
proposal is then accepted with probability

minj l , L(17'lu)/L(.rIY)},

where 1;' is identical to x except that x~ replaces :rc. This
gives about a 60% acceptance rate on average. The inter­
action parameter (1 is updated via a Metropolis step that
proposes one of the two adjacent values in S as the candi­
date.

Figure 9 shows selected realizations from the posterior
distribution along with the posterior mean of the image z.
The approximate 95% credible interval for the interaction
parameter is [.96, .97]. Of course, this is only an initial
attempt to treat (1 as a parameter in the MCMC simulation.
A more thorough analysis should also consider the choices
of A and lVI, possibly treating them as dynamic parameters
in the simulation.

4. DISCUSSION

The applications presented here show that auxiliary vari-

Figure 9. Realizations From the Posterior Generated Using SW Updates for the Pixel Values x and Metropolis for {3. The final image is an
estimate of the posterior mean for x.
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able methods can lead to substantial gains in efficiency
when MCMC is used to explore the posterior distribu­
tion resulting from an imaging problem. Success of aux­
iliary variables in certain Bayesian image applications is
due largely to the simple dependence structure in the lat­
tice priors. That structure is exploited so that the constraints
induced by 7r(xll1) are satisfied when updating :cll1. Another
key in the success of auxiliary variable methods is recog­
nizing distributions for which such algorithms are likely to
fare better than standard single-site approaches. Although
no clear rules as yet exist for identifying such distributions,
those that show patchiness and multimodality seem to be
good candidates. Both posteriors resulting from the ice floe
and the PET applications show this tendency.

The Ising and GM priors (Sec. 2.2) have similarities
worth noting. They both respond well to SW updating but
not to single-site updating; they both are symmetric dis­
tributions without influence from a likelihood or external
field; they both show a form of criticality where realiza­
tions tend to look patchy. The patchiness of the realizations
has a large influence on the size of the clusters formed when
updating nl:c. The lack of a strong likelihood term allows
rather substantial movement when updating :1:111. Under such
conditions, general SW algorithms likely will be quite suc­
cessful.

The two applications presented in Section 3 differ in the
relative strengths of their priors and likelihoods. In the ice
floes example, both the Ising prior and the likelihood are
quite strong. Updating via SW is ineffective, because clus­
ters grow without regard to the likelihood term. Hence it is
very unlikely that a cluster will form that can change color.
Partial decoupling is effective here, because it governs the
cluster size and forms clusters that facilitate movement be­
tween local modes in 7r(xly). In the PET example, the like­
lihood term has much less influence on the very local prop­
erties of z. Unlike the ice floes example, the likelihood is
not independent; the effect of any Xi is "blurred" over more
than 15,000 bins. Here SW fares quite well, because the full
conditional distribution for clusters Xc is sufficiently spread
out to allow satisfactory mixing.

Outside of lattice models, the slice sampler of Section 2.1
has been proposed as an alternative to Hastings-type algo­
rithms for posterior distributions resulting from Bayesian
models with nonconjugate formulations given by Damien
et al. (1997). Although one of the main motivations for its
use is ease in coding, recent work has shown that theoretical
properties of slice samplers are very good (Fishman 1996;
Mira and Tierney 1997; Roberts and Rosenthal 1997). In
fact, Mira and Tierney (1997) showed that the slice sampler
is superior to an independence Metropolis sampler. This is
not surprising in light of the reexpression of the Metropolis
algorithm as an auxiliary variable method in Section 2.1.
Although some may be unhappy with the increase in di­
mensionality for slice samplers, this increase also occurs
implicitly for Metropolis samplers. In addition, the slice
sampler uses a Gibbs update for :rll1, whereas Metropolis
uses the clunky edge-correction kernel.

Journal of the American Statistical Association, June 1998

I conclude by pointing out that the slice sampler imple­
mentations of Damien et al. make no attempt to update xlu
simultaneously when X is multidimensional. Rather, each
component of X is updated in turn, conditional on all of
its other components. In the two main applications consid­
ered in this article, being able to update ;z:I71 simultaneously
plays a key role in developing MCMC algorithms for distri­
butions for which single-site methods are hopelessly slow
mixing.

[Received July 1996. Revised October 1997.J
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