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Extracting understanding from the growing ‘‘sea’’ of biological and
socioeconomic data is one of the most pressing scientific challenges
facing us. Here, we introduce and validate an unsupervised method
for extracting the hierarchical organization of complex biological,
social, and technological networks. We define an ensemble of hier-
archically nested random graphs, which we use to validate the
method. We then apply our method to real-world networks, including
the air-transportation network, an electronic circuit, an e-mail ex-
change network, and metabolic networks. Our analysis of model and
real networks demonstrates that our method extracts an accurate
multiscale representation of a complex system.

cellular metabolism � complex networks � multiscale representation

The high-throughput methods available for probing biological
samples have drastically increased our ability to gather com-

prehensive molecular-level information on an ever-growing num-
ber of organisms. These data show that these systems are connected
through a dense network of nonlinear interactions among its
components, and that this interconnectedness is responsible for
their efficiency and adaptability. This interconnectedness, however,
poses significant challenges to researchers trying to interpret em-
pirical data and to extract the ‘‘systems biology’’ principles that will
enable us to build new theories and to make new predictions (1).

A central idea in biology is that life processes are hierarchically
organized (2–4). Additionally, it seems plausible that this hierar-
chical structure plays an important role in the system’s dynamics (5).
However, given a set of genes, proteins, or metabolites, and their
interactions, we still do not have an objective manner to assess
whether such hierarchical organization does indeed exist or to
identify the different levels in the hierarchy.

Here, we report a method that identifies the levels in the
organization of complex systems and extracts the relevant infor-
mation at each level. To illustrate the potential of our method, it is
useful to think of electronic maps such as those provided by Google
Maps [see supporting information (SI) Fig. 5]. Electronic maps are
powerful tools because they present information in a scalable
manner—despite the increase in the amount of information as we
‘‘zoom out,’’ the representation displays the information that is
relevant at the new scale. In the same spirit, our method will enable
researchers to characterize each scale with the relevant information
at that scale. This achievement is key for the development of
systems biology, but it will encounter application in many other
areas.

Background
Complex networks are convenient representations of the interac-
tions within complex systems (6). Here, we focus on the identifi-
cation of inclusion hierarchies in complex networks, that is, to the
unraveling of the nested organization of the nodes in a network into
modules, which in turn are composed of submodules and so on.†

A method for the identification of the hierarchical organization
of nodes in a network must fulfill two requirements: (i) It must be
accurate for many types of networks, and (ii) it must identify the
different levels in the hierarchy as well as the number of modules
and their composition at each level. The first condition may appear
trivial, but we make it explicit to exclude algorithms that only work

for a particular network or family of networks, but that will
otherwise fail. The second condition is more restrictive, as it
excludes methods whose output is subject to interpretation. Spe-
cifically, a method does not fulfill the second condition if it
organizes nodes into a tree structure, but it is up to the researcher
to find a ‘‘sensible’’ criterion to establish which are the different
levels in that tree. An implication of the previous two requirements
is that any method for the identification of node organization must
have a null output for networks, such as Erdős-Rényi random
graphs (10), which do not have an internal structure.

To our knowledge, there is no procedure that enables one to
simultaneously assess whether a network is organized in a hierar-
chical fashion and to identify the different levels in the hierarchy in
an unsupervised way. Ravasz et al. (11) studied the hierarchical
structure of metabolic networks, but in their analysis the authors
put emphasis on detecting ‘‘global signatures’’ of a hierarchical
network architecture. Specifically, they reported that for the met-
abolic networks studied and for certain hierarchical network mod-
els the clustering coefficient of nodes appears to scale with the
connectivity k as k�1. This scaling, however, is neither a necessary
nor a sufficient condition for a network to be hierarchical (12).

More direct methods to investigate the hierarchical organization
of the nodes in a network have also been recently proposed (13–15).
Although useful in some contexts, these methods do not clearly
identify hierarchical levels and thus fail to satisfy condition ii above.
Furthermore, all of these methods yield a tree even for networks
with no internal structure.

In the following, we define inclusion hierarchies in complex
networks and describe an ensemble of hierarchically nested random
graphs. We then introduce a method that is able to accurately
extract the hierarchical organization of graphs in such an ensemble.
Last, we apply our method to several real-world networks.

Inclusion Hierarchies
We start by explicitly defining ‘‘networks with a nested hierarchical
organization’’ (see SI Text for a mathematical formulation). We
focus on networks that have groups of nodes (modules) that are
more densely connected between themselves than they are to other
groups of nodes. Each module can in turn have its own internal
organization if there are subgroups of nodes within the module
(submodules) that are more interconnected than to other nodes in
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the same module. Note that we assume that the internal organi-
zation of each module is solely determined by the connections
between the nodes within the module, so that each submodule is
completely encapsulated within a larger module.

To test our method, we consider an ensemble of networks,
hierarchically nested random graphs, which by construction have a
nested hierarchical organization. To construct these networks, we
start by defining the nested hierarchy of modules. Suppose we want
to create a network with two levels, then we have to define two sets
of modules: one at the first level and one at the second level.
Consider, for example, a network with 640 nodes that at the first
level has four modules comprising 160 nodes each. Each of these
four modules will comprise four submodules with 40 nodes each.
Once having assigned nodes to groups, we draw an edge between
a pair of nodes (i, j) with probabilities (i) p2, if (i, j) are in the same
module at the second level; (ii) p1, if (i, j) are in the same module
at the first level; and (iii) p0, otherwise. We impose that p2 � p1 �
p0, so that the resulting network will have a larger density of
connections between nodes grouped in the same submodule at the
second level, a smaller density of connections between groups of
nodes grouped in the same module at the first level, and an even
smaller density of connections between nodes grouped in separate
modules at the top level. Thus, the network has by construction a
hierarchical organization (see SI Text).

Extracting the Hierarchical Organization of Networks
Our method comprises two major steps (Fig. 1): (i) estimating the
‘‘proximity’’ in the hierarchy between all pairs of nodes, which we
call ‘‘node affinity’’; and (ii) uncovering the overall hierarchical
organization of node affinities.

Node Affinity. A standard approach for quantifying the affinity
between a pair of nodes in a network is to measure their ‘‘topo-
logical overlap’’ (11, 16, 17), which is defined as the ratio between
the number of common neighbors of the two nodes and the
minimum degree of the two nodes. This measure identifies affinity
between nodes with a dense pattern of local connections. Because

topological overlap is a local measure, it will fail to detect any
structure when a network is not locally dense (Fig. 2).

We propose a new affinity measure based on the surveying of the
modularity landscape (18), a collective property of the network.
Our definition of affinity between nodes draws upon the idea that
modules correspond to sets of nodes that are more strongly
interconnected than one would expect from chance alone (18).

A partition P of the network is a grouping of nodes into modules,
each node belonging to a single module. Let P be the ensemble of
all partitions of a network into modules (18, 19), and assign to each
partition P � P the modularity

M�P� � �
i�1

m � li
L

� � di

2L�
2� , [1]

where L is the total number of links in the network, li is the
number of links within module i, di is the sum of degrees of all
of the nodes inside module i, and the sum is over all of the m
modules in partition P (Fig. 1 A). The modularity of a partition
is high when the number of intramodule links is much larger than
expected for a random partition.

Currently, researchers believe that the best way to identify
densely connected groups of nodes is to find the partition Pop for
which M(Pop) is the global maximum of the modularity. However,
there are a number of caveats to this idea. First, as illustrated for
the very simple network considered in Fig. 1, there may be more
than one partition with the maximum value of M(Pop). Second, as
demonstrated in refs. 20 and 21, the formulation of M(P) is such
that, depending on the density of connections and groups size, it
prevents some desired grouping and forces some undesired group-
ing. Third, Pop may be in practice unreachable if its basin of
attraction is too small.

To circumvent these limitations, we propose a different ap-
proach. Specifically, we assume that information on the grouping of
the nodes into modules is not contained in a single partition but in
the entire modularity landscape. In the spirit of the Stillinger and
Weber decomposition (22), we propose that the affinity Aij of nodes
i and j is determined by those partitions that are local maxima in the
landscape and by their basins of attraction.
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Fig. 1. Schematic illustration of our method for a
simple network. (A) Example network. (B) Modularity
landscape. For the example network, there are 15 dis-
tinct groupings of nodes into modules. Each large col-
ored circle represents a partition, which we draw inside
the circle, with different colors indicating different mod-
ules. For clarity, we label each partition with a number
from1to15.Thecolorof thepartitioncircle indicates the
modularity of that partition following the color code on
the bottom right-hand side of the diagram. For simplic-
ity, we consider only single node changes; thus, we con-
nect two partitions, for instance 1 and 2, because the
change of a node to a new module in partition 1 gener-
ates partition 2. The arrows show the direction of in-
creasing modularity. Local maxima correspond to those
partitions that do not point to any other partition; that
is, the change of a single node does not increase the
modularity. In the example, there are two local maxima:
partition 1 and partition 15. To illustrate the concept of
basin of attraction, we show next to each partition a
colored bar (black and white) that represents the prob-
ability that a walker that starts from, for instance, partition 2 and only moves to partitions with larger modularity ends up in either of the local maxima. We use white
to indicate partition 15 and black to indicate partition 1. (C) Coclassification matrix. We show the number of times two nodes are classified in the same module, starting
from a random partition. Note that nodes a, c and b, d are always classified together because they are in the same module in both local maxima (partitions 1 and 15).
In contrast, nodes a and b are only in the same module for one of the maxima (partition 1); therefore, the coclassification is lower than one, but larger than zero. (D)
Comparison with randomized networks. In this case, this is the only network that one can build keeping the same degree distribution and not allowing for self-loops.
Therefore, the average modularity for the local maxima of the randomized networks and that of the network under analysis are the same. Thus, our conclusion is that
this network has no internal organization. (E) Representation of the hierarchical organization for the example network. We show the ordered coclassification matrix
on the Left, and on the Right is the tree showing the organization of the nodes into modules. In this case, the network has no significant structure; thus, we show a
bar of a single color indicating that there is a single module. Note that a modularity maximization algorithm would have a certain chance (the probability depending
on the specific algorithm) of finding partition 15 as the optimal partition and would thus conclude that the network does have a modular structure.
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Let then Pmax be the set of partitions for which the modularity M
is a local maxima, that is, partitions for which neither the change of
a single node from one module to another nor the merging of two
modules will yield a higher modularity (Fig. 1B). The most straight-
forward way to calculate Aij would be to consider all partitions P̃ �
Pmax, and find the fraction for which (i, j) are placed in the same
module. However, such a procedure would not take into consid-
eration the size of the basins of attraction of the different maxima.
To understand the importance of this fact, consider the ‘‘landscape’’
in Fig. 1 in which each node represents a partition of the network,
and for simplicity, we connect two partitions if the change of a single
node transforms one partition into the other. This landscape has
two local maxima, partitions 1 and 15. Therefore, if we were only
to consider those partitions, we would conclude that those parti-
tions are equally important. However, there is no reason to assume
that all partitions have the same importance. Actually, for networks
with a very clear modular structure, one expects that a few local
maxima will yield the most relevant information about the orga-
nization of the network. This idea is can be formalized through the
concept of basin of attraction.

Consider again the landscape in Fig. 1B. Suppose we wanted to
find a partition for which the modularity is a maximum with no a
priori information on the landscape. We would start by grouping the
nodes into a randomly chosen partition; let us say, partition 13. In

partition 13, nodes a and c are placed in one group, whereas nodes
b and d are placed into their own groups. There are two single node
changes that increase the modularity. Node b can be placed in the
same group as node d; this is partition 15, which is a local maxima.
Instead, node b can be placed in the same group as nodes a and c;
this is partition 14. Partition 14 is not a modularity maximum; thus
one would continue our random ascent of the modularity land-
scape. From partition 14, one could move to partition 1 or to
partition 15, both local maxima. This example illustrates that from
partition 13, one has a 25% chance of ending in partition 1 and a
75% chance of ending in partition 15. If one repeats this calculation
for every possible starting partition, one obtains the size of the basin
of attraction of the two local modularity maxima.

Formally, the size of the basin of attraction of P̃ is

b�P̃� � �
P�P

b�P, P̃�

�P� [2]

where b(P, P̃) is the probability that starting from partition P one
ends at partition P̃ � Pmax and �P� is the number of possible
partitions (Fig. 1B).

We propose that the affinity Aij of a pair of nodes (i, j) is then the
probability that when local maxima partition P̃ � Pmax are sampled
with probabilities b(P̃), nodes (i, j) are classified in the same module.
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Fig. 2. Affinity measures and clustering methods. (A)
We generate a model network comprised of 640 nodes
with average degree 16 and with a three-level hierarchi-
cal structure (see SI Fig. 8 for results for a network with a
‘‘flat’’ organization of the nodes). We show the affinity
matrices Aij obtained for two different measures: (i) to-
pological overlap (11) and (ii) coclassification (see text
and Supplementary Information). The color scale goes
from red for an affinity of one to dark blue for an affinity
of zero. At the far right, we show the hierarchical tree
obtained by using two different methods: hierarchical
clustering and the ‘‘box clustering’’ method we propose.
In the hierarchical clustering tree, the vertical axis shows
the average distance, dij � 1 � Aij, of the matrix ele-
ments that have already merged. In the box-model clus-
tering tree, each row corresponds to one hierarchical
level. Different colors indicate different modules at that
level. To better identify which are the submodules at a
lower level, we color the nodes in the submodules with
shades of the color used for the modules in the level
above. Note that topological overlap fails to find any
modular structure beyond a locally dense connectivity
pattern. In contrast, the coclassification measure clearly
reveals the hierarchical organization of the network by
the ‘‘nested-box’’ pattern along the diagonal. Signifi-
cantly, thehierarchical treeobtainedviahierarchicalclus-
tering fails to reproduce the clear three-level hierarchical
structure that the affinity matrix displays, whereas the
box-model clustering tree accurately reproduces the
three-level hierarchical organization of the network. (B)
Accuracyof themethod.Wegeneratenetworkswith640
nodes and with built-in hierarchical structure comprising
one (Left), two (Center), and three (Right) levels. The top
level always comprises four modules of 160 nodes each.
For networks with a second level, each of the top-level
modules is organized into four submodules of 40 nodes.
For the networks with three levels, each level-two mod-
ule is further split into four submodules of 10 nodes. We
build networks with different degrees of level cohesive-
ness by tuning a single parameter � (see SI Text). For low
values of �, the levels are very cohesive, for high values of
� the levels are weakly cohesive. Because we know a priori which are the nodes that should be coclassified at each level, we measure the accuracy as the mutual
information between the empirical partition of the nodes and the theoretical one (23). We plot the mutual information versus � and, for comparison, we also plot the
accuracy of a standard community detection algorithm (24) in finding the top level of the networks (dashed green line). Each point is the average over 10 different
realizations of the network. Filled circles, empty squares, and filled diamonds represent the accuracy at the top, middle, and lowest levels, respectively. Note that our
method isasgoodatdetectingcommunitiesasa standardcommunitydetectionalgorithmfornetworkswithaflatorganizationof thenodes.Additionally,ourmethod
is able to detect the top level for all cases analyzed, whereas standard modularity optimization algorithms are not.
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Note that, in contrast to other affinity measures proposed in refs.
9, 15, and 18, the measure we propose does not necessarily coincide
with the ‘‘optimal’’ division of nodes into modules, that is, the
partition that maximizes M (20). In fact, the modules at the top level
of the hierarchy do not necessarily correspond to the best partition
found for the global network, even for relatively simple networks
(Fig. 2C).

Statistical Significance of the Hierarchical Organization. Given a set
of elements and a matrix of affinities between them, a commonly
used tool to cluster the elements and, presumably, uncover their
hierarchical organization is hierarchical clustering (25, 26). Hier-
archical clustering methods have three major drawbacks: (i) They
are only accurate at a local level—at every step a pair of units merge
and some details of the affinity matrix are averaged with an
inevitable loss of information. (ii) The output is always a hierar-
chical tree, regardless of whether the system is indeed hierarchically
organized or not. (iii) There is no statistically sound general
criterion to determine the relevant levels on the hierarchy.

To overcome the first caveat of agglomerative methods such as
hierarchical clustering, one necessarily has to follow a top-to-
bottom approach that keeps all of the information contained in the
affinity matrix. That is the spirit of divisive methods such as k-means
or principal component analysis (25), which group nodes into
‘‘clusters’’ given an affinity matrix. However, these methods have a
significant limitation: The number of clusters is an external param-
eter, and, again, there is no sound and general criterion to objec-
tively determine the correct number of clusters.

Because of the caveats of current agglomerative and divisive
methods, we propose a ‘‘box-clustering’’ method that iteratively
identifies in an unsupervised manner the modules at each level in
the hierarchy. Starting from the top level, each iteration corre-
sponds to a different hierarchical level (Fig. 2).

First, to assess whether the network under analysis has an internal
organization, we need to compare it with the appropriate null
model, which in this case is an ensemble of ‘‘equivalent’’ networks
with no internal organization. These equivalent networks must have
the same number of nodes and an identical degree sequence. A
standard method for generating such networks is the Markov-chain
switching algorithm (27, 28). Despite their having no internal
structure, these randomized networks have numerous local mod-
ularity maxima (19). Thus, to quantify the level of organization of
a network, one needs to compare the modularities of the sampled
maxima for the original network and its corresponding random
ensemble; if the network has a nonrandom internal structure, then
local maxima in the original landscape should have significantly
larger modularities than local maxima in the landscapes of the
randomized networks.

Specifically, for a given network, we compute the average mod-
ularity Mav from {M (P̃) : P̃ � Pmax}. Then, we compute the same
quantity Mav

i for each network in the equivalent random ensemble.
In virtue of the central limit theorem, the set of average modular-
ities for the whole ensemble {Mav

i } is normally distributed with
mean Mrand and variance �Mrand

2 (see SI Fig. 6). To quantify the level
of organization of a network, we thus compute the z-score of the
average modularity z � (Mav � Mrand)/�Mrand

.
If z is larger than a threshold value zt, then we conclude that

the network has internal structure, and we proceed to identify
the different modules; otherwise, we conclude that the network
has no structure (Fig. 1D). In what follows, we show results for
zt � 2.3267, which corresponds to a 1% significance level‡ (SI
Text and SI Fig. 9).

Building the Hierarchical Tree. In networks organized in a hierar-
chical fashion, nodes that belong to the same module at the bottom
level of the hierarchy have greater affinity than nodes that are
together at a higher level in the hierarchy. Thus, if a network has
a hierarchical organization, one will be able to order the nodes in

such a way that groups of nodes with large affinity are close to each
other. With such an ordering, the affinity matrix will have a
‘‘nested’’ block-diagonal structure. This is indeed what we find for
networks belonging to the ensemble of hierarchically nested ran-
dom graphs (Fig. 2).

For real-world networks, we do not know a priori which nodes are
going to be coclassified together; that is, we do not know which is
the ordering of the nodes for which the affinity matrix has a nested
block-diagonal structure. To find such an ordering, we use simu-
lated annealing (29) to minimize a cost function that weighs each
matrix element with its distance to the diagonal (30)

C �
1
N �

i, j�1

N

Aij�i � j �, [3]

where N is the order of the affinity matrix (see SI Text and SI Fig.
7). This problem belongs to the general class of quadratic assign-
ment problems (31). Other particular cases of quadratic assignment
problems have been suggested to uncover different features of
similarity matrices (32). Our algorithm is able to find the proper
ordering for the affinity matrix and to accurately reveal the struc-
ture of hierarchically nested random graphs (Fig. 2).

The computational cost of this step, the slowest one in our
algorithm, limits network sizes to �10,000 nodes. However, the cost
can be reduced by using faster, but less accurate, methods for
ordering the matrix, such as principal component analysis.

Unsupervised Extraction of the Structure. Given an ordered affinity
matrix, the last step is to partition the nodes into modules at each
relevant hierarchical level. An ansatz that follows naturally from the
considerations in the previous section and the results in Fig. 2 is
that, if a module at level � (or the whole network at level 0) has
internal modular structure, the corresponding affinity matrix is
block-diagonal: At level �, the matrix displays boxes along the
diagonal, such that elements inside each box s have an affinity A�

s ,
whereas matrix elements outside the boxes have an affinity B� � A�

s .
Note that the number of boxes for each affinity matrix is not fixed;
we determine the ‘‘best’’ set of boxes by least-squares fitting of the
block-diagonal model to the affinity matrix.

Importantly, we want to balance the ability of the model to
accurately describe the data with its parsimony; that is, we do not
want to over-fit the data. Thus, we use the Bayesian information
criterion to determine the best set of boxes (33).§

To find the modular organization of the nodes at the top level
(level 1), we fit the block diagonal model to the global affinity

‡Results for real networks at a 5% significance level are identical; however, the more
stringent threshold is more efficient at detecting the last level in the hierarchy for model
networks. Only for a 1–3% of the cases—depending on the cohesiveness of the levels—
does the algorithm find one more level than expected.

§We have also applied Akaike’s information criterion (34), obtaining the same results for
nearly all cases.

Table 1. Top-level structure of real-world networks

Network Nodes Edges Modules Main modules

Air transportation 3,618 28,284 57 8
E-mail 1,133 10,902 41 8
Electronic circuit 516 686 18 11
Escherichia coli KEGG 739 1,369 39 13
E. coli UCSD 507 947 28 17

We show both the total number of modules and the number of main
modules at the top level. Main modules are those composed of more than 1%
of the nodes. Note that there is no correlation between the size or number of
edges of the network and the number of main modules. KEGG, Kyoto Ency-
clopedia of Genes and Genomes; UCSD, University of California at San Diego.
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matrix. As we said previously, we assume that the information at
different levels in the hierarchy is decoupled, thus to detect
submodules beyond the first level, one needs to break the network
into the subnetworks defined by each module and apply the same
procedure from the start. The algorithm iterates these steps for each
identified box until no subnetworks are found to have internal
structure.

Method Validation
We validate our method on hierarchically nested random graphs
with one, two, and three hierarchical levels. We define the accuracy
of the method as the mutual information between the empirical
partition and the theoretical one (23). Fig. 2C shows that the
algorithm uncovers the correct number of levels in the hierarchy.

Moreover, our method always detects the top level, even for the
networks with three hierarchical levels. In contrast, because the
partition that globally maximizes M corresponds to the submodules
in the second level, even the more accurate module identification
algorithms based on modularity maximization would fail to capture
the top level organization (20).

The hierarchically nested random graphs considered above have
a homogeneous hierarchical structure; however, real-world net-
works are not likely to be so regular. In particular, for real-world
networks, one expects that some modules will have deeper hierar-
chical structures than others. We thus have verified that our method
is also able to correctly uncover the organization of model networks
with heterogeneous hierarchical structures (see SI Fig. 10).

Analysis of Real-World Networks
Having validated our method, we next analyze different types of
real-world networks for which we have some insight into the
network structure: the worldwide air-transportation network (35–
37), an e-mail exchange network of a Catalan university (13), and
an electronic circuit (4).

In the air-transportation network, nodes correspond to cities
(that is, all airports around major cities would be merged into a
single node), and two nodes are connected if there is a nonstop
flight connecting them. In the e-mail network, nodes are people and
two people are connected if they send e-mails to each other. In the
electronic network, nodes are transistors and two transistors are
connected if the output of one transistor is the input of the other
(Table 1).

We find that the air-transportation network is strongly modular
and has a deep hierarchical organization (Fig. 3). This finding does

not come as a surprise because historical, economic, political, and
geographical constraints shape the topology of the network (35–
37). We find eight main modules that closely match major conti-
nents and subcontinents and major political divisions, and thus they
truly represent the highest level of the hierarchy.¶

The electronic circuit network is comprised of eight D-flip-flops
and 58 logic gates (4). Our method identifies two levels in the
network (SI Fig. 12A). At the top level, modules comprise either a
D-flip-flop plus some additional gates, or a group of logic gates. At
the second level, the majority of modules comprise single gates.

For the e-mail network, five of the seven major modules at the
top level (SI Fig. 12B) correspond to schools in the university, with
�70% of the nodes in each of those modules affiliated with the
corresponding school. The remaining two major modules at the top
level are a mixture of schools and administration offices (often
collocated on campus), which are distinctly separated at the second
level. The second level also identifies major departments and
groups within a school, as well as research centers closely related to
individual schools.

Application to Metabolic Networks
Finally, we analyze the metabolic networks of E. coli obtained
from three different sources� (Fig. 4 and SI Fig. 13): the KEGG
database (40, 41), the Ma-Zeng database (42), and the recon-
struction compiled by Palsson’s Systems Biology Laboratory at
the UCSD (43). In these networks, nodes are metabolites and
two metabolites are connected if there is a reaction that
transforms one into the other (44).

To quantify the plausibility of our classification scheme, we
analyze the within-module consistency of metabolite pathway clas-
sification for the top and the second levels of the metabolic network
of E. coli (43). For each module, we first identify the pathways
represented; then, we compute the fraction of metabolites that are
classified in the most abundant pathway. We find that there is a
clear correlation between modules and known pathways: At the top
level, for all of the modules except one (the central metabolism

¶The ability of the present method to detect the top level is significant. A previous study
coauthored by two of us identified 19 modules in the worldwide air-transportation
network (37) by using the most accurate modularity maximization algorithm in the
literature (38).

�In the SI Text, we also show the organization obtained for the UCSD reconstruction of the
metabolic network for Helicobacter pylori (39).
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A B

Fig. 3. Hierarchical organization of the air-
transportation network. (A) Global-level af-
finity matrix and hierarchical tree (the repre-
sentation is the same used in Fig. 2). (B) Top-
level modules. Each dot represents a city and
different colors represent different modules.
Note that the top level in the hierarchy cor-
responds to major geopolitical units. (C) The
‘‘Eurasian’’module (which is composedof the
majority of European countries, ex-Soviet
Union countries, Middle-Eastern countries,
India, and countries in Northern half of Af-
rica) splits for levels � � 2 into five submod-
ules. (D)The ‘‘NearandMiddleEast’’ submod-
ule further splits into seven submodules for
� � 3 (D). Note that the air-transportation
network is large and very dense (Table 1), and
thus the organization of the network is not at
all apparent (SI Fig. 11). Remarkably, the
modules our method detects show a clear
agreement with geopolitical units.

15228 � www.pnas.org�cgi�doi�10.1073�pnas.0703740104 Sales-Pardo et al.

http://www.pnas.org/cgi/content/full/0703740104/DC1
http://www.pnas.org/cgi/content/full/0703740104/DC1
http://www.pnas.org/cgi/content/full/0703740104/DC1
http://www.pnas.org/cgi/content/full/0703740104/DC1
http://www.pnas.org/cgi/content/full/0703740104/DC1
http://www.pnas.org/cgi/content/full/0703740104/DC1


module), we find that the most abundant pathway comprises �50%
of the metabolites in the module.

For the second level, we find that for most of the modules, all of
the metabolites are classified in the same pathway. We also detect
smaller pathways that are not visible at the top level (such as those
for polyketides and nonribosomal peptides, and for secondary
metabolites).

Conclusion
Our analysis of model and real-world networks demonstrates that
our algorithm is able to provide an objective multiscale description
of complex systems that, although not affected by human subjec-
tivity, captures our current understanding of these systems. For
example, for the air-transportation network, our method extracts
features all the way from continents to country boundaries. Further,
our algorithm can be easily generalized to other classes of graphs
such as bipartite graphs (e.g., collaboration networks or protein
interaction networks obtained from bait–prey data) and directed
graphs (e.g., citation networks, food webs, or gene-regulatory
networks). The steps of the method would remain unchanged; one
would only have to replace Eq. 1 by a suitable measure of
modularity for the graph under analysis (45).

Interestingly, for metabolic networks, the algorithm reveals that
‘‘known’’ pathways do not correspond to a single module at the top
level, implying that large pathways are in fact composed of smaller
units. Intriguingly, these units are not necessarily uniform in
‘‘pathway composition’’ but are a mixture of submodules associated
to different pathways. Our results thus prompt the question of how
the modules we identify relate to metabolism evolution (46).

More generally, our results have significant implications for
systems level approach to the study of cellular processes. A systems
approach will only be successful if we are able to develop methods
that enable us to extract the small set of information that is
significant at the chosen scale of observation, whether this scale is
molecular or organismal. A scalable multiscale representation of a
biological process, such as the one we demonstrate here, will guide
the purposeful design and re-engineering of biological systems for
therapeutic purposes.
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35. Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A (2004) Proc Natl Acad Sci USA

101:3747–3752.
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Fig. 4. Hierarchical structure of metabolic networks. (A) Global-level
affinity matrices and hierarchical trees for the UCSD reconstruction of the
metabolic network of E. coli (43). The overall organization of the network
is similar and independent of the reconstruction used to build the network
(see SI Fig. 11). (B) We analyze the within-module consistency of metabolite
pathway classification for the first (Upper plot) and the second (Lower plot)
levels. For each module, we first identify the pathway classifications of the
corresponding metabolites; then, we compute the fraction of metabolites
that are classified in the most abundant pathway. In the plots, each bar
represents one module, its width being proportional to the number of
nodes it contains. We color each bar according to its most abundant
pathway following the color code on the right-hand side. At the second
level (Lower plot), we show each submodule directly below its correspond-
ing top level module. Again, the width of each submodule is proportional
to its size. Note that, at the first level (Upper), for all modules except one,
the most abundant pathway is composed of more than 50% of the metab-
olites in the module. Remarkably, at the second level (Lower), for most of
the modules all of the metabolites are classified in the same pathway.
Moreover, at the second level, we detect smaller pathways that are not
visible at the top level.

Sales-Pardo et al. PNAS � September 25, 2007 � vol. 104 � no. 39 � 15229

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

http://www.pnas.org/cgi/content/full/0703740104/DC1

