
Accepted Manuscript

Community detection in networks: A user guide

Santo Fortunato, Darko Hric

PII: S0370-1573(16)30296-4
DOI: http://dx.doi.org/10.1016/j.physrep.2016.09.002
Reference: PLREP 1926

To appear in: Physics Reports

Accepted date: 26 September 2016

Please cite this article as: S. Fortunato, D. Hric, Community detection in networks: A user
guide, Physics Reports (2016), http://dx.doi.org/10.1016/j.physrep.2016.09.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.physrep.2016.09.002

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Community detection in networks: A user guide

Santo Fortunato1

Center for Complex Networks and Systems Research, School of Informatics and Computing,
Indiana University, Bloomington, USA.

Department of Computer Science, Aalto University School of Science, P.O. Box 15400,

FI-00076.

Darko Hric

Department of Computer Science, Aalto University School of Science, P.O. Box 15400,
FI-00076

Abstract

Community detection in networks is one of the most popular topics of mod-
ern network science. Communities, or clusters, are usually groups of vertices
having higher probability of being connected to each other than to members
of other groups, though other patterns are possible. Identifying communities
is an ill-defined problem. There are no universal protocols on the fundamental
ingredients, like the definition of community itself, nor on other crucial issues,
like the validation of algorithms and the comparison of their performances. This
has generated a number of confusions and misconceptions, which undermine the
progress in the field. We offer a guided tour through the main aspects of the
problem. We also point out strengths and weaknesses of popular methods, and
give directions to their use.

Keywords: Networks, communities, clustering. PACS: 89.75.Fb, 89.75.Hc.

Contents

1 Introduction 2

2 What are communities? 5
2.1 Variables . 5
2.2 Classic view . 9
2.3 Modern view . 12

3 Validation 16
3.1 Artificial benchmarks . 17

1Email: santo@indiana.edu

Preprint submitted to Elsevier September 23, 2016

*Manuscript

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3.2 Partition similarity measures . 21
3.3 Detectability . 27
3.4 Structure versus metadata . 30
3.5 Community structure in real networks 34

4 Methods 39
4.1 How many clusters? . 39
4.2 Consensus clustering . 42
4.3 Spectral methods . 44
4.4 Overlapping communities: Vertex or Edge clustering? 45
4.5 Methods based on statistical inference 47
4.6 Methods based on optimisation 49
4.7 Methods based on dynamics . 56
4.8 Dynamic clustering . 60
4.9 Significance . 63
4.10 Which method then? . 65

5 Software 66

6 Outlook 69

1. Introduction

The science of networks is a modern discipline spanning the natural, social
and computer sciences, as well as engineering [1, 2, 3, 4, 5, 6, 7]. Networks, or
graphs, consist of vertices and edges. An edge typically connects a pair of ver-
tices2. Networks occur in an huge variety of contexts. Facebook, for instance,
is a large social network, where more than one billion people are connected via
virtual acquaintanceships. Another famous example is the Internet, the phys-
ical network of computers, routers and modems which are linked via cables or
wireless signals (Fig. 1). Many other examples come from biology, physics, eco-
nomics, engineering, computer science, ecology, marketing, social and political
sciences, etc..

Most networks of interest display community structure, i. e., their vertices
are organised into groups, called communities, clusters or modules. In Fig. 2
we show a collaboration network of scientists working at the Santa Fe Institute
(SFI) in Santa Fe, New Mexico. Vertices are scientists, edges join coauthors.
Edges are concentrated within groups of vertices representing scientists working
on the same research topic, where collaborations are more natural. Likewise,
communities could represent proteins with similar function in protein-protein
interaction networks, groups of friends in social networks, websites on similar
topics on the Web graph, and so on.

2There may be connections between three vertices or more. In this case one speaks of
hyperedges and the network is a hypergraph.

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1: Internet network. Reprinted figure with permission from www.opte.org.

Identifying communities may offer insight on how the network is organised.
It allows us to focus on regions having some degree of autonomy within the
graph. It helps to classify the vertices, based on their role with respect to the
communities they belong to. For instance we can distinguish vertices totally
embedded within their clusters from vertices at the boundary of the clusters,
which may act as brokers between the modules and, in that case, could play
a major role both in holding the modules together and in the dynamics of
spreading processes across the network.

Community detection in networks, also called graph or network clustering,
is an ill-defined problem though. There is no universal definition of the objects
that one should be looking for. Consequently, there are no clear-cut guidelines
on how to assess the performance of different algorithms and how to compare
them with each other. On the one hand, such ambiguity leaves a lot of freedom
to propose diverse approaches to the problem, which often depend on the specific
research question and (or) the particular system at study. On the other hand, it
has introduced a lot of noise into the field, slowing down progress. In particular,
it has favoured the diffusion of questionable concepts and convictions, on which
a large number of methods are based.

This work presents a critical analysis of the problem of community detection,
intended to practitioners but accessible to readers with basic notions of network
science. It is not meant to be an exhaustive survey. The focus is on the general
aspects of the problem, especially in the light of recent findings. Also, we discuss

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Agent-based

Mathematical

Statistical Physics

Ecology

Models

Structure of RNA

Figure 2: Collaboration network of scientists working at the Santa Fe Institute (SFI). Edges
connect scientists that have coauthored at least one paper. Symbols indicate the research areas
of the scientists. Naturally, there are more edges between scholars working on the same area
than between scholars working in different areas. Reprinted figure with permission from [8].
c© 2002, by the National Academy of Sciences, USA.

some popular classes of algorithms and give advice on their usage. More info
on network clustering can be found in several review articles [9, 10, 11, 12, 13,
14, 15, 16, 17].

The contents are organised in three main sections. Section 2 deals with the
concept of community, describing its evolution from the classic subgraph-based
notions to the modern statistical interpretation. Next we discuss the critical
issue of validation (Section 3), emphasising the role of artificial benchmarks,
the importance of the choice of partition similarity scores, the conditions un-
der which clusters are detectable, the usefulness of metadata and the structural
peculiarities of communities in real networks. Section 4 hosts a critical discus-
sion of some popular clustering approaches. It also tackles important general
methodological aspects, such as the determination of the number of clusters,
which is a necessary input for several techniques, the possibility to generate ro-
bust solutions by combining multiple partitions, the main approaches to discover
dynamic communities, as well as the assessment of the significance of cluster-
ings. In Section 5 we indicate where to find useful software. The concluding

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

remarks of Section 6 close the work.

2. What are communities?

2.1. Variables
We start with a subgraph C of a graph G. The number of vertices and edges

are n, m for G and nC , mC for C, respectively. The adjacency matrix of G is A,
its element Aij equals 1 if vertices i and j are neighbours, otherwise it equals 0.
We assume that the subgraph is connected because communities usually are3.
Other types of group structures do not require connectedness (Section 2.3).

The subgraph is schematically illustrated in Fig. 3. Its vertices are enclosed

Figure 3: Schematic picture of a connected subgraph.

by the dashed contour. The magenta dots are the external vertices connected
to the subgraph, while the black ones are the remaining vertices of the network.
The blue lines indicate the edges connecting the subgraph to the rest of the
network.

The internal and external degree kint
i and kext

i of a vertex i of the network
with respect to subgraph C are the number of edges connecting i to vertices
of C and to the rest of the graph, respectively. Both definitions can be ex-
pressed in compact form via the adjacency matrix A: kint

i =
∑

j∈C Aij and
kext

i =
∑

j /∈C Aij , where the sums run over all vertices j inside and outside C, re-
spectively. Naturally, the degree ki of i is the sum of kint

i and kext
i : ki =

∑
j Aij .

If kext
i = 0 and kint

i > 0 i has neighbours only within C and is an internal vertex
of C (dark green dots in the figure). If kext

i > 0 and kint
i > 0 i has neighbours

outside C and is a boundary vertex of C (bright green dots in the figure). If
kint

i = 0, instead, the vertex is disjoint from C. The embeddedness ξi is the ratio

3The variables defined in this section hold for any subgraph, connected or not.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

between the internal degree and the degree of vertex i: ξi = kint
i /ki. The larger

ξi, the stronger the relationship between the vertex and its community. The
mixing parameter µi is the ratio between the external degree and the degree of
vertex i: µi = kext

i /ki. By definition, µi = 1− ξi.
Now we present a number of variables related to the subgraph as a whole.

We distinguish them in three classes.
The first class comprises measures based on internal connectedness, i. e., on

how cohesive the subgraph is. The main variables are:

• Internal degree kint
C . The sum of the internal degrees of the vertices of C.

It equals twice the number mC of internal edges, as each edge contributes
two units of degree. In matrix form, kint

C =
∑

i,j∈C Aij .

• Average internal degree kavg-int
C . Average degree of vertices of C, consid-

ering only internal edges: kavg−int
C = kint

C /nC .

• Internal edge density δint
C . The ratio between the number of internal edges

of C and the number of all possible internal edges:

δint
C =

kint
C

nC(nC − 1)
. (1)

We remark that nC(nC − 1)/2 is the maximum number of internal edges
that a simple graph with nC vertices may have4.

The second class includes measures based on external connectedness, i. e.,
on how embedded the subgraph is in the network or, equivalently, how separated
the subgraph is from it. The main variables are:

• External degree, or cut, kext
C . The sum of the external degrees of the

vertices of C. It gives the number of external edges of the subgraph (blue
lines in Fig. 3). In matrix form, kext

C =
∑

i∈C,j /∈C Aij .

• Average external degree, or expansion, kavg-ext
C . Average degree of vertices

of C, considering only external edges: kavg−ext
C = kext

C /nC .

• External edge density, or cut ratio, δext
C . The ratio between the number of

external edges of C and the number of all possible external edges:

δext
C =

kext
C

nC(n− nC)
. (2)

Finally, we have hybrid measures, combining internal and external connect-
edness. Notable examples are:

4A simple graph has at most one edge running between any pair of vertices and no self-
loops, i. e., no edges connecting a vertex to itself.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

U
n
w

ei
gh

te
d

n
et

w
or

k
s

W
ei

gh
te

d
n
et

w
or

k
s

N
am

e
Sy

m
bo

l
D

efi
ni

ti
on

N
am

e
Sy

m
bo

l
D

efi
ni

ti
on

In
te

rn
al

de
gr

ee
k

in
t

i

∑
j
∈C

A
ij

In
te

rn
al

st
re

ng
th

w
in

t
i

∑
j
∈C

W
ij

E
xt

er
na

l
de

gr
ee

k
e
x
t

i

∑
j
/∈C
A

ij
E

xt
er

na
l

st
re

ng
th

w
e
x
t

i

∑
j
/∈C
W

ij

D
eg

re
e

k
i

∑
j
A

ij
St

re
ng

th
w

i

∑
j
W

ij

E
m

be
dd

ed
ne

ss
ξ i

k
i
n

t
i k

i
W

ei
gh

te
d

em
be

dd
ed

ne
ss

ξw i
w

i
n

t
i w

i

M
ix

in
g

pa
ra

m
et

er
µ

i
k

e
x

t
i k

i
W

ei
gh

te
d

m
ix

in
g

pa
ra

m
et

er
µ

w i
w

e
x

t
i w

i

T
a
b

le
1
:

B
a
si

c
v
er

te
x

co
m

m
u

n
it

y
v
a
ri

a
b

le
s,

fo
r

u
n
w

ei
g
h
te

d
a
n

d
w

ei
g
h
te

d
n

et
w

o
rk

s.
A

a
n

d
W

a
re

th
e

a
d

ja
ce

n
cy

a
n

d
th

e
w

ei
g
h
t

m
a
tr

ix
,

re
sp

ec
ti

v
el

y.

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

U
n
w

ei
gh

te
d

n
et

w
or

k
s

W
ei

gh
te

d
n
et

w
or

k
s

N
am

e
Sy

m
bo

l
D

efi
ni

ti
on

N
am

e
Sy

m
bo

l
D

efi
ni

ti
on

In
te

rn
al

de
gr

ee
k

in
t

C

∑
i,

j
∈C

A
ij

In
te

rn
al

st
re

ng
th

w
in

t
C

∑
i,

j
∈C

W
ij

A
ve

ra
ge

in
te

rn
al

de
gr

ee
k

a
v
g
-i

n
t

C
k

i
n

t
C n
C

A
ve

ra
ge

in
te

rn
al

st
re

ng
th

w
a
v
g
-i

n
t

C
w

i
n

t
C n
C

Internal

In
te

rn
al

ed
ge

de
ns

it
y

δi
n

t
C

k
i
n

t
C

n
C

(n
C
−

1
)

In
te

rn
al

w
ei

gh
t

de
ns

it
y

δi
n

t
w

,C
w

i
n

t
C

w̄
n

C
(n

C
−

1
)

E
xt

er
na

l
de

gr
ee

k
e
x
t

C

∑
i∈

C
,j

/∈C
A

ij
E

xt
er

na
l

st
re

ng
th

w
e
x
t

C

∑
i∈

C
,j

/∈C
W

ij

A
ve

ra
ge

ex
te

rn
al

de
gr

ee
k

a
v
g
-e

x
t

C
k

e
x

t
C n
C

A
ve

ra
ge

ex
te

rn
al

st
re

ng
th

w
a
v
g
-e

x
t

C
w

e
x

t
C n
C

External

E
xt

er
na

l
ed

ge
de

ns
it

y
δe

x
t

C
k

e
x

t
C

n
C

(n
−

n
C

)
E

xt
er

na
l

w
ei

gh
t

de
ns

it
y

δe
x
t

w
,C

w
e

x
t

C

w̄
n

C
(n
−

n
C

)

T
ot

al
de

gr
ee

k
C

∑
i∈

C
,j
A

ij
T

ot
al

st
re

ng
th

w
C

∑
i∈

C
,j
W

ij

A
ve

ra
ge

de
gr

ee
k

a
v
g

C
k

C

n
C

A
ve

ra
ge

st
re

ng
th

w
a
v
g

C
w

C

n
C

Total

C
on

du
ct

an
ce

C
C

k
e

x
t

C k
C

W
ei

gh
te

d
co

nd
uc

ta
nc

e
C

w
,C

w
e

x
t

C w
C

T
a
b

le
2
:

B
a
si

c
co

m
m

u
n

it
y

v
a
ri

a
b

le
s,

fo
r

u
n
w

ei
g
h
te

d
a
n

d
w

ei
g
h
te

d
n

et
w

o
rk

s.
A

a
n

d
W

a
re

th
e

a
d

ja
ce

n
cy

a
n

d
th

e
w

ei
g
h
t

m
a
tr

ix
,

re
sp

ec
ti

v
el

y,
n

C
th

e
n
u

m
b

er
o
f

v
er

ti
ce

s
o
f

th
e

co
m

m
u

n
it

y,
n

th
e

to
ta

l
n
u

m
b

er
o
f

v
er

ti
ce

s
o
f

th
e

g
ra

p
h

,
w̄

th
e

a
v
er

a
g
e

w
ei

g
h
t

o
f

th
e

n
et

w
o
rk

ed
g
es

.

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Total degree, or volume, kC . The sum of the degrees of the vertices of C.
Naturally, kC = kint

C + kext
C . In matrix form, kC =

∑
i∈C,j Aij .

• Average degree kavg
C . Average degree of vertices of C: kavg

C = kC/nC .

• Conductance CC . The ratio between the external degree and the total
degree of C:

CC =
kext

C

kC
. (3)

All definitions we have given hold for the case of undirected and unweighted
networks. The extension to weighted graphs is straightforward, as it suffices to
replace the “number of edges” with the sum of the weights carried by every edge.
For instance, the internal degree kint

v of a vertex v becomes the internal strength
wint

v , which is the sum of the weights of the edges joining v with the vertices
of subgraph C. For the internal and external edge densities of Eqs. (1) and (2)
one would have to replace the numerators with their weighted counterparts and
multiply the denominators by the average edge weight w̄ =

∑
ij Wij/2m, where

Wij is the element of the weight matrix, indicating the weight of the edge joining
vertices i and j (Wij = 0 if i and j are disconnected) and m the total number
of graph edges. In Tables 1 and 2 we list all variables we have presented along
with their extensions to the case of weighted networks. In directed networks one
would have to distinguish between incoming and outgoing edges. Extensions of
the metrics are fairly simple to implement, though their usefulness is unclear.

2.2. Classic view
Figure 4 shows how scholars usually envision community structure. The net-

work has three clusters and in each cluster the density of edges is comparatively
higher than the density of edges between the clusters. This can be summarised
by saying that communities are dense subgraphs which are well separated from
each other. This view has been challenged, recently [18, 19], as we shall see
in Section 3.5. Communities may overlap as well, sharing some of the vertices.
For instance, in social networks individuals can belong to different circles at
the same time, like family, friends, work colleagues. Figure 5 shows an example
of a network with overlapping communities. Communities are typically sup-
posed to be overlapping at their boundaries, as in the figure. Recent results
reveal a different picture, though [20] (Section 3.5). A subdivision of a network
into overlapping communities is called cover and one speaks of soft clustering,
as opposed to hard clustering, which deals with divisions into non-overlapping
groups, called partitions. The generic term clustering can be used to indicate
both types of subdivisions. Covers can be crisp, when shared vertices belong
to their communities with equal strength, or fuzzy, when the strength of their
membership can be different in different clusters5.

5In the literature the word fuzzy is often used to describe both situations.

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 4: Classic view of community structure. Schematic picture of a network with three
communities.

The oldest definitions of community-like objects were proposed by social
network analysts and focused on the internal cohesion among vertices of a sub-
graph [21, 22, 23]. The most popular concept is that of clique [24]. A clique is
a complete graph, that is, a subgraph such that each of its vertices is connected
to all the others. It is also a maximal subgraph, meaning that it is not included
in a larger complete subgraph. In modern network science it is common to call
clique any complete graph, not necessarily maximal. Triangles are the simplest
cliques. Finding cliques is an NP-complete problem [25]; a popular technique
is the Bron–Kerbosch method [26].

The notion of cliques, albeit useful, cannot be considered a good candidate
for a community definition. While a clique has the largest possible internal edge
density, as all internal edges are present, communities are not complete graphs,
in general. Moreover, all vertices have identical role in a clique, while in real
network communities some vertices are more important than others, due to their
heterogeneous linking patterns. Therefore, in social network analysis the notion
has been relaxed, generating the related concepts of n-cliques [27, 28], n-clans
and n-clubs [29]. Other definitions are based on the idea that a vertex must be
adjacent to some minimum number of other vertices in the subgraph. A k-plex
is a maximal subgraph in which each vertex is adjacent to all other vertices of
the subgraph except at most k of them [30]. Details on the above definitions
can be found in specialised books [21, 22].

For a proper community definition, one should take into account both the
internal cohesion of the candidate subgraph and its separation from the rest
of the network. A simple idea that has received a great popularity is that a
community is a subgraph such that “the number of internal edges is larger than

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 5: Overlapping communities. A network is divided in four communities, enclosed by
the dashed contours. Three of them share boundary vertices, indicated by the blue dots.

the number of external edges”6. This idea has inspired the following definitions.
An LS-set [31], or strong community [32], is a subgraph such that the internal
degree of each vertex is greater than its external degree. A relaxed condition
is that the internal degree of the subgraph exceeds its external degree [weak
community [32]]7. A strong community is also a weak community, while the
converse is not generally true.

A drawback of these definitions is that one separates the subgraph at study
from the rest of the network, which is taken as a single object. But the latter can
be in turn divided into communities. If a subgraph C is a proper community, it
makes sense that each of its vertices is more strongly attached to the vertices of
C than to the vertices of any other subgraph. This concept, proposed by Hu et
al. [33], is more in line (though not entirely) with the modern idea of community
that we discuss in the following section. It has generated two alternative defi-
nitions of strong and weak community. A subgraph C is a strong community
if the internal degree of any vertex within C exceeds the internal degree of the
vertex within any other subgraph, i. e., the number of edges joining the vertex
to those of the subgraph; likewise, a community is weak if its internal degree
exceeds the (total) internal degree of its vertices within every other community.
A strong (weak) community à la Radicchi et al. is a strong (weak) community
also in the sense of Hu et al.. The opposite is not true, in general (Fig. 6).

6Here we focus on the case of unweighted graphs, extensions of all definitions to the
weighted case are immediate.

7The definition of weak community is the natural implementation of the näıve expectation
that there must be more edges inside than outside. However, for a subgraph C to be a
weak community it is not necessary that the number of internal edges mC exceeds that of
external edges kext

C . Since the internal degree kint
C = 2mC (Section 2.1) the actual condition

is 2mC > kext
C .

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In particular, a subgraph can be a strong community in the sense of Hu et al.
even though all of its vertices have internal degree smaller than their respective
external degree.

Figure 6: Strong and weak communities. The four subgraphs enclosed in the contours are
weak communities according to the definitions of Radicchi et al. [32] and Hu et al. [33]. They
are also strong communities according to Hu et al., as the internal degree of each vertex
exceeds the number of edges joining the vertex with the vertices of every other subgraph.
However, three of the subgraphs are not strong communities according to Radicchi et al., as
some vertices (indicated in blue) have external degree larger than their internal degree (the
internal and external edges of these vertices are coloured in yellow and magenta, respectively).

The above definitions of communities use extensive variables: their value
tends to be the larger, the bigger the community (e. g., the internal and external
degrees). But there are also variables discounting community size. An example
is the internal cluster density δint(C) of Eq. (1). One could assume that a
subgraph C with k vertices is a cluster if δint(C) is larger than a threshold ξ.
Setting the size of the subgraph is necessary because otherwise any clique would
be among the best possible communities, including trivial two-cliques (simple
edges) or triangles.

2.3. Modern view
As we have seen in the previous section, traditional definitions of community

rely on counting edges (internal, external), in various ways. But what one
should be really focusing on is the probability that vertices share edges with
a subgraph. The existence of communities implies that vertices interact more
strongly with the other members of their community than they do with vertices
of the other communities. Consequently, there is a preferential linking pattern
between vertices of the same group. This is the reason why edge densities end
up being higher within communities than between them. We can formulate that
by saying that vertices of the same community have a higher probability to form
edges with their partners than with the other vertices.

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Let us suppose that we estimated the edge probabilities between all pairs of
vertices, somehow. We can define the groups by means of those probabilities.
It is a scenario similar to the classic one we have seen in Section 2.2, where we
add and compare probabilities, instead of edges. Natural definitions of strong
and weak community are:

• A strong community is a subgraph each of whose vertices has a higher
probability to be linked to every vertex of the subgraph than to any other
vertex of the graph.

• A weak community is a subgraph such that the average edge probability
of each vertex with the other members of the group exceeds the average
edge probability of the vertex with the vertices of any other group8.

The difference between the two definitions is that, in the concept of strong
community, the inequality between edge probabilities holds at the level of every
pair of vertices, while in the concept of weak community the inequality holds
only for averages over groups. Therefore, a strong community is also a weak
community, but the opposite is not true, in general.

Now we can see why the former definitions of strong and weak commu-
nity [32, 33] are not satisfactory. Suppose to have a network with two sub-
graphs A and B of very different sizes, say with nA and nB � nA vertices
(Fig. 7). The network is generated by a model where the edge probability is
pin between vertices of the same group and pout < pin for vertices of differ-
ent groups. The two subgraphs are communities both in the strong and in the
weak sense, according to the probability-based definitions above. The expected
internal degree of a vertex of A is kint

A = pinnA: since there are nA possi-
ble internal neighbours9. Likewise, the expected external degree of a vertex
of A is kext

A = poutnB . The expected internal and external degrees of A are
Kint

A = pinn
2
A and Kext

A = poutnAnB . For any two values of pin and pout < pin

one can always choose nB sufficiently larger than nA that kint
A < kext

A , which
also implies that Kint

A < Kext
A . In this setting the subgraphs are neither strong

nor weak communities, according to the definitions proposed by Radicchi et al.
and Hu et al..

How can we compute the edge probabilities between vertices? This is still an
ill-defined problem, unless one has a model stating how edges are formed. One
can make many hypotheses on the process of edge formation. For instance, if we
take social networks, we can assume that the probability that two individuals

8Since we are comparing average probabilities, which come with a standard error, the
definition of weak community should not rely on the simple numeric inequality between the
averages, but on the statistical significance of their difference. Significance will be discussed
in Section 4.9.

9The number of possible community neighbours should actually be nA−1, but for simplicity
one allows for the formation of self-edges, from a vertex to itself. Results obtained with and
without self-edges are basically undistinguishable, when community sizes are much larger than
one. We shall stick to this setup throughout the paper.

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

pin

pin

po

po

A B

Figure 7: Problems of the classic notions of strong and weak communities. A network is
generated by the illustrated model, with two subgraphs A and B and edge probabilities pin

between vertices of the subgraphs and pout < pin between vertices of A and B. The red
circle is a representative vertex of subgraph A, the smaller blue circle represents the rest of
the vertices of A. The subgraphs are both strong and weak communities in the probabilistic
sense, but they may be neither strong nor weak communities according to the classic definitions
by Radicchi et al. [32] and Hu et al. [33], if B is sufficiently larger than A.

know each other is a decreasing function of their geographical distance, on av-
erage [34]. Each set of assumptions defines a model. For our purposes, eligible
models should take into account the possible presence of groups of vertices, that
behave similarly.

The most famous model of networks with group structure is the stochastic
block model (SBM) [35, 36, 37]. Suppose we have a network with n vertices,
divided in q groups. The group of vertex i is indicated with the integer label gi =
1, 2, . . . , q. The idea of the model is very simple: the probability P (i↔ j) that
vertices i and j are connected depends exclusively on their group memberships:
P (i↔ j) = pgigj

. Therefore, it is identical for any i and j in the same groups.
The probabilities pgigj form a q × q symmetric matrix10, called the stochastic
block matrix. The diagonal elements pkk (k = 1, 2, . . . , q) of the stochastic block
matrix are the probabilities that vertices of block k are neighbours, whereas the
off-diagonal elements give the edge probabilities between different blocks11.

For pkk > plm,∀k, l,m = 1, 2, . . . , q, with l 6= m, we recover community
structure, as the probabilities that vertices of the same group are connected
exceed the probabilities that vertices of different groups are joined (Fig. 8a).
It is also called assortative structure, as it privileges bonds between vertices of
the same group. The model is very versatile, though, and can generate various

10For directed graphs, the matrix is in general asymmetric. The extension of the stochastic
block model to directed graphs is straightforward. Here we focus on undirected graphs.

11In another definition of SBM the number of edges ers between blocks r and s is fixed
(r, s = 1, 2, . . . , q), instead of the edge probabilities. If ers � 1,∀ r, s = 1, 2, . . . , q the two
models are fully equivalent if the edge probabilities prs are chosen such that the expected
number of edges running between r and s coincides with ers.

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) Community structure (b) Disassortative structure

(c) Core-periphery structure (d) Random graph

Figure 8: Stochastic block model. We show the schematic adjacency matrices of network
realisations produced by the model for special choices of the edge probabilities, along with one
representative realisation for each case. For simplicity we show the case of two blocks of equal
size. Darker blocks indicate higher edge probabilities and consequently a larger density of edges
inside the block. Figure 8a illustrates community (or assortative) structure: the probabilities
(link densities) are much higher inside the diagonal blocks than elsewhere. Figure 8b shows the
opposite situation (disassortative structure). Figure 8c illustrates a core-periphery structure.
Figure 8d shows a random graph à la Erdős and Rényi: all edge probabilities are identical,
inside and between the blocks, so there are no actual groups. Adapted figure with permission
from [19]. c© 2015, by the American Physical Society.

types of group structure. For pkk < plm,∀k, l,m = 1, 2, . . . , q, with l 6= m, we
have disassortative structure, as edges are more likely between the blocks than
inside them (Fig. 8b). In the special case in which pkk = 0,∀k = 1, 2, . . . , q
we recover multipartite structure, as there are edges only between the blocks.
If q = 2, p11 � p12 � p22, we have core-periphery structure: the vertices of
the first block (core) are relatively well-connected amongst themselves as well
as to a peripheral set of vertices that interact very little amongst themselves
(Fig. 8c). If all probabilities are equal, pij = p, ∀i, j, we recover the classic
random graph à la Erdős and Rényi [38, 39] (Fig. 8d). Here any two vertices
have identical probability of being connected, hence there is no group struc-
ture. This has become a fundamental axiom in community detection, and has
inspired some popular techniques like, e. g., modularity optimisation [40, 41]
(Section 4.6). Random graphs of this type are also useful in the validation of
clustering algorithms (Section 3.1).

Alternative community definitions are based on the interplay between net-
work topology and dynamics. Diffusion is the most used dynamics. Random
walks are the simplest diffusion processes. A simple random walk is a path such

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

that the vertex reached at step t is a random neighbour of the vertex reached
at step t−1. A random walker would be spending a long time within communi-
ties, due to the supposedly low number of routes taking out of them [42, 43, 44].
The evolution of random walks does not depend solely on the number or den-
sity of edges, in general, but also on the structure and distribution of paths
formed by consecutive edges, as paths are the routes that walkers can follow.
This means that random walk dynamics relies on higher-order structures than
simple edges, in general. Such relationship is even more pronounced when one
considers Markov dynamics of second order or higher, in which the probability
of reaching a vertex at step t + 1 of the walk does not depend only on where
the walker sits at step t, but also on where it was at step t − 1 and possibly
earlier [44, 45]. Indeed, one could formulate the network clustering problem by
focusing on higher order structures, like motifs (e. g., triangles) [46, 47, 48]. The
advantage is that one can preserve more complex features of the network and
its communities, which typically get lost when one uses network models solely
based on edge probabilities, like SBMs12. The drawback is that calculations
become more involved and lengthy.

Is a definition of community really necessary? Actually not, most techniques
to detect communities in networks do not require a precise definition of com-
munity. The problem can be attacked from many angles. For instance, one can
remove the edges separating the clusters from each other, that can be identified
via some particular feature [8, 32]. But defining clusters beforehand is a useful
starting point, that allows one to check the reliability of the final results.

3. Validation

In this section we will discuss the crucial issue of validation of clustering algo-
rithms. Validation usually means checking how precisely algorithms can recover
the communities in benchmark networks, whose community structure is known.
Benchmarks can be computer-generated, according to some model, or actual
networks, whose group structure is supposed to be known via non-topological
features (metadata). The lack of a universal definition of communities makes
the search for benchmarks rather arbitrary, in principle. Nevertheless, the best
known artificial benchmarks are based on the modern definition of clusters pre-
sented in Section 2.3.

We shall present some popular artificial benchmarks and show that partition
similarity measures have to be handled with care. We will see under which
conditions communities are detectable by methods, and expose the interplay
between topological information and metadata. We will conclude by presenting
some recent results on signatures of community structure extracted from real
networks.

12Since edges are usually placed independently of each other in SBMs, higher order struc-
tures like triangles are usually underrepresented in the model graphs with respect to the actual
graph at study.

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 9: Benchmark of Girvan and Newman. The three networks correspond to realisations
of the model for 〈kout〉 = 1 (a), 〈kout〉 = 5 (b) and 〈kout〉 = 8 (c). In (c) the four groups
are hardly distinguishable by eye and methods fail to assign many vertices to their groups.
Reprinted figure with permission from Ref. [49]. c© 2005, by the Nature Publishing Group.

3.1. Artificial benchmarks
The principle underneath stochastic block models (Section 2.3) has inspired

many popular benchmark graphs with group structure. Community structure
is recovered in the case in which the probability for two vertices to be joined
is larger for vertices of the same group than for vertices of different groups
(Fig. 8a). For simplicity, let us suppose that there are only two values of the
edge probability, pin and pout < pin, for edges within and between communities,
respectively. Furthermore, we assume that all communities have identical size
nc, so qnc = n, where q is the number of communities. In this version, the
model coincides with the planted l-partition model, introduced in the context of
graph partitioning13 [50, 51, 52]. The expected internal and external degrees of
a vertex are 〈kin〉 = pinnc and 〈kout〉 = poutnc(q − 1), respectively, yielding an
expected (total) vertex degree 〈k〉 = 〈kin〉+ 〈kout〉 = pinnc + poutnc(q − 1).

Girvan and Newman [8] set q = 4, nc = 32 (for a total number of vertices
n = 128) and fixed the average total degree 〈k〉 to 16. This implies that pin +
3pout = 1/2 and pin and pout are not independent parameters. The benchmark
by Girvan and Newman is still the most popular in the literature (Fig. 9).

Performance plots of clustering algorithms typically have, on the horizontal
axis, the expected external degree 〈kout〉. For low values of 〈kout〉 communities
are well separated14 and most algorithms do a good job at detecting them. By
increasing 〈kout〉, the performance declines. Still, one expects to do better than
by assigning memberships to the vertices at random, as long as pin > pout, which

13Graph partitioning means dividing a graph in subgraphs, such to minimise the number of
edges joining the subgraphs to each other. It is related to community detection, as it aims at
finding the minimum separation between the parts. However, it usually does not consider how
cohesive the parts are (number or density of internal edges), except when special measures
are used, like conductance [Eq. (3)].

14They are also more cohesive internally, since 〈kin〉 is higher, to keep the total degree
constant.

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 10: LFR benchmark. Vertex degree and community size are power-law distributed, to
account for the heterogeneity observed in real networks with community structure.

means for 〈kout〉 < 12. In Section 3.3 we will see that the actual threshold is
lower, due to random fluctuations.

The benchmark by Girvan and Newman, however, is not a good proxy of
real networks with community structure. For one thing, all vertices have equal
degree, whereas the degree distribution of real networks is usually highly hetero-
geneous [53]. In addition, most clustering techniques find skewed distributions
of community sizes [54, 55, 56, 57, 32, 58]. For this reason, Lancichinetti, Fortu-
nato and Radicchi proposed the LFR benchmark, having power-law distributions
of degree and community size [59] (Fig. 10).

The mixing parameters µi of the vertices (Section 2.1) are set equal to a
constant µ, which estimates the quality of the partition15. LFR benchmark
networks are built by joining stubs at random, once one has established which
stubs are internal and which ones are external with respect to the community of
the vertex attached to the stubs. In this respect, it is basically a configuration
model [60, 61] with built-in communities.

Clearly, when µ is low, clusters are better separated from each other, and eas-
ier to detect. When µ grows, performance starts to decline. But for which range

15The parameter µ is actually only the average of the mixing parameter over all vertices.
In fact, since degrees are integer, it is impossible to tune them such to have exactly the same
value of µ for each vertex, and keep the constraint on the degree distribution at the same
time.

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

of µ can we expect a performance better than random guessing? Let us suppose
that the group structure is detectable for µ ∈ [0, µc]. The upper limit µc should
be such that the network is random for µ = µc. The network is random when
stubs are combined at random, without distinguishing between internal and ex-
ternal stubs, which yields the standard configuration model. There the expected
number of edges between two vertices with degrees ki and kj is kikj/(2m), m
being the total number of network edges. Let us focus on a generic vertex i, be-
longing to community C. We denote with KC and K̃C the sum of the degrees of
the vertices inside and outside C, respectively. Clearly KC +K̃C = 2m. In a ran-
dom graph built with the configuration model, vertex i would have an expected
internal degree16 kint-rand

i = ki(KC − ki)/(2m) ≈ kiKC/(2m) and an expected
external degree kext-rand

i = kiK̃C/(2m). Since, by construction, kint
i = (1−µ)ki

and kext
i = µki, the community C is not real when kext

i = kext-rand
i and

kint
i = kint-rand

i , which implies µ = µC = K̃C/(2m) = 1 − KC/(2m). We
see that KC depends on the community C: the larger the community, the lower
the threshold is. Therefore, not all clusters are detectable at the same time, in
general. For this to happen, µ must be lower than the minimum of µC over all
communities: µ ≤ µc = minC µC . If communities are all much smaller than the
network as a whole, KC/(2m) ≈ 0 and µc could get very close to the upper limit
1 of the variable µ. However, it is possible that the actual threshold is lower
than µc, due to the perturbations of the group structure induced by random
fluctuations (Section 3.3). Anyway, in most cases the threshold is going to be
quite a bit higher than 1/2, the value which is mistakenly considered as the
threshold by some scholars.

The LFR benchmark turns out to be a special version of the recently in-
troduced degree-corrected stochastic block model [62], with the degree and the
block size distributed according to truncated power laws17.

The LFR benchmark has been extended to directed and weighted networks
with overlapping communities [64]. The extensions to directed and weighted
graphs are rather straightforward. Overlaps are obtained by assigning each
vertex to a number of clusters and distributing its internal edges equally among
them18. Recently, another benchmark with overlapping communities has been
introduced by Ball, Karrer and Newman [65]. It consists of two clusters A and
B, with overlap C. Vertices in the non-overlapping subsets A − C and B − C
set edges only between each other, while vertices in C are connected to vertices
of both A and B. The expected degree of all vertices is set equal to 〈k〉. The
authors considered various settings, by tuning 〈k〉, the size of the overlap and
the sizes of A and B, which may be uneven. However, the fact that all vertices

16The approximation is justified when the community is large enough that KC � ki.
17In fact, the correspondence is exact for a slightly different parametrisation of the bench-

mark, introduced in [63]. In this version of the model, instead of the mixing parameter µ,
which is local, a global parameter c is used, estimating how strong the community structure
is.

18A better way to do it would be taking into account the size of the communities the vertex
is assigned to, and divide the edges proportionally to the (total) degrees of the communities.

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

have equal degree (on average) makes the model less realistic and flexible than
the LFR benchmark.

(a) Grow / Shrink

(b) Merge / Split

(c) Mixed

t=0 t=τ/4 t=τt=τ/2 t=3τ/4

t=0 t=τ/2 t=τ

t=0 t=τ/4 t=τ/2 t=3τ/4 t=τ

Figure 11: Dynamic benchmark. (a) Grow-Shrink benchmark. Starting from two communities
of equal size, vertices move from one cluster to the other and back. (b) Merge-Split benchmark.
It starts with two communities, edges are added until there is one community with uniform link
density (merge), then the process is reversed, leading to a fragmentation into two equal-sized
clusters. (c) Mixed benchmark. There are four communities: the upper pair undergoes the
grow-shrink dynamics of (a), the lower pair the merge-split dynamics of (b). All processes are
periodic with period τ . Reprinted figure with permission from [66]. c© 2015, by the American
Physical Society.

Following the increasing availability of evolving time-stamped network data
sets, the analysis and modelling of temporal networks have received a lot of
attention lately [67]. In particular, scholars have started to deal with the prob-
lem of detecting evolving communities (Section 4.8). A benchmark designed to
model dynamic communities was proposed by Granell et al. [66]. It is based on
the planted l-partition model, just like the benchmark of Girvan and Newman,
where pin and pout < pin are the edge probabilities within communities and be-

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

tween communities, respectively. Communities may grow and shrink (Fig. 11a),
they may merge with each other or split into smaller clusters (Fig. 11b), or do
all of the above (Fig. 11c). The dynamics unfold such that at each time the
subgraphs are proper communities in the probabilistic sense discussed in Sec-
tion 2.3. In the merge-split dynamics, clusters actually merge before the inter-
community edge probability pout reaches the value pin of the intra-community
edge probability, due to random fluctuations (Section 3.3).

In Section 2.3 we have shown why random graphs cannot have a meaningful
group structure19. That means that they can be employed as null benchmarks,
to test whether algorithms are capable to recognise the absence of groups. Many
methods find non-trivial communities in such random networks, so they fail the
test. We strongly encourage doing this type of exam on new algorithms [68].

3.2. Partition similarity measures
The accuracy of clustering techniques depends on their ability to detect

the clusters of networks, whose community structure is known. That means
that the partition detected by the method(s) has to match closely the planted
partition of the network. How can the similarity of partitions be computed?
This is an important problem, with no unique solution. In this section we
discuss some issues about partition similarity measures. More information can
be found in [69], [11] and [70].

Let us consider two partitions X = (X1, X2, ..., XqX
) and Y =

(Y1, Y2, ..., YqY
) of a network G, with qX and qY clusters, respectively. Let

n be the total number of vertices, nX
i and nY

j the number of vertices in clus-
ters Xi and Yj and nij the number of vertices shared by clusters Xi and Yj :
nij = |Xi

⋂
Yj |. The qX × qY matrix NXY whose entries are the overlaps nij is

called confusion matrix, association matrix or contingency table.
Most similarity measures can be divided in three categories: measures based

on pair counting, cluster matching and information theory.
Pair counting means computing the number of pairs of vertices which are

classified in the same (different) clusters in the two partitions. Let a11 indi-
cate the number of pairs of vertices which are in the same community in both
partitions, a01 (a10) the number of pairs of elements which are in the same
community in X (Y) and in different communities in Y (X) and a00 the number
of pairs of vertices that are in different communities in both partitions. Several
measures can be defined by combining the above numbers in various ways. A
famous example is the Rand index [71]

R(X ,Y) =
a11 + a00

a11 + a01 + a10 + a00
, (4)

which is the ratio of the number of vertex pairs correctly classified in both
partitions (i. e. either in the same or in different clusters), by the total number

19Here we refer to random graphs where the edge probabilities do not depend on their
membership in groups. Examples are Erdős and Rényi random graphs, the configuration
model, etc..

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

of pairs. Another notable option is the Jaccard index [72],

J(X ,Y) =
a11

a11 + a01 + a10
, (5)

which is the ratio of the number of vertex pairs classified in the same cluster in
both partitions, by the number of vertex pairs classified in the same cluster in
at least one partition. The Jaccard index varies over a broader range than the
Rand index, due to the dominance of a00 in R(X ,Y), which typically confines
the Rand index to a small interval slightly below 1. Both measures lie between
0 and 1.

If we denote with XC and YC the sets of vertex pairs with are members
of the same community in partitions X and Y, respectively, the Jaccard index
is just the ratio between the intersection and the union of XC and YC . Such
concept can be used as well to determine the similarity between two clusters A
and B

JAB =
|A⋂B|
|A⋃B| . (6)

The score JAB is also called Jaccard index and is the most general definition of
the score, for any two sets A and B [73]. Measuring the similarity between com-
munities is very important to determine, given different partitions, which cluster
of a partition corresponds to which cluster(s) of the other(s). For instance, the
cluster Yj of Y corresponding to cluster Xi of Y is the one maximising the simi-
larity between Xi and Yj , e. g., JXiYj . This strategy is also used to track down
the evolution of communities in temporal networks [74, 75].

The Rand and the Jaccard indices, as defined in Eqs. (5) and (6), have the
disturbing feature that they do not take values in the entire range [0, 1]. For
this reason, adjusted versions of both indices exist, in that a baseline is intro-
duced, yielding the expected values of the score for all pairs of partitions X̃
and Ỹ obtained by randomly assigning vertices to clusters such that X̃ and Ỹ
have the same number of clusters and the same size for all clusters of X and
Y, respectively [76]. The baseline is subtracted from the unadjusted version,
and the result is divided by the range of this difference, yielding 1 for identical
partitions and 0 as expected value for independent partitions. But there are
problems with these definitions as well. The null model used to compute the
baseline relies on the assumption that the communities of the independent par-
titions have the same number of vertices as in the partitions whose similarity
is to be compared. But such assumption usually does not hold, in practical
instances, as algorithms sometimes need the number of communities as input,
but they never impose any constraint on the cluster sizes. Adjusted indices
have also the disadvantage of nonlocality [77]: the similarity between partitions
differing only in one region of the network depends on how the remainder of the
network is subdivided. Moreover, the adjusted scores can take negative values,
when the unadjusted similarity lies below the baseline.

A better option is to use standardised indices [78]: for a given score Si the
value of the null model term µi is computed along with its standard deviation

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

C C' C''

Figure 12: Partition similarity measures based on cluster matching. There are three partitions
in three clusters: C, C′ and C′′. The clusters include all elements of columns 1− 2, 3− 4 and
5− 6, which for C are labelled in black, grey and white, respectively. Partition C′ is obtained
from C by reassigning the same fraction of elements from one cluster to the next, while C′′ is
derived from C by reassigning the same fraction of elements from each cluster equally between
the other clusters. From cluster matching scores one concludes that C′ and C′′ are equally
similar to C, while intuition suggests that C′ is closer to C than C′′. Adapted figure with
permission from [69]. c© 2007, by Elsevier.

σi over many different randomisations of the partitions X and Y. By computing
the z-score

zi =
Si − µi

σi
, (7)

we can see how non-random the measured similarity score is, and assess its
significance. It can be shown that the z-scores for the Jaccard, Rand and
Adjusted Rand indices coincide [70], so the measures are statistically equivalent.
Since the actual values Si of these indices differ for the same pair of partitions,
in general, we conclude that the magnitudes of the scores may give a wrong
perception about the effective similarity.

Cluster matching aims at establishing a correspondence between pairs of
clusters of different partitions based on the size of their overlap. A popular
measure is the fraction of correctly detected vertices, introduced by Girvan and
Newman [8]. A vertex is correctly classified if it is in the same cluster as at least
half of the other vertices in its cluster in the planted partition. If the detected
partition has clusters given by the merger of two or more groups of the planted
partition, all vertices of those clusters are considered incorrectly classified. The
number of correctly classified vertices is then divided by the number n of vertices
of the graph, yielding a number between 0 and 1. The recipe to label vertices as
correctly or incorrectly classified is somewhat arbitrary. The fraction of correctly
detected vertices is similar to

H(X ,Y) =
1
n

∑

k′=match(k)

nkk′ , (8)

where k′ is the index of the best match Yk′ of cluster Xk [79]. A common
problem of this type of measures is that partitions whose clusters have the
same overlap would have the same similarity, regardless of what happens to

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the parts of the communities which are unmatched. The situation is illustrated
schematically in Fig. 12. Partitions C′ and C′′ are obtained from C by reassigning
the same fraction of their elements to the other clusters. Their overlaps with
C are identical and so are the corresponding similarity scores. However, in
partition C′′ the unmatched parts of the clusters are more scrambled than in C′,
which should be reflected in a lower similarity score.

Similarity can be also estimated by computing, given a partition, the ad-
ditional amount of information that one needs to have to infer the other par-
tition. If partitions are similar, little information is needed to go from one
to the other. Such extra information can be used as a measure of dissimilar-
ity. To evaluate the Shannon information content [80] of a partition, we start
from the community assignments {xi} and {yi}, where xi and yi indicate the
cluster labels of vertex i in partition X and Y, respectively. The labels x and
y are the values of two random variables X and Y , with joint distribution
P (x, y) = P (X = x, Y = y) = nxy/n, so that P (x) = P (X = x) = nX

x /n and
P (y) = P (Y = y) = nY

y /n. The mutual information I(X,Y) of two random
variables is I(X,Y) = H(X) − H(X|Y), where H(X) = −∑x P (x) logP (x)
is the Shannon entropy of X and H(X|Y) = −∑x,y P (x, y) logP (x|y) is the
conditional entropy of X given Y . The mutual information is not ideal as a
similarity measure: for a given partition X , all partitions derived from X by
splitting (some of) its clusters would all have the same mutual information with
X , even though they could be very different from each other. In this case the
mutual information equals the entropy H(X), because the conditional entropy
is zero. It is then necessary to introduce an explicit dependence on the other
partition, that persists even in those special cases. This has been achieved by
introducing the normalized mutual information (NMI), obtained by dividing the
mutual information by the arithmetic average20 of the entropies of X and Y [84]

Inorm(X ,Y) =
2I(X,Y)

H(X) +H(Y)
. (9)

The NMI equals 1 if and only if the partitions are identical, whereas it has an
expected value of 0 if they are independent. Since the first thorough compara-
tive analysis of clustering algorithms [85], the NMI has been regularly used to
compute the similarity of partitions in the literature. However, the measure is
sensitive to the number of clusters qY of the detected partition, and may attain
larger values the larger qY , even though more refined partitions are not neces-
sarily closer to the planted one. This may give wrong perceptions about the
relative performance of algorithms [86].

A more promising measure, proposed by Meilă [69] is the variation of infor-
mation (VI)

V (X ,Y) = H(X|Y) +H(Y |X). (10)

20Strehl and Ghosh introduced an earlier definition of NMI, where the mutual information
is divided by the geometric average of the entropies [81]. Alternatively, one could normalise
by the larger of the entropies H(X) and H(Y) [82, 83].

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The VI defines a metric in the space of partitions as it has the properties of dis-
tance (non-negativity, symmetry and triangle inequality). It is a local measure:
the VI of partitions differing only in a small portion of a graph depends on the
differences of the clusters in that region, and not on how the rest of the graph
is subdivided. The maximum value of the VI is log n, which implies that the
scores of an algorithm on graphs of different sizes cannot be compared with each
other, in principle. One could divide V (X ,Y) by log n [87], to force the score
to be in the range [0, 1], but the actual span of values of the measure depends
on the number of clusters of the partitions. In fact, if the maximum number of
communities is q?, with q? ≤ √n, V (X ,Y) ≤ 2 log q?. Consequently, in those
cases where it is reasonable to set an upper bound on the number of clusters
of the partitions, the similarities between planted and detected partitions on
different graphs become comparable, and it is possible to assess both the per-
formance of an algorithm and to compare algorithms across different benchmark
graphs. We stress, however, that the measure may not be suitable when the
partitions to be compared are very dissimilar from each other [70] and that it
shows unintuitive behaviour in particular instances [88].

So far we discussed of comparing partitions. What about covers? Exten-
sions of the measures we have presented to the case of overlapping communities
are usually not straightforward. The Omega index [89] is an extension of the
Adjusted Rand index [76]. Let X and Y be covers of the same graph to be com-
pared. We denote with ajj the number of pairs of vertices occurring together
in exactly j communities in both covers. It is a natural generalisation of the
variables a00 and a11 we have seen above, where j can also be larger than 1
since a pair of vertices can now belong simultaneously to multiple communities.
The variable

o(X ,Y) =
2

n(n− 1)

∑

j

ajj (11)

is the fraction of pairs of vertices belonging to the same number of communities
in both covers (including the case j = 0, which refers to the pairs not being in
any community together). The Omega index is defined as

Ω(X ,Y) =
o(X ,Y)− oe(X ,Y)

1− oe(X ,Y)
, (12)

where oe(X ,Y) is the expected value of o(X ,Y) according to the null model
discussed earlier, in which vertex labels are randomly reshuffled such to generate
covers with the same number and size of the communities.

The NMI has also been extended to covers by Lancichinetti, Fortunato and
Kertész [90]. The definition is non-trivial: the community assignments of a
cover are expressed by a vectorial random variable, as each vertex may belong
to multiple clusters at the same time. The measure overestimates the similarity
of two covers, in special situations, where intuition suggests much lower values.
The problem can be solved by using an alternative normalisation, as shown
in [82]. Unfortunately neither the definition by Lancichinetti, Fortunato and
Kertész nor the one by McDaid, Greene and Hurley are proper extensions of

25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the NMI, as they do not coincide with the classic definition of Eq. (9) when
partitions in non-overlapping clusters are compared. However, the differences
are typically small, and one can rely on them in practice. Esquivel and Rosvall
have proposed an actual extension [83]. Following the comparative analysis
performed in [68], the NMI by Lancichinetti, Fortunato and Kertész has been
regularly used in the literature, also in the case of regular partitions, without
overlapping communities21.

If covers are fuzzy (Section 2.2), the similarity measures above cannot be
used, as they do not take into account the degree of membership of vertices in
the communities they belong to. A suitable option is the Fuzzy Rand index [92],
which is an extension of the Adjusted Rand index. Both the Fuzzy Rand index
and the Omega index coincide with the Adjusted Rand index when communities
do not overlap.

For temporal networks, a näıve approach would be comparing partitions (or
covers) corresponding to configurations of the system in the same time window,
and to see how this score varies across different time windows. However, this
does not tell if the clusters are evolving in the same way, as there would be
no connection between clusterings at different times. A sensible approach is
comparing sequences of clusterings, by building a confusion matrix that takes
into account multiple snapshots. This strategy allows one to define dynamic
versions of various indices, like the NMI and the VI [66].

In conclusion, while there is no clear-cut criterion to establish which sim-
ilarity measure is best, we recommend to use measures based on information
theory. In particular, the VI seems to have more potential than others, for the
reasons we explained, modulo the caveats in Refs. [88, 70]. There are currently
no extensions of the VI to handle the comparison of covers, but it would not be
difficult to engineer one, e. g., by following a similar procedure as in [90, 82],
though this might cost the sacrifice of some of its nice features.

One should keep in mind that the choice of one similarity index or another is
a sensitive one, and warped conclusions may be drawn when different measures
are adopted. In Fig. 13 we show the accuracy of two algorithms on the LFR
benchmark (Section 3.1): Ganxis, a method based on label propagation [93] and
LinkCommunities, a method based on grouping edges instead of vertices [94]
(Section 4.4). The accuracy is estimated with the NMI by Lancichinetti, Fortu-
nato and Kertész [90] (left diagram) and with the Omega index [Eq. (12)] (right
diagram). From the left plot one would think that Ganxis clearly outperforms
LinkCommunities, whereas from the right plot Ganxis still prevails for µ until
about 0.5 (though the curves are closer to each other than in the NMI plot) and
LinkCommunities is better for larger values of µ.

21Recently the NMI has been extended to handle the comparison of hierarchical partitions
as well [91].

26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0.2 0.4 0.6 0.8

Mixing parameter µ

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

0.2 0.4 0.6 0.8

Mixing parameter µ

0.0

0.2

0.4

0.6

0.8

1.0

O
m

e
g
a

Ganxis

LinkCommunities

Figure 13: Importance of choice of partition similarity measures. The plots show the com-
parison between the planted partition of LFR benchmark graphs and the ones found by two
algorithms: Ganxis and LinkCommunities. In the left diagram similarity was computed with
the NMI, in the right one with the Omega index. The performances of the algorithms appear
much closer when the Omega index is used. The LFR benchmark graphs used in the analysis
have 1 000 vertices, average degree 15, maximum degree 50, exponents 2 and 1 for the degree
and community size distributions and range [10, 50] for the community size.

3.3. Detectability
In validation procedures one assumes that, if the network has clusters, there

must be a way to identify them. Therefore, if we do not manage, we have
to blame the specific clustering method(s) adopted. But are we certain that
clusters are always detectable?

Most networks of interest are sparse, i. e., their average degree is much
smaller than the number of vertices. This means that the number of edges of
the graph is much smaller than the number of possible edges n(n − 1)/2. A
more precise way to formulate this is by saying that a graph is sparse when,
in the limit of infinite size, the average degree of the graph remains finite. A
number of analytical calculations can be carried out by using network sparsity.
Many algorithms for community detection only work on sparse graphs.

On the other hand, sparsity can also give troubles. Due to the very low den-
sity of edges, small amounts of noise could perturb considerably the structure of
the system. For instance, random fluctuations in sparse graphs could trick algo-
rithms into finding groups that do not really exist (Section 4.9). Likewise, they
could make actual groups undetectable. Let us consider the simplest version
of the assortative stochastic block model, which matches the planted partition
model (Section 3.1). There are q communities of the same size n/q, and only
two values for the edge probability: pin for pairs of vertices in the same group
and pout for pairs of vertices in different groups. Since the graphs are sparse, pin

and pout vanish in the limit of infinite graph size. So we shall use the expected
internal and external degrees 〈kin〉 = npin/q and 〈kout〉 = npout(q−1)/q, which
stay constant in that limit. By construction, the groups are communities so
long as pin > pout or, equivalently, for 〈kin〉 > 〈kout〉/(q− 1). But that does not
mean that they are always detectable.

27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In principle, dealing with the issue of detectability involves examining all
conceivable clustering techniques, which is clearly impossible. Fortunately, it
is not necessary, because we know what model has generated the communities
of the graphs we are considering. The most effective technique to infer the
groups is then fitting the stochastic block model on the data (a posteriori block
modelling). This can be done via the maximum likelihood method [95]. In
recent work [96], Decelle et al. have shown that, in the limit of infinite graph
size, the partition obtained this way is correlated with the planted partition
whenever

〈kin〉 −
〈kout〉
q − 1

>
√
〈kin〉+ 〈kout〉, (13)

which implies

〈kin〉 >
〈kout〉
q − 1

+
1
2

(
1 +

√
1 +

4q〈kout〉
q − 1

)
. (14)

So, given a value of 〈kout〉, when 〈kin〉 is in the range[
〈kout〉
q−1 , 〈kout〉

q−1 + 1
2

(
1 +

√
1 + 4q〈kout〉

q−1

)]
the probability pc of classifying a

vertex correctly is not larger than the probability 1/q of assigning the vertex
to a randomly chosen group, although the groups are communities, according
to the model. We stress that this result only holds when the graphs are sparse:
if pin and pout remain non-zero in the large-n limit (dense graph), the classic
detectability threshold pin > pout is correct.

A fortiori, no clustering technique can detect the clusters better than ran-
dom assignment when the inference of the model parameters fails to do so.
If communities are searched via the spectral optimisation of Newman-Girvan’s
modularity [97], one obtains the same threshold of Eq. (14) [98], provided the
network is not too sparse.

For the benchmark of Girvan and Newman (Section 3.1) [8] it has long been
unclear where the actual detectability limit sits. Girvan-Newman benchmark
graphs are not infinite, their size being set to 128, so there is no proper de-
tectability transition, but rather a smooth crossover from a regime in which
clusters are frequently detectable to a regime where they are frequently unde-
tectable. For this reason there cannot be a sharp threshold separating the two
regimes. Still it is useful to have an idea of where the pattern changes. In the fol-
lowing we shall still use the term threshold to refer to the crossover point. In the
beginning, scholars thought that clusters are detectable as long as they satisfy
the definition of strong community by Radicchi et al. [32] (Section 2.2), i. e., as
long as the expected internal degree exceeds the expected external degree, yield-
ing a threshold 〈kin〉 = 〈kout〉 [8]. Since the expected total degree of a vertex is
set to 16, communities are detectable as long as 〈kout〉 < kstrong

d = 8. It soon
became obvious that the actual threshold should be the one of the “modern”
definition of community we have presented in Section 2.3, according to which

28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0 2 4 6 8 10 12 14
Average external degree <kout >

0.00

0.25

0.50

0.75

1.00
Fr

a
ct

io
n
 o

f
co

rr
e
ct

ly
d
e
te

ct
e
d
 v

e
rt

ic
e
s

Louvain

OSLOM

Infomap

Figure 14: Detectability of communities. Performances of three popular algorithms on the
benchmark by Girvan and Newman. The dotted vertical line at 〈kout〉 = 8 indicates the
threshold corresponding to the concept of strong community á la Radicchi et al., the dashed
line at 〈kout〉 = 12 the threshold according to the probability-based definition of strong
community we have given in Section 2.3. The baseline of random assignment is 1/4 (horizontal
dashed line). All algorithms do not do better than random assignment already before 〈kout〉 =
12. The theoretical detectability limit is at 〈kout〉 = 9, in the limit of groups of infinite size.

the condition22 is pin > pout, that is 〈kout〉 < kstandard
d = 12. However, numeri-

cal calculations reveal that algorithms tend to fail long before that limit. From
Eq. (14) we see that for the case of four infinite clusters and total expected degree
〈ktot〉 = 16, the theoretical detectability limit is ktheor

d = 9. In Fig. 14 we see the
performance on the benchmark of three well-known algorithms: Louvain [99], a
greedy optimisation technique of Newman–Girvan modularity [40] (Section 4.6);
Infomap, which is based on random walk dynamics [42] (Section 4.7); OSLOM,
that searches for clusters via a local optimisation of a significance score [100].
The accuracy is estimated via the fraction of correctly detected vertices (Sec-
tion 3.2). The three thresholds kstrong

d , kstandard
d and ktheor

d are represented by
vertical lines. The performance of all methods becomes comparable with ran-
dom assignment well before kstandard

d . The theoretical limit ktheor
d appears to

be compatible with the performance curves.
Graph sparsity is a necessary condition for clusters to become undetectable,

but it is not sufficient. The symmetry of the model we have considered plays a
major role too. Clusters have equal size and vertices have equal degree. This
helps to “confuse” algorithms. If communities have unequal sizes and the degree
of vertices are correlated with the size of their communities, so that vertices have
larger degree, the bigger their clusters, community detection becomes easier, as
the degrees can be used as proxy for group membership. In this case, the non-
trivial detectability limit disappears when there are four clusters or fewer, while

22In the setting of the Girvan-Newman benchmark, where edge probabilities are identical
for all vertices, the strong and weak definitions we presented in Section 2.3 coincide.

29

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

it persists up to a given extent of group size inequality when there are more
than four clusters [101]. Other types of block structure, like core-periphery, do
not suffer from detectability issues [102].

LFR benchmark graphs are more complex models than the one studied
in [101] and it is not clear whether there is a non-trivial detectability limit,
though it is unlikely, due to the big heterogeneity in the distribution of vertex
degree and community size.

3.4. Structure versus metadata
Another standard way to test clustering techniques is using real networks

with known community structure. Knowledge about the memberships of the
vertices typically comes from metadata, i. e., non-structural information. If
vertices are annotated communities are assumed to be groups of vertices with
identical tags. Examples are user groups in social networks like LiveJournal and
product categories for co-purchasing networks of products of online retailers such
as Amazon.

In Fig. 15 we show the most popular of such benchmark graphs, Zachary
karate club network [103]. It consists of 34 vertices, the members of a karate
club in the United States, who were observed over a period of three years. Edges
connect individuals interacting outside the activities of the club. Eventually a
conflict between the club president (vertex 34) and the instructor (vertex 1) led
to the fission of the club in two separate groups, whose members supported the
instructor and the president, respectively (indicated by the colours). Indeed, the
groups make sense topologically: vertices 1 and 34 are hubs, and most members
are directly connected to either of them.

1
2

3

4

5
6

7

8

9

10

11

12

13

14
15

16

17

18

19 20

21

22

23

24

25
26

27

28

29
30

31

32

33

34

Figure 15: Zachary karate club network. Symbols of different colours indicate the two groups
generated by the fission of the network, following the disagreement between the club’s instruc-
tor (vertex 1) and its president (34).

Most algorithms of community detection have been tested on this network, as
well as others, e. g., the American college football network [8, 104] or Lusseau’s

30

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

lfr
ka

rat
e

foo
tba

ll

po
lbo

ok
s

po
lbl

og
s

dp
d

as
-ca

ida
fb1

00 pg
p

an
ob

ii
db

lp

am
az

on
flic

kr
ork

ut

lj-b
ac

kst
rom

lj-m
islo

ve
0.0

0.2

0.4

0.6

0.8

1.0

NM
I

CD algorithms
CliquePerc
Conclude
Copra
Demon
Ganxis
GreedyCliqueExp
Infomap
InfomapSingle
LinkCommunities
Louvain
Oslom

Figure 16: Mismatch between structural communities and metadata groups. The vertical axis
reports the similarity between communities detected via several clustering methods and groups
of vertices with identical attributes for several networks, estimated via the NMI. Scores are
grouped by data sets on the horizontal axis. The vertical dashed line separates small classic
data sets from large ones, recently compiled. The low scores obtained for the latter indicate
that the correspondence between structural and annotated communities is poor. Reprinted
figure with permission from [106]. c© 2014, by the American Physical Society.

network of bottlenose dolphins [105]. The idea is that the method doing the
best job at recovering groups with identical annotations would also be the most
reliable in applications.

Such idea, however, is based on a questionable principle, i. e., that the
groups corresponding to the metadata are also communities in the topological
sense we have discussed in Section 2. Communities exist because their vertices
are supposed to be similar to each other, in some way. The similarity among
the vertices is then revealed topologically through the higher edge probability
among pairs of members of the same group than between pairs of members of
different groups, whose similarity is lower. Hence, when one is provided with
annotations or other sources of information that allows to classify vertices based
on their similarity, one expects that such similarity-based classes are also the
best communities that structure-based algorithms may detect.

Indeed, for some small networks like Zachary’s karate club this seems to be
the case. But for quite some time scholars could not test this hypothesis, due
to the limited number of suitable data sets. Over the past few years this has
finally become possible, due to the availability of several large network data
sets with annotated vertices [107, 108, 20, 106]. It turns out that the alignment
between the communities found by standard clustering algorithms and the anno-
tated groups is not good, in general. In Fig. 16 we show the similarity between
the topological partitions found by different methods and the annotated par-
titions, for several social, information and technological networks [106]. The
heights of the vertical bars are the values of the normalised mutual information

31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(NMI) [90]. Groups of contiguous bars represent the scores for a given data
set. To the left of the vertical dashed line we see the results for classic bench-
marks, like LFR graphs (Section 3.1) [59], Zachary karate club, etc., and the
scores are generally good. But for the large data sets to the right of the line
the scores are rather low, signalling a significant mismatch between topologi-
cal and annotated communities. For Amazon co-purchasing network [109], in
which vertices are products and edges are set between products often purchased
by the same customer(s), the similarity is quite a bit higher than for the other
networks. This is because the classification of Amazon products is hierarchi-
cal (e. g., Books/Fiction/Fantasy), so there are different levels of annotated
communities, and the reported scores refer to the one which is most similar
to the structural ones detected by the algorithms, while the other levels would
give lower similarity scores. Low similarity at the partition level does not rule
out that some communities of the structural partition significantly overlap with
their annotated counterparts, but precision and recall scores show that this is
not the case. Results depend more on the network than on the specific method
adopted, none of which appears to be particularly good on any (large) data set.

So the hypothesis that structural and annotated clusters are aligned is not
warranted, in general. There can be multiple reasons for that. The attributes
could be too general or too specific, yielding communities which are too large or
too small to be interesting. Moreover, while the best partition of the network
delivered by an algorithm can be poorly correlated with the metadata, there
may be alternative topological divisions that also belong to a set of valid so-
lutions, according to the algorithm23, but happen to be better correlated with
the annotations [111].

The fact that structural and annotated communities may not be strongly
correlated has important consequences. Scholars have been regularly testing
their algorithms on small annotated graphs, like Zachary’s karate club, by tun-
ing parameters such to obtain the best possible performance on them. This is
not justified, in general, as it makes sense only when there is a strong correspon-
dence, which is a priori unknown. Also, forcing an alignment with annotations
on one data set does not guarantee that there is going to be a good alignment
with the annotations of a different network. Besides, one of the reasons why
people use clustering algorithms is to provide an improved classification of the
vertices, by using structure. If one obtained the same thing, why bother?

The right thing to do is using structure along with the annotations, instead
of insisting on matching them. This way the information coming from structure
and metadata can be combined and we can obtain more accurate partitions, if
there is any correspondence between them. Recent approaches explicitly assume
that the metadata (or a portion thereof) are either exactly or approximately
correlated with the best topological partition [112, 113, 114, 115, 116]. A better

23For instance, for clustering methods based on optimisation, there are many partitions
corresponding to values of the quality function very close to the searched optimum [110]. The
algorithm will return one (or some) of them, but the others are comparably good solutions.

32

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Data, A

Metadata, T

Figure 17: Data-metadata stochastic block model by Hric et al.. One layer consists of the
network itself, with its vertices and edges. The other layer is composed of the graph vertices
and vertices representing the annotations, the edges indicating which vertices are associated
to which tag. The presence of network vertices on both layers induces a coupling between
them. Reprinted figure with permission from [117].

approach is not assuming a priori that the metadata correlate with the structural
communities. The goal is quantifying the relationship between metadata and
community and use it to improve the results. If there is no correlation, the
metadata would be ignored, leaving us with the partition derived from structure
alone.

Methods along these lines have been developed, using stochastic block mod-
els. Newman and Clauset [111] have proposed a model in which vertices are
initially assigned to clusters based on metadata, and then edges are placed be-
tween vertices according to the degree-corrected stochastic block model [62].
Hric et al. have designed a similar model [117], in which the interplay be-
tween structure and metadata is represented by a multilayer network (Fig. 17).
The generative model is an extension of the hierarchical stochastic block model
(SBM) [63] with degree-correction for the case with edge layers [118]. Here the
metadata is not supposed to correspond simply to a partition of the vertices.
The majority of data sets contain rich metadata, with vertices being annotated
multiple times, and often few vertices possess the exact same annotations and
can be thus associated to the same group. In addition, while the number of
communities is required as input by the method of Newman and Clauset, here
it is inferred from the data. Finally, it is also possible to assess the metadata in
its power to predict the network structure, not only their correlation with latent
partitions. This way it is possible to predict missing vertices of the network, i.
e., to infer the connections of a vertex from its annotations only. We stress that
neither method requires that all vertices are annotated.

33

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Applications of the method by Hric et al. [117] reveal that in many data sets
there are statistically significant correlations between the annotations and the
network structure, while in some cases the metadata seems to be largely un-
correlated with structural clusters. We conclude that network metadata should
not be used indiscriminately as ground truth for community detection methods.
Even when the metadata is strongly predictive of the network structure, the
agreement between the annotations and the network division tends to be com-
plex, and very different from the one-to-one mapping that is more commonly
assumed. Moreover, data sets usually contain considerable noise in their anno-
tations, and some metadata tags are essentially random, with no relationship
to structure.

3.5. Community structure in real networks
Artificial benchmark graphs are certainly very useful to assess the perfor-

mance of clustering algorithms. However, one could always question whether
the model of community structure they propose is reliable. How can we assess
this? In order to characterise “real” communities we have to find them first. But
that can only be done via some algorithm, and different algorithms search for
different types of objects, in general. Still, one may hope that general properties
of communities can be consistently uncovered across different methods and data
sets, while other features are more closely tied to the specific method(s) used to
detect the clusters and (or) the specific data set at study (or classes thereof).

A seemingly robust feature of communities in real networks is the hetero-
geneity of their size distribution. Most clustering techniques find skewed distri-
butions of cluster sizes in many networks. So, there appears to be no character-
istic size for a community: small communities usually coexist with large ones.
This feature is rather independent of the type of network (Fig. 18). It may sig-
nal a hierarchy among communities, with small clusters included in large ones.
Methods unable to distinguish between hierarchical levels might find “blended”
partitions, consisting of communities of different levels and hence of very differ-
ent sizes. The LFR benchmark was the first graph model to take explicitly into
account the heterogeneity of community sizes (Section 3.1).

Another interesting question is how the quality of communities depends on
their size. Leskovec et al. [18] carried out a systematic analysis of clusters in
many large networks, including traditional and on-line social networks, techno-
logical, information networks and web graphs. Instead of considering partitions,
they focused on individual communities, which are derived by optimising con-
ductance (Section 2.1) around seed vertices. We remind that the conductance
of a cluster is the ratio between the number of external edges and the total de-
gree of the cluster. Minimising conductance effectively combines the two main
community demands, i. e., good separation from the rest of the graph (low nu-
merator) and large number of internal edges (high denominator). The measure
is also relatively insensitive to the size of the clusters, as both the numerator
and the denominator are typically proportional to the number of vertices of the

34

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

100 101 102 103 104 10510-10

10-8

10-6

10-4

10-2

P(
s)

10-10

10-8

10-6

10-4

10-2

Wiki Talk
Email

100 101 102 103 104

10-8

10-6

10-4

10-2

10-8

10-6

10-4

10-2

AS-caida
AS-dimes

100 101 102 103

10-8

10-6

10-4

10-2

10-8

10-6

10-4

10-2

web-G
Arxiv
Amazon
web-BS

100 101 10210-5

10-4

10-3

10-2

10-1

P(
s)

100 101 10210-5

10-4

10-3

10-2

10-1
Dmela
Yeast
Human

100 101 102 103 104 105

Module Size s
10-10

10-8

10-6

10-4

10-2

10-10

10-8

10-6

10-4

10-2
Live J
Epinions
Last FM
Slashdot

Social

InformationInternet

Biological

Communication

Figure 18: Distribution of community sizes in real networks. The clusters were detected with
Infomap [42], but other methods yield qualitatively similar results. Various classes of networks
are considered. All distributions are broad, spanning several orders of magnitude. Reprinted
figure with permission from [58].

community24. Therefore one could use it to compare the quality of clusters of
different sizes. For any given size k Leskovec et al. identified the subgraph with
k vertices with the lowest conductance. This way, for each network one can draw
the network community profile (NCP), showing the minimum conductance as a
function of community size. The NCPs of all networks studied by Leskovec et
al. have a characteristic shape: they go downwards till k ∼ 100 vertices, and
then they rise monotonically for larger subgraphs [Fig. 19 (left)]. Alternative
shapes have been recently found for other data sets [19].

For networks characterised by NCPs like the one in Fig. 19 (left) the most
pronounced communities are fairly small in size. Such small clusters are weakly
connected to the rest of the network, often by a single edge (in this case they
are called whiskers), and form the periphery of the graph. Large clusters have
comparatively lower quality and melt into a big core. Large communities can
often be split in parts with lower conductance, so they can be considered con-
glomerates of smaller communities. A schematic picture of the resulting network
structure is shown in Fig. 19 (right). The shape of the NCP is fairly independent
of the specific technique adopted to identify the subgraphs with minimum con-

24This is exactly true when the ratio between the external and the total degree (mixing
parameter) is the same for all community vertices.

35

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 19: Core-periphery structure of real networks. (Left) Schematic shape of the network
community profile (NCP), showing how the minimum conductance of subgraphs of size k
varies with k. This pattern is very common in large social and information networks. The
“best” communities in terms of conductance have a size of about 100 vertices (minimum
of the curve), whereas communities of larger sizes have lower quality. The curve labeled
Rewired network is the NCP of a randomised version of the network, where edges are randomly
rewired by keeping the degree distribution; the one labeled Bag of whiskers gives the minimum
conductance scores of communities composed of disconnected pieces. (Right) Scheme of the
core-periphery structure in large social and information networks associated to the NCP above.
Most vertices are in a central core, where large communities are blended together, whereas
the best communities, which are rather small, are weakly connected to the core. Reprinted
figure with permission from Ref. [18]. c© 2009, by Taylor and Francis.

ductance. The different shapes of the NCPs encountered in data suggest that
core-periphery is not the only model of group structure of real networks [19].

The NCP is a signature that can be used to select generative mechanisms of
community structure. Indeed, many standard models typically yield NCP slop-
ing steadily downwards, at odds with the ones encountered in many social and
information networks. Stochastic block models (Section 2.3) are sufficiently ver-
satile that they can reproduce the NCP shape of Fig. 19 (left), by suitably tuning
the parameters. In the standard LFR benchmark (Section 3.1) the mixing pa-
rameters are tightly concentrated about a value µ by construction, hence all
clusters have approximately conductance µ, yielding a roughly flat NCP25 [19].
However, the model can be easily modified by making µ community-dependent
and a large variety of NCPs are attainable, including the one of Fig. 19 (left).

The main problem of working with NCPs is that they are based on extreme
statistics, as one systematically reports the minimum conductance for a given
cluster size. How representative is this extremal subgraph of the population of
subgraphs with the same size? There may be just a few clusters of a given size
with low conductance. It may happen that many subgraphs have conductance
near the minimum corresponding to their size(s), which would then be represen-
tative. Alternatively most subgraphs might have much larger conductance than

25If all vertices of a subgraph have mixing parameter equal to µ, it can be easily shown that
the conductance of the subgraph is exactly equal to µ.

36

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the minimum but low enough that they can be still considered communities. In
this case one should conclude that communities of that size are not of very high
quality, on average. The above scenarios might lead to different conclusions
about the actual community structure of the system. In general, even if one
could produce a version of the NCP where the trend refers to representative
samples of communities of equal size (whatever that means), the actual values
of the conductance are as important as the shape of the curve. If conductance
is sufficiently low for all cluster sizes, it means that there are good communities
of any size. The fact that small clusters could be of higher quality does not
undermine the role of large clusters. The observation that large clusters consist
of smaller clusters of higher quality may just be evidence of hierarchical struc-
ture in the network, which is a trademark of many complex systems [119]. In
that case high levels of the hierarchy are not less important than low ones, a
priori. In fact, the actual relative importance of communities should not only
come from the sheer value of specific metrics, like conductance, but also from
their statistical significance (Section 4.9).

That notwithstanding, we strongly encourage analyses like the one by
Leskovec et al., as they provide a statistical characterisation of community struc-
ture, in a way that is only weakly algorithm-dependent. One has to define oper-
ationally what a cluster is, but in a simple intuitive way that allows us to draw
conclusions about the structure of the graph. In principle one could do the same
by analysing the clusters delivered by any algorithm, but there would be two
important drawbacks. First, the clusters may not be easy to interpret, as most
clustering algorithms usually do not require a clear-cut definition of community.
Second, one would have to handle a partition of the network in communities,
instead of probing locally the group structure of the network. Therefore, for
a given vertex one would have only one cluster (or a handful, if communities
overlap), while a local exploration allows to analyse a whole population of can-
didate subgraphs, which gives more information. The local subgraphs recovered
this way do not need to be strongly matching the clusters delivered by any
algorithm, but they provide useful signatures that allow to restrict the set of
possible model explanations for the network’s group structure. Such investiga-
tion can be replicated on any model graph to check whether the results match
(e. g., whether the NCPs coincide).

Another approach to infer properties of clusters of real networks is using
annotations. While we have shown that annotated clusters do not necessarily
coincide with structural ones (Section 3.4), general features can be still derived,
provided they are consistently found across different data sets and annotations.
A recent analysis by Yang and Leskovec has questioned the common picture
of networks with overlapping communities [20]. Scholars usually assume that
clusters overlap at their boundaries, hence edge density should be larger in the
non-overlapping parts (Fig. 5). Instead, by analysing the overlaps of annotated
clusters in large social and information networks, Yang and Leskovec found
that the probability that two vertices are connected is larger in the overlaps, and
grows with the number of communities sharing that pair of vertices. In addition,
connector vertices, i. e., vertices with the largest number of neighbours within a

37

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) No overlaps (b) Sparse overlaps

(c) Dense overlaps (d) Adjacency matrix of (c)

Figure 20: Stylised views of community structure. In (a) and (b) we show the conventional
pictures of non-overlapping and overlapping clusters, respectively. Under the network dia-
grams we see the corresponding adjacency matrices. The overlaps have a lower edge density
than the rest of the communities. The analysis by Yang and Leskovec suggests that a more
realistic model could be the one shown in (c, d), where the overlaps are denser than the non-
overlapping parts. Reprinted figure with permission from [20]. c© 2014, by the Association for
Computing Machinery, Inc.

38

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

community, are more likely to be found in the overlaps. These findings suggest
that the overlaps may play an important role in the community structure of
networks. In Fig. 20 we compare the conventional view with the one resulting
from the analysis. The Community-Affiliation Graph Model (AGM) [20] and
the Cluster Affiliation Model for Big Networks (BIGCLAM) [108] are clustering
techniques based on generative models of networks featuring communities with
dense overlaps. The models are based on the principle that vertices are more
likely to be neighbours the more the communities sharing them, in line with the
empirical finding of [20].

Actual overlapping communities exist in many contexts. However, it is un-
clear whether soft clustering is statistically founded. A recent analysis aiming
at identifying suitable stochastic block models to describe real network data
indicate that in many cases hard partitions ought to be preferred, as they give
simpler descriptions of the group structure of the data than soft partitions [120].
This could be due to the fact that the underlying models are based on placing
edges independently of each other, neglecting higher order structures between
vertices, like motifs. By adopting approaches that take into account higher-
order structures things may change and community overlaps might become a
statistically robust feature. The pervasive overlaps found by Yang and Leskovec
in annotated data can be found if higher order effects are considered [44, 45],
without ad hoc hypotheses.

4. Methods

There are many algorithms to detect communities in graphs. They can be
grouped in categories, based on different criteria, like the actual operational
method [11], or the underlying concept of community [12]. In most applica-
tions, however, just a few popular algorithms are employed. In this section we
present a critical analysis of these methods. We show the advantages of know-
ing the number of clusters before-hand and how it is possible to derive robust
solutions from partitions delivered by stochastic clustering techniques. We dis-
cuss approaches to the problem of detecting communities in evolving networks
and how to assess the significance of the detected clustering. We conclude by
suggesting the methods that currently appear to be most promising.

4.1. How many clusters?
In general, the only preliminary information available to any algorithm is the

structure of the network, i. e., which pairs of vertices are connected to each other
and which are not (possibly including weights). Any insight about community
structure is supposed to be given as output of the procedure. Naturally, it
would be valuable to have some information on the unknown division of the
network beforehand, as one could reduce considerably the huge space of possible
solutions, and increase the chance of successfully identifying the communities.

Among all the possible pre-detection inputs, the number q of clusters plays
a prominent role. Many popular classes of algorithms require the specification

39

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

of q before they run, like methods imported from data clustering or parametric
statistical inference approaches (Section 4.5). Other methods are capable to in-
fer q as they can choose among partitions into different numbers of communities.
But even such methods could benefit from a preliminary knowledge of q [121].
In Fig. 21 we report standard accuracy plots of two algorithms on the planted
partition model (Section 3.1) with two clusters of equal size. The algorithms
are modularity optimisation via simulated annealing [49] and the Absolute Potts
Model (APM) [122] (Section 4.7). There are two performance curves for each
method: one comes from the standard application of the method, without con-
straints; the other is obtained by forcing the method to explore only the subset
of partitions with the correct number of clusters q = 2.

0 1 2 3 4 5 6 7 8
Average external degree <kout >

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
co

rr
e
ct

ly
d
e
te

ct
e
d
 v

e
rt

ic
e
s

Mod

Mod+q

APM

APM+q

Figure 21: Knowing the number of clusters beforehand improves community detection. The
diagram shows the performance on the planted partition model of two methods: modularity
optimisation via simulated annealing [49] and the Absolute Potts Model (APM) [122]. Net-
works have 400 vertices, which are grouped in two equal-sized communities. The accuracy
is measured via the fraction of correctly detected vertices (Section 3.2). The horizontal line
indicates the accuracy of random guessing, the dashed vertical line the theoretical detectabil-
ity limit (Section 3.3). For each algorithm we show two curves, referring to the results of the
method in the absence of any information on the number of clusters, and when such infor-
mation is fed into the model as initial input. In both cases, knowing the number of clusters
beforehand leads to a much better performance.

We see that the accuracy improves considerably when q is known. This is
particularly striking in the case of modularity optimisation, which is known to
have a limited resolution, preventing the method from identifying the correct
scale of the communities, even when the latter are very pronounced [123, 110]
(Section 4.6). Knowing q and constraining the optimisation of the measure to
partitions with fixed q, the problem can be alleviated [98].

But how do we know how many clusters there are? Here we briefly dis-
cuss some heuristic techniques, for statistically principled methods we defer the
reader to Section 4.5. It has been recently shown that in the planted partition

40

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

model q can be correctly inferred all the way up to the detectability limit from
the spectra of two matrices: the non-backtracking matrix B [124] and the flow
matrix F [125]. They are 2m × 2m matrices, where m is the number of edges
of the graph. Each edge is considered in both directions, yielding 2m directed
edges and indicated with the notation i→ j, meaning that the edge goes from
vertex i to vertex j. Their elements read

Bi→j,r→s = δis(1− δjr) (15)

and

Fi→j,r→s =
δis(1− δjr)
ki − 1

. (16)

In Eq. (16) ki is the degree of vertex i. So the elements of F are basically
the elements of B, normalised by vertex degrees. This is done to account for
the heterogeneous degree distributions observed in most real networks. Both
matrices have non-zero elements only for each pair of edges forming a directed
path from the first vertex of one edge to the second of the other edge. To do
that, edges have to be incident at one vertex. As a matter of fact, the non-
backtracking matrix B is just the adjacency matrix of the (directed) edges of
the graph.

The name of the matrix B is due to a connection with the properties of non-
backtracking walks. A non-backtracking walk [126] is a path across the edges
of a graph that is allowed to return to a vertex visited previously only after at
least two other vertices have been visited; immediate returns like 1 → 2 → 1
are forbidden. The elements of the k-th power of B yield the number of non-
backtracking walks of length k from a (directed) edge of the graph to another
and the trace of the power matrix the number of closed non-backtracking walks
of length k starting from any given (directed) edge.

A remarkable property of both matrices is that on networks with homoge-
neous groups (i. e., of similar size and internal edge density) most eigenvalues,
which are generally complex, are enclosed by a circle centred at the origin, and
that the number of eigenvalues lying outside of the circle is a good proxy of the
number of communities of the network [124, 125]. For B the circle’s radius is
given by the square root

√
c of the leading eigenvalue c, which may diverge for

networks with heterogeneous degree distributions (e. g., power laws); for F it
equals

√
〈k/(k − 1)〉/〈k〉, which is never greater than 1.

Unfortunately, computing the eigenvalues of the non-backtracking or the flow
matrix is lengthy. Both are 2m × 2m matrices. The adjacency matrix A has
n×n elements, so B and F are larger by a factor of 〈k〉2, where 〈k〉 is the average
degree of the network. An approximate but reliable computation of the spectra
requires a time which scales superlinearly (approximately quadratic) with the
network size n. So the problem is intractable for graphs with number of edges of
the order of millions or higher. Also, if communities have diverse sizes and edge
densities, as it happens in most networks encountered in applications, the bulk
of eigenvalues may not have a circular shape, and it may become problematic
to identify eigenvalues falling outside of the bulk.

41

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Besides, non-backtracking walks must contain cycles, hence trees26 dangling
off the graph do not affect the spectrum of B, which remains unchanged if all
dangling trees are removed. This is a disturbing feature, as tree-like regions
of the graph may play a role in the network’s community structure, and most
methods would find different partitions if trees are kept or removed27. The
spectrum of the flow matrix, instead, changes when dangling trees are kept or
removed [125]. In the limiting case in which the network itself is a tree, all
eigenvalues of B and F are zero and even if there were a community structure
one gets no relevant information.

The number of clusters can also be deduced by studying how the eigenvectors
of graph matrices rotate when the adjacency matrix of the graph is subjected
to random perturbations [128]. On stochastic block models this approach infers
the correct value of q up to a threshold preceding the detectability limit. The
method is also computationally expensive.

In general, if one can identify a set (range) of promising q-values, from pre-
liminary information or via calculations like the ones described above or in Sec-
tion 4.5, it is better to run constrained versions of clustering methods, searching
for solutions only among partitions with those numbers of communities, than
letting the methods discover q by themselves, which may lead to solutions of
lower quality.

4.2. Consensus clustering
Many clustering techniques are stochastic in character and do not deliver a

unique answer. A common scenario is when the desired solution corresponds to
extrema of a cost function, that can only be found via approximation techniques,
with results depending on random seeds and on the choice of initial conditions.
Techniques not based on optimisation sometimes have the same feature, when
tie-break rules are adopted in order to choose among multiple equivalent options
encountered along the calculation.

What to do with all these partitions? Sometimes there are objective criteria
to sort out a specific partition and discard all others. For instance, in algorithms
based on optimisation, one could pick the solution yielding the largest (smallest)
value of the function to optimise. For other techniques there is no clear-cut
criterion.

A promising approach is combining the information of the different outputs
into a new partition. Consensus clustering [81, 129, 130] is based on this idea.
The goal is searching for a consensus partition, that is better fitting than the
input partitions. Consensus clustering is a difficult combinatorial optimisation
problem. An alternative greedy strategy [81] relies on the consensus matrix,
which is a matrix based on the co-occurrence of vertices in communities of the

26We remind that trees are connected acyclic graphs.
27Singh and Humphries showed that the problem can be solved via reluctant backtracking

walks, in which the walker has a small but non-zero probability of returning to the vertex
immediately [127].

42

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

input partitions (Fig. 22). The consensus matrix is used as an input for the
graph clustering technique adopted, leading to a new set of partitions, which
produce a new consensus matrix, etc., until a unique partition is finally reached,
which is not changed by further iterations. The steps of the procedure are listed

Original Graph Consensus Matrix

Dij = 1

Dij = 3/4

Dij = 2/4

Dij = 1/4

(I)

(II)

(III)

(IV)

Figure 22: Consensus clustering in networks. A simple graph has a natural partition in two
communities [squares and circles on diagrams (I) and (II)]. The combination of (I), (II), (III)
and (IV) yields the weighted consensus matrix illustrated on the right. The thickness of each
edge is proportional to its weight. In the consensus matrix the community structure of the
original network is more visible: the two communities have become cliques, with “heavy”
edges, whereas inter-community edges are rather weak. This improvement is obtained despite
the presence of two inaccurate partitions in three clusters (III and IV). Reprinted figure with
permission from [75]. c© 2012, by the Nature Publishing Group.

below. The starting point is a network G with n vertices and a clustering
algorithm A.

1. Apply A on G nP times, yielding nP partitions.
2. Compute the consensus matrix D: Dij is the number of partitions in which

vertices i and j of G are assigned to the same community, divided by nP .
3. All entries of D below a chosen threshold τ are set to zero28.
4. Apply A on D nP times, yielding nP partitions.

28Without thresholding the consensus matrix would quickly turn into a dense matrix, ren-
dering the application of clustering algorithms computationally expensive. However, the
method does not strictly require thresholding, and if the network is not too large one can
skip step 3 and use the full matrix all along [131].

43

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5. If the partitions are all equal, stop29. Otherwise go back to 2.

Since the consensus matrix is in general weighted, the algorithm A must be able
to handle weighted networks, even if the graph at study is binary. Fortunately
many popular algorithms have natural extensions to the weighted case.

The integration of consensus clustering with popular existing techniques
leads to more accurate partitions than those delivered by the methods alone
on LFR benchmark graphs [75]. Interestingly, this holds even for methods
whose direct application gives poor results on the same graphs, like modularity
optimisation (Section 4.6). The variability of the partitions, rather than being
a problem, becomes a factor of performance enhancement. The outcome of the
procedure depends on the choice of the threshold parameter τ and the number
of input partitions nP , which can be selected by testing the performance on
benchmark networks [75]. Consensus clustering is also a promising technique to
detect communities in evolving networks (Section 4.8).

4.3. Spectral methods
Spectral graph clustering is an approach to detect clusters using spectral

properties of the graph [132, 11]. The eigenvalue spectrum of several graph
matrices (e. g., the adjacency matrix, the Laplacian, etc.) typically consists
of a dense bulk of closely spaced eigenvalues, plus some outlying eigenvalues
separated from the bulk by a significant gap. The eigenvectors corresponding
to these outliers contain information about the large-scale structure of the net-
work, like community structure30. Spectral clustering consists in generating a
projection of the graph vertices in a metric space, by using the entries of those
eigenvectors as coordinates. The i-th entries of the eigenvectors are the coor-
dinates of vertex i in a k-dimensional Euclidean space, where k is the number
of eigenvectors used. The resulting points can be grouped in clusters by using
standard partitional clustering techniques like k-means clustering [133].

Spectral clustering is not always reliable, however. When the network is very
sparse (Section 2.3) the separation between the eigenvalues of the community-
related eigenvectors and the bulk is not sharp. Eigenvectors corresponding
to eigenvalues outside of the bulk may be correlated to high-degree vertices
(hubs), instead of group structure. Likewise, community-related eigenvectors
can be associated to eigenvalues ending up inside the bulk. In these situations,
selecting eigenvectors based on whether their associated eigenvalues are inside
or outside the bulk yields a heterogeneous set, containing information both on
communities and on other features (e. g., hubs). Using those eigenvectors for
the spectral clustering procedure renders community detection more difficult,
sometimes impossible. Unfortunately, many of the networks encountered in
practical studies are very sparse and can lead to this type of problems.

29The consensus matrix is block-diagonal in this case.
30Typically each such eigenvector is localised, in that its entries are markedly different from

zero in correspondence of the vertices of a community, while the other entries are close to
zero.

44

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Indeed on sparse networks constructed with the planted partition model
spectral methods relying on standard matrices [adjacency matrix, Laplacian,
modularity matrix [97], etc.] fail before the theoretical detectability limit (Sec-
tion 3.3) [124]. The non-backtracking matrix B of Eq. (15) was introduced
to address this problem [124]. On the planted partition model the associated
eigenvalues of the community-related eigenvectors of B are separated from the
bulk until the theoretical detectability limit, so spectral methods using the top
eigenvectors of B are capable to find communities as long as they are detectable,
modulo the caveats we expressed in Section 4.1.

4.4. Overlapping communities: Vertex or Edge clustering?
Soft clustering, where communities may overlap, is an even harder problem

than hard clustering, where there is no community overlap. The possibility
of having multiple memberships for the vertices introduces additional degrees
of freedom in the problem, causing a huge expansion of the space of possible
solutions. It has been pointed out that overlapping communities, especially in
social networks, reflect different types of associations between people [134, 94].
Two actors could be co-workers, friends, relatives, sport mates, etc.. Actor A
could be a work colleague of B and a friend of C, so she would sit in the overlap
between the community of colleagues of B and the community of friends of C.
For this reason, it has been suggested that an effective way to recover overlapping
clusters is to group edges, rather than vertices. In the example above, the edges
connecting A with B and A with C would be placed in different groups, and
since they both have A as endpoint, the latter turns out to be an overlapping
vertex.

Moreover, edge clustering is claimed to have the additional advantage of
reconciling soft clustering with hierarchical community structure [94]. If there
is hierarchy, communities are nested within each other as many times as there
are hierarchical levels. Hierarchical structure is often represented via dendro-
grams31, with the network being divided in clusters, which are in turn divided
in clusters, and so on until one ends up with singleton clusters, consisting of one
vertex each. But this can be done only if communities do not share vertices.
Overlapping vertices should be assigned to multiple clusters of lower hierarchical
levels, yielding multiple copies of them in the dendrogram. Instead, one could
build a dendrogram displaying edge communities, where each edge is assigned to
a single cluster, but clusters can still overlap because edges in different clusters
may share one endpoint [94].

31A dendrogram, or hierarchical tree, is a tree diagram used to represent hierarchical parti-
tions. At the bottom there are as many nodes as there are vertices in the graph, representing
the singleton clusters. At the top there is one node (root), standing for the partition grouping
all vertices in a single cluster. Horizontal lines indicate mergers of a pair of clusters or, equiv-
alently, splits of one cluster. Each vertex of the tree identifies one cluster, whose elements can
be read by following all bifurcations starting from the vertex all the way down to the leaves
of the tree.

45

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Some remarks are in order. First, there may still be overlapping commu-
nities even if there were a single type of association between the vertices. For
instance, if we keep only the friendship relationships within a given population
of actors, there are many social circles and there could be active actors with
multiple ties within two circles, or more. Second, in the traditional picture of
networks with community structure (Fig. 4), the edges connecting two different
groups may be assigned to one of the communities they join or they could be
put together in a separate group. Either way, they would signal an overlap
between the communities, which is artificial. This happens even in the extreme
case of a single edge connecting vertices A and B of two groups, as that edge
will have to be assigned to a group, which inevitably forces A and B into a
common cluster. Third, if we rely on the picture emerging from the analysis by
Yang and Leskovec [20] (Section 3.5) overlaps between clusters could be much
denser than we expect, hence not only vertices but also edges may be shared
among different groups, and edge dendrograms would have the same problem
as classic vertex dendrograms32. Fourth, the computational complexity of the
calculation can rise substantially, as in networks of interest there are typically
many more edges than vertices. Finally, there is nothing revealing that there is
a conceptual or algorithmic advantage in grouping edges versus vertices, other
than works showing that a specific edge clustering technique outperforms some
vertex clustering techniques on a specific set of networks.

To shed some light on the situation, we performed the following test. We
took some network data sets with annotated vertices, giving an indication about
what the communities of those networks could be33. For each network G we
derived the corresponding line graph L(G), which is the graph whose vertices
are the edges of G, while edges are set between pairs of vertices of L(G) whose
corresponding edges in G are adjacent at one of their endpoints. Vertex com-
munities of L(G) are then edge communities of the original network G. The
question is whether by working on L(G) the detection improves or not. We
searched for overlapping communities with OSLOM [100]. We applied OSLOM
on the original graphs and on their line graphs. The covers found on the line
graphs were turned into covers of the vertices of G, by replacing each vertex of
L(G) with the pair of vertices of the corresponding edge of G.

The results can be seen in Fig. 23, showing how similar the covers found
on the original networks and on the line graphs are with respect to the cov-
ers of annotated vertices. Neither approach is very accurate, as expected (see
Section 3.4 and Fig. 16), but vertex communities show a greater association to
the annotated clusters than edge communities, except in a few instances where
the similarity is very low. Analyses carried out on LFR benchmark graphs (not
shown) lead to the same conclusion. We stress that traditional line graphs have

32In this case, if we used edge clustering, each edge would be placed in one cluster only.
However, when one turns edge communities into vertex communities, multiple relationships
can be still recovered [94].

33We have seen in Section 3.4 that metadata are not necessarily correlated with topological
clusters. We used data sets for which there is some correlation.

46

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 23: Comparison between edge communities and vertex communities. The diagram
shows the similarity between the covers of annotated vertices of five social networks and the
topological covers found by OSLOM on them (left bar of each pair) and on their line graphs
(right bar). The networks represent FaceBook friendships between students of US universi-
ties [135]. There are several annotations for each student, we selected those which are more
closely related to topological groups: year of study and dormitory. The similarity was com-
puted by using the normalised mutual information (NMI), in the version for covers proposed
by Lancichinetti, Fortunato and Kertész [90]. Vertex communities detected in the original
graphs are overall better correlated with the annotated clusters than edge communities.

the problem that edges adjacent to a hub vertex in the original graph turn
into vertices who are all connected to each other, forming giant cliques, which
might dominate the structure of the line graph, misleading clustering techniques.
The procedure can be refined by introducing weights for the edges of the line
graphs, that can be computed in various ways, e. g., based on the similarity of
the neighbourhoods of adjacent edges in the original network [94].

Still we believe that our tests provide some evidence that edge clustering
is no better than vertex clustering, in general. The superiority of algorithms
based on either approach should be assessed a posteriori, case by case, and the
answer may depend on the specific data sets under investigation.

4.5. Methods based on statistical inference
Statistical inference provides a powerful set of tools to tackle the problem

of community detection. The standard approach is to fit a generative network
model on the data [136, 137, 138, 62, 65, 63]. The stochastic block model
(SBM) is by far the most used generative model of graphs with communities
(see Section 2.3 and references therein). We have seen that it can describe
other types of group structure, like disassortative and core-periphery structure
(Fig. 8). The unnormalised maximum log-likelihood that a given partition g in
q groups of the network G is reproduced by the standard SBM reads [62]

LS(G|g) =
q∑

r,s=1

ers log
(
ers

nrns

)
, (17)

47

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

where ers is the number of edges running from group r to group s, nr (ns) the
number of vertices in r (s) and the sum runs over all pairs of groups (including
when r = s). This version of the model, however, does not account for the degree
heterogeneity of most real networks, so it does a poor job at describing the group
structure of many of them. Therefore, Karrer and Newman proposed the degree-
corrected stochastic block model (DCSBM) [62], in which the degrees of the
vertices are kept constant, on average, via the introduction of additional suitable
parameters34. The unnormalised maximum log-likelihood for the DCSBM is

LDC(G|g) =
q∑

r,s=1

ers log
(
ers

eres

)
, (18)

where er (es) is the sum of the degrees of the vertices in r (s).
The most important drawback of this type of approach is the need to specify

the number q of groups beforehand, which is usually unknown for real networks.
This is because a straight maximisation of the likelihoods of Eqs. (17) and (18)
over the whole set of possible solutions yields the trivial partition in which each
vertex is a cluster (overfitting). In Section 4.1 we have seen ways to extract q
from spectral properties of the graph. But it would be better to have statistically
principled methods, to be consistent with the approach used to perform the
inference.

A possibility is model selection, for instance by choosing the model that
best compresses the data [139, 140]. The extent of the compression can be
estimated via the total amount of information necessary to describe the data,
which includes not only the fitted model, but also the information necessary to
describe the model itself, which is a growing function of the number of blocks
q [141]. This quantity, that we indicate with Σ, is called the description length.
Minimising the description length naturally avoids overfitting. Partitions with
large q are associated to “heavy” models in terms of their information content,
and do not represent the best compression. On the other hand, partitions with
low q have high information content, even if the model itself is not loaded with
parameters. Hence the minimum description length corresponds to a non-trivial
number of groups and it makes sense to minimise Σ to infer the block structure
of the graph.

It turns out that this approach has a limited resolution on the standard
SBM: the maximum number of blocks that can be resolved scales as

√
n for

a fixed average degree 〈k〉, where n is the number of vertices of the network.
This means that the minimum size of detectable blocks scales as

√
n, just as

it happens for modularity maximisation (Section 4.6). A more refined method
of model selection, consisting in a nested hierarchy of stochastic block models,
where an upper level of the hierarchy serves as prior information to a lower

34The authors were inspired by modularity maximisation, which gives far better results when
the null model consists of rewiring edges by preserving the degree sequence of the network
(on average), than by preserving only the total number of edges.

48

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

level, brings the resolution limit down to log n, enabling the detection of much
smaller blocks [63].

Other techniques to extract the number of groups have been proposed [142,
143, 144, 145, 146].

4.6. Methods based on optimisation
Optimisation techniques have received the greatest attention in the litera-

ture. The goal is finding an extremum, usually the maximum, of a function
indicating the quality of a clustering, over the space of all possible clusterings.
Quality functions can express the goodness of a partition or of single clusters.

The most popular quality function is the modularity by Newman and Gir-
van [40]. It estimates the quality of a partition of the network in communities.
The general expression of modularity is

Q =
1

2m

∑

ij

(Aij − Pij) δ(Ci, Cj), (19)

where m is the number of edges of the network, the sum runs over all pairs of
vertices i and j, Aij is the element of the adjacency matrix, Pij is the null model
term and in the Kronecker delta at the end Ci and Cj indicate the communities
of i and j. The term Pij indicates the average adjacency matrix of an ensemble
of networks, derived by randomising the original graph, such to preserve some
of its features. Therefore, modularity measures how different the original graph
is from such randomisations. The concept was inspired by the idea that by ran-
domising the network structure communities are destroyed, so the comparison
between the actual structure and its randomisation reveals how non-random the
group structure is. A standard choice is Pij = kikj/2m, ki and kj being the
degrees of i and j, and corresponds to the expected number of edges joining
vertices i and j if the edges of the network were rewired such to preserve the
degree of all vertices, on average. This yields the classic form of modularity

Q =
1

2m

∑

ij

(
Aij −

kikj

2m

)
δ(Ci, Cj). (20)

Other choices of the null model term allow us to incorporate specific features of
network structure, like bipartiteness [147], correlations [148], signed edges [149],
space embeddedness [150], etc.. The extension of Eq. (20) and of its variants to
the case of weighted networks is straightforward [151]. For simplicity we focus
on unweighted graphs here, but the issues we discuss are general.

Because of the delta, the only contributions to the sum come from vertex
pairs belonging to the same cluster, so we can group these contributions together

49

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

and rewrite the sum over the vertex pairs as a sum over the clusters35

Q =
∑

C

[lC
m
−
(
kC

2m

)2]
. (21)

Here lC the total number of edges joining vertices of community C and kC

the sum of the degrees of the vertices of C (Section 2.1). The first term of
each summand in Eq. (21) is the fraction of edges of the graph falling within
community C, whereas the second term is the expected fraction of edges that
would fall inside C if the graph were taken from the ensemble of random graphs
preserving the degree of each vertex of the original network, on average. The
difference in the summand would then indicate how “non-random” subgraph C
is. The larger the difference the more confident we can be that the placement
of edges within C is not random (Fig. 24). Large values of Q are then supposed
to indicate partitions with high quality.

Modularity maximisation is NP-hard [152]. Therefore one can realistically
hope to find only decent approximations of the modularity maximum and a wide
variety of approaches has been proposed. Due to its simplicity, the prestige
of its inventors and early results on the benchmark of Girvan and Newman
(Section 3.1) and on small real benchmark networks, like Zachary karate club
network (Fig. 15), modularity has become the best known and most studied
object in network clustering. In fact, soon after its introduction, it seemed to
represent the essence of the problem, and the key to its solution.

However, it became quickly clear that the measure is not as good as it looks.
For one thing, there are high-modularity partitions even in random graphs with-
out groups [153]. This seems counterintuitive, given that modularity has been
designed to capture the difference between random and non-random structure.
Modularity is a sort of distance between the actual network and an average over
random networks, ignoring altogether the distribution of the relevant commu-
nity variables, like the fractions of edges within the clusters, over all realisations
generated by the configuration model. If the distribution is not strongly peaked,
the values of the community variables measured on the original graph may be
found in a large number of randomised networks, even though the averages
look far away from them. In other words, we should pay more attention to the
significance of the maximum modularity value Qmax, than to the value itself.
How can we estimate the significance of Qmax? A natural way is maximising Q
over all partitions of every randomised graph. One then computes the average
〈Qrand〉 and the standard deviation σrand

Q of the resulting values. The statistical
significance of Qmax is indicated by the distance of Qmax from the null model
average 〈Qrand〉 in units of the standard deviation σrand

Q , i. e., by the z-score

z =
Qmax − 〈Qrand〉

σrand
Q

. (22)

35A partition quality function that can be formulated as a sum over the clusters is called
additive.

50

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 24: Modularity by Newman and Girvan. The network on the left has a visible commu-
nity structure, with two clusters, whose vertices are highlighted in blue and red, respectively.
Modularity measures how different the clusters of the partition are from the corresponding
clusters of the ensemble of random graphs obtained by randomly joining the vertices, such
to preserve their degrees, on average. The picture on the right shows the result of one such
randomisation. The internal edges are coloured in blue and red. They are just a handful
compared to the number of edges joining the same groups of vertices in the original network
(blue and red lines in the left picture), while there are now many more edges running between
the subgraphs (black lines): the randomisation has destroyed the community structure of the
graph, as expected. The value of modularity for the bipartition on the left is expected to be
large.

If z � 1, Qmax indicates strong community structure. This approach has
problems, though. The main drawback is that the distribution of Qrand over
the ensemble of null model random graphs, though peaked, is not Gaussian.
Therefore, one cannot attribute to the values of the z-score the significance cor-
responding to a Gaussian distribution, and one ought to compute the statistical
significance for the correct distribution. Also, the z-score depends on the net-
work size, so the same values may indicate different levels of significance for
networks differing considerably in size.

Next, it is not true that the modularity maximum always corresponds to
the most pronounced community structure of a network. In Fig. 25 we show
the well-known example of the ring of cliques [123]. The network consists of
16 cliques with four vertices each. Every clique has two neighbouring cliques,
connected to it via a single edge. Intuition suggests that the graph has a natural
community structure, with 16 communities, each corresponding to one clique.
Indeed, the Q-value of this partition is Q1 = 89/112 ≈ 0.79464..., pretty close to
1, which is the upper bound of modularity. However, there are partitions with
larger values, like the partition in 8 clusters indicated by the dashed contours,

51

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 25: Resolution limit of modularity optimisation. The network in the figure is made of
cliques of four vertices, arranged such to form a ring-like structure, with each clique joined
to two other cliques by a single edge. The näıve expectation is that modularity would reach
its maximum for the partition whose communities are the cliques, which appears to be the
natural partition of the network. However, it turns out that there are partitions with higher
modularity, whose clusters are combinations of cliques, like the partition indicated by the
dashed contours.

whose modularity is Q2 = 90/112 ≈ 0.80357 > Q1.
This is due to the fact that Q has a preferential scale for the communities,

deriving from the underlying null model and revealed by its explicit dependence
on the number of edges m of the network [Eq. (21)]. According to the configura-
tion model, the expected number lAB of edges running between two subgraphs
A and B with total degree kA and kB , respectively, is approximately kAkB/2m.
Consequently, if kA and kB are of the order of

√
m or smaller, lAB could become

smaller than 1. This means that in many randomisations of the original graph
G, subgraphs A and B are disconnected and even a single edge joining them in
G signals a non-random association. In these cases, modularity is larger when A
and B are put together than when they are treated as distinct communities, as
in the example of Fig. 25. The modularity scale depends only on the number of
edges m, and it may have nothing to do with the size of the actual communities
of the network. The resolution limit questions the usefulness of modularity in
practical applications [123].

Many attempts have been made to mitigate the consequences of this dis-
turbing feature. One approach consists in introducing a resolution parameter

52

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

γ into modularity’s formula [154, 155]. By tuning γ it is possible to arbitrarily
vary the resolution scale of the method, going from very large to very small
communities. We shall discuss such multi-resolution approaches in Section 4.7.
Here we emphasize that multi-resolution versions of modularity do not provide
a reliable solution to the problem. This is because modularity maximisation
has an additional bias: large subgraphs are usually split in smaller pieces [156].
This problem has the same source as the resolution limit, namely the choice of
the null model. Since modularity has a preferential scale for the communities,
when a subgraph is too large it is convenient to break it down, to increase the
modularity of the partition. So, when there is no characteristic scale for the
communities, like when there is a broad cluster size distribution, large commu-
nities are likely to be broken, and small communities are likely to be merged.
Since multi-resolution versions of modularity can only shift the resolution scale
of the measure back and forth, they are unable to correct both effects at the
same time36 [156]. In addition, tuning the resolution parameter in the search
for good partitions is usually computationally very demanding, as in many cases
the optimisation procedure has to be repeated over and over for all γ-values one
desires to investigate.

We stress that the resolution limit is a feature of modularity itself, not of
the specific way adopted to maximise it. Therefore, there is no magic heuristic
that can circumvent this issue. The Louvain method [99] has been held as one
such magic heuristic. The method performs a greedy optimisation of Q in a
hierarchical manner, by assigning each vertex to the community of their neigh-
bours yielding the largest Q, and creating a smaller weighted super-network
whose vertices are the clusters found previously. Partitions found on this super-
network hence consist of clusters including the ones found earlier, and represent
a higher hierarchical level of clustering. The procedure is repeated until one
reaches the level with largest modularity. In the comparative analysis of clus-
tering algorithms performed by Lancichinetti and Fortunato on the LFR bench-
mark [68], the Louvain algorithm was the second best-performing method, after
Infomap [42]. This has given the impression that the peculiar strategy of the
method solves the resolution problems above, which is not true. The reason
why the performance is so good is that Lancichinetti and Fortunato adopted
the lowest partition of the hierarchy, the one with the smallest clusters [158].
By using the partition with highest modularity performance degrades consid-
erably (Fig. 26), as expected. As suggested by the developers of the algorithm
themselves, using the lowest level helps avoiding unnatural community mergers;
as an example, they showed that the natural partition of the ring of cliques
(Fig. 25) can be recovered this way. However, the bottom level has lower mod-
ularity than the top level, so we face a sort of contradiction, in that users are

36More promising results can be obtained with hierarchical multi-level methods, in which
multi-resolution modularity is applied iteratively on every cluster with independent resolution
parameters, so that a coexistence of very diverse scales is permitted [157]. Such approaches,
however, deviate from the original idea of modularity maximisation, which is based on a global
null model valid for the network as a whole.

53

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

N=1000, S N=1000, B

N=5000, S N=5000, B

Figure 26: Performance of the Louvain method. The panels indicate the accuracy of the
algorithm to detect the planted partition of the LFR benchmark as a function of the mixing
parameter, for different choices of the network size (1000 and 5000 vertices) and of the range of
community sizes (label S indicates that communities have between 10 and 50 vertices, label B
that they have between 20 and 100 vertices). Accuracy is calculated via the normalised mutual
information (NMI), in the version by Lancichinetti, Fortunato and Kertész [90]. Results are
heavily depending on the hierarchical level one chooses at the end of the procedure. When
one picks the top level (diamonds), which is the one with largest modularity, the accuracy is
poor, as expected, especially when communities are smaller. When one goes for the bottom
level (squares), which has lower modularity and smaller clusters than the top level partition,
there is a far better agreement with the planted partition and the performance gets closer to
that of Infomap (circles). The squares follow the performance curves used in the comparative
analysis by Lancichinetti and Fortunato [68]. Courtesy from Andrea Lancichinetti.

encouraged to use suboptimal partitions, even though one assumes that the
best clustering corresponds to the highest value of the quality function, which
is what the method is supposed to find. There is no guarantee that the bottom
level yields the most meaningful solution. On the other hand, users have the
option of choosing among a few partitions and a slightly higher chance to find
what they search for.

Moreover, the modularity landscape is characterised by a larger than expo-
nential37 number of distinct partitions, whose modularity values are very close
to the global maximum [110]. This explains why many heuristic methods of
modularity maximisation are able to come very close to the global maximum
of Q, but it also implies that the global maximum is basically impossible to

37Exponential in the number n of graph vertices.

54

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

find. In addition, high-Q partitions are not necessarily similar to each other,
despite the proximity of their modularity scores. The optimal structural parti-
tion, which may not correspond to the modularity maximum due to problems
exposed above, may however have a large Q-value. Therefore the optimal parti-
tion is basically indistinguishable from a huge number of high-modularity parti-
tions, which are in general structurally dissimilar from it. The large structural
diversity of high-modularity partitions implies that one cannot rely on any of
them, at least in principle. Reliable solutions could be singled out when the
domain user imposes some constraints on the clustering of the system, or when
she expects it to have specific features. In the absence of additional information
or expectations, consensus clustering could be used to derive more robust par-
titions. Indeed, it has been shown that the consensus of many high-modularity
partitions, combined with a hierarchical approach, could help to solve reso-
lution problems and to avoid to find communities in random graphs without
groups [159].

As of today, modularity optimisation is still the most used clustering tech-
nique in applications. This may appear odd, given the serious issues of the
method and the fact that nowadays more powerful techniques are available,
like a posteriori stochastic block modelling (Section 4.10). Indeed Newman has
proven that optimising modularity is equivalent to maximising the likelihood
that the planted partition model reproduces the network [160]. But the planted
partition model is a very specific case of the general stochastic block model, in
that the intra-group edge probabilities are all equal to the same value pin and
the inter-group edge probabilities are all equal to the same value pout. There is
no reason to limit the inference to this specific case, when one could use the full
model.

Optimising partition quality functions may lead to resolution problems, just
like it happens for modularity38. Instead, one could try to optimise cluster qual-
ity functions. One starts with some function q(C) expressing how “community-
like” a subgraph is and with a seed vertex s. The goal is to build a cluster Cs

including s such that q(Cs) is maximum39. This is usually done by exploring
the neighbours of the temporary subgraph Cs, starting from the neighbours of
s when Cs includes only s. The neighbouring vertex whose inclusion yields the
largest increase of q is added to the subgraph. When a new vertex is included,
the structure of the subgraph is altered and the other vertices can be examined
again, as it might be advantageous to knock some of them out. The process

38Traag and Van Dooren have shown that one can design additive quality functions such
that the best partition of the network induces the optimal partition for any subgraph S, i. e.,
the partition found when the detection is performed only on S [161]. This is possible when
the coefficients of the summand corresponding to each community does not depend on global
properties of the graph. Even those functions have their own preferential community scale,
though.

39For some functions the optimum corresponds to their minimum, not the maximum. This
occurs when they are related to variables that are supposed to be small when communities
are good, like the density of edges between clusters.

55

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

stops when the quality q(Cs) cannot be increased anymore via the inclusion or
the exclusion of vertices.

The optimisation of cluster quality functions offers a number of advantages
over the optimisation of partition quality functions. First, it is consistent with
the idea that communities are local structures, which are sensitive to what
happens in their neighbourhood, but are fairly unaffected by the rest of the
network: the structure of a social circle in Europe is hardly influenced by the
dynamics of social circles in Australia, though they are parts of the same global
social network of humans. Consequently, if a network undergoes structural
changes in one region, community structure is altered and is to be recovered
only in that region, while the clustering of the rest of the network remains the
same. By optimising partition quality functions, instead, any little change may
have an effect on every community of the graph. Second, since cluster quality
functions do not embody any global scale, severe resolution problems are usually
avoided40. Moreover, one can investigate only parts of the network, which is
particularly valuable when the graph is large and a global analysis would be out
of reach, computationally. The local exploration of the graph allows to reach
vertices already assigned to clusters, so overlaps can be naturally detected. In
the last years several algorithms based on the optimisation of cluster quality
functions have been designed [162, 163, 90, 100, 164].

4.7. Methods based on dynamics
Communities can also be identified by running dynamical processes on the

network, like diffusion [165, 166, 167, 168, 169, 42, 19], spin dynamics [154, 122,
161, 170], synchronisation [171, 172], etc.. In this section we focus on diffusion
and spin dynamics, that inform most approaches.

Random walk dynamics is by far the most exploited in community detection.
If communities have high internal edge density and are well-separated from each
other, random walkers would be trapped in each cluster for quite some time,
before finding a way out and migrating to another cluster. We briefly discuss two
broad classes of algorithms: methods based on vertex similarity and methods
based on the map equation.

The first class of techniques consists in using random walk dynamics to es-
timate the similarity between pairs of vertices. For instance, in the popular
method Walktrap the similarity between vertices i and j is given by the proba-
bility that a random walker moves from i to j in a fixed number of steps t [169].
The parameter t has to be large enough, to allow for the exploration of a signifi-
cant portion of the graph, but not too big, as otherwise one would approach the
stationary limit in which transition probabilities trivially depend on the degrees
of the vertices. If there is a pronounced community structure, pairs of vertices
in the same cluster are much more easily reachable by a random walk than
pairs of vertices in different clusters, so the vertex similarity is expected to be

40If one defines the quality of the cluster with respect to the rest of the network, global
scales may still slip into the function.

56

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

considerably higher within groups than between groups41. In that case, clusters
can be readily identified via standard hierarchical or partitional clustering tech-
niques [173, 174]. This class of methods have a high computational complexity,
higher than quadratic in the number n of vertices (on sparse graphs), so they
cannot be used on large networks. Besides, they are often parameter-dependent.

The map equation stems from a seminal paper by Rosvall and Bergstrom [42],
who asked what is the most parsimonious way to describe an infinitely long ran-
dom walk taking place on the graph. The information content of any description
is given by the total number of bits required to indicate the various stages of
the process. The simplest description is obtained by listing sequentially all ver-
tices reached by the random walker, each vertex being described by a unique
codeword. However, if the network has a community structure, there may be
a more compact description, which follows the principle of geographic maps,
where there are multiple cities and streets with the same name across regions.
Vertex codewords could be recycled among different communities, which play
the role of regions/states, and vertices with identical name are distinguished by
specifying the community they belong to. If clusters are well separated from
each other, transitions between clusters are infrequent, so it is advantageous
to use the map, with the communities as regions, because in the description
of the random walk the codewords of the clusters will not be repeated many
times, while there is a considerable saving in the description due to the limited
length of the codewords used to denote the vertices (Fig. 27). The map equation
yields the description length of an infinite random walk consists of two terms,
expressing the Shannon entropy of the walk within and between clusters. The
best partition is the one yielding the minimum description length.

This method, called Infomap, can be applied to weighted networks, both
undirected and directed. In the latter case, random walk dynamics is modified
by introducing a teleportation probability, as in the PageRank process [175], to
ensure that a non-trivial stationary state is reached. It has been successively ex-
tended to the detection of hierarchical community structure [176] and of overlap-
ping clusters [177]. In classic random walks the probability of reaching a vertex
only depends on where the walker stands, not on where it is coming from. The
map equation has also been extended to random walks whose transition prob-
abilities depend on earlier steps too (higher-order Markov dynamics) [44, 45],
retaining memory of the (recent) past. Applications show that in this way one
can recover overlapping communities more easily than by using standard first-
order random walk dynamics, especially pervasive overlaps, which are usually

41A related method is the Markov Cluster Algorithm (MCL) [168], which consists of iterating
two operations: raising to a power the transfer matrix T of the graph, whose element Tij

equals the probability that a random walker, sitting at j, moves to i; raising the elements of
the resulting matrix to a power, such that the larger values are enhanced with respect to the
smaller ones, many of which are set to zero to lighten the calculations, while the remaining
ones are normalised by dividing them by the sum of elements of their column, yielding a
new transfer matrix. The process eventually reaches a stationary state, corresponding to the
matrix of a disconnected graph, whose connected components are the sought clusters.

57

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A B C D

1111100

01011

1100

10000

0110

11011

0011

10111

1001

0100

111111
11010

10110

10101

11110

00011

0010

0000

1111101

10100

01010

1110

10001

0111

00010

1111100 1100 0110 11011 10000 11011 0110 0011 10111 1001 0011

1001 0100 0111 10001 1110 0111 10001 0111 1110 0000 1110 10001

0111 1110 0111 1110 1111101 1110 0000 10100 0000 1110 10001 0111

0100 10110 11010 10111 1001 0100 1001 10111 1001 0100 1001 0100

0011 0100 0011 0110 11011 0110 0011 0100 1001 10111 0011 0100

0111 10001 1110 10001 0111 0100 10110 111111 10110 10101 11110

00011

0000

001

11

100

01

101

110

011

00

111

1010
100

010

00

10

011

11

011

0010

010

1101

10

000

111

1100

111 0000 11 01 101 100 101 01 0001 0 110 011 00 110 00 111 1011 10

111 000 10 111 000 111 10 011 10 000 111 10 111 10 0010 10 011 010

011 10 000 111 0001 0 111 010 100 011 00 111 00 011 00 111 00 111

110 111 110 1011 111 01 101 01 0001 0 110 111 00 011 110 111 1011

10 111 000 10 000 111 0001 0 111 010 1010 010 1011 110 00 10 011

110 00010 0001

0 1011111 0001

110

10

0

111

111 0000 11 01 101 100 101 01 0001 0 110 011 00 110 00 111 1011 10

111 000 10 111 000 111 10 011 10 000 111 10 111 10 0010 10 011 010

011 10 000 111 0001 0 111 010 100 011 00 111 00 011 00 111 00 111

110 111 110 1011 111 01 101 01 0001 0 110 111 00 011 110 111 1011

10 111 000 10 000 111 0001 0 111 010 1010 010 1011 110 00 10 011

Figure 27: Infomap. The random walk in (A) can be described as a sequence of the vertices,
each labeled with unique codewords (B), or by dividing the graph in regions and using unique
codewords only for the vertices of the same region (C). This way the same codeword can
be used for multiple vertices, at the cost of indicating when the random walker leaves a
region to enter a new one, as in that case one has to specify the codeword of the new region,
to unambiguously locate the walker. The network has four communities [indicated by the
colours in (C)], and in this case the map-like description of (C) is more parsimonious than
the one in (B). This is shown by looking at the actual code needed in either case (bottom of
the figures), which is clearly shorter for (C). In (D) the transitions between the clusters are
highlighted. Reprinted figure with permission from [42]. c© 2008, by the National Academy
of Sciences, USA.

out of reach for most clustering algorithms (Section 3.5).
Infomap and its variants usually return different partitions than structure-

based methods (e. g., modularity optimisation). This is because they are based
on flows running across the system, as opposed to structural variables like num-
ber of edges, vertex degrees, etc.. The difference is particularly striking on
directed graphs [42], where edge directions heavily constrain the possible flows.
Structural features obviously play a major role on the dynamics of processes
running on graphs, but dynamics cannot be generally reduced to an interplay of
structural elements, at least not simple ones like, e. g., vertex degrees. Some-
times structural and dynamic approaches are equivalent, though. For instance,
Newman-Girvan’s modularity is a special case of a general quality function,
called stability, expressing the persistence of a random walk within communi-
ties [43, 178].

The methods we have discussed so far are global, in that they aim at find-
ing the whole community structure of the system. However, random walks
along with other dynamical processes can be used as well to explore the net-
work locally, starting from seed vertices [19]. Good communities correspond
to bottlenecks of the dynamics and depend on the choice of the seed vertices,
the time scale of the dynamics, etc.. Such local perspective enables to identify
community overlaps in a natural way, due to the possibility of reaching vertices
multiple times, even if they are already classified.

Spin dynamics [179] are also regularly used in network clustering. The first
step is to define a spin model on the network, consisting of a set of spin variables

58

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

{si, i = 1, 2, . . . , n}, assigned to the vertices and a Hamiltonian H({s}), express-
ing the energy of the spin configuration {s}. For community detection, spins are
usually integers: s = 1, 2, . . . , q. Contributions to the energy are usually given
by spin-spin interactions. The coupling of a spin-spin interaction can be ferro-
magnetic (negative) or antiferromagnetic (positive), if the energy is lower when
the spins are equal or not, respectively. The goal is to find those spin configura-
tions that minimise the Hamiltonian H({s}). If couplings are all ferromagnetic,
the minimum energy would be trivially obtained for the configurations where
all vertices have identical spin values. Instead, one would like to have iden-
tical spins for vertices of the same cluster, and different spins for vertices in
different clusters, to identify the community structure. Therefore, Hamiltoni-
ans feature both ferromagnetic and antiferromagnetic interactions [spin glass
dynamics [180]]. A popular model consists in rewarding edges between vertices
in the same cluster, as well as non-edges between vertices in different clusters,
and penalising edges between vertices of different clusters, along with non-edges
between vertices in the same cluster. This way, if the edge density within com-
munities is appreciably larger than the edge density between communities, as it
often happens, having equal spin values for vertices in the same cluster would
considerably lower the energy of the configuration. On the other hand, to bring
the energy further down the spins of vertices in different clusters should be
different, as many such vertices would be disjoint from each other, and such
non-edges would increase the energy of the system if the corresponding spin
variables were equal. A general expression for the Hamiltonian along these lines
is [154]

H({s}) = −
∑

ij

[aijAij − bij(1−Aij)]δ(si, sj) , (23)

where Aij is the element of the adjacency matrix, aij , bij ≥ 0 are arbitrary
coefficients, and the Kronecker delta selects only the pairs of vertices with the
same spin value.

A popular model is obtained by setting aij = 1− bij and bij = γPij , where
γ is a tunable parameter and Pij a null model term, expressing the expected
number of edges running between vertices i and j under a suitable randomisation
of the graph structure. The resulting Hamiltonian is [154]

HRB({s}) = −
∑

ij

(Aij − γPij)δ(si, sj) . (24)

If γ = 1 and Pij = kikj/2m, ki (kj) being the degree of i (j) and m the
total number of graph edges, the Hamiltonian of Eq. (24) coincides with the
modularity by Newman and Girvan [Eq. (20)], up to an irrelevant multiplicative
constant. Consequently, modularity can be interpreted as the Hamiltonian of a
spin glass as well.

By setting aij = 1 and bij = γ we obtain the Absolute Potts Model
(APM) [122], whose Hamiltonian reads

HAPM ({s}) = −
∑

ij

[Aij − γ(1−Aij)]δ(si, sj) . (25)

59

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Here, there is no null model term. The models of Eqs. (24) and (25) can be
trivially extended to weighted graphs [161]. They allow to explore the network
at different resolutions, by suitably tuning the parameter γ. However, there
usually is no information about the community sizes, so it is not possible to
decide a priori the proper value(s) of γ for a specific graph. A common heuristic
is to estimate the stability of partitions as a function of γ. It is plausible that
partitions recovered for a given γ-value will not be disrupted if γ is varied a little.
So, the whole range of γ can be split into intervals, each interval corresponding
to the most frequent partition detected in it. Good candidates for the unknown
community structure of the system could be the partitions found in the widest
intervals of γ, as they are likely to be more stable (or robust) than the other
partitions42. However, the results of the algorithm do not usually have a linear
relationship with γ, hence the width of the intervals is not necessarily correlated
with stability, as intervals of the same width but centred at different values of
γ may have rather different importance.

A good operational definition of stability is based on the stochastic character
of optimisation methods, which typically deliver different results for the same
system and set of parameters, by changing initial conditions and/or random
seeds. If a partition is robust in a given range of γ-values, most partitions
delivered by the algorithm will be very similar. On the other hand, if one
explores a γ-region in between two strong partitions, the algorithm will deliver
the one or the other partition and the individual replicas will be, on average, not
so similar to each other. So, by calculating the similarity S(γ) of partitions found
by the method at a given resolution parameter γ (for different choices of initial
conditions and random seeds), stable communities are revealed by peaks of
S(γ) [183]. Since clustering in large graphs can be very noisy, peaks may not be
well resolved. Noise can be reduced by working with consensus partitions of the
individual partitions returned by the method for a given γ (Section 4.2). These
manipulations are computationally costly, though. Besides, multi-resolution
techniques may miss relevant cluster sizes, as it happens for multi-resolution
modularity [100] (Section 4.6).

4.8. Dynamic clustering
Due to the increasing availability of time-stamped network data, there is

currently a lot of activity on the development of methods to analyse temporal
networks [67]. In particular, the problem of detecting dynamic communities has
received a lot of attention [11, 184].

Clustering algorithms used for static graphs can be (and often are) used
for dynamic networks as well. What needs to be established is how to han-
dle the evolution. Typically one can describe it as a succession of snapshots
G1, G2, . . . , Gl, where each snapshot Gt corresponds to the configuration of the

42We stress, however, that the persistence of partitions in intervals is not necessarily related
to clustering robustness [181, 182].

60

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

graph in a given time window43. There are two possible strategies.
The simplest approach is to detect the community structure for each individ-

ual snapshot, which is a static graph [186, 187, 74]. Next, pairs of communities
of consecutive windows are associated. A standard procedure is finding the
cluster Ci

t in window t that is most similar to cluster Cj
t+1 in window t + 1,

for instance by using Jaccard similarity score [Eq. (6)] [74]. This way every
community has an image in each phase of the network evolution and one can
track its dynamics. Various scenarios are possible. Communities may disappear
at some point and new communities may appear, following the exclusion or the
introduction of vertices and edges, respectively. Furthermore, a cluster may
fragment into smaller ones or merge with others. However, since snapshots are
handled separately, this strategy often produces significant variations between
partitions close in time, especially when the data sets are noisy, as it usually
happens in applications.

It would be preferable to have a unified framework, in which communities are
inferred both from the current structure of the graph and from the knowledge of
the community structure at previous times. An interesting implementation of
this strategy is evolutionary clustering [188]. The goal of the approach is finding
a partition that is both faithful to the system configuration at snapshot t and
close to the partition derived for the previous snapshot t− 1. A cost function is
introduced, whose optimisation yields a tradeoff between such two constraints.
There is ample flexibility on how this can be done, in practice. Many known
clustering techniques normally used for static graphs can be reformulated within
this evolutionary framework. Some interesting algorithms based on evolutionary
clustering have been proposed [189, 190]. Mucha et al. have also presented a
method that couples the system’s configurations of different snapshots, within a
modularity-based framework [191]. In the resulting quality function (multislice
modularity), all configurations are simultaneously taken into account and the
coupling between them is expressed by a tunable parameter. The approach can
handle general multilayer networks [192, 193], where layers are either networks
whose vertices are connected by a specific edge type (e. g., friendship, work rela-
tionships, etc., in social networks), or networks whose vertices have connections
(interactions, dependencies) with the vertices of other networks/layers. On the
other hand, since the approach is based on modularity optimisation, it has the
drawbacks exposed in Section 4.6.

Consensus clustering (Section 4.2) is a natural approach to find stable dy-
namic clusterings by combining multiple snapshots. Let us suppose we have
a time range going from t0 to tm, that we want to divide into w windows of
size ∆t. For the sake of stability, one should consider sliding windows, i. e.,
overlapping time intervals. This way consecutive partitions will be based on
system configurations sharing a lot of vertices and edges, and change is (typi-

43A graph configuration consists of the sets of vertices and edges that are active within the
given time frame, along with the intensity of their interactions in that frame (weights) and
possibly other aspects of the dynamics, like burstiness [185], duration of the interactions, etc..

61

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

cally) smooth. In order to have exactly w frames, each of them has to be shifted
by an interval δt = (tm − t0)/w with respect to the previous one. So we ob-
tain the windows [t0, t0 + ∆t], [t0 + δt, t0 + ∆t + δt], [t0 + 2δt, t0 + ∆t + 2δt],
..., [tm −∆t, tm]. The community structure of each snapshot can be found via
any reliable static clustering technique. Next, the consensus partition from the
clusterings of r consecutive snapshots, with r suitably chosen, is derived [75].
Again, one could consider sliding windows: for instance, the first window could
consist of the first r snapshots, the second one by those from 2 to r + 1, and
so on until the interval spanned by the last r snapshots. In Fig. 28 we show
an application of this procedure on the citation network of papers published in
journals of the American Physical Society (APS).

20
00

 -
20

05Small World
Scale Free

Prisoner's Dilemma

Granular Packing
Materials

Semiflexible
Polymer

Microrheology

Noise Resonance Induced Excitable Network Coherence System Cell Stochastic Oscillatory Spatially Diversity Correlated Neural Med■um , year: 2002.5

Noise
Resonance
Neural Cell

Synchronization
Oscillators

Social Clustering

Community
Modularity

Complex Spreading
Epidemics

Random Boolean
Cellular Automaton

Coloring
Satisfiability Code

Self
Organized
Criticality
Sandpiles

Percolation
Random
Fractal
Elastic

Percolation
Conductivity

Critical
Threshold Fractal

Aggregation
Growth

Diffusion

19
80

 -
19

85

19
90

 -
19

95

19
70

 -
19

75

20
07

 -
20

08

Feedback Noise
Delay Stochastic

Figure 28: Consensus clustering on dynamic networks. Time evolution of clusters of the
citation network of papers published in journals of the American Physical Society (APS).
The clusters with the keyword Network(s) among the top 15 most frequent words appearing
in the title of the papers were selected. Communities were detected with Infomap [42] on
snapshots spanning each a window of 5 years, except at the right end of each diagram: since
there is no data after 2008, the last windows must have 2008 as upper limit, so their size
shrinks (2004 − 2008, 2005 − 2008, 2006 − 2008, 2007 − 2008). Each vertical bar represents
a consensus partition combining pairs of consecutive snapshots. A color uniquely identifies a
community, the width of the links between clusters is proportional to the number of papers
they have in common. The rapid growth of the field Complex Networks is clearly visible, as
well as its later split into a number of smaller subtopics, like Community Structure, Epidemic
Spreading, Robustness, etc.. Reprinted figure with permission from [75]. c© 2012, by the
Nature Publishing Group.

An alternative way to uncover the evolution of communities by accounting
for the correlation between configurations of neighbouring time intervals is to
use probabilistic models [194, 195, 118, 196].

62

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

If the system is large and its structure is updated in a stream fashion, instead
of working on snapshots one could detect the clustering online, every time the
configuration of the system varies due to new information, like the addition of
a new vertex or edge [197, 198]. An advantage of this approach is that change
is due to the effect that the small variation in the network structure has on the
system, and it can be tracked by simply adjusting the partition of the previous
configuration, which can be usually done rather quickly.

4.9. Significance
Let us suppose that we have identified the communities, somehow. Are we

done? Unfortunately, things are not that simple.

0 1000 2000 3000 4000 5000
Vertex

0

1000

2000

3000

4000

5000

V
er

te
x

0 1000 2000 3000 4000 5000
Vertex

0

1000

2000

3000

4000

5000

V
er

te
x

0 1000 2000 3000 4000 5000
Vertex

0

1000

2000

3000

4000

5000

V
er

te
x

0 1000 2000 3000 4000 5000
Vertex

0

1000

2000

3000

4000

5000

V
er

te
x

Figure 29: Artificial groups in random networks. The elements of the adjacency matrix of
an Erdős-Rényi random graph (top left) can be rearranged, by suitably reshuffling the list of
vertices. This procedure may produce a block structure, with the blocks becoming increasingly
more visible the smaller their size. Such groups are not real, though, but they are generated
by random fluctuations in the edge patterns among the vertices. The construction principle
of the network does not give any special role to groups of vertices, since all pairs of vertices
have identical probability to be joined. Courtesy by Tiago P. Peixoto.

In Fig. 29 (top left) we show the adjacency matrix of the random graph á
la Erdős-Rényi illustrated in Fig. 8d. The graph has 5 000 vertices, so the ma-
trix is 5 000 × 5 000. Black dots indicate the existence of an edge between the

63

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

corresponding vertices, while missing edges are represented in white. By con-
struction, there is no group structure. However, we can rearrange the elements
of the matrix, by reordering the vertex labels. In Fig. 29 (top right) we see that,
by doing that, one can generate a group structure, of the assortative type, with
two blocks of equal size. If we increase the number of blocks to three Fig. 29
(bottom left) and ten Fig. 29 (bottom right) we can make the matrix look more
and more modular. This is why many clustering techniques detect communities
in random networks as well, though they should not. Where do the groups come
from? Since they cannot be real by construction, they must be generated by
random fluctuations in the network construction process. Random fluctuations
are particularly relevant on sparse graphs (Section 3.3).

The lesson we learn from this example is that it is not sufficient to identify
groups in the network, but one should also ask how significant, or non-random,
they are. Unfortunately, most clustering algorithms are not able to assess the
significance of their results. If the groups are compatible with random fluctu-
ations, they are not proper groups and should be disregarded. The lower the
chance that they are generated by randomness, the more confident we can be
that the blocks reflect some actual group structure. Naturally, this can be done
only if one has a reliable null model, describing how the structure of the net-
work at study can be randomised and allowing us to estimate how likely it is
that the candidate group structure is generated this way. The configuration
model [60, 61] is a popular null model in the literature. It generates all possible
configurations preserving the number of vertices and edges of the network at
study, and the degrees of its vertices. One may compute some variables of the
original network, and estimate the probability that the model reproduces them,
or p-value, i. e., the fraction of model configurations yielding values of the vari-
ables compatible with those measured on the original graph. If the p-value is
sufficiently low (5% is a standard threshold), one concludes that the property
at study cannot be generated by randomness only. For community structure,
one can compute various properties of the clusters, e. g., their internal den-
sity, and compare them with the model values. Some clustering algorithms,
like OSLOM [100] are based on this principle. Along the same lines, z-scores
can be used as well [see the example of Eq. (22)]. Degree-corrected stochastic
block models [62] (Section 4.5) also include the configuration model, which cor-
responds to the case without group structure44. In this case significance can
be estimated by doing model selection between the versions with and without
blocks (Section 4.5).

A concept very related to significance is that of robustness. If clusters are
significant it means that they are resilient if the network structure is perturbed,
to some extent. One way to quantitatively assess this is introducing into the
system a controlled amount of noise, and checking how much noise it takes to

44Actually it would be a variant of the configuration model, as the degree sequence of the
vertices would be preserved only on average, not exactly. It is the same null model used in
the standard formulation of modularity (Section 4.6).

64

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

disrupt the group structure. The greater the required perturbation, the more ro-
bust the communities. For instance, a perturbation could be rewiring a fraction
of randomly chosen edges [87]. After the network is perturbed, the community
structure is derived and compared to the one of the original network45. The
trend of the partition similarity shows how the group structure responds to
perturbations.

A similar approach consists in sampling network configurations from a pop-
ulation which the original network is supposed to belong to (bootstrapping), and
comparing the clusterings found in those configurations, to check how frequently
subsets of vertices are clustered together in different samples, which is an index
of the robustness (significance) of their clusters [199].

4.10. Which method then?
At the end of the day, what most people want to know is: which method

shall I use on my data? Since the clustering problem is ill-defined, there is no
clear-cut answer to it.

Popular techniques are based on similar ideas of communities, like the ones
we reviewed in Sections 2.2 and 2.3. What makes the difference is the way
clusters are sought. The specific procedure affects the reliability of the results (e.
g., because of resolution problems) and the time complexity of the calculation,
determining the scope of the method and constraining its applicability.

Most methods propose a universal recipe, that is supposed to hold on every
data set. In so doing, one neglects the peculiarities of the network at study,
which is valuable information that could orient the method towards more reli-
able solutions. But algorithms are usually not so flexible to account for specific
network features. For instance, in some cases, there is no straightforward ex-
tension capable to handle high-level features like edge direction or overlapping
communities46.

Validation of algorithms, like the comparative analysis of [68], have allowed
to identify a set of methods that perform well on artificial benchmarks. There
are two important issues, though. First, we do not know how well real net-
works are described by currently used benchmark models. Therefore, there is
no guarantee that methods performing well on benchmarks also give reliable re-
sults on real data sets. Structural analyses like the ones discussed in Section 3.5
might allow to identify more promising benchmark models. Second, if we rely so
much on current benchmarks, which are versions of the stochastic block model
(SBM), we already know what the best method is: a posteriori block mod-
elling, i. e., fitting a SBM on the data. Indeed, there are several advantages

45For reliable results multiple configurations have to be generated, for a given amount of
noise, and the similarity scores have to be averaged.

46Especially extensions of clustering algorithms to the case of directed graphs are not
straightforward and often impossible. Spectral methods may not work because spectra of
directed graphs may be rather involved (for instance the eigenvalues of the adjacency matrix
are typically not real). Likewise, some processes on directed graphs may not reach a stationary
state, like simple random walks.

65

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

to this approach. It is more general, it does not only discover communities but
several types of group structures, like disassortative groups (Fig. 8b) and core-
periphery structure (Fig. 8c). It can also capture the existence of hierarchies
among the clusters. Moreover, it yields much richer results than standard clus-
tering algorithms, as it delivers the entire set of parameters of the most likely
SBM, with which one can construct the whole network, instead of just grouping
vertices. SBMs are very versatile as well. They can be extended to a variety
of contexts, e. g., directed networks [63], networks with weighted edges [200],
with overlapping communities [201], with multiple layers [118], with annota-
tions [111, 117]. Besides, the procedure can be applied to any network model
with group structure, not necessarily SBMs. The choice between alternative
models can be done via model selection. A posteriori block modelling is not
among the fastest techniques available. Networks with millions of vertices and
edges could be investigated this way, but very large networks remain out of
reach. Fortunately, many networks of interest can be attacked. The biggest
problem of this class of methods, i. e., the determination of the number of clus-
ters, seems to be solvable (Section 4.5). We recommend to exploit the power of
this approach in applications.

Algorithms based on the optimisation of cluster quality functions should be
considered as well (Section 4.6), because they may avoid resolution problems
and explore the network locally, which is often the only option when the system
is too large to be studied as a whole.

Algorithms based on the optimisation of partition quality functions, like
modularity maximisation, are plagued by the problems we discussed in Sec-
tion 4.6. Nevertheless, if one knows, or discovers, the correct number of clusters
q, and the optimisation is constrained on the subset of partitions having q clus-
ters, such algorithms become competitive [98, 121].

We also encourage to use approaches based on dynamics (Section 4.7). In
principle, the resulting clustering depends on the specific dynamics adopted. In
practice, there often is a substantial overlap between the clusters found with
different dynamics. An important question is whether dynamics may uncover
groups that are not recoverable from network structure alone. Differences in the
clusterings found via dynamical versus structural approaches could be due to the
fact that dynamical processes are sensitive to more complex structural elements
than edges (e. g., paths, motifs) [46, 47, 48] (Section 2.3). However, even if
that were true, dynamical approaches could be more natural ways to handle
such higher-order structures, and to make sense of the resulting community
structure.

In general, however, the final word on the reliability of a clustering algorithm
is to be given by the user, and any output is to be taken with care. Intuition and
domain knowledge are indispensable elements to support or disregard solutions.

5. Software

In this section we provide a number of links where one can find the code of
clustering algorithms and related techniques and models.

66

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Artificial benchmarks. Code to generate LFR benchmark graphs
(Section 3.1) can be found here https://sites.google.com/site/
andrealancichinetti/files. The code for the dynamic benchmark
by Granell et al. [66] is available at https://github.com/rkdarst/
dynbench.

• Partition similarity measures. Many partition similarity measures have
their own function in R, Python and MatLab and are easy to find. The
variant of the NMI for covers proposed by Lancichinetti et al. [90] can
be found at https://sites.google.com/site/andrealancichinetti/
mutual, the one by Esquivel and Rosvall [83] at https://bitbucket.
org/dsign/gecmi/wiki/Home.

• Consensus clustering. The technique proposed by Lancichinetti and Fortu-
nato [75] to derive consensus partitions from multiple outputs of stochastic
clustering algorithms can be downloaded from https://sites.google.
com/site/andrealancichinetti/software.

• Spectral methods. The spectral clustering method by Krzakala et al. [124],
based on the non-backtracking matrix (Sections 4.1 and 4.3), can be down-
loaded here: http://lib.itp.ac.cn/html/panzhang/dea/dea.tar.gz.

• Edge clustering. The code for the edge clustering technique by Ahn et
al. [94] can be found here: http://barabasilab.neu.edu/projects/
linkcommunities/. The link to the stochastic block model based on edge
clustering by Ball et al. [65] is provided below.

• Methods based on statistical inference. The code to perform the in-
ference of the degree-corrected stochastic block model47 by Karrer
and Newman is available at http://www-personal.umich.edu/~mejn/
dcbm/. The weighted stochastic block model by Aicher et al. [200]
can be found at http://tuvalu.santafe.edu/~aaronc/wsbm/. The
code for the overlapping stochastic block model based on edge cluster-
ing by Ball et al. [65] is at http://www-personal.umich.edu/~mejn/
OverlappingLinkCommunities.zip. The model combining structure
and metadata by Newman and Clauset [111] is coded at http://
www-personal.umich.edu/~mejn/Newman_Clauset_code.zip. The pro-
gram to infer the bipartite stochastic block model by Larremore et al. [202]
can be found at http://danlarremore.com/bipartiteSBM/.

The algorithms for the inference of community structure developed by
Tiago Peixoto are implemented within the Python module graph-tool
and can be found at https://graph-tool.skewed.de/static/doc/dev/
community.html. They allow us to perform model selection of various

47We stress that the method is parametric, in that the number of clusters has to be pro-
vided as input. In Section 4.5 we have pointed to techniques to infer the number of clusters
beforehand.

67

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

kinds of stochastic block models: degree-corrected [62], with overlapping
groups [120], and for networks with layers, with valued edges and evolving
in time [118]. The hierarchical block model of [63], that searches for
clusters at high resolution, is also available. All such variants can be
combined at ease by selecting a suitable set of options.

The algorithms for the inference of overlapping communities via the
Community-Affiliation Graph Model (AGM) [107] and the Cluster Af-
filiation Model for Big Networks (BIGCLAM) [108] (Section 3.5) can
be found in the package http://infolab.stanford.edu/~crucis/code/
agm-package.zip.

• Methods based on optimisation. There is a lot of free software for
modularity optimisation. In the igraph library (http://igraph.org)
there are several functions, both in the R and in the Python pack-
age: cluster fast greedy (R) and community fastgreedy (Python),
implementing the fast greedy optimisation by Clauset et al. [57];
cluster leading eigen (R) and community leading eigenvector
(Python) for the optimisation based on the leading eigenvector of the mod-
ularity matrix [97]; cluster louvain (R) and community multilevel
(Python) are the implementations of the Louvain method [99];
cluster optimal (R) and community optimal modularity turn
the task into an integer programming problem [152]; cluster spinglass
(R) and community spinglass (Python) optimise the multi-resolution
modularity proposed by Reichardt and Bornholdt [154].

Some methods based on the optimisation of cluster quality functions are
also available. The code for the optimisation of the local modularity by
Clauset [163] can be found at http://tuvalu.santafe.edu/~aaronc/
shared/LocalCommunity2005_GPL.zip. The code for OSLOM is down-
loadable from the dedicated website http://www.oslom.org.

• Methods based on dynamics. Infomap [42] is currently a very popular al-
gorithm and its code can be found in various places. It has a dedicated
website http://www.mapequation.org, where several extensions can be
downloaded, including hierarchical community structure [176], overlap-
ping clusters [177] and memory [44]. Infomap has also its own functions
on igraph, both in the R and in the Python package (cluster infomap
and community infomap, respectively). Walktrap [169], another popu-
lar method based on random walk dynamics, is available on igraph, via
the functions cluster walktrap (R) and community walktrap (Python).
The local community detection algorithms proposed in [19] can be down-
loaded from http://people.maths.ox.ac.uk/jeub/code.html.

• Dynamic clustering. The code to optimise the multislice modularity
by Mucha et al. [191] is available at http://netwiki.amath.unc.edu/
GenLouvain/GenLouvain. Detection of dynamic communities can be per-
formed as well with consensus clustering (Section 4.2) and via stochastic

68

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

block models (Section 4.5). Links to the related code have been provided
above.

6. Outlook

As long as there will be networks, there will be people looking for com-
munities in them. So it is of uttermost importance to have a set of reliable
concepts and principles guiding scholars towards promising solutions for net-
work clustering. We have presented established views of the main aspects of the
problem, and exposed the strengths as well as the limits of popular notions and
approaches.

What’s next? We believe that there will be a trend towards the develop-
ment of domain-dependent algorithms, exploiting as much as possible infor-
mation and peculiarities of network data sets. Generalist methods could still
be used to get first indications about community structure and orient the in-
vestigation in promising directions. Some existing approaches are sufficiently
flexible to accommodate various features of networks and community structure
(Section 4.10).

At the same time, we believe that it is necessary to find accurate models
of networks with community structure, both for the purpose of designing real-
istic benchmark graphs for validation, and for a more precise inference of the
groups and of their features. Investigations of real networks at the level of sub-
graphs, along the lines of those discussed in Section 3.5, are instrumental to the
definition of such models.

While benchmark graphs can be improved, there is one test that one can
rely on to assess the performance of clustering algorithms: applying methods
on random graphs without group structure. We know that many popular tech-
niques find groups in such graphs as well, failing the test. On a related note, it
is critical to determine how non-random the clusters detected on real networks
are, i. e., to estimate their significance (Section 4.9).

We stress that this exposition is by no means complete. The emphasis is on
the fundamental aspects of network clustering and on main stream approaches.
We discussed works and listed references which are of more immediate relevance
to the topics discussed. A number of topics have not been dealt with. Still we
hope that this work will help practitioners to design more and more reliable
methods and domain users to extract useful information from their data.

Acknowledgments
We thank Alex Arenas, Florian Kimm, Tiago Peixoto, Mason Porter and

Martin Rosvall for a careful reading of the manuscript and many valuable com-
ments. Funding: This work was supported by the European Commission [MUL-
TIPLEX, Grant No. 317532].

69

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

References

[1] G. Caldarelli, Scale-free networks, Oxford University Press, Oxford, UK,
2007.

[2] A. Barrat, M. Barthélemy, A. Vespignani, Dynamical processes on com-
plex networks, Cambridge University Press, Cambridge, UK, 2008.

[3] R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Func-
tion, Cambridge University Press, Cambridge, UK, 2010.

[4] M. Newman, Networks: An Introduction, Oxford University Press, Inc.,
New York, NY, USA, 2010.

[5] E. Estrada, The structure of complex networks: theory and applications,
Oxford University Press, UK, 2011.

[6] S. N. Dorogovtsev, J. F. F. Mendes, Evolution of networks: From biolog-
ical nets to the Internet and WWW, Oxford University Press, 2013.

[7] E. Estrada, P. A. Knight, A First Course in Network Theory, Oxford
University Press, UK, 2015.

[8] M. Girvan, M. E. Newman, Community structure in social and biological
networks., Proc. Natl. Acad. Sci. USA 99 (12) (2002) 7821–7826.

[9] S. E. Schaeffer, Graph clustering, Comput. Sci. Rev. 1 (1) (2007) 27–64.

[10] M. A. Porter, J.-P. Onnela, P. J. Mucha, Communities in networks, No-
tices Amer. Math. Soc. 56 (9) (2009) 1082–1097.

[11] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (2010) 75–
174.

[12] M. Coscia, F. Giannotti, D. Pedreschi, A classification for community dis-
covery methods in complex networks, Stat. Anal. Data Min. 4 (5) (2011)
512–546.

[13] S. Parthasarathy, Y. Ruan, V. Satuluri, Community discovery in social
networks: Applications, methods and emerging trends, in: Social Network
Data Analytics, Springer, 2011, pp. 79–113.

[14] M. E. J. Newman, Communities, modules and large-scale structure in
networks, Nat. Phys. 8 (1) (2012) 25–31.

[15] F. D. Malliaros, M. Vazirgiannis, Clustering and community detection in
directed networks: A survey, Phys. Rep. 533 (4) (2013) 95–142.

[16] J. Xie, S. Kelley, B. K. Szymanski, Overlapping community detection
in networks: The state-of-the-art and comparative study, ACM Comput.
Surv. 45 (4) (2013) 43:1–43:35.

70

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[17] T. Chakraborty, A. Dalmia, A. Mukherjee, N. Ganguly, Metrics for com-
munity analysis: A survey, preprint arXiv:1604.03512.

[18] J. Leskovec, K. J. Lang, A. Dasgupta, M. W. Mahoney, Community struc-
ture in large networks: Natural cluster sizes and the absence of large
well-defined clusters, Internet Math. 6 (1) (2009) 29–123.

[19] L. G. Jeub, P. Balachandran, M. A. Porter, P. J. Mucha, M. W. Mahoney,
Think locally, act locally: Detection of small, medium-sized, and large
communities in large networks, Phys. Rev. E 91 (1) (2015) 012821.

[20] J. Yang, J. Leskovec, Structure and overlaps of ground-truth communities
in networks, ACM Trans. Intell. Syst. Technol. 5 (2) (2014) 26:1–26:35.

[21] S. Wasserman, K. Faust, Social network analysis, Cambridge University
Press, Cambridge, UK, 1994.

[22] J. Scott, Social Network Analysis: A Handbook, SAGE Publications, Lon-
don, UK, 2000.

[23] J. Moody, D. R. White, Structural cohesion and embeddedness: A hier-
archical concept of social groups, Am. Sociol. Rev. 68 (1) (2003) 103–127.

[24] R. D. Luce, A. D. Perry, A method of matrix analysis of group structure,
Psychometrika 14 (2) (1949) 95–116.

[25] I. M. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo, The maximum
clique problem, in: D.-Z. Du, P. Pardalos (Eds.), Handbook of Combi-
natorial Optimization, Kluwer Academic Publishers, Norwell, USA, 1999,
pp. 1–74.

[26] C. Bron, J. Kerbosch, Finding all cliques on an undirected graph, Com-
mun. ACM 16 (1973) 575–577.

[27] R. D. Luce, Connectivity and generalized cliques in sociometric group
structure, Psychometrika 15 (2) (1950) 169–190.

[28] R. D. Alba, A graph-theoretic definition of a sociometric clique, J. Math.
Sociol. 3 (1973) 113–126.

[29] R. J. Mokken, Cliques, clubs and clans, Qual. Quant. 13 (2) (1979) 161–
173.

[30] S. B. Seidman, B. L. Foster, A graph theoretic generalization of the clique
concept, J. Math. Sociol. 6 (1978) 139–154.

[31] F. Luccio, M. Sami, On the decomposition of networks into minimally
interconnected networks, IEEE Trans. Circuit Th. CT 16 (1969) 184–188.

[32] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Defining
and identifying communities in networks, Proc. Natl. Acad. Sci. USA 101
(2004) 2658–2663.

71

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[33] Y. Hu, H. Chen, P. Zhang, M. Li, Z. Di, Y. Fan, Comparative definition of
community and corresponding identifying algorithm, Phys. Rev. E 78 (2)
(2008) 026121.

[34] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, A. Tomkins, Geo-
graphic routing in social networks, Proc. Natl. Acad. Sci. USA 102 (33)
(2005) 11623–11628.

[35] S. E. Fienberg, S. Wasserman, Categorical data analysis of single socio-
metric relations, Sociol. Methodol. 12 (1981) 156–192.

[36] P. Holland, K. B. Laskey, S. Leinhardt, Stochastic blockmodels: First
steps, Soc. Netw. 5 (1983) 109–137.

[37] T. Snijders, K. Nowicki, Estimation and prediction for stochastic block-
models for graphs with latent block structure, J. Classif. 14 (1997) 75–100.

[38] P. Erdös, A. Rényi, On random graphs. I., Publ. Math. Debrecen 6 (1959)
290–297.

[39] P. Erdös, A. Rényi, On the evolution of random graphs, Publ. Math. Inst.
Hungar. Acad. Sci 5 (1960) 17–61.

[40] M. E. J. Newman, M. Girvan, Finding and evaluating community struc-
ture in networks, Phys. Rev. E 69 (2) (2004) 026113.

[41] M. E. J. Newman, Fast algorithm for detecting community structure in
networks, Phys. Rev. E 69 (6) (2004) 066133.

[42] M. Rosvall, C. T. Bergstrom, Maps of random walks on complex networks
reveal community structure, Proc. Natl. Acad. Sci. USA 105 (2008) 1118–
1123.

[43] J.-C. Delvenne, S. N. Yaliraki, M. Barahona, Stability of graph communi-
ties across time scales, Proc. Natl. Acad. Sci. USA 107 (29) (2010) 12755–
12760.

[44] M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, R. Lambiotte,
Memory in network flows and its effects on spreading dynamics and com-
munity detection, Nat. Commun. 5.

[45] C. Persson, L. Bohlin, D. Edler, M. Rosvall, Maps of sparse markov
chains efficiently reveal community structure in network flows with mem-
ory. Preprint arXiv:1606.08328.

[46] A. Arenas, A. Fernández, S. Fortunato, S. Gómez, Motif-based communi-
ties in complex networks, J. Phys. A 41 (22) (2008) 224001.

[47] B. Serrour, A. Arenas, S. Gómez, Detecting communities of triangles in
complex networks using spectral optimization, Comput. Commun. 34 (5)
(2011) 629 – 634.

72

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[48] A. R. Benson, D. F. Gleich, J. Leskovec, Higher-order organization of
complex networks, Science 353 (6295) (2016) 163–166.

[49] R. Guimerà, L. A. N. Amaral, Functional cartography of complex
metabolic networks, Nature 433 (2005) 895–900.

[50] T. N. Bui, S. Chaudhuri, F. T. Leighton, M. Sipser, Graph bisection
algorithms with good average case behavior, Combinatorica 7 (2) (1987)
171–191.

[51] M. E. Dyer, A. M. Frieze, The solution of some random np-hard problems
in polynomial expected time, J. Algorithms 10 (4) (1989) 451–489.

[52] A. Condon, R. M. Karp, Algorithms for graph partitioning on the planted
partition model, Random Struct. Algor. 18 (2001) 116–140.

[53] R. Albert, H. Jeong, A.-L. Barabási, Internet: Diameter of the World-
Wide Web, Nature 401 (1999) 130–131.

[54] G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping
community structure of complex networks in nature and society, Nature
435 (2005) 814–818.

[55] M. E. J. Newman, Detecting community structure in networks, Eur. Phys.
J. B 38 (2004) 321–330.

[56] L. Danon, J. Duch, A. Arenas, A. Dı́az-Guilera, Community structure
identification, in: C. G., V. A. (Eds.), Large Scale Structure and Dynam-
ics of Complex Networks: From Information Technology to Finance and
Natural Science, World Scientific, Singapore, 2007, pp. 93–114.

[57] A. Clauset, M. E. J. Newman, C. Moore, Finding community structure in
very large networks, Phys. Rev. E 70 (6) (2004) 066111.

[58] A. Lancichinetti, M. Kivelä, J. Saramäki, S. Fortunato, Characterizing
the community structure of complex networks, PLoS ONE 5 (8) (2010)
e11976.

[59] A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing
community detection algorithms, Phys. Rev. E 78 (4) (2008) 046110.

[60] B. Bollobás, A probabilistic proof of an asymptotic formula for the number
of labelled regular graphs, Eur. J. Combin. 1 (4) (1980) 311–316.

[61] M. Molloy, B. Reed, A critical point for random graphs with a given degree
sequence, Random Struct. Algor. 6 (1995) 161–179.

[62] B. Karrer, M. E. J. Newman, Stochastic blockmodels and community
structure in networks, Phys. Rev. E 83 (2011) 016107.

73

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[63] T. P. Peixoto, Hierarchical block structures and high-resolution model
selection in large networks, Phys. Rev. X 4 (2014) 011047.

[64] A. Lancichinetti, S. Fortunato, Benchmarks for testing community detec-
tion algorithms on directed and weighted graphs with overlapping com-
munities, Phys. Rev. E 80 (1) (2009) 016118.

[65] B. Ball, B. Karrer, M. E. J. Newman, Efficient and principled method for
detecting communities in networks, Phys. Rev. E 84 (2011) 036103.

[66] C. Granell, R. K. Darst, A. Arenas, S. Fortunato, S. Gómez, Benchmark
model to assess community structure in evolving networks, Phys. Rev. E
92 (1) (2015) 012805.

[67] P. Holme, J. Saramäki, Temporal networks, Phys. Rep. 519 (3) (2012)
97–125.

[68] A. Lancichinetti, S. Fortunato, Community detection algorithms: A com-
parative analysis, Phys. Rev. E 80 (5) (2009) 056117.

[69] M. Meilă, Comparing clusterings—an information based distance, J. Mul-
tivar. Anal. 98 (5) (2007) 873–895.

[70] A. Traud, E. Kelsic, P. Mucha, M. Porter, Comparing community struc-
ture to characteristics in online collegiate social networks, SIAM Review
53 (3) (2011) 526–543.

[71] W. M. Rand, Objective criteria for the evaluation of clustering methods,
J. Am. Stat. Assoc. 66 (336) (1971) 846–850.

[72] A. Ben-Hur, A. Elisseeff, I. Guyon, A stability based method for discover-
ing structure in clustered data, in: Pacific Symposium on Biocomputing,
Vol. 7, 2001, pp. 6–17.

[73] P. Jaccard, Étude comparative de la distribution florale dans une portion
des alpes et des jura, Bull. Soc. Vaud. Sci. Nat. 37 (1901) 547–579.

[74] G. Palla, A.-L. Barabási, T. Vicsek, Quantifying social group evolution,
Nature 446 (2007) 664–667.

[75] A. Lancichinetti, S. Fortunato, Consensus clustering in complex networks,
Sci. Rep. 2 (2012) 336.

[76] L. Hubert, P. Arabie, Comparing partitions, J. Classif. 2 (1) (1985) 193–
218.

[77] M. Meilă, Comparing clusterings: an axiomatic view, in: Proceedings of
the 22nd International Conference on Machine Learning, ACM, 2005, pp.
577–584.

74

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[78] R. L. Brennan, R. J. Light, Measuring agreement when two observers
classify people into categories not defined in advance, Br. J. Math. Stat.
Psychol. 27 (2) (1974) 154–163.

[79] M. Meilă, D. Heckerman, An experimental comparison of model-based
clustering methods, Mach. Learn. 42 (1) (2001) 9–29.

[80] D. J. C. Mackay, Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, Cambridge, UK, 2003.

[81] A. Strehl, J. Ghosh, Cluster ensembles — a knowledge reuse framework
for combining multiple partitions, J. Mach. Learn. Res. 3 (2002) 583–617.

[82] A. F. McDaid, D. Greene, N. Hurley, Normalized mutual information
to evaluate overlapping community finding algorithms. Preprint arXiv:
1110.2515.

[83] A. V. Esquivel, M. Rosvall, Comparing network covers using mutual in-
formation. Preprint arXiv:1202.0425.

[84] A. Fred, A. K. Jain, Robust data clustering, in: Computer Vision and
Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society
Conference on, Vol. 2, IEEE, 2003, pp. II–128.

[85] L. Danon, A. Dı́az-Guilera, J. Duch, A. Arenas, Comparing community
structure identification, J. Stat. Mech. P09008.

[86] P. Zhang, Evaluating accuracy of community detection using the relative
normalized mutual information, J. Stat. Mech. Theor. Exp. P11006.

[87] B. Karrer, E. Levina, M. E. J. Newman, Robustness of community struc-
ture in networks, Phys. Rev. E 77 (4) (2008) 046119.

[88] D. Delling, M. Gaertler, R. Görke, D. Wagner, Experiments on comparing
graph clusterings, Tech. rep., Universität Karlsruhe, Germany (2006).

[89] L. M. Collins, C. W. Dent, Omega: A general formulation of the rand in-
dex of cluster recovery suitable for non-disjoint solutions, Multivar. Behav.
Res. 23 (2) (1988) 231–242.

[90] A. Lancichinetti, S. Fortunato, J. Kertesz, Detecting the overlapping
and hierarchical community structure in complex networks, New J. Phys.
11 (3) (2009) 033015.

[91] J. I. Perotti, C. J. Tessone, G. Caldarelli, Hierarchical mutual informa-
tion for the comparison of hierarchical community structures in complex
networks, Phys. Rev. E 92 (2015) 062825.

[92] E. Hüllermeier, M. Rifqi, A fuzzy variant of the rand index for comparing
clustering structures, in: Joint 2009 International Fuzzy Systems Asso-
ciation World Congress and 2009 European Society of Fuzzy Logic and
Technology Conference, IFSA-EUSFLAT 2009, 2009, pp. 1294–1298.

75

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[93] J. Xie, B. K. Szymanski, Towards linear time overlapping community de-
tection in social networks, in: Proceedings of the 16th Pacific-Asia Con-
ference on Advances in Knowledge Discovery and Data Mining - Volume
Part II, PAKDD’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 25–36.

[94] Y.-Y. Ahn, J. P. Bagrow, S. Lehmann, Link communities reveal multiscale
complexity in networks, Nature 466 (7307) (2010) 761–764.

[95] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, Bayesian Data Analysis,
Vol. 2, Taylor & Francis, 2014.

[96] A. Decelle, F. Krzakala, C. Moore, L. Zdeborová, Inference and phase
transitions in the detection of modules in sparse networks, Phys. Rev.
Lett. 107 (2011) 065701.

[97] M. E. J. Newman, From the Cover: Modularity and community structure
in networks, Proc. Natl. Acad. Sci. USA 103 (2006) 8577–8582.

[98] R. R. Nadakuditi, M. E. J. Newman, Graph spectra and the detectability
of community structure in networks, Phys. Rev. Lett. 108 (2012) 188701.

[99] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding
of communities in large networks, J. Stat. Mech. P10008.

[100] A. Lancichinetti, F. Radicchi, J. J. Ramasco, S. Fortunato, Finding sta-
tistically significant communities in networks, PLoS ONE 6 (4) (2011)
e18961.

[101] P. Zhang, C. Moore, M. Newman, Community detection in networks with
unequal groups, Phys. Rev. E 93 (1) (2016) 012303.

[102] X. Zhang, T. Martin, M. E. Newman, Identification of core-periphery
structure in networks, Phys. Rev. E 91 (3) (2015) 032803.

[103] W. W. Zachary, An information flow model for conflict and fission in small
groups, J. Anthropol. Res. 33 (1977) 452–473.

[104] T. S. Evans, Clique graphs and overlapping communities, J. Stat. Mech.
Theor. Exp. 2010 (12) (2010) P12037.

[105] D. Lusseau, The emergent properties of a dolphin social network, Proc.
Royal Soc. London B 270 (2003) S186–S188.

[106] D. Hric, R. K. Darst, S. Fortunato, Community detection in networks:
Structural communities versus ground truth, Phys. Rev. E 90 (2014)
062805.

[107] J. Yang, J. Leskovec, Community-affiliation graph model for overlapping
network community detection, in: Data Mining (ICDM), 2012 IEEE 12th
International Conference on, IEEE, 2012, pp. 1170–1175.

76

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[108] J. Yang, J. Leskovec, Overlapping community detection at scale: A non-
negative matrix factorization approach, in: Proceedings of the Sixth ACM
International Conference on Web Search and Data Mining, WSDM’13,
ACM, New York, NY, USA, 2013, pp. 587–596.

[109] J. Yang, J. Leskovec, Defining and evaluating network communities based
on ground-truth, in: Proceedings of the ACM SIGKDD Workshop on
Mining Data Semantics, MDS’12, ACM, New York, NY, USA, 2012, pp.
3:1–3:8.

[110] B. H. Good, Y.-A. de Montjoye, A. Clauset, Performance of modularity
maximization in practical contexts, Phys. Rev. E 81 (4) (2010) 046106.

[111] M. Newman, A. Clauset, Structure and inference in annotated networks,
Nat. Commun. 7 (2016) 11863.

[112] C. Moore, X. Yan, Y. Zhu, J.-B. Rouquier, T. Lane, Active learning for
node classification in assortative and disassortative networks, in: Proceed-
ings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’11, ACM, New York, NY, USA, 2011,
pp. 841–849.

[113] M. Leng, Y. Yao, J. Cheng, W. Lv, X. Chen, Active semi-supervised com-
munity detection algorithm with label propagation, in: Database Systems
for Advanced Applications, Springer, 2013, pp. 324–338.

[114] L. Peel, Active discovery of network roles for predicting the classes of
network nodes, J. Complex Netw. 3 (3) (2015) 431–449.

[115] J. Yang, J. McAuley, J. Leskovec, Community detection in networks with
node attributes, in: 2013 IEEE 13th International Conference on Data
mining (ICDM), IEEE, 2013, pp. 1151–1156.

[116] C. Bothorel, J. D. Cruz, M. Magnani, B. Micenkova, Clustering attributed
graphs: models, measures and methods, Netw. Sci. 3 (03) (2015) 408–444.

[117] D. Hric, T. P. Peixoto, S. Fortunato, Network structure, metadata, and
the prediction of missing nodes and annotations, Phys. Rev. X 6 (2016)
031038.

[118] T. P. Peixoto, Inferring the mesoscale structure of layered, edge-valued,
and time-varying networks, Phys. Rev. E 92 (4) (2015) 042807.

[119] H. Simon, The architecture of complexity, Proc. Am. Phil. Soc. 106 (6)
(1962) 467–482.

[120] T. P. Peixoto, Model selection and hypothesis testing for large-scale net-
work models with overlapping groups, Phys. Rev. X 5 (2015) 011033.

77

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[121] R. K. Darst, Z. Nussinov, S. Fortunato, Improving the performance of
algorithms to find communities in networks, Phys. Rev. E 89 (3) (2014)
032809.

[122] P. Ronhovde, Z. Nussinov, Local resolution-limit-free potts model for com-
munity detection, Phys. Rev. E 81 (2010) 046114.

[123] S. Fortunato, M. Barthélemy, Resolution limit in community detection,
Proc. Natl. Acad. Sci. USA 104 (2007) 36–41.

[124] F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová,
P. Zhang, Spectral redemption in clustering sparse networks, Proc. Natl.
Acad. Sci. USA 110 (52) (2013) 20935–20940.

[125] M. Newman, Spectral community detection in sparse networks. Preprint
arXiv:1308.6494.

[126] O. Angel, J. Friedman, S. Hoory, The non-backtracking spectrum of the
universal cover of a graph, Trans. Am. Math. Soc. 367 (6) (2015) 4287–
4318.

[127] A. Singh, M. D. Humphries, Finding communities in sparse networks,
Scientific reports 5 (2015) 8828.

[128] S. Sarkar, S. Chawla, P. A. Robinson, S. Fortunato, Eigenvector dynamics
under perturbation of modular networks, Phys. Rev. E 93 (2016) 062312.

[129] A. Topchy, A. K. Jain, W. Punch, Clustering ensembles: Models of con-
sensus and weak partitions, IEEE Trans. Pattern Anal. Mach. Intell. 27
(2005) 1866–1881.

[130] A. Goder, V. Filkov, Consensus clustering algorithms: Comparison and
refinement, in: ALENEX, 2008, pp. 109–117.

[131] A. M. Bruno, W. N. Frost, M. D. Humphries, Modular deconstruction
reveals the dynamical and physical building blocks of a locomotion motor
program, Neuron 86 (1) (2015) 304 – 318.

[132] U. von Luxburg, A tutorial on spectral clustering, Tech. Rep. 149, Max
Planck Institute for Biological Cybernetics (August 2006).

[133] J. B. MacQueen, Some methods for classification and analysis of multivari-
ate observations, in: L. M. L. Cam, J. Neyman (Eds.), Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1,
University of California Press, Berkeley, USA, 1967, pp. 281–297.

[134] T. S. Evans, R. Lambiotte, Line graphs, link partitions, and overlapping
communities, Phys. Rev. E 80 (1) (2009) 016105.

[135] A. L. Traud, P. J. Mucha, M. A. Porter, Social structure of facebook
networks, Physica A 391 (16) (2012) 4165–4180.

78

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[136] M. B. Hastings, Community detection as an inference problem, Phys. Rev.
E 74 (3) (2006) 035102.

[137] M. E. J. Newman, E. A. Leicht, Mixture models and exploratory analysis
in networks, Proc. Natl. Acad. Sci. USA 104 (2007) 9564–9569.

[138] R. Guimerà, M. Sales-Pardo, Missing and spurious interactions and the
reconstruction of complex networks, Proc. Natl. Acad. Sci. USA 106 (52)
(2009) 22073–22078.

[139] J. Rissanen, Modelling by shortest data descriptions, Automatica 14
(1978) 465–471.

[140] P. D. Grünwald, I. J. Myung, M. A. Pitt, Advances in Minimum De-
scription Length: Theory and Applications, MIT Press, Cambridge, USA,
2005.

[141] T. P. Peixoto, Parsimonious module inference in large networks, Phys.
Rev. Lett. 110 (2013) 148701.

[142] M. S. Handcock, A. E. Raftery, J. M. Tantrum, Model based clustering
for social networks, J. Roy. Stat. Soc. A 170 (46) (2007) 1–22.

[143] J.-J. Daudin, F. Picard, S. Robin, A mixture model for random graphs,
Stat. Comput. 18 (2) (2008) 173–183.

[144] P. Latouche, E. Birmele, C. Ambroise, Variational bayesian inference and
complexity control for stochastic block models, Stat. Modelling 12 (1)
(2012) 93–115.

[145] E. Côme, P. Latouche, Model selection and clustering in stochastic block
models based on the exact integrated complete data likelihood, Stat. Mod-
elling 15 (6) (2015) 564–589.

[146] M. E. J. Newman, G. Reinert, Estimating the number of communities in
a network, Phys. Rev. Lett. 117 (2016) 078301.

[147] M. J. Barber, Modularity and community detection in bipartite networks,
Phys. Rev. E 76 (6) (2007) 066102.

[148] M. MacMahon, D. Garlaschelli, Community detection for correlation ma-
trices, Phys. Rev. X 5 (2015) 021006.

[149] V. A. Traag, J. Bruggeman, Community detection in networks with pos-
itive and negative links, Phys. Rev. E 80 (3) (2009) 036115.

[150] P. Expert, T. S. Evans, V. D. Blondel, R. Lambiotte, Uncovering space-
independent communities in spatial networks, Proc. Natl. Acad. Sci. USA
108 (19) (2011) 7663–7668.

79

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[151] M. E. J. Newman, Analysis of weighted networks, Phys. Rev. E 70 (5)
(2004) 056131.

[152] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski,
D. Wagner, On modularity clustering, IEEE Trans. Knowl. Data Eng.
20 (2) (2008) 172–188.

[153] R. Guimerà, M. Sales-Pardo, L. A. Amaral, Modularity from fluctuations
in random graphs and complex networks, Phys. Rev. E 70 (2) (2004)
025101 (R).

[154] J. Reichardt, S. Bornholdt, Statistical mechanics of community detection,
Phys. Rev. E 74 (1) (2006) 016110.

[155] A. Arenas, A. Fernández, S. Gómez, Analysis of the structure of complex
networks at different resolution levels, New J. Phys. 10 (5) (2008) 053039.

[156] A. Lancichinetti, S. Fortunato, Limits of modularity maximization in com-
munity detection, Phys. Rev. E 84 (2011) 066122.

[157] C. Granell, S. Gómez, A. Arenas, Hierarchical multiresolution method to
overcome the resolution limit in complex networks, Int. J. Bifurcat. Chaos
22 (07) (2012) 1250171.

[158] A. Lancichinetti, S. Fortunato, Erratum: Community detection algo-
rithms: A comparative analysis [phys. rev. e 80 , 056117 (2009)], Phys.
Rev. E 89 (2014) 049902.

[159] P. Zhang, C. Moore, Scalable detection of statistically significant commu-
nities and hierarchies, using message passing for modularity, Proc. Natl.
Acad. Sci. 111 (51) (2014) 18144–18149.

[160] M. Newman, Community detection in networks: Modularity optimization
and maximum likelihood are equivalent. Preprint arXiv:1606.02319.

[161] V. A. Traag, P. Van Dooren, Y. Nesterov, Narrow scope for resolution-
limit-free community detection, Phys. Rev. E 84 (2011) 016114.

[162] J. Baumes, M. K. Goldberg, M. S. Krishnamoorthy, M. M. Ismail, N. Pre-
ston, Finding communities by clustering a graph into overlapping sub-
graphs, in: N. Guimaraes, P. T. Isaias (Eds.), IADIS AC, IADIS, 2005,
pp. 97–104.

[163] A. Clauset, Finding local community structure in networks, Phys. Rev. E
72 (2) (2005) 026132.

[164] J. Huang, H. Sun, Y. Liu, Q. Song, T. Weninger, Towards online mul-
tiresolution community detection in large-scale networks, PLoS ONE 6 (8)
(2011) e23829.

80

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[165] H. Zhou, Distance, dissimilarity index, and network community structure,
Phys. Rev. E 67 (6) (2003) 061901.

[166] H. Zhou, Network landscape from a brownian particle’s perspective, Phys.
Rev. E 67 (4) (2003) 041908.

[167] H. Zhou, R. Lipowsky, Network brownian motion: A new method to mea-
sure vertex-vertex proximity and to identify communities and subcommu-
nities, Lect. Notes Comp. Sci. 3038 (2004) 1062–1069.

[168] S. Van Dongen, Graph clustering by flow simulation, Ph.D. thesis, Dutch
National Research Institute for Mathematics and Computer Science, Uni-
versity of Utrecht, Netherlands (2000).

[169] P. Pons, M. Latapy, Computing communities in large networks using ran-
dom walks, in: International Symposium on Computer and Information
Sciences, Springer, 2005, pp. 284–293.

[170] U. N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to
detect community structures in large-scale networks, Phys. Rev. E 76 (3)
(2007) 036106.

[171] A. Arenas, A. Dı́az-Guilera, C. J. Pérez-Vicente, Synchronization Reveals
Topological Scales in Complex Networks, Phys. Rev. Lett. 96 (11) (2006)
114102.

[172] S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino, A. Rapisarda, De-
tecting complex network modularity by dynamical clustering, Phys. Rev.
E 75 (4) (2007) 045102.

[173] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review, ACM
Comput. Surv. 31 (3) (1999) 264–323.

[174] R. Xu, D. Wunsch, Clustering, John Wiley & Sons, Piscataway, NJ, USA,
2008.

[175] S. Brin, L. E. Page, The anatomy of a large-scale hypertextual web search
engine, Comput. Netw. ISDN 30 (1998) 107–117.

[176] M. Rosvall, C. T. Bergstrom, Multilevel compression of random walks
on networks reveals hierarchical organization in large integrated systems,
PLoS ONE 6 (4) (2011) e18209.

[177] A. Viamontes Esquivel, M. Rosvall, Compression of flow can reveal
overlapping-module organization in networks, Phys. Rev. X 1 (2011)
021025.

[178] R. Lambiotte, J. . Delvenne, M. Barahona, Laplacian Dynamics and Mul-
tiscale Modular Structure in Networks. Preprint arXiv:0812.1770.

81

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[179] R. J. Baxter, Exactly solved models in statistical mechanics, Courier Cor-
poration, 2007.

[180] M. Mezard, G. Parisi, M. Virasoro, Spin glass theory and beyond, World
Scientific Publishing Company, Singapore, 1987.

[181] A. Lewis, N. Jones, M. Porter, C. Deane, The function of communities
in protein interaction networks at multiple scales, BMC Syst. Biol. 4 (1)
(2010) 100.

[182] J.-P. Onnela, D. J. Fenn, S. Reid, M. A. Porter, P. J. Mucha, M. D.
Fricker, N. S. Jones, Taxonomies of networks from community structure,
Phys. Rev. E 86 (2012) 036104.

[183] P. Ronhovde, Z. Nussinov, Multiresolution community detection for
megascale networks by information-based replica correlations, Phys. Rev.
E 80 (1) (2009) 016109.

[184] M. Spiliopoulou, Evolution in social networks: A survey, in: C. C. Aggar-
wal (Ed.), Social Network Data Analytics, Springer US, 2011, pp. 149–175.

[185] A.-L. Barabási, Bursts: the hidden patterns behind everything we do,
from your e-mail to bloody crusades, Penguin, 2010.

[186] J. Hopcroft, O. Khan, B. Kulis, B. Selman, Tracking evolving communities
in large linked networks, Proc. Natl. Acad. Sci. USA 101 (2004) 5249–5253.

[187] S. Asur, S. Parthasarathy, D. Ucar, An event-based framework for char-
acterizing the evolutionary behavior of interaction graphs, in: KDD
’07: Proceedings of the 13th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, New York, NY, USA,
2007, pp. 913–921.

[188] D. Chakrabarti, R. Kumar, A. Tomkins, Evolutionary clustering, in: KDD
’06: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2006,
pp. 554–560.

[189] Y. Chi, X. Song, D. Zhou, K. Hino, B. L. Tseng, Evolutionary spectral
clustering by incorporating temporal smoothness, in: KDD ’07: Proceed-
ings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, New York, NY, USA, 2007, pp. 153–
162.

[190] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, B. L. Tseng, Facetnet: a frame-
work for analyzing communities and their evolutions in dynamic networks,
in: WWW ’08: Proceeding of the 17th International Conference on World
Wide Web, ACM, New York, NY, USA, 2008, pp. 685–694.

82

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[191] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, J. P. Onnela,
Community Structure in Time-Dependent, Multiscale, and Multiplex Net-
works, Science 328 (5980) (2010) 876–878.

[192] S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. G.-G. nes, M. Ro-
mance, I. Sendiña-Nadal, Z. Wang, M. Zanin, The structure and dynamics
of multilayer networks, Phys. Rep. 544 (1) (2014) 1–122.

[193] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, M. A.
Porter, Multilayer networks, J. Complex Netw. 2 (3) (2014) 203–271.

[194] P. Sarkar, A. W. Moore, Dynamic social network analysis using latent
space models, ACM SIGKDD Explor. Newsl. 7 (2) (2005) 31–40.

[195] T. Yang, Y. Chi, S. Zhu, Y. Gong, R. Jin, A bayesian approach toward
finding communities and their evolutions in dynamic social networks., in:
SIAM Int. Conf. on Data Mining (SDM), Vol. 9, SIAM, 2009, pp. 990–
1001.

[196] T. P. Peixoto, M. Rosvall, Modeling sequences and temporal networks
with dynamic community structures. Preprint arXiv:1509.04740.

[197] C. C. Aggarwal, S. Y. Philip, Online analysis of community evolution
in data streams., in: Proc. of SIAM Int. Conf. on Data Mining (SDM),
SIAM, 2005, pp. 56–67.

[198] H. Zanghi, C. Ambroise, V. Miele, Fast online graph clustering via erdös-
rényi mixture, Pattern Recogn. 41 (12) (2008) 3592–3599.

[199] M. Rosvall, C. T. Bergstrom, Mapping change in large networks, PLoS
one 5 (1) (2010) e8694.

[200] C. Aicher, A. Z. Jacobs, A. Clauset, Learning latent block structure in
weighted networks, J. Complex Netw. 3 (2) (2014) 221–248.

[201] E. M. Airoldi, D. M. Blei, S. E. Fienberg, E. P. Xing, Mixed membership
stochastic blockmodels, J. Mach. Learn. Res. 9 (2008) 1981–2014.

[202] D. B. Larremore, A. Clauset, A. Z. Jacobs, Efficiently inferring community
structure in bipartite networks, Phys. Rev. E 90 (1) (2014) 012805.

83

