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Abstract

We consider two applications where we study how dependence structure between many variables

is linked to external network data. We first study the interplay between social media connectedness

and the co-evolution of the COVID-19 pandemic across USA counties. We next study study how the

dependence between stock market returns across firms relates to similarities in economic and policy

indicators from text regulatory filings. Both applications are modelled via Gaussian graphical

models where one has external network data. We develop spike-and-slab and graphical LASSO

frameworks to integrate the network data, both facilitating the interpretation of the graphical

model and improving inference. The goal is to detect when the network data relates to the graphical

model and, if so, explain how. We found that counties strongly connected on Facebook are more

likely to have similar COVID-19 evolution (positive partial correlations), accounting for various

factors driving the mean. We also found that the association in stock market returns depends in a

stronger fashion on economic than on policy indicators. The examples show that data integration

can improve interpretation, statistical accuracy, and out-of-sample prediction, in some instances

using significantly sparser graphical models.
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1 Introduction

We consider two motivating applications where one seeks to learn the dependence structure (partial

correlations) across many variables, and is specifically interested in assessing whether said dependence

is associated to multiple external network datasets. First, we study the dependence between COVID-19

infection rates across USA counties, and whether said dependence is linked to network data measuring

Facebook connections between counties. This is an important question because individuals who are

connected in social networks tend to have similar backgrounds and to be exposed to similar informa-

tion. Such a shared background may lead to similar attitudes towards health prevention, and hence

similar infection risks. For example, Allcott et al. (2020) found that political beliefs were strongly tied

to behaviour during the COVID-19 pandemic, more specifically that Republicans practised less social

distancing. It is hence important to study the association between social media and health outcomes.

As described in more detail below, a study by Kuchler et al. (2021) found a link between marginal

correlations in infection rates between counties and the Facebook index. We propose a probability

model that can describe whether and how partial correlations depend on said index, as well as two

other networks related to geographical distance and flights passenger traffic. The latter two are meant

to help disentangle the effect of two counties being connected on Facebook and their being geograph-

ically close or their being major travel between them, i.e. more direct contacts. As a preview of

our findings, Figure 1 (top) shows estimated (residual) partial correlations between each county pair

vs. their geographical closeness and the Facebook index, Figure B.6 contains the corresponding plot

for the flights network. Counties that are highly connected on Facebook have a higher proportion

of positive partial correlations, whereas for those lowly connected most non-zero partial correlations

are negative. Geographically close counties also tend to have positive partial correlations while there

does not appear to be a strong relationship between the estimated partial correlations and the flight

passenger network. The bottom panels show our spike-and-slab model relating the network data to

the probability that a partial correlation is non-zero, and to the mean and variance of the non-zero

partial correlations.

As a second application, we study the dependence of stock market excess returns across compa-

nies, incorporating external data on similarities between companies in their exposure to economic

and policy risks (as defined by Baker et al. (2019)). Said risks were extracted from text data in

mandatory regulatory filings where companies must disclose potential risks, and the idea is that if

two companies disclosed similar economy- or policy-related risks then it may be more likely that they

2



have similar stock market returns. The applied relevance of the problem arises from the longstanding

insight in finance that the dependence among assets informs optimal portfolios (Markowitz, 1952).

In particular, the precision matrix determines the weights across assets that minimise a portfolio’s

standard deviation. Bringing optimal portfolio theory to data requires estimating high-dimensional

covariance/precision matrices, which is an important barrier to its practical application (Elton and

Gruber, 1973). A variety of approaches have been used to tackle the problem including, recently,

GLASSO (Goto and Xu, 2015), see also Senneret et al. (2016) for an empirical review. A critical obser-

vation is that we seek not only to estimate the partial correlations featuring in the precision matrix,

but also to portray how they may depend on the text-based economic and policy risks, to shed light

onto the joint behavior of stock market returns.

We use Gaussian graphical models (GGMs) and extensions discussed later as a convenient frame-

work that describes the dependence among random variables in an interpretable manner, providing

a suitable basis for our applications. There are however certain challenges that led us to develop a

methodological framework that is another main contribution of this paper, and can be applied to

numerous applications other than those considered here.

A first applied challenge is that the ease with which one can interpret the output of a graphical

model deteriorates as the number of variables p gets large, i.e. there are simply too many edges to

read them one by one. Our proposed model provides a way to regress the probability of an edge

being present, as well as the mean and variance of the associated (non-zero) partial correlation, on

external network data. Said regression helps understand when one can expect an edge to be present,

and to have a certain sign and magnitude, as illustrated in Figure 1. A second challenge is that in

our applications the sample size n is moderate relative to the p(p + 1)/2 covariance parameters. By

integrating external network data one hopes to improve the accuracy of the inference, provided said

data carries useful information regarding the graphical model. Our framework provides natural novel

strategies to assess whether the network data is indeed useful.

To our knowledge, there are no model-based methods to incorporate multiple network-valued ex-

ternal data in undirected graphical models. There has been, however, active research on incorporating

external data in regression. For example, Stingo et al. (2010) proposed a multivariate regression of

gene expression on micro-RNA, where the prior probabilities that micro-RNAs have a non-zero coef-

ficient depend on an external biological and structural similarity score. Similarly, Stingo et al. (2011)

incorporated pathway information into regression models for gene expression, Quintana and Conti

(2013) proposed a Bayesian variable selection framework where prior inclusion probabilities depend
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Figure 1: Residual partial correlations in COVID-19 infections (adjusted for covariates) across counties

vs Geographical Closeness Network defined as 1/ log(Geodistance) (left) and log-Facebook Connectiv-

ity Index (right). Top panel: partial correlations estimated with graphical LASSO, with penalization

parameter set via BIC. Bottom panel: fitted spike-and-slab distributions and fitted partial correlations

estimated with network graphical spike-and-slab LASSO.

on meta-covariates, Cassese et al. (2014) a multivariate regression of gene expression versus copy

number variations that incorporates their physical distance in the genome, Peterson et al. (2016) a

regression framework using a network for covariate penalisation, and Chiang et al. (2017) a brain ac-

tivity vector auto-regression that incorporates external brain information. Chen et al. (2021) predicted

disease outcomes given single nucleotide polymorphisms, where the LASSO regularisation parameter

depends on functional annotation categories.

There has also been work incorporating network data in graphical models, primarily in neuro-
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science. Ng et al. (2012); Pineda-Pardo et al. (2014); Higgins et al. (2018) considered penalised

likelihood GGMs to understand co-activation across brain regions, where one has strong grounds to

believe that external network data extracted from known brain structure provides useful information.

In a similar vein, Bu and Lederer (2021) use distances between brain regions to drive the regularisa-

tion of a GGM that is fit via multiple univariate regressions, and provide theoretical conditions for

asymptotic learning of the GGM’s structure. The main applied difference with our setting is that we

wish to assess whether the network data are informative and, if so, depict how. Another difference is

that we consider multiple network datasets (e.g. Facebook, distance, flights), rather than only one.

In simulations we illustrate how assessing whether the network data are useful or not can lead to sig-

nificant practical improvements. As discussed, the main methodological difference is that we develop

a probabilistic spike-and-slab model to regress the GGM on the network data that helps interpret

the presence of edges and the sign and magnitude of partial correlations. This is important in our

applications, e.g. the bottom panels in Figure 1 depict that large Facebook connectivity is associated

with positive partial correlations.

We develop two frameworks to integrate network data into GGM selection and parameter esti-

mation. The first framework is a hierarchical extension of the graphical LASSO (GLASSO) (Friedman

et al. (2008); Yuan and Lin (2007), see also Wang (2012) for a discussion of Bayesian counterparts).

The framework largely follows that in Ng et al. (2012), except that we learn critical hyper-parameters

from data and assess whether each network data is actually useful or not. We also develop tailored

optimisation algorithms that build on the GOLAZO algorithm of Lauritzen and Zwiernik (2020) so that

the computational cost is similar to a standard GLASSO problem, and we apply Bayesopt algorithms

to speed up the search over hyper-parameter values. Our second framework is the main contribution

and uses a spike-and-slab prior, with the novel feature that the slab’s probability, location and variance

are regressed on the network data. To ensure its practical applicability we developed a software im-

plementation in the probabilistic programming languages Stan (Carpenter et al., 2017) and NumPyro

(Bingham et al., 2019; Phan et al., 2019). The latter capitalises on efficient automatic differentiation

and GPUs to help boost the computational speed. Similarly, the first framework is implemented in R.

The paper proceeds as follows. Section 2 discusses our motivating applications in more detail.

Section 3 reviews the GLASSO, introduces our network-adjusted extension and its Bayesian analogue.

Section 4 discusses our computational strategy for learning the graphical model and hyper-parameters

that depict its association with the external network data. Section 5 uses simulations to shed light

on a natural practical question: what if the network data are useless, i.e. uninformative regarding
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the graphical model we seek to learn? We illustrate that one should assess whether the network data

have useful information about the GGM and, if not, discard them to avoid deteriorating inference.

Section 6 shows our main results for the COVID-19 and stock market applications, and Section 7

concludes. Code to implement all of our experiments and data pre-processing is available at https:

//github.com/llaurabat91/graphical-models-external-networks.

2 Motivating applications

2.1 Dependence in COVID-19 infections versus Facebook, geographical and flight

networks

Studying the evolution of pandemics such as COVID-19 is of great importance for health, economic and

societal reasons. There are many studies to forecast infections or to understand how they are related

to various factors (e.g. health measures, temperature). We consider a further important aspect that

received less attention: understanding how the disease co-evolves across (possibly distant) geographical

units, and what factors are associated to such co-evolution. For example, if several counties were

expected to simultaneously exhibit higher-than-expected infection rates, health authorities might need

to plan resources accordingly. Further, identifying factors that are related to the co-evolution (e.g. the

Facebook index) may suggest strategies to limit such coordinated growth (e.g. targeted information

campaigns).

To study COVID-19 co-evolution across USA counties, we downloaded weekly infection rates from

CSSE (2020a) for the period 22 January 2020 to 30 November 2021 (97 weeks total) for all USA counties

(> 3, 000 in total). We then iteratively clustered neighbouring counties with small population until

all aggregated counties had at least 500,000 inhabitants, obtaining 332 aggregated counties in total.

Full details of our clustering procedure are presented in Section B.3. For simplicity onwards we refer

to aggregated counties simply as counties. The reason for clustering counties was two-fold. First, the

weekly infection rates for smaller counties are subject to high variance, and hence less reliable than

when grouping counties. Second, working with > 3, 000 counties results in a GGM with > 4, 500, 000

parameters, which imposes serious computational bottlenecks.

We also obtained data on covariates that are thought to be associated with the disease’s evolution,

such as temperature, population density, vaccination rates and an index measuring the stringency

of pandemic measures (CSSE (2020c); Bureau (2020); CSSE (2020d); CSSE (2020b)). We defined

the outcome of interest as the county log-infection rates, i.e. log infections relative to the county’s
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population. Our interest is in studying the disease co-evolution after accounting for factors driving

the mean structure. To this end, we fitted a linear regression model that included temperature,

vaccination rates, the stringency of pandemic measures, a weekly fixed effect term estimating the

mean infections across all counties in that particular week, and a first-order auto-regressive term

measuring the infection rate in the previous week. See Section B and the supplementary code for the

data collection, pre-processing, and residual checks assessing the linearity and normality assumptions,

and that higher-order auto-regressive terms are not needed.

Although the mean model explained most of the variance in infection rates (adjusted R2 coefficient

0.942), certain county pairs were systematically both above or below the model predictions. Specifi-

cally, we estimated partial correlations in the regression residuals for each county pair via graphical

LASSO, and obtained numerous non-zero estimates (Figure 1, top). Said partial correlations indicate

that certain county pairs tend to behave better or worse than expected (given the week’s overall pan-

demic status and other covariates) in a coordinated fashion. Our primary goal is to assess whether

this coordinated behavior occurs more frequently across counties that are strongly connected via social

media, given by the Facebook index. Said index defines a network of counties, measuring the strength

of the connection between every pair of counties. We also consider two further networks, one based

on geographical closeness (see Section 6.1) and a second measuring flow of passengers between two

counties by plane (see Section B).

We see partial correlations as an appealing measure of disease co-evolution. For example, suppose

that infections in County A drive those of County B, which in turn drive those of County C, then all

three counties would have non-zero marginal correlation. In contrast, the partial correlation between

counties A and C would be zero, suggesting there is no direct link between them. An important

observation stemming from Figure 1 is that counties that are highly connected on Facebook have

a higher proportion of non-zero, and positive, partial correlations. A similar observation applies to

geographical distances. Hence one wishes not only to regularise to a lesser extent county pairs with a

strong Facebook connection but also to describe how the average non-zero partial correlation depends

on Facebook (or geographical, or flight) connectivity. This desideratum led us to develop a network-

regularised spike-and-slab framework, where the slab’s mean, variance and probability are regressed

on the network, see Section 3.
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2.2 Dependence in stock market returns versus text data

Our goal is to study whether and how covariation in stock market excess returns (i.e. returns

above/below those that were expected, see below) across firms is associated with firms’ sharing similar

risks. To measure to what extent they do so, we downloaded text of the Risk Factors (RF ) section of

publicly traded firms’ annual 10-K filings to the USA Securities and Exchange Commission. For each

firm, we combine all filings made between 2015 and 2019, inclusive. Said filings describe exhaustively

future earnings risks faced by the firms, and there is an incentive for full disclosure because investors

can take legal action when firms withhold information that if disclosed would have prevented financial

losses. Firms that face similar risks may have more dependent stock returns, e.g. two firms mention-

ing risks to oil price rises may co-move when oil prices change. Indeed, Hanley and Hoberg (2019)

regressed the covariance of excess returns between pairs of financial firms on a measure of RF text

overlap and showed a positive relationship in the lead-up to the global financial crisis in 2008. More

recently, Davis et al. (2020) shows that firms with similar RF texts reacted similarly to the arrival

of COVID-19. Our analysis goes beyond these studies by modelling partial rather than marginal cor-

relations. We also allow distance in RF -text space to influence both the probability of a connection

between firms and the mean (and variance) of the partial correlations on the network.

We consider p = 366 firms traded on US markets that satisfy the following conditions: i) mem-

bership in S&P500 at the end of 2019; ii) closing stock price adjusted for stock splits and dividends

available in the COMPUSTAT database for every trading day between 2 January 2019 to 31 December

2019 (252 trading days in total); iii) at least one 10-K filing available in 2014-2019. For each trading

day in 2019 we construct daily excess returns using the Fama-French three-factor model. Specifically,

we individually regress each firm’s daily log-returns on the variables contained in the daily, three

Fama/French factors file downloaded from Kenneth French’s Data Library website. The residual is

the excess return.

To measure textual similarity between companies, we first construct a bag-of-words representation

of each firm’s 10-K filings during 2014-2019. We follow Baker et al. (2019), and compute firms’

exposure to 16 separate economic risks and 20 separate policy risks. For each risk r, Baker et al.

(2019) define a term set Tr containing terms that reflect the exposure. For example, the policy risk

‘food and drug policy’ is captured by the term set {prescription drug act, drug policy, food and drug

administration, fda}.1 Baker et al. (2019) show that intertemporal variation in economic and policy

1In common with the text-as-data literature, we refer here to terms even when a ‘term’ is a multi-word expression.

See Appendix B of Baker et al. (2019) for a complete description of the term sets associated with each risk.
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risk terms in newspaper articles closely tracks aggregate market volatility. This motivates the idea

of using variation in these terms across individual firms to better measure their co-movement across

trading days.

Let xi,v be the count of term v in firm i’s 10-K filings during 2014-2019 and let Ci ≡
∑

v xi,v be

the total number of terms. We measure each firm’s exposure to risk r as log
(
1 +

∑
v∈Tr

xi,v/Ci

)
, i.e.

logarithm of 1 plus the proportion of words referring to risk r out of the total Ci words. We use the

logarithm to account for the fact that a risk term not being mentioned at all versus being mentioned

once is likely to be more informative than being mentioned many times compared with slightly more

times. For each pair of firms, we then measure its similarity in exposure to economic risks by computing

the correlation between the vector of economy-related risks. This defines a network between companies

such that the network connection between companies (j, k) is given by said correlation. We proceeded

analogously to define a policy risk network by computing correlations between policy-related terms.

In summary, our data processing produced two networks between firms that measure their simi-

larity in risk exposures based on a particular representation of RF texts. We remark that one could

use alternative text analysis tools, however our goal is to establish that text-based relational data can

be useful to estimate dependence in stock returns. The optimal representation of text for this task is

left as an open question. Still, as we show below, separately controlling for economic and policy risks

yields important insights regarding whether government policy generates return co-movement above

and beyond that generated by firm fundamentals.

See Section C and the supplementary code for the data collection, pre-processing, linear model fit,

and residual checks assessing our model assumptions.

3 Model

We describe two model-fitting strategies to regress an undirected GGM on p variables onto multi-

ple external network datasets. Section 3.1 discusses network GLASSO, which we mainly use as a

computationally-convenient framework to assess whether one should add/remove each network dataset.

We also discuss a Bayesian interpretation useful to check that the assumed model fits the observed

data. Section 3.2 is our main contribution, a spike-and-slab model to regress partial correlations on

network data. Section 3.3 discusses how to extend our framework beyond Gaussian data, as needed

for the stock market application.

We set notation. Let yi ∈ Rp be the outcome vector for individuals i = 1, . . . , n (e.g. log-infection
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rates in p counties at week i, or stock excess returns for p companies at day i) and xi ∈ Rd covariates

(week indicator, temperature, percentage of fully vaccinated individuals in week i, etc.). We assume

that yi ∼ Np

(
Bxi,Θ

−1
)
independently across i = 1, . . . , n, where B is a p × d regression coefficients

matrix and Θ a p × p positive-definite precision (or inverse covariance) matrix. To ensure that the

independence assumption across i is tenable, we include lagged versions of yi into the covariates xi, as

described in Section 2 and B. For simplicity, in our applications we start by subtracting the estimated

mean B̂xi from yi, where B̂ is the least-squares estimator, and subsequently assume the outcomes to

have zero mean, i.e. yi ∼ Np(0,Θ
−1).

A convenient property of modelling yi ∼ Np

(
0,Θ−1

)
is that conditional independence statements

can be drawn from the graph defined by the non-zero elements of Θ. Specifically, (yij , yik) are indepen-

dent given the remaining elements in yi if and only if Θjk = 0. As argued earlier, in our applications

we use partial correlations as a measure of association. We denote partial correlations by

ρjk := corr(yij , yik | yi{1,...,p}\{j,k}) = − Θjk√
ΘjjΘkk

. (1)

Importantly, in our framework, one also observes external data in the form of Q ≥ 1 networks

between variables. These are p×p symmetric matrices A(1), . . . , A(Q), where a
(q)
jk measures strength of

the connection between variables (j, k). In the COVID-19 application a
(1)
jk is the geographical closeness

between counties (j, k), a
(2)
jk their Facebook connection index, and a

(3)
jk their flight connectivity. In the

stock application, a
(1)
jk is the similarity between firms (j, k) in their exposure to economic risks, and

analogously a
(2)
jk for policy risks.

3.1 Network graphical LASSO

Network graphical LASSO is a penalised likelihood framework to estimate Θ ∈ Sp
+ by maximising a

Gaussian log-likelihood plus a graphical LASSO (GLASSO) penalty (Friedman et al., 2008; Yuan and

Lin, 2007), where the magnitude of said penalty is regressed onto the network datasets. Specifically,

we consider

Θ̂ = argmax
Θ∈Sp

+

log det(Θ)− tr(SΘ)−
∑
j ̸=k

λjk|Θjk|, (2)

where Sp
+ is the set of non-negative definite matrices, tr(·) the matrix trace, S the empirical covariance

matrix of (y1, . . . , yn),

λjk = λjk(A
(1), . . . , A(Q)) = exp

β0 +

Q∑
q=1

βqa
(q)
jk

 (3)
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are regularisation parameters, and β = (β0, . . . , βQ) ∈ RQ+1 are regularisation hyperparameters that

play a critical role in determining the level of sparsity in Θ̂. That is, each Θjk gets a potentially

different penalty parameter λjk, which is a function of the network data A(1), . . . , A(Q). To simplify

notation, we omit the dependence on A(1), . . . , A(Q) and simply use λjk, and let A = (A(1), . . . , A(Q)).

For convenience we parameterise the penalties in terms of a scaled version of A(q) that is centered

to have zero sample mean and unit sample variance, and which we denote by Ā(q). GLASSO is the

particular case where λjk are constant across (j, k).

Ng et al. (2012) proposed the penalty in (2)-(3), the main difference being that we consider multiple

networks (Q > 1) and that we learn hyper-parameters β from data, including the exclusion of some

networks. Two popular strategies to set hyper-parameters are using cross-validation (Friedman et al.,

2008) and information criteria such as the Bayesian information criterion (BIC) (Schwarz, 1978). The

former is more suitable for predictive tasks than when seeking models that help explain the data-

generating truth, e.g. cross-validation does not lead to consistent model selection even in simpler

linear regression where the BIC and related information criteria are consistent, see Foygel and Drton

(2010); Zhang et al. (2010); Wang and Zhu (2011); Fan and Tang (2013). We hence use the BIC to

learn β. Specifically, viewing Θ̂(β) as a function of β, we choose β minimising

β̂BIC := argmin
β∈RQ+1

BIC(β) = −2ℓn(Θ̂(β)) +
∣∣E(Θ̂(β))

∣∣ · log n, (4)

where ℓn(Θ̂) is the Gaussian log-likelihood function and |E(Θ̂(β))| counts the number of edges in the

graph associated with Θ̂(β). Importantly, note that when βq = 0 then the qth network dataset is

effectively excluded. The idea is that if a network dataset does not provide useful information about

Θ, then one may set βq = 0 to avoid adding unnecessary noise to Θ̂, see Section 5 for an illustration.

An alternative to the BIC is the Extended BIC (EBIC) (Chen and Chen, 2008). As a sensitivity check,

we provide results using the EBIC to select β in Sections A.5, B.8 and C.6. In our examples the

EBIC was overly conservative in selecting edges, which resulted in high mean-squared-error. Finally,

we note that there are alternative approaches to choosing β, see Kuismin and Sillanpää (2021), but

they require more extensive computations that become prohibitive in our setting. We also note that

alternatives to (2) include the adaptive graphical LASSO, SCAD and MCP (Fan et al., 2009; Wang

et al., 2016), which were proposed to reduce bias in the estimation of large entries in Θ. We focus

on (2) however due to its practical appeal of defining a concave problem for which one may establish

efficient optimisation methods.

One could of course consider alternative parameterisations to (3), e.g. let λjk depend non-
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parametrically on the network data. However, (3) requires fewer hyper-parameters than a non-

parametric treatment and is easy to interpret: the log-regularisation depends linearly on the net-

works. Further, a model-checking exercise suggested that (3) is a reasonable parameterisation for

our two motivating applications. Said model-checking is best understood by adopting a Bayesian

interpretation. The penalised estimator associated to (3) is equivalent to the posterior mode under

independent Laplace priors (Wang, 2012) with scale parameter 1/λjk, that is

π(Θ | A, β) ∝
∏
j>k

λjk

2
exp {−λjk|θjk|} I(Θ ≻ 0), (5)

where I(Θ ≻ 0) is an indicator for Θ being positive-definite, λjk is as in (3) and β are now prior

parameters. The Bayesian interpretation is that the λjk’s arise from a Laplace random effects distri-

bution with parameter β. The a priori expected value of θjk is 0, which induces sparsity, and the

prior variance is

Var [θjk | β,A] = E
[
θ2jk | β,A

]
=

2

λ2
jk

. (6)

Therefore (3) assumes that the log-variance of the partial covariances θjk depends linearly on the

network data

logE
[
θ2jk | β,A

]
= log(2)− 2

(
β0 + β1ā

(1)
jk + . . .+ βQā

(Q)
jk

)
. (7)

Provided one has an initial estimate of the left-hand side of (7), which in our examples we derived

from standard GLASSO estimates of θjk, one may check whether its relation to the network data is

roughly linear. Such a check motivated taking the logarithm of the raw distances, Facebook con-

nectivities and flight passenger flow to define our networks for the COVID-19 data, while the stock

market risk indicator networks required no transformations. See Supplementary Sections B.6 and C.4

for further details.

3.2 Network graphical spike-and-slab LASSO

The network graphical LASSO in (2) provides sparse point estimates of partial correlations and,

via its Bayesian interpretation, describes how their variance depends on the network data. In our

applications, however, we also seek to describe how the proportion of non-zero partial correlations

and their mean depend on the network. For example, in the COVID-19 data both the probability that

two counties are conditionally dependent and the mean partial correlation grow as their Facebook

connection grows (Figure 1), and similarly for the stock market data (Figure C.5). To address this
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issue, we developed a spike-and-slab framework that builds on the regression setting of Rockova and

George (2014) and the graphical spike-and-slab of Gan et al. (2018). The main novelty is that both

the slab prior probability and its parameters depend on network data. In particular, the slab need not

be centered at zero, a feature that is novel—to our knowledge—and has some independent interest.

We parameterise Θ in terms of partial correlations ρjk in (1), which facilitates interpretation and

ensures that the posterior mode is invariant to scale transformations. By scale invariance we refer

to the property that the estimated ρjk remain the same regardless of whether one applies a scale

transformation to the input data or not, see Carter et al. (2021) for a detailed discussion. We set

a prior density π(diag(Θ), ρ) = π(diag(Θ))π(ρ), where
√
Θii ∼ IG(a, b) with a = 0.01 and b = 0.01

reflecting an uninformative prior on the diagonal elements of Θ, and

π(ρ | η) = CηI(ρ ≻ 0)
∏
j>k

(1− wjk)DE(ρjk; 0, s0) + wjkDE
(
ρjk; η

T
0 ajk, sjk

)
(8)

wjk =
(
1 + e−ηT2 ajk

)−1
, sjk = s0(1 + exp

{
ηT1 ajk

}
),

where Cη is the normalisation constant and I(ρ ≻ 0) a positive-definiteness indicator. The spike is

a double-exponential with zero mean and small scale s0 meant to capture partial correlations that

are practically zero, whereas the slab has larger variance sjk and may not be centered at zero. The

slab prior probability wjk follows a logistic regression on the network data ajk = (1, a
(1)
jk , . . . , a

(Q)
jk ), its

mean ηT0 ajk depends linearly on ajk and its variance sjk is larger than s0 by a factor that also depends

on ajk. Specifically, positive entries in η0 and η1 indicate that the mean and variance (respectively)

of the non-zero partial correlations increase for larger network connections ajk, and similarly positive

η2 indicates a higher probability of a non-zero partial correlation for large ajk.

We remark that because of the constraint I(ρ ≻ 0) the marginal prior π(ρjk) could be fairly

different from the unconstrained density inside the product in (8), then wjk could not be interpreted

as the prior probability of an edge, and similarly for ηT0 ajk and sjk. To address this issue we elicit

prior parameters such that the indicator I(ρ ≻ 0) is satisfied with high prior probability, see below.

Above η = (η0, η1, η2) ∈ R3(Q+1) are hyper-parameters driving the regression model of the partial

correlations ρjk onto the network data ajk, and are a main quantity of interest in our applications.

A standard strategy to set prior hyper-parameters such as η in (8) is an empirical Bayes framework

where one maximises the marginal likelihood. Such a framework allows us to do inference on the η’s

themselves through the marginal posterior π(η | y) and inference for Θ through the empirical Bayes
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posterior

π(Θ|y, η̂) = f(y|Θ)π(Θ|η̂),

where η̂ maximises the marginal posterior of η given the data

η̂ : = argmax
η

π(η | y) = argmax
η

∫
π(Θ, η|y)dΘ = argmax

η

∫
f(y|Θ)π(Θ|η)π(η)dΘ.

One could consider using the joint posterior π(Θ, η|y) for inference on Θ and η, but we found empirical

Bayes to perform better in our experiments. See Giannone et al. (2021) for a related discussion on the

desirability to learn the appropriate degree of sparsity from data in social science applications, and a

related spike-and-slab proposal in a regression setting.

We next discuss our default elicitation for the prior π(ρ | η). The guiding principle was to set a

minimally-informative prior, so that data may suitably update prior beliefs, while encouraging sparse

solutions and preserving the interpretability of (8). Briefly, we set π(η) to be proportional to C−1
η

times independent Gaussian prior densities on (η0, η1, η2). Adding the term C−1
η is a trick to simplify

computation, since then Cη drops from the posterior density π(Θ, η | y). Wang (2015) argued that

such cancellation of prior normalisation constants does not adversely affect spike-and-slab priors in

graphical model settings (as long as the constant affects hyper-parameters η but not parameters Θ, as

in our case). The prior on η2 was set such that the prior mean number of edges is proportional to p,

which induces sparsity, and the prior sample size can be thought of as 1, in analogy to the standard

default Beta(0.5,0.5) prior in a Binomial experiment. The prior on η1 was set such that the prior mode

of the slab’s scale is 10s0 and greater than 3s0 with probability 0.99, i.e. the slab captures partial

correlations of a larger magnitude than the slab. Finally, the prior on η0 was set such that the slab

has zero prior mean and such that sampling entries of ρ independently from the double-exponential

priors in (8) returns a positive-definite matrix with 0.95 prior probability. This ensures that π(ρ | η) is
similar to its unconstrained version where one drops the positive-definiteness indicator, as otherwise

wjk cannot be interpreted as the marginal slab probability.

Figure A.1 plots the implied prior marginal distribution on the ρjk’s for both the COVID-19 and

stock market applications showing that the prior concentrates at 0 but also features thick tails to

capture true non-zero ρjk’s. The corresponding posteriors (Figure A.1, bottom panels) set significant

mass away from zero, suggesting that the prior shrinkage towards 0 was not excessive. Section A.3

provides further details and lists the hyper-parameter values used in our examples. Our code contains

an implementation of our prior elicitation method.
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3.3 Beyond Gaussian data

In certain applications such as our stock market example, data exhibit non-Gaussian behavior such

as thick tails and asymmetries, even after taking logarithmic or similar transforms (see the normality

checks in Section C.3). To address this issue in this application we used a non-paranormal model,

which can accommodate said departures from normality. The distribution of yi = (yi1, . . . , yip) is

non-paranormal if there exist strictly increasing functions fj : R → R for j = 1, . . . , p such that the

vector f(yi) := (f1(yi1), . . . , fp(yip)) is Gaussian. Such a non-paranormal model may be estimated by

first obtaining an estimate f̂ from the data, for which we used the R package huge (Zhao et al., 2012),

and subsequently applying our methodology to the transformed data f̂(yi).

An interesting property of the non-paranormal family is that the graphical model can be inter-

preted as in the Gaussian case. The partial correlation between the transformed fj(yij) and fk(yik)

is zero if and only if (yij , yik) are conditionally independent. Partial correlations retain an interest-

ing interpretation in the trans-elliptical family: zero partial correlation ρjk = 0 indicates that yij is

linearly independent with any transformation of yik (Rossell and Zwiernik, 2021).

4 Computation and inference

4.1 Network GLASSO

We first describe how to optimise (2) for a fixed β, and subsequently how to estimate β̂. The main

idea is that, since λjk = λjk (A, β) are fixed for a fixed β, the network GLASSO objective in (2) is

a special case of the GOLAZO class of models in Lauritzen and Zwiernik (2020). Motivated by the

desire to penalise positive and negative partial correlations differently, GOLAZO algorithms consider

Gaussian graphical models with likelihood penalties of the form

p∑
j=1

∑
k ̸=j

max {Ljkρjk, Ujkρjk} , (9)

where −∞ ≤ Ljk ≤ 0 ≤ Ujk ≤ ∞ are fixed. Noting that λ|x| = max {−λx, λx} for positive λ,

we see that the penalty in (2) is in the form of (9) with Ljk = −λjk and Ujk = λjk. (2) is a

convex problem that can be efficiently solved using a block-coordinate ascent algorithm similar to

that proposed for GLASSO in (Banerjee et al., 2008). An R package is provided for GOLAZO at

https://github.com/pzwiernik/golazo.

Obtaining β̂BIC requires maximising BIC(β) in (4). As usual when using information criteria to set
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regularisation parameters, this is a non-concave function of β that exhibits discontinuities. We propose

two optimisation approaches. In cases where only one or two external networks are available and p is

moderate (p ≤ 200, say) we propose a grid-search akin to that used to set the regularisation parameter

in standard GLASSO. Section A.1 contains several analytic upper bounds to facilitate such a search.

However, the dimension of the hyper-parameter β grows with the number K of external networks,

hence grid searches are very costly when K ≥ 3 and p is large. In these settings, we propose using

Bayesian optimisation. Briefly, Bayesian optimisation first evaluates the objective function BIC(β) at

a few values of the hyper-parameter β and uses a Gaussian process to estimate BIC(β) for all β. Next,

an acquisition function to propose new β values at which to evaluate BIC(β), which are then used to

update the Gaussian process estimate. In particular we use the R package rBayesianoptimisation

(Yan, 2016), with the ‘ucb’ acquisition function and maximum function evaluations as 15 + 5Q,

where Q is the number of considered networks. In our examples Bayes optimisation returned virtually

identical results to a grid search, but incurred a significantly lower computational cost when BIC(β)

is hard to evaluate by requiring many fewer evaluations compared with the grid search alternative.

4.2 Spike-and-slab

The full parameter of interest is (diag(Θ), ρ, η), where η = (η0, η1, η2) are the hyper-parameters in (8).

To approximate their posterior distribution π(diag(Θ), ρ, η | y) given the data y we used Hamiltonian

Monte Carlo (see Neal (2011) for a review). Specifically, we developed an R implementation using

the Stan software (Carpenter et al., 2017), as well as a Python implementation using the NumPyro

package (Phan et al., 2019). Sections A.2 and A.4 describe further implementation details and our

code provides both implementations. The purpose of the R version is to make our methods available

to the ample R community, whereas NumPyro provides significant computational savings by using

improvements in automatic differentiation and enabling the use of GPUs. The savings were substantial,

Section D demonstrates that greater than an order of magnitude speed up was possible even in simple

experimental settings.

The output of both implementations are N posterior samples (diag(Θ(i)), ρ(i), η(i)) for i = 1, . . . , N

that can be used to approximate the posterior distribution or suitable summaries such as the marginal

posterior mean and standard deviation of any parameter. Of particular interest to us is to estimate

the posterior probability for the presence of an edge between any two nodes (j, k), i.e. that the partial

correlation ρjk was generated by the slab in (8). We next discuss how to estimate said posterior

probability using the posterior samples.
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To ease notation re-write the prior as

π(ρjk | η) = (1− wjk(η))π0(ρjk | η) + wjk(η)π1(ρjk | η) (10)

where π0(ρjk | η) is the spike prior density, π1(ρjk | η) the slab prior density, and wjk(η) the slab

prior probability. The idea is that any ρjk generated by the spike takes a near-zero value, i.e. the

partial correlation is either truly zero or small enough to be practically irrelevant. Let zjk = 1

indicate that ρjk was generated from the slab and zjk = 0 that it was generated from the spike, i.e.

P (zjk = 1 | η) = wjk. A measure of evidence in favor of the presence of the edge is the posterior

probability

P (zjk = 1 | y) =
∫

P (zjk = 1 | ρjk, η)π(ρjk, η | y)dρjkdη, (11)

where from Bayes rule

P (zjk = 1 | ρjk, η) =
wjk(η)π1(ρjk | η)

(1− wjk(η))π0(ρjk | η) + wjk(η)π1(ρjk | η) . (12)

Given B posterior samples from π(ρ, η | y), (11) may be easily estimated by

P̂ (zjk = 1 | y) = 1

N

N∑
I=1

P (zjk = 1 | ρ(I)jk , η
(I)) (13)

The description above applies in a full Bayesian treatment where η has a posterior distribution, in our

empirical Bayes framework we simply replaced η by η̂ in (10)-(13).

Our decision rule is to include edge (j, k) whenever P̂ (zjk = 1 | y) ≥ t for some threshold t ∈ [0, 1].

We used t = 0.95. In problems where the goal is to estimate Θ it is customary to use t = 0.5, see

Barbieri and Berger (2004). In contrast, in structural learning where one seeks to control the posterior

expected false discovery proportion below some given level α, Müller et al. (2004) showed that the

optimal threshold maximising statistical power is to set the largest t such that

1

|D|
∑

(j,k)∈D

P̂ (zjk = 0 | y) ≤ α

where D is the set of included edges. In particular, setting t = 1 − α ensures that the posterior

expected false discovery proportion is below α.

4.3 Empirical Bayes

The empirical Bayes estimate η̂ discussed in Section 3.2 requires marginalizing the joint posterior

π(Θ, η | y). This is possible given N posterior samples (Θ(i), η(i)) for i = 1, . . . , N from the latter,
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since then by definition η(i) are samples from π(η | y). Then one may obtain η̂ by maximising a

kernel density estimate of π(η | y), for example. Given that the accuracy of kernel density estimators

degrades as dimensionality grows, in our examples when dim(η) > 2 we instead obtain marginal mode

estimators η̂j = argmaxηj π(ηj | y).

5 Simulation study

We conducted a simulation study to illustrate two important practical points. First, that when the

network data are informative regarding the structure of Θ, incorporating said data improves inference.

Second as just as important, that when the network data are useless inference does not suffer too much.

To this end, we compared standard GLASSO with the network GLASSO of Section 3.1 and the network

graphical spike-and-slab of Section 3.2 in several settings. We also considered the siGGM method

Higgins et al. (2018), which is analogous to the network GLASSO in (2) but hyper-parameters are set

to enforces the assumption that the network data are related to Θ, rather than learning from data

whether this is the case or not. As discussed in Section 4, the network GLASSO hyper-parameters β

are set via the BIC using grid-search optimisation, and the spike-and-slab hyper-parameters η using

empirical Bayes. We considered a setting where there is a single binary network A with entries

ajk ∈ {0, 1} and considered p ∈ {10, 50} and sample sizes n ∈ {100, 200} (results for n = 500 are in

Table A.2). We then generated 50 independent datasets where yi ∼ N (0,Θ−1) independently across

i = 1, . . . , n. We set the data-generating Θ to have unit diagonal and most non-zero entries along

the main tri-diagonal (Θjk where |j − k| = 1). Specifically, a proportion of 0.95 of the tri-diagonal

entries were set to non-zero values uniformly spaced in [0.2, 0.5]. Regarding entries outside the main

tri-diagonal (i.e. Θjk where |j − k| > 1), a proportion of 0.5/p were set to non-zero values uniformly

spaced in [−0.1, 0.1] (i.e. the number of edges in the graphical model grows linearly with p).

We consider a setting where the network data are useless (independent network), and two settings

where they are increasingly informative. To measure the degree to which the network data ajk ∈ {0, 1}
is informative we count the proportion of overlaps where ajk = I(Θjk ̸= 0), i.e. the presence/absence

of an edge in the network A matches that of an edge in Θ. We considered the following settings:

1. Independent network: The tri-diagonal elements of A are set such that half of them are 1 and

half of them 0, equally for the elements outside the main tri-diagonal, half of these are 1 and

half of these are 0. This led to a 0.533 and 0.502 proportion of edges that agree between A and

I(Θ ̸= 0) for p = 10 and 50 respectively.
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2. Mildly informative network: The tri-diagonal elements of A are set such that the proportion

ajk = 1 is 0.75, alternatively for the elements outside the main tri-diagonal the proportion of

ajk = 1 is 0.25. This led to a 0.778 and 0.747 proportion of edges that agree between A and

I(Θ ̸= 0) for p = 10 and 50 respectively.

3. Strongly informative network: The tri-diagonal elements of A are set such that the proportion

ajk = 1 is 0.85, alternatively for the elements outside the main tri-diagonal, the proportion of

ajk = 1 is 0.15. This led to a 0.867 and 0.844 proportion of edges that agree between A and

I(Θ ̸= 0) for p = 10 and 50 respectively.

Code to reproduce our simulations is available in the GitHub repository. For each setting, we report

the mean squared estimation error (MSE), the false discovery rate (FDR), and the false negative rate

(Benjamini and Hochberg, 1995). The FDR is the expected proportion of false positive edges among

the edges estimated to be present, a measure of type I error, whereas the FNR is the expected

proportion of false negative edges among those not reported to be present, which measures statistical

power. Under the GLASSO methods, an edge is declared if the corresponding estimate of ρjk was

non-zero (rounded to 5 decimal places). For the spike-and-slab model an edge is declared when the

posterior probability that ρjk arises from slab (12), conditional on empriical Bayes estimates η̂ is above

0.95.

Table 1 summarises the results. For all sample sizes, the network GLASSO significantly reduced

the MSE when the network data were mildly or strongly informative (A0.75 and A0.85), whereas it

attained a similar MSE to standard GLASSO in the uninformative network setting (Aind). The FDR

was significantly above the usually accepted level of 0.05. Regarding the spike-and-slab formulations,

they consistently achieved an FDR below 0.05 and a small FNR, and in large p situations a further

improvement of the MSE compared with the network-GLASSO methods. Adding network data im-

proved the spike-and-slab MSE and FNR, particularly when p was large relative to n. The FDR did

not noticeably improve, but it was already near-zero when not using the network data. These findings

suggest that the spike-and-slab formulations tend to attain better inference than the GLASSO counter-

parts. However the latter may be more appealing in settings with pressing computational demands.

For example, in the p = 50, n = 100, A.85 setting GOLAZO took just over 5 minutes to run, whereas

the NumPyro spike-and-slab implementation took close to 20 minutes (and Stan nearly 2 hours), see

Section D for further details.

We stress that when the network data are useless (Aind) the performance of Network GLASSO
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remained similar to GLASSO, and that of Network SS to that of a standard spike-and-slab. In contrast

the performance of siGGM was poor in this setting, illustrating the practical value of assessing whether

the network data is useful for inference, as done in our two frameworks. In the informative network data

settings the performance of siGGM improved, although its MSE was higher than for our methodology

and the FDR levels significantly above 0.05.

6 Results

6.1 COVID-19 infection rates

Recall that the outcomes are log-infection rates for USA counties during n = 97 weeks and that a

regression model was fit to account for various factors driving the mean infection rates. These included

week and county indicators, temperature and vaccination rate and serial correlation terms, see Section

2. The goal is to regress the residual partial correlations between counties, which measure the extent

to which COVID-19 co-evolved in these counties, on three network datasets. These are a geographical

closeness network A1 where a
(1)
jk is the reciprocal of the log-geographic distance between counties (j, k)

(hence larger values indicate smaller distance), a Facebook network A2 where a
(2)
jk is the log-Facebook

connection index between (j, k), and a flight network A3 where a
(3)
jk is the logarithm of 1 + the flight

passenger flow between (j, k) (see Section B for more details). Pearson’s correlation between A1 and

A2 is 0.746, i.e. there is a large overlap in the information given by both networks and it is hence

desirable to use a principled model to disentangle their effects.

As a first exercise, we used network GLASSO to determine what network datasets are informative

with respect to the target partial correlations. As p = 332 is large and the hyper-parameter dimension

is dim(β) = 4, we estimated β̂BIC using Bayesian optimisation, as described in Section 4. Table 2

shows a summary comparing the 8 models defined by the inclusion/exclusion of each network data.

The model attaining the best BIC value includes the geographical and Facebook networks, suggest-

ing that they both carry relevant information to help learn the graphical model, but not the flight

network. The estimated coefficients for both networks (β̂1, β̂2) were negative, i.e. counties that are

close geographically or highly-connected at Facebook are regularised less. The larger coefficient β̂2 in

the joint model suggests that the effect of the Facebook network is greater. Interestingly, the three

network-regularised solutions were significantly sparser relative to the 628 edges detected by GLASSO.

Despite these solutions being sparser, they included some edges that were not included by GLASSO.

Figure 2a shows edges that were only selected when adding the geographical network A1, which largely
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Table 1: Simulation results under non, mildly and strongly informative networks Aind, A0.75 and A0.85.

For SS and network SS models edges declared when posterior probability > 0.95.

p = 10 p = 50

n MSE FDR FNR MSE FDR FNR

GLASSO 100 0.350 0.370 0.098 3.505 0.442 0.292

Network GLASSO, Aind. 100 0.354 0.340 0.122 3.623 0.392 0.306

Network GLASSO, A0.75 100 0.291 0.258 0.093 2.847 0.421 0.251

Network GLASSO, A0.85 100 0.170 0.174 0.120 2.246 0.426 0.223

SS 100 0.222 0.000 0.086 1.611 0.000 0.023

Network SS, Aind. 100 0.237 0.003 0.082 1.631 0.004 0.025

Network SS, A0.75 100 0.234 0.007 0.073 1.462 0.005 0.023

Network SS, A0.85 100 0.189 0.047 0.060 1.280 0.002 0.022

siGGM, Aind 100 0.534 0.683 0.047 4.815 0.866 0.017

siGGM, A0.75 100 0.304 0.492 0.019 3.203 0.837 0.010

siGGM, A0.85 100 0.197 0.385 0.028 2.749 0.794 0.009

GLASSO 200 0.184 0.416 0.022 1.794 0.476 0.181

Network GLASSO, Aind. 200 0.201 0.378 0.040 1.871 0.439 0.189

Network GLASSO, A0.75 200 0.161 0.309 0.022 1.515 0.412 0.181

Network GLASSO, A0.85 200 0.096 0.204 0.098 1.241 0.388 0.173

SS 200 0.109 0.000 0.056 0.672 0.002 0.017

Network SS, Aind. 200 0.127 0.007 0.053 0.671 0.002 0.017

Network SS, A0.75 200 0.114 0.007 0.048 0.597 0.003 0.015

Network SS, A0.85 200 0.091 0.023 0.041 0.527 0.002 0.015

siGGM, Aind 200 0.273 0.666 0.015 2.108 0.839 0.009

siGGM, A0.75 200 0.181 0.487 0.015 1.470 0.797 0.009

siGGM, A0.85 200 0.105 0.381 0.026 1.138 0.751 0.008

correspond to counties that are close to each other. Figure 2b shows an analogous plot when using

the Facebook network A2, interestingly there are connections between faraway counties in the west,

north-east and south-east. Figure B.8 further portrays the estimated graphical model when using

both networks.
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Table 2: Eight models for the COVID-19 data. A1, A2 and A3: networks defined by 1/ log(Geodist),

log(Facebook) and A3 = log(1 + Flights). BIC values account for the extra hyper-parameters in the

network GLASSO models. 10-fold: 10-fold cross-validated log-likelihood

Method BIC β̂0 β̂1 β̂2 β̂3 Edges 10-fold

GLASSO 23158.558 -1.376 2637 113.208

Network GLASSO- A1 16237.865 0.230 -1.053 1427 122.692

Network GLASSO- A2 15207.178 0.738 -1.301 1430 122.516

Network GLASSO- A3 24227.657 -1.295 -0.085 2602 102.794

Network GLASSO- A1 & A2 15064.079 1.500 0.355 -1.695 1197 124.372

Network GLASSO- A1 & A3 16057.853 0.527 -1.193 0.531 1377 119.583

Network GLASSO- A2 & A3 15217.319 0.493 -1.131 0.377 1339 122.396

Network GLASSO- A1, A2 & A3 15448.091 0.212 -0.063 -1.093 -0.103 1598 121.276

To further assess the relative performance of the eight models, we undertook a 10-fold cross-

validation exercise where we assessed the log-likelihood (as a measure of predictive accuracy) in an out-

of-sample fashion. The models incorporating the Facebook and geographical network also performed

much better than standard GLASSO according to this predictive criterion, despite being remarkably

sparser (1,197 vs. 2,637 edges).

We next applied our spike-and-slab framework to obtain further insights on how the proportion of

edge connections, as well as the mean partial correlation, depend on the two networks. We initially ran

20,000 MCMC iterations, thinning to 1 in every 10, to sample from π(diag(Θ), ρ, η | y). The resulting

chains for network hyperparameters η had average effective sample size (ESS) of 473.8 and average

R-hat value of 1.004, providing us with sufficient confidence to use these chains to do inference on η

and produce empirical Bayes estimates. We then ran a second MCMC, fixing η̂, for 4,000 iterations

thinning to 1 in every 10. The resulting chains for partial correlations ρ had an average ESS of 372.8

and an average R-hat value of 1.003, suggesting that the chain converged.

As discussed earlier, the bottom panels in Figure 1 display the fitted spike-and-slab distribution

as a function of both the geographical closeness and Facebook networks. The corresponding plot

for the flight network is in Figure B.6. Table 3 presents the corresponding (empirical Bayes) hyper-

parameter estimates, and Figure B.7 displays the estimated prior slab mean and prior slab probability

as functions of the networks. Recall that positive entries in η0 and η1 indicate that the mean and
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(a) Edges identified by Network GLASSO - A1 (geographical network) but not by GLASSO

(b) Edges identified by Network GLASSO - A2 (Facebook network) but not by GLASSO

Figure 2: Edges identified by Network GLASSO but not by standard GLASSO.
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variance (respectively) of the non-zero ρjk, i.e. the slab location and variance parameters, increase

for counties that are strongly connected in the network. Similarly, positive entries in η2 indicates a

higher probability of there being a non-zero partial correlation between such counties. Table 3 hence

shows that counties strongly connected in the Facebook and geographic networks had more non-zero

partial correlations (relative to less connected counties), and that both the mean and variance of the

partial correlations were also larger. The flight passenger network was estimated to have no effect

on there being a non-zero partial correlation, nor on their mean, and a mild effect on the variance

of non-zero partial correlation (in agreement with the BIC and cross-validation results in Table 2).

The coefficients for the Facebook network are larger in absolute value than those of the geographical

network indicating that the Facebook network has the stronger association with the dependence in

COVID-19 rates. This is further illustrated in Figure B.7. These results illustrate the greater flexibility

provided by the network spike-and-slab models to portray the relation between the network data and

the partial correlations. For completeness, Table B.1 summarises the selected graphical model under

a 0.5 and 0.95 posterior probability threshold for declaring an edge.

Altogether, our results support that there is a fairly strong association between social media

connections and the co-evolution of the pandemic, even when accounting for geographical closeness

and a number of factors driving the mean structure, and that said association is not driven by airplane

travel.

Table 3: Network spike-and-slab empirical Bayes (marginal MAP) estimates and 95% posterior in-

tervals for COVID-19 data. A1, A2 and A3: networks defined by 1/log(Geodist), log(Facebook) and

log(1 + Flights). Bold values where the credibility interval includes 0.

Intercept A1 A2 A3

η0 (slab location) -0.008 0.006 0.017 0.0

95% interval (-0.009, -0.005) (0.003,0.008) (0.014,0.018) (-0.002,0.002)

η1 (slab dispersion) 2.285 0.054 0.178 -0.071

95% interval (2.110, 2.507) (0.003, 0.105) (0.108, 0.240) (-0.144, -0.002)

η2 (slab probability) -2.694 0.336 0.771 -0.1

95% interval (-3.088,-2.397) (0.154, 0.513) (0.608, 0.949) (-0.247, 0.047)
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6.2 Stock market excess returns

Recall that the outcomes are log-daily excess returns of p = 366 US companies. The first network is

an economic risks network A1 where a
(1)
jk is the Pearson’s correlation between vectors of economic risks

faced by firms j and k. The rth element of these vectors is log(1 + propr) where propr is proportion

of 10-K terms that reflect the rth economic risk according to the dictionaries of Baker et al. (2019).

A2 is the equivalent but for vectors of policy risks. Pearson’s correlation between the two networks

was 0.301, suggesting that they provide largely different information. See Section C for a description

of the data pre-processing.

We firstly run GLASSO using no network data and then network GLASSO using only the Economic

network, only the Policy network, and finally using both networks. Table 4 compares these four models.

The model including both networks attained the best BIC value and their estimated parameters (β̂1, β̂2)

are both negative. That is, partial correlations between companies that have large connections in the

network are more likely to be non-zero, and are hence less regularised. The estimated graphical model

when using both networks is sparser than under standard GLASSO.

Table 4: Four models for the stock market data. A1 is the Economic network, A2 the Policy network.

BIC values account for the extra hyper-parameters in the network GLASSO models. 10-fold is the

10-fold cross-validation log-likelihood

Method BIC β̂0 β̂1 β̂2 Edges 10-fold

GLASSO 74078.33 -1.639 2623 -467.128

Network GLASSO A1 72459.55 -1.137 -0.677 2770 -463.683

Network GLASSO A2 73857.75 -1.107 –0.776 2211 -467.128

Network GLASSO A1 & A2 72392.50 -0.176 -0.932 -0.671 2058 -467.42

To further assess the four models we evaluated their out-of-sample log-likelihood using 10-fold

cross-validation. The models incorporating only the economic risks network performed best in this

prediction exercise.

To gain further insights into the relation between partial correlations and the network data, we

applied our spike-and-slab framework. We initially run 10,000 MCMC iterations, thinning to 1 in

every 10, to sample from π(diag(Θ), ρ, η | y). The resulting chains for network hyper-parameters η

had an average effective sample size (ESS) of 453.9 and an average R-hat value of 1.002, suggesting

MCMC convergence. From these samples we obtained empirical Bayes estimate η̂ and then ran a
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Figure 3: Residual partial correlations of the stock market excess returns across firms vs Economy

risk (left) and Policy risk (right). Top panel: fitted spike-and-slab distributions and fitted partial

correlations estimated with network spike-and-slab model. Bottom panel: Stock-market data: Slab

location (left) and slab probability (right) as a function of both networks estimated by empirical

Bayes.

26



second MCMC, fixing η̂, for 4,000 iterations thinning to 1 in every 10. The resulting chains for partial

correlations ρ had an average ESS of 370.0 and an average R-hat of 1.003.

Figure 3 shows the estimated spike-and-slab distributions for the partial correlations as a function

of both networks, and Table 5 the corresponding hyper-parameter estimates. Recall that the network

values were standardised so although they are correlations they do not lie in [−1, 1]. Companies

with strong connections in either network are estimated to have both a larger probability of a non-

zero partial correlation (positive η2) and a larger mean non-zero partial correlation (positive η0).

Interestingly, the policy network had the larger positive effect on the probability of a non-zero partial

correlation, but its effect on their mean is smaller than the economic network’s.

In short, both the economic and policy risk networks appear to contain independent information

about the partial correlations among firms’ stock returns. The GLASSO model suggests economic risks

are more associated with such correlations: when both networks are included, the estimated impact

of the economic risk network on the regularisation is stronger than that of the policy risk network

and the out-of-sample predictive exercises prefers only the model with the economic network. At the

same time, the additional structure of the spike-and-slab model reveals a more subtle pattern. The

relationship between the strength of the connection in the economic risks networks and the partial

correlation evolves more smoothly than for the strength of the connection in the policy network. Only

when firms are strongly connected in the latter is there an inferred impact on their partial correlations.

Since the pioneering work of Hassan et al. (2019), economists have used word-count-based ap-

proaches to measure and evaluate firm-level exposure to political and policy risks. But exposure to

policy risks is in part a function of economic risks: for example, firms exposed to air travel via their

business model will also be exposed to regulation of the Federal Aviation Administration. Our findings

suggest that, after accounting for shared economic risks, shared policy risks only matter for excess

return co-movement once firms are strongly connected.

For completeness, Table C.1 summarises the selected graphical model under a 0.5 and 0.95 posterior

probability threshold for declaring an edge.

7 Discussion

We believe that our two frameworks to regress a graphical model on network data should have interest

beyond our motivating COVID-19 and stock market applications. Specifically, the Bayesian framework

provides a rich model to depict the probability that parameters are non-zero as well as the distribution
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Table 5: Network spike-and-slab empirical Bayes (marginal MAP) estimates and 95% posterior credible

intervals for the stock market data. A1 is the Economic network, A2 the Policy network.

intercept A1 A2

η0 (slab location) 0.012 0.012 0.007

95% interval (0.01, 0.014) (0.009,0.014) (0.003,0.009)

η1 (slab dispersion) 2.943 0.284 -0.353

95% interval (2.827,3.063) (0.194, 0.369) (-0.447,-0.249)

η2 (slab probability) -3.834 0.644 1.59

95% interval (-4.122,-3.553) (0.519, 0.808) (1.267, 1.93)

of non-zero parameters. Such a framework should find applicability in many other problems, for

example high-dimensional regression or factor models. Our results showed that the external (network)

data was particularly helpful in situations where the problem dimension was large relative to the sample

size n, as is often the case in applications. Further, we observed that the ability to learn hyper-

parameters ameliorated the consequences in a worst-case scenario where one introduces uninformative

external data.

Our COVID-19 application found that geographical closeness and a Facebook connectivity network

were both informative about the dynamics of COVID-19 cases, allowing for the estimation of a sparser

graphical model that predicted better out-of-sample. The Facebook network had a greater association

with COVID-19, suggesting for example to consider social media campaigns to help improve disease

outcomes. We stress that our findings should be understood as associations between social media and

disease progression, rather than causal connections. For example, although Nyhan et al. (2023) found

that Facebook feeds are skewed towards politically like-minded sources, there was little evidence that

increasing exposure to more diverse sources reduced polarization. It is therefore possible that the

Facebook index serves as a proxy for like-minded attitudes, rather than shared social media causally

driving people to have similar attitudes. In the stock market application we found similarity in firm

risk exposures to economic and policy risks were both informative of the firms co-evolution in excess

returns. While the policy network appeared to have a stronger relationship to whether two firms were

connected, the economic network was more predictive of the behaviour of connected observations.

These findings suggest that by understanding better the role played by risks declared by firms on their

stock market behavior, it may be possible to design better portfolio strategies.
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Further methodological work could consider richer relationships for how the graphical models can

depend on the networks, e.g. by considering non-parametric models. Another interesting avenue

would be developing computational methods to scale our algorithms to even higher dimensions.
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Supplementary Material

Section A provides further details for the implementation of our network GLASSO and network spike-

and-slab models. Section B contains further information related to our COVID-19 data application,

including the data collection, preprocessing, linear model estimation and diagnostic checks, network

specification and linearity check, as well as further results and figures. Section C provides analogous

information for the stock market data. Lastly, Section D provides a performance comparison of

the network GLASSO frequentist model with the network spike-and-slab Bayesian model using Stan

and NumPyro. Code to implement all of our experiments and data pre-processing is available at

https://github.com/llaurabat91/graphical-models-external-networks.

A Implementation details for network GLASSO and network spike-

and-slab

A.1 Bounding the region for optimal GOLAZO hyperparameters β.

The GOLAZO algorithm (Section 8.1 in Lauritzen and Zwiernik (2020)) is a block coordinate descent

algorithm where the j-th row is optimised with other entries of Σ fixed by solving a quadratic program

min
d

dT (Σ\j)
−1d subject to |Σij − Sij | ≤ λij for all i < j and Σii = Sii for all i, (A.1)

where d contains the off-diagonal entries of the j-th row of Σ (the diagonal entry always satisfies

Σjj = Sjj).

The following lemma guarantees that for large enough λij the solution is to set all parameter

estimates to zero.

Lemma A.1. If λjk ≥ |Sjk| for all k ̸= j then d = 0 optimises (A.1).

Proof. Under the given condition d = 0 is always feasible. Since d = 0 is also the global minimum,

the result follows.

We can therefore assume that λjk < |Sjk| for at least one pair (j, k). That is, we may restrict

attention to β satisfying

max
j ̸=k

log(λjk) = max
j ̸=k

β0 +

Q∑
q=1

βqā
(q)
jk ≤ max

j ̸=k
log |Sjk|.
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Note that this expression bounds the range of possible optima for each βq given the rest, and in

particular for β0 we obtain

β0 ≤ max
j ̸=k

{log |Sjk| −
Q∑

q=1

βqā
(q)
jk },

which is ≤ maxj ̸=k log |Sjk| at the initialisation step where β1 = . . . = βQ = 0.

In particular, we propose the following procedure. First initialise β̂0 (the first entry in β̂), such

that λ̂ = exp(β̂0), where λ̂ maximises the BIC in (4) over a univariate grid. Assuming that all variables

in yi are standardised to unit sample variance, the grid search is facilitated by Lemma A.1 and the

analytic upper bound that

β̂0 ≤ log

(
max
k ̸=j

{|Rjk|}
)
, (A.2)

where R is the empirical correlation matrix.

Second, we conduct a grid search on the whole vector β, with the first entry being centered around

β̂0. The grid search is again facilitated by the Lemma A.1 which shows that one may restrict attention

to β such that

max
j ̸=k

λjk = max
j ̸=k

eβ0+
∑Q

q=1 βq ā
(q)
jk ≤ 1− |Rjk|

since increasing λjk beyond this bound will not change Θ̂. Within the grid search, we also use the

solution obtained for a particular β as a warm start for subsequent values of β.

Further, the fact that Σ in (A.1) must be positive definite allows for the construction of further

simple bounds. For every i ̸= j we necessarily have Σ2
jk ≤ ΣjjΣkk = SjjSkk, or equivalently, Σjk ∈

[−
√

SjjSkk,
√
SjjSkk]. It follows that, without loss of generality, we can restrict attention to that

λjk ≤
√
SjjSkk − |Sjk| giving

β0 +

Q∑
q=1

βqā
(q)
jk ≤ log(

√
SjjSkk − |Sjk|) for all j ̸= k.

A.2 Implementation of spike-and-slab

If the spike has a very small variance, or the slab has too bigger variance it can be difficult for an

MCMC sampler to efficiently explore both spaces. We use a rescaling trick to facilitate efficient MCMC

inference for the network spike-and-slab model. Rather than sample directly from π(ρ) as defined by

(8), for each ρjk we define latent variables ρ̃spikejk , ρ̃slabjk and ujk. We then sample

ρ̃spikejk ∼ DE (0, 1) , ρ̃slabjk ∼ DE (0, 1) and ujk ∼ Unif[0, 1],
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and set

ρjk = I(ujk > wjk)
(
s0 × ρ̃spikejk

)
+ I(ujk ≤ wjk)

(
ηT0 ajk + sjk × ρ̃slabjk

)
.

It is straightforward to see that the marginal distribution of ρjk matches that defined in (8). Lastly,

to make such an implementation suitable for MCMC samplers that require differentiability, we approx-

imate the indicator I(ujk > wjk) with a sigmoid function

I(x ≥ 0) ≈ σk(x) =
1

1 + exp(−kx)
for large k,

taking k = 100.

A.3 Prior elicitation

We elicit spike-and-slab prior parameters (η0, η1, η2) that encourage sparse solutions, avoid pathological

values, and maintain their specified intuition whilst being minimally informative. We finish this section

with a table of the values used in the simulations and in our applications. For interpretability, we treat

the spike’s scale parameter s0 as a constant. Recall that the spike captures partial correlations ρjk that

are considered to be 0 for all practical purposes, which here we consider to be |ρjk| < 0.01. We hence

set s0 such that the spike has most of its density below this threshold, i.e. Π(ρij ∈ (−τ, τ); s0) = 0.95,

where τ = 0.01. This gave the value s0 = 0.003

Consider first the hyperparameters (η00, η10, η20) defining the intercept of the regression of the

slab’s mean, variance, and prior probability on the network data. We set the priors

η00 ∼ N
(
0, g20

)
η10 ∼ N

(
m1, g

2
1

)
η20 ∼ N

(
m2, g

2
2

)
.

For the hyperparameters that capture the effect of each network A(q), where q = 1, . . . , Q, we set

η0q ∼ N
(
0, g20

)
η1q ∼ N

(
0, g21

)
η2q ∼ N

(
0, g22

)
.

Centering the prior of η00 at 0 encodes the absence of information about whether partial correlations

are positive or negative on average. Similarly, centering the priors of (η0q, η1q, η2q) at zero reflects no
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prior knowledge on whether the network data are predictive of ρ and in which direction. To set the

remaining hyperparameters we assume the networks have been standardised and conduct the prior

elicitation for the average value of the networks (i.e. ā
(q)
jk = 0 for all networks q). As a result, our

prior elicitation is invariant to the network(s) considered.

The prior on η2 was set based on sparsity and minimal informativeness considerations. Specifically,

we set the prior expected number of edges (non-zero partial correlations) to scale linearly with p, so

that each node is expected to have a constant degree as p grows. When all networks are at their

average value the slab prior probability is w = 1/(1 + e−η20). A standard non-informative prior on

slab prior probabilities is a Beta(mwvw,mw(1 − vw)) distribution (Scott and Berger, 2010), where

mw is the prior mean and vw is often interpreted as the prior ‘sample size’. We take the minimally

informative choice vw = 1. Regarding mw, we set it such that the prior expected number of edges is

p. Since the prior expected number of edges is

E

 p∑
j=1

∑
k<j

I(ρjk ∈ slab)

 =
p(p− 1)

2
w,

for mw = 2
(p−1) the expected number of edges is p. Based on these considerations, we set the (m2, g

2
2)

featuring in the prior of η20 and η2q so that the implied prior on w has the same mean and variance

as the Beta prior described above.

Regarding the prior on η1, we considered that for the slab to capture non-zero partial correlations

its prior scale parameter at the average value of the networks sjk = s0(1 + exp {−η10}) should be

significantly larger than that of the spike s0. We hence set m1 and g1 such that the prior mode of s1

is 10× s0, as well as s1 > 3× s0 with prior probability 0.99.

Finally, the prior on η0 was set based on prior positive-definiteness considerations. Specifically, the

positive-definiteness indicator I(ρ ≻ 0) induces dependence in the spike-and-slab prior density, i.e. it

can produce a joint prior that is vastly different from the product of independent priors on each ρjk.

Such a discrepancy is undesirable for prior interpretation, particularly in our setting where the priors

and their hyperparameters are objects of interest that describe how ρjk depends on network data. To

address this issue we set prior parameters such that the prior probability of ρ being positive definite

when independently sampling its elements is at least 0.95. Conditional on the priors specified for

(η1, η2), g0 was set to the largest value (i.e. least informative) that guarantees at least 0.95 probability

that ρ is positive-definite under independent sampling from the unconstrained spike-and-slab prior

components.
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Table A.1: Network spike-and-slab prior hyperparameters

p = 10 p = 50 COVID-19 data (p = 332) Stock data (p = 366)

s0 0.003 0.003 0.003 0.003

g0 0.145 0.152 0.002 0.002

m1 -2.197 -2.197 -2.197 -2.197

g1 0.661 0.661 0.3 0.35

m2 -2.722 -6.737 -7.789 -10.16

g2 3.278 3.395 1.02 1.81

A.3.1 Elicited values

Table A.1 presents the elicited values used in our simulations and real data examples. Code to elicit

priors following the specification above for further examples is available in the GitHub repository. As

the dimension of the data increases, only the prior for η2 changes greatly. This is a result of the

assumption that the number of edges grows linearly with p, and therefore Θ is a priori assumed more

sparse for larger p.

To assess the impact of these default prior choices, it is useful to display the implied prior marginal

distribution on the ρjk’s. Figure A.1 shows that in both the COVID-19 and stock market applications

most of the prior probability is contained in ρjk ∈ (−0.5, 0.5), which seems a sensible prior interval.

The prior concentrates significant mass around 0, which induces shrinkage, but also features thick

tails, which favors capturing truly non-zero ρjk’s. Indeed, the corresponding posteriors (Fig. A.1,

bottom panels) set significant mass away from zero, suggesting that the prior shrinkage towards 0 was

not excessive.

A.4 Reparametrisation of the network hyperparameters

An advantage of the Bayesian network spike-and-slab approach is that it allows us to do inference

for the network hyperparameter as was done in Tables 3 and 5. Such inferences, however, require

that the effective sample size (ESS) of the sampled hyperparameters is sufficiently high. We observed

empirically that hyperparameters attain lower ESS. Although this phenomenon has not been studied

in our graphical model settings, in hierarchical models it is well understood that parameters associ-

ated to higher levels have strictly slower MCMC mixing, and that said mixing can be improved by

reparameterising the problem (Zanella and Roberts, 2021). We applied the following transformation
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Figure A.1: Elicited prior distribution and posterior distribution for ρjk, j = 1, . . . , p, k < j for the

COVID-19 data p = 332 and stock market data p = 366.

of the hyperparameters to facilitate their sampling.

Rather than sample directly from the priors for the hyperparameters as outlined in Section A.3,

we reparameterised and sampled

η̃iq ∼ N
(
0,

p(p− 1)

2n

)
, i = 1, 2, 3, q = 0, 1, . . . , Q.

The original η hyperparameters can then be recovered as

ηi0 = mi + η̃i0 × gi/
√

p(p− 1)/2n,

ηiq = 0 + η̃iq × gi/
√

p(p− 1)/2n, i = 1, 2, 3, q = 1, . . . , Q,

where m0 := 0. The idea behind this is to first standardise the η’s to all have mean 0 and variance 1,

before adjusting the variance of the η̃’s by the square-root of the ratio of the number of ρ’s (p(p−1)/2)

from which the η’s are learned, to the number of observations Y (n) from which the ρ’s themselves

are learned. Such a reparametrisation leaves the model completely unchanged, but we found this

improved the ESS of the η′s.
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A.5 Additional simulation results

A.5.1 Simulations with n = 500

Table A.2 presents simulation results from Section 4 in the additional case where the sample size

n = 500. These show that when n is large relative to p, network information helps to a lesser extent.

Table A.2: Simulation results for n = 500 under non, mildly and strongly informative networks Aind,

A0.75 and A0.85. For SS and network SS models edges declared when posterior probability > 0.95.

p = 10 p = 50

n MSE FDR FNR MSE FDR FNR

GLASSO 500 0.082 0.367 0.002 0.825 0.410 0.032

Network GLASSO, Aind. 500 0.085 0.315 0.007 0.766 0.443 0.035

Network GLASSO, A0.75 500 0.066 0.270 0.000 0.604 0.419 0.031

Network GLASSO, A0.85 500 0.045 0.195 0.008 0.512 0.386 0.027

SS 500 0.030 0.000 0.023 0.198 0.002 0.009

Network SS, Aind. 500 0.034 0.000 0.023 0.201 0.001 0.010

Network SS, A0.75 500 0.032 0.002 0.018 0.193 0.001 0.009

Network SS, A0.85 500 0.033 0.008 0.022 0.183 0.001 0.009

siGGM, Aind 500 0.104 0.658 0.000 0.968 0.775 0.007

siGGM, A0.75 500 0.068 0.478 0.001 0.606 0.712 0.008

siGGM, A0.85 500 0.047 0.375 0.021 0.524 0.683 0.008

A.5.2 The EBIC to learn the network hyperparameters

As a sensitivity check, we also consider using the EBIC (Chen and Chen, 2008) to select hyperparam-

eters for the GLASSO and Network GLASSO models

EBIC(λ) = −2ℓn(Θ̂(λ)) + |E(Θ̂(λ))| log n+ 4|E(Θ̂(λ))|γEBIC log p (A.3)

Compared with the BIC, (A.3) has an additional complexity penalty, controlled by hyperparameter

γ. Foygel and Drton (2010) recommend γEBIC ∈ [0, 0.5] where γEBIC = 0 recovers the BIC. Table A.3

presents the results of the experiments introduced in Section 4 when using the EBIC with γEBIC = 0.5

to select hyperparameters. Comparing these results with Table 1 shows that using the EBIC reduced

the FDR relative to the BIC, however, this generally results in much more conservative edge selection

which damaged the MSE.
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Table A.3: GLASSO and network GLASSO simulation results under non, mildly and strongly informa-

tive networks Aind, A0.75 and A0.85 with EBIC rule (γEBIC = 0.5) for learning the β hyperparameters.

p = 10 p = 50

n MSE FDR FNR MSE FDR FNR

GLASSO 100 0.474 0.243 0.176 6.628 0.163 0.566

Network GLASSO, Aind. 100 0.556 0.163 0.253 7.008 0.128 0.632

Network GLASSO, A0.75 100 0.383 0.138 0.162 5.691 0.112 0.504

Network GLASSO, A0.85 100 0.195 0.103 0.153 4.566 0.098 0.414

GLASSO 200 0.254 0.283 0.060 2.726 0.224 0.241

Network GLASSO, Aind. 200 0.265 0.223 0.082 2.678 0.227 0.248

Network GLASSO, A0.75 200 0.200 0.176 0.058 2.155 0.206 0.216

Network GLASSO, A0.85 200 0.108 0.118 0.120 1.837 0.188 0.207

GLASSO 500 0.101 0.281 0.004 0.958 0.327 0.138

Network GLASSO, Aind. 500 0.099 0.235 0.011 1.002 0.286 0.142

Network GLASSO, A0.75 500 0.074 0.185 0.000 0.781 0.272 0.153

Network GLASSO, A0.85 500 0.051 0.116 0.096 0.698 0.214 0.158
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B COVID-19 data analysis

This section provides additional details for the analysis of the COVID-19 infection rate data.

B.1 Data sources

To undertake our analysis, we collected and combined the following datasets.

1. U.S. population data

U.S. population data for 2019 were sourced from https://www2.census.gov/programs-surveys/

popest/tables/2010-2019/counties/totals/.

2. FIPS code data

To allow for a better match between different datasets, we also extracted the “FIPS code” that uniquely

identifies counties within the U.S. from the U.S. Bureau of Labor Statistics https://www.bls.gov/

cew/classifications/areas/sic-area-titles.htm.

3. COVID-19 infection data

Time series data of confirmed COVID-19 infections in each U.S. county was obtained from https://

github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_

series/time_series_covid19_confirmed_U.S..csv. Figure B.1 plots of the weekly aggregated con-

firmed COVID-19 infections

4. COVID-19 vaccination data

State-level vaccination data was obtained from https://github.com/govex/COVID-19/tree/master/

data_tables/vaccine_data/us_data/time_series.

5. Policy data

The Oxford COVID-19 Government Response Tracker https://github.com/CSSEGISandData/COVID-

19_Unified-Dataset tracks individual policy measures across 20 indicators. They also calculate sev-

eral indices to give an overall impression of government activity. We used their Containment and

Health indices to summarise the policy variables.

6. Temperature data
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Figure B.1: Weekly COVID-19 Cases per county for the 99 biggest counties in the U.S.

We extracted the daily average near-surface air temperature from the ‘Hydromet’ folder of the above

repository https://github.com/CSSEGISandData/COVID-19_Unified-Dataset/tree/master/Hydromet.

7. U.S. area data

Population densities were obtained by dividing the county population by the area of the region. Area

data were obtained from the U.S. Census Bureau https://tigerweb.geo.census.gov/tigerwebmain/

TIGERweb_main.html.

8. Geocloseness data

To measure the Geographical distance between two counties we use the Haversine distance (Sinnott,

1984) which assumes the earth is spherical. The latitude and longitude of each county were downloaded

from the U.S. Census Bureau https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_main.

html.

9. Facebook connectivity data

The Facebook Social Connectedness Index (SCI), obtained from https://data.humdata.org/dataset/
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social-connectedness-index, uses an anonymised snapshot of all active Facebook users and their

friendship networks to measure the intensity of connectedness between locations. Specifically, it mea-

sures the relative probability that two individuals across two locations are friends with each other on

Facebook.

10. Flight connectivity data

Flight data between airports in the US was downloaded from https://essd.copernicus.org/articles/

13/357/2021/essd-13-357-2021.html

11. Airport Information

Name, ICAO code, and Geographical location of US airports were extracted from https://www.

flightradar24.com/52.52,13.39/4. This data allowed us to assign airports to the county(s) that

they were part of.

12. county-to-MSA crosswalk

When counties are part of large urban areas known as metropolitan statistical area (MSA) we allocate

the flights proportionally to all counties in the MSA. For example, a flight from JFK in New York to

LAX in Los Angeles is not recorded between just those two counties, but rather allocated between all

county pairs that form the NY and LA MSAs proportionally to the populations of these counties in

the MSAs. The membership of counties to MSAs was downloaded from https://www.census.gov/

geographies/reference-files/time-series/demo/metro-micro/delineation-files.html.

13. Flight capacities

The capacity of certain plane models was extracted from the folowing links

• https://www.seatguru.com/airlines/American_Airlines/fleetinfo.php

• https://www.seatguru.com/airlines/Delta_Airlines/fleetinfo.php

• https://www.seatguru.com/airlines/JetBlue_Airways/fleetinfo.php

• https://www.seatguru.com/airlines/Southwest_Airlines/fleetinfo.php

• https://www.seatguru.com/airlines/Spirit_Airlines/fleetinfo.php,
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allowing for the estimation of the number of passengers on each flight.

Producing our flight connectivity network required the following steps

• Assign each airport to the county in which it is located and distribute flights between counties

that make up MSA’s to the other counties in the MSA proportionally to their population

• Use airline capacity data to estimate the number of passengers on each flight and therefore the

number of passengers flowing between two counties

• Standardise this by the population of each county to estimate population flow

B.2 Data processing

Once the data was collected, some minimal data preprocessing was required to prepare the data for

our analysis. This consisted mainly of variable transformation and imputing of missing values.

B.2.1 Variables transformation

Natural logarithms were taken of the variables ‘confirmed case’, ‘population density ’ and ‘number of

vaccinations’.

B.2.2 Missing values

In addition, there were missing values in covariates Containment and Health Index data (CHI) as

well as the Temperature (Temp) data and the Vaccination data. We imputed these missing values as

follows

1. The CHI values were calculated as a function of different policy measures (https://github.com/

OxCGRT/covid-policy-tracker/blob/master/documentation/index_methodology.md). On

several occasions either these policy measures or their flags were missing. We imputed these as

follows

• Missing flags were imputed as 0’s, i.e. no flags

• Missing values before the first recorded value were imputed as 0, i.e. assuming no measures

were in place before the first recorded measure
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• Missing values in between two recorded values were imputed as an average of the before

and after measures

• Missing values after the last recorded value were imputed as the last seen measure, i.e.

assuming a continuation

2. For the Temp data, the temperatures for 18 counties were not recorded at all. We imputed these

using the nearest county geographically whose temperature data was available.

3. The vaccination data was only recorded from the 14th of December 2020 and therefore all

vaccination counts before this date were imputed as 0’s.

B.3 Meta-County Clustering

Before Clustering the data we removed some counties whose data were not available. From the FIPS

data we downloaded there were 3144 counties. District of Columbia did not have COVID-19 policy

variable available and we could not compute the population density for Valdez-Cordova Census Area

in Alaska so we removed these. Five counties were removed as they were not available in the SCI

index and 8 counties in Connecticut were removed because they did not have any flight connection

data. This left 3129 counties.

Starting with 3129 counties, we hierarchically clustered small counties together such that the

resulting meta-counties all have population greater than 500,000. The clustering procedure is described

in the following steps and is implemented by our code.

Step 1: Remove the ‘big’ counties. Any county whose population was greater than 500,000 is

extracted and left unchanged. There were 136 ‘big’ counties leaving 2993 ‘small’ counties.

Step 2: Cluster small counties with each state.

i) Within each state find the smallest ‘small’ county and combine this with the ‘small’ county

within that state whose centroid is closest to create a ‘meta-county’

ii) Update the county centroid as the average of the latitude and longitude of the two combined

counties

This procedure is repeated with each state until either all of the ‘meta-counties’ have population

greater than 500,000, or there is only one meta-county left for that state. This resulted in 196

meta counties
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This clustering procedure resulted in p = 332 counties. Once the meta-counties have been created

the number of cases were summed, populations are combined, areas combined, temperatures averaged

and the vaccination and CHI variables inputted for that state. This allowed the model described below

to be estimated together on the large counties and the meta-counties made up of smaller counties.

B.4 Model description

Our final response variable is the log of the weekly COVID-19 infections per 10,000 members of the

population (i.e. cases / population × 10,000). This results in data y1, . . . , yn where yi = (yi1, ..., yip)

is the log of the standardised weekly COVID-19 infections at week i in the p = 332 counties and

meta-counties. The sample interval is from 22 January 2020 to 30 November 2021 resulting in n = 97

weeks of data.

Our graphical model posits yi ∼ Np(µi, Θ
−1) where µi = (µi1, ..., µip). For convenience, we

decouple the estimate of µi from Θ. We pose a regression model for µij and then estimate Θ using

the residuals of this model assuming zero mean as in Section 2. Our generalised additive regression

model for yij can be summarised as follows

log(confirmed)ij = b0 + b1 × log(Lagconfirmed)ij + b2 × log(popdensi)j

+ b3 × Cum vaccinatedi,statej + b4 × CHIi,statej

+ s(Temp)ij + γ2 × Time2 + ...+ γT × TimeT + ϵij

where

(1) log(confirmed)ij represents the natural logarithm of weekly per 10,000 people confirmed case

in county j at time i.

(2) log(Lagconfirmed)ij a first-order auto-regressive term measuring the infection rate at the previous

time point i− 1 for each county j

(3) log(popdensi)j is the population density for county j

(4) Cum vaccinatedi,statej is the cumulative number of vaccinated individuals in the state to which

county j belongs by time i

(5) CHIi,statej represented the Containment and Health Index summarising COVID-19 policies/measures

put in place in the state to which county j belongs and time i (wearing masks, closing schools,

etc.)
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(6) s(Temp)ij is a non-parametric smooth of the average temperature for county j at time i imple-

mented in mgcv package in R

(7) Timei is an indicator for week i and provides a weekly fixed effect term estimating the mean

infections across all counties at time i

(8) ϵij are the residuals of county j at time i

With such a model we aim to remove the effect of the most relevant covariates that drive the mean

number of infections, allowing Θ−1 to capture dependencies unexplained by these covariates.

B.5 Checking model goodness-of-fit

The main assumptions behind our assumed model require that the residuals ϵij are Gaussian dis-

tributed and independent across i = 1, . . . , n time points. We provide diagnostic plots to check these

assumptions.

Figure B.2 plots the fitted values ŷij and each of the predictors against the residuals ϵij . This

demonstrates that the assumption that the covariates are linearly related to the response is satisfac-

tory and that the residuals appear reasonably homoskedastic. Figure B.3 shows a histogram of the

standardised residuals and Q-Q-normal plots for ϵij . The Gaussian assumption is tenable here.

The raw COVID-19 data exhibited strong serial correlation. To address this issue we added a first-

order auto-regressive term. Figure B.4 plots the autocorrelation functions and partial autocorrelation

functions for further lags after incorporating the AR1 term. These indicate that higher-order terms

are unnecessary. After adding an AR1 term the interpretation of the errors (and their covariance)

changes: they measure the infection rate relative to the covariates and to the infection rate of the

previous week, i.e. they capture whether certain counties are growing faster/slower than expected

(relative to the next week). So the model is investigating the growth rates, rather than absolute

infection numbers.

B.6 The network predictors

A further assumption of our proposed network GLASSO models, as discussed in Section 2.1, is that

there is a linear relation between logE[ρ2jk|A] and the network entries a
(q)
jk . To achieve linearity we

defined our two network predictors as

A1 := 1/ log(Geodist), A2 := log(Facebook), A3 := log(1 + Flights).
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Figure B.2: Plots of the fitted values and each covariateagainst the residuals for the COVID-19 data.

The red line corresponds to the LOWESS smooth.
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Figure B.3: COVID-19 data. Left Histogram of the standardised residuals compared with the standard

Gaussian density. Right Q-Q Normal plot of the standardised residuals.
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Figure B.4: Residual autocorrelation functions and partial autocorrelation functions after incorporat-

ing the AR1 term for the COVID-19 data.
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Figure B.5: Assessing the linear relation between logE[ρ̂2jk|A] and the network matrices, where ρ̂jk

is the GLASSO estimate. The points represent the log-mean values of ρ̂2jk within 10 equispaced bins

defined for each network.

Figure B.5 illustrates that after such transformations, the assumption of linearity is reasonably satis-

fied.

B.7 Supplementary figures

The top of Figure B.6 the flight connectivity network against partial correlations estimated by GLASSO.

It appears that as the flight connectivity goes up, the variance in the partial correlations decreases

slightly. However the dependence between the network and the partial correlations is much smaller

than was observed between the geographical or Facebook networks and the partial correlations in

Figure 1. The fitted spike-and-slab distributions in the bottom of Figure B.6 further demonstrate

this.

Table B.1 summarises the estimated graphical model under the network spike-and-slab model using

a posterior slab probability threshold of > 0.5 and > 0.95. The number of edges estimated under both
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Figure B.6: Residual partial correlations in COVID-19 infections (adjusted for covariates) across coun-

ties vs flight connectivity network defined as log(1+Flight). Top panel: partial correlations estimated

with graphical LASSO, with penalization parameter set via BIC. Bottom panel: fitted spike-and-slab

distributions and fitted partial correlations estimated with network graphical spike-and-slab LASSO.

the 0.5 and 0.95 slab probability threshold is considerably smaller than the number of edges estimated

under the network GLASSO models. Under the 0.95 slab probability threshold, the estimated number

of edges is more conservative.

Figure B.7 shows how the estimated network hyperparameters of Table 3 affect the location of the

slab and the probability of being in the slab marginally for each network when fixing the other two

networks to their means. We see that while as both the geographical closeness and Facebook networks

increase the location of the slab and the probability of being in the slab increases, the Facebook

network has the larger effect.
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Table B.1: COVID-19 data: Edge counts of the network spike-and-slab model when declaring an edge

for posterior slab probability > 0.5 and > 0.95

Edges (> 0.5) Non-Edges (> 0.5) Edges (> 0.95) Non-Edges (> 0.95)

Network SS 249 54697 102 54844
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Figure B.7: COVID-19 data: Slab location (left) and slab probability (right) as a function of the three

networks estimated by empirical Bayes.
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B.7.1 U.S. map plots

Figure B.8 visualises the network given by non-zero elements of the GLASSO estimated Θ with no

network information (top) and the network GLASSO estimate of Θ obtained when using both A1 and

A2 (bottom), the model achieving the smallest BIC, on top of a U.S. map. The network GLASSO

estimates a much sparser network, but we see there are still edges present between counties that are

geographically close as well as those that are farther away.

B.8 Results using the EBIC

Similarly to the simulations, we also investigate the sensitivity of our COVID-19 data results by con-

sidering selecting hyperparameters using the EBIC with γEBIC = 0.5. Table B.2 presents these results.

From the number of edges, we can see that using the EBIC estimates sparser networks than under the

BIC, but the out-of-sample test set estimate suggests these estimates may be too sparse. Importantly,

we see that the improvement of the network GLASSO methods over standard GLASSO is still apparent

when using the EBIC selection criteria.

Table B.2: Eight models for the COVID-19 data when using the EBIC (γEBIC = 0.5) to learn the

network hyperparameters. A1, A2 and A3: networks defined by 1/ log(Geodist), log(Facebook) and

log(1+Flight). EBIC values account for the extra hyper-parameters in the network GLASSO models.

10-fold: 10-fold cross-validated log-likelihood

Method EBIC β̂0 β̂1 β̂2 β̂3 Edges 10-fold

GLASSO 32204.000 -0.062 0 24.317

Network GLASSO- A1 27150.357 1.622 -1.120 766 81.846

Network GLASSO- A2 24461.011 2.903 -1.147 617 113.533

Network GLASSO- A3 32220.185 0.959 -0.165 0 24.317

Network GLASSO- A1 & A2 24303.227 5.200 -1.038 -1.162 730 112.771

Network GLASSO- A1 & A3 26453.480 2.407 -1.414 1.005 766 90.710

Network GLASSO- A2 & A3 23931.443 4.063 -1.457 -0.255 589 114.372

Network GLASSO- A1, A2 & A3 24927.80 2.845 -0.274 -1.159 0.246 796 113.764
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(a) Edges identified in GLASSO with no network

(b) Edges identified in network GLASSO with networks A1 and A2, the model achieveing the smallest BIC

Figure B.8: Edges identified by GLASSO and network GLASSO with the geographical closeness and

Facebook networks.
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C Stock market data preparation

This section provides additional details for the analysis of the stock market excess returns data.

C.1 Data sources

To undertake our analysis, we collected and combined the following datasets.

1. Stock price data

We extracted the daily closing stock price for p = 366 firms satisfying the following criteria: closing

stock prices adjusted for stock splits and dividends were available in the COMPUSTAT database for

every trading day between 2 January 2019 to 31 December 2019 (leaving n = 252 time points), the

stocks were associated to a member of the S&P500 at the end of 2019, and we could retrieve their

10-K filings for at least one of the years 2014-2019. The data was downloaded from the Center for

Research in Security Prices (CRSP) database accessed via Wharton Research Data Services (WRDS).

2. S&P 500 firms

The list of S&P 500 firms was downloaded from https://web.archive.org/web/20190912150512/

https://en.wikipedia.org/wiki/List_of_S%26P_500_companies which corresponds to the wikipedia

page listing the S&P500 retrieved on 12/09/2019, its last archived data in 2019.

3. Fama/French Three-Factor Model

We constructed excess returns using the Fama-French three-factor model (Fama and French, 1993).

The three factors are the 1) overall market return, 2) a measure of firm size, and 3) a measure of

book-to-market ratio. The daily Fama/French factors were downloaded from https://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html. For each stock, we regress 2019

daily returns on the three factors (plus a constant) and extract the residual as the excess return.

4. Risk measures

Our network data measures the similarity of two companies’ risk exposures stratified into Economic

and Policy risks. The 10-K risk exposure data counts for each risk category the number of sentences

within a company’s 10-K filings that contained any member of a dictionary associated with that risk

category. We manually construct these using the dictionary terms listed in Baker et al. (2019). From

this data, we can construct a p × p network matrix for firms, where each entry Xij represents the
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degree of “closeness” between firm Xi and firm Xj .

C.2 Model description

Our final response variable is the log daily returns for p = 366 U.S. firms throughout 2019, resulting in

n = 251 observations. We are, however, interested in the graphical model, Np(0,Θ
−1), of the ‘excess

returns’, defined as the residuals of a linear model regressing the log-returns on the Fama-French

factors.

The ‘excess returns’ for stock j are therefore estimated, separately for each firm, using the following

model

rij −Rfi = b0j + b1j × SMBi + b2j ×HMLi + b3j × (Rm−Rf)i + ϵij (C.1)

where

(1) rij is the log daily return of stock j at time i defined as rij = log pij − log pi−1j , where pij is the

closing price of firm j on day i

(2) Rfi is the risk free rate at time i.

(3) SMBi (Small Minus Big) is the average return on the three small portfolios minus the average

return on the three big portfolios at time i.

(4) HMLi (High Minus Low) is the average return on the two value portfolios minus the average

return on the two growth portfolios at time i.

(5) (Rm−Rf)i, the excess return on the market at time i, value-weighted return of all CRSP firms

incorporated in the U.S. and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share

code of 10 or 11 at the beginning of i’s month, good shares and price data at the beginning of

i’s month, and good return data for i minus the one-month Treasury bill rate.

(6) Coefficients b0j , b1j , b2j and b3j are estimated for firm j using ordinary least squares.

C.3 Checking model goodness-of-fit

Similarly to Section B.5, we produce diagnostic plots to confirm the validity of the linear-model and

the Gaussianity and independence of its residuals.
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Figure C.1: Residual autocorrleation function and partial autocorrelation function for the stock market

data.

Figure C.1 plots autocorrelation functions and partial autocorrelation functions, demonstrating

that the observations can be considered independent and that there is no need to consider auto-

regressive terms. Figure C.2 plots the fitted values ŷij and each of the predictors against the residuals

ϵij , demonstrating that the assumption that the covariates are linearly related to the response is

satisfactory and that the residuals appear reasonably homoskedastic.

While the Gaussian assumption was tenable for the COVID-19 data, Figure C.3 shows that this is

not the case for the stock market data. There is evidence of considerably heavier tails than Gaussianity.

To address this issue we fit a non-paranormal model based on transforming the data into f(ϵi) :=

(f1(ϵi1), . . . , fp(ϵip)), where f̂ was estimated using the R package huge (Zhao et al., 2012). Figure C.4

shows a histogram and Q-Q-normal plot for f(ϵi), where the Gaussian assumption is more tenable.

C.4 The network predictors

The price data from CRSP is arranged by TIC, a unique stock identifier, while the risk measures are

arranged by CIK, a unique company identifier. Any two stocks associated with the same compnay

had the same risk scores.

Based on the construction of Baker et al. (2019), we divided the 37 risk factors into two categories:

the economic risks (containing 17 risks) and the policy risks (containing 20 risks) and standardised

the sentence coutsn by the total number of sentences in the 10-K fillings. Then, for each risk type, we

centered the log(1 + counts) and evaluated the Pearson’s correlation between all pairs of companies

to obtain two network matrices Epears and Ppears.

Figure C.5 demonstrates that for both networks there appears to be an increased chance of having
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Figure C.2: Plots of the fitted values and each covariate against the residuals for the stock market

data. The red line corresponds to the LOWESS smooth.
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Figure C.3: Stock market data. Left Histogram of the standardised residuals compared with the

standard Gaussian density. Right Q-Q Normal plot of the standardised residuals.
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Figure C.4: Stock market data. Left Histogram of the transformed residuals compared with the

standard Gaussian density. Right Q-Q Normal plot of the transformed residuals.
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Figure C.5: Residual partial correlations of the stock market excess returns across firms vs Economy

risk (left) and Policy risk (right). Partial correlations were estimated with GLASSO, with penalization

parameter set via BIC.

positive partial correlation if the two firms have highly correlated risk factors. Figure C.6 demonstrates

that no further transformation of the networks is required to satisfy the network GLASSO assumption

of linearity.

C.5 Supplementary figures

Table C.1 summarises the estimated graphical model under the network spike-and-slab model using

a posterior slab probability threshold of > 0.5 and > 0.95. The number of edges estimated under

both slab probability threshold is smaller than the number of edges estimated under the network

GLASSO models. Under the 0.95 slab probability threshold, the estimated number of edges is more
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Figure C.6: Assessing the linear relation between logE[ρ̂2jk|A] and the network matrices, where ρ̂jk

is the GLASSO estimate. The points represent the log-mean values of ρ̂2jk within 10 equispaced bins

defined for each network.

Table C.1: Stock market data: Edge counts of the network spike-and-slab model when declaring an

edge for posterior slab probability > 0.5 and > 0.95

Edges (> 0.5) Non-Edges (> 0.5) Edges (> 0.95) Non-Edges (> 0.95)

Network SS 377 66418 189 66606

conservative.

C.6 Results using the EBIC

Table B.2 presents results investigating the stability of our stock market data analysis to selecting

hyperparameters using the EBIC with γEBIC = 0.5 rather than the BIC. The EBIC continues to estimate

sparser networks than the BIC, but to the detriment of the out-of-sample test set score. Importantly,

we see that the improvement of the network GLASSO methods over standard GLASSO is still apparent

when using the EBIC selection criteria.

D Stan vs NumPyro

We estimated our network spike-and-slab models using the No-U-Turn Sampler (NUTS) (Hoffman and

Gelman, 2014), an extension of Hamiltonian Monte Carlo (HMC, Duane et al. 1987) that automates

the setting of the step-size in the Hamiltonian discretisation. Two probabilistic programming imple-
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Table C.2: Four models for the stock market data when using the EBIC (γEBIC = 0.5) to learn the

network hyperparameters. A1 is the Economic network, A2 the Policy network. EBIC values account

for the extra hyper-parameters in the network GLASSO models. 10-fold is the 10-fold cross-validation

log-likelihood.

Method EBIC β̂0 β̂1 β̂2 Edges 10-fold

GLASSO 88588.75 -0.9106 616 -494.781

Network GLASSO- A1 86140.75 3.350 -2.604 572 -493.508

Network GLASSO- A2 87675.87 0.531 -2.081 732 -494.090

Network GLASSO- A1 & A2 84150 10.289 -4.020 -5.718 468 -492.872

mentations of NUTS are Stan (Carpenter et al., 2017) and NumPyro (Bingham et al., 2019; Phan et al.,

2019). We provide implementations of our algorithm in both languages, but for our experiments, we

found NumPyro’s ability to take advantage of parallel computing for automatic differentiation provided

a considerable speed up.

We illustrate this using one of our simulated examples from Section 4. We consider network matrix

A0.85, n = 100 and p = 10 and p = 50. We ran both Stan and NumPyro for 2000 warm-up iterations

and 2000 sampling iterations. Table D.1 compares the time taken to sample and the effective sample

size (ESS) of the resulting sample averaged across 10 repeat datasets. We present the ESS as separately

averaged across the ρmodel parameters and the network hyperparameter η. We see that both methods

produce similar ESS but that NumPyro does so over six times faster.

We also take this opportunity to demonstrate how efficient the network GLASSO is when imple-

mented as a special case of the GOLAZO algorithm (Lauritzen and Zwiernik, 2020). For the same

datasets considered above, we implement the network GLASSO using 50× 50 grid search to estimate

the network hyperparameters. We see that the GOLAZO algorithm takes a fraction of the time to run

as the Bayesian implementation even when using a rudimentary grid-search optimisation scheme.

Lastly, above we limited NumPyro’s access to only 6 cores on one machine. Using more cores, for

example on a GPU, provides the potential for NumPyro to achieve even greater speed-ups for higher

dimensional problems beyond the simple one considered here.
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Table D.1: Comparison of time taken for network GLASSO implemented using the GOLAZO algorithm

and the network spike-and-slab sampling algorithms in Stan and NumPyro.

p = 10 Time (s) ESS ρ’s ESS η’s

GOLAZO 14.94 - -

Stan 184.93 855 373

NumPyro 28.99 977 522

p = 50 Time (s) ESS ρ’s ESS η’s

GOLAZO 312.78 - -

Stan 7162.11 1663 268

NumPyro 1133.057 1604 293
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