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Life depends as much on the flow of information as on the flow of energy. Here we review the
many efforts to make this intuition precise. Starting with the building blocks of information theory,
we explore examples where it has been possible to measure, directly, the flow of information in
biological networks, or more generally where information theoretic ideas have been used to guide
the analysis of experiments. Systems of interest range from single molecules (the sequence diversity
in families of proteins) to groups of organisms (the distribution of velocities in flocks of birds), and
all scales in between. Many of these analyses are motivated by the idea that biological systems
may have evolved to optimize the gathering and representation of information, and we review the
experimental evidence for this optimization, again across a wide range of scales.

I. INTRODUCTION

Cells and organisms sense, compute, and make de-
cisions: to proliferate, to find food, to protect them-
selves against predators and unfavorable environmental
changes, to act in unison with their neighbors within a
collective, and—broadly speaking—to invest their lim-
ited resources to their maximal benefit. These processes
span a wide range of temporal and spatial scales, and re-
flect dynamics in phase spaces of widely varying intrinsic
dimensionality. In bacteria, for example, the chemotac-
tic signaling network comprises just a handful of chem-
ical species, responds to changes in the local nutrient
concentration on the one second timescale, and modu-
lates bacterium’s swimming by controlling the direction
of flagellar rotation. At the other extreme of complexity,
millions of neurons in the brain of a pianist are engaged
in processing roughly one megabit per second of visual,
auditory, and tactile information, combining these data
with the score retrieved from memory, and computing
the fine motor program controlling the pianist’s fingers.
Other processes take place over much longer timescales:
DNA sequences in a population of organisms are subject
to the evolutionary forces of mutation, selection, and ran-
dom drift, and changes in the environment slowly shape
the distribution of genomic sequences. In all these cases,
intuition tells us that information is “flowing” from the
outside environment to a representation internal to the
organism or a population, and that this information flow
is essential for life. Can this intuition be formalized? If
so, can it be connected, quantitatively, to experimental
data? Most ambitiously, can a focus on information flow
help us to unify our description of the complex and di-
verse phenomena that we see in the living world?

The purpose of this review is to explain how the intu-
ition about “biological information flows” can be formal-
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ized in the language of information theory, and what the
resulting research program teaches us about the physics
of living systems. We introduce the basic concepts of in-
formation theory (Section [l), show how this mathemat-
ical structure leads to new views of experimental data
(Section [, and explore the possibility that some of
life’s mechanisms can be understood as solutions to the
problem of optimizing information flow subject to phys-
ical constraints (Section [[V]). Throughout, we follow the
physics tradition of emphasizing the unity of theoretical
ideas at the expense of some of the biological complexity.

Before we begin, it seems worth discussing how ideas
about information flow relate to the more familiar the-
oretical structures in physics. Intuitions about informa-
tion flow are not confined to biological systems. When
we look a ferromagnet, for example, we know that all the
details of the electronic configurations on one side of the
sample are not relevant if we try to predict those on the
other side of the sample; what does carry information
across long distances is the order parameter, in this case
the magnetization. But precisely because we can identify
the order parameter, we don’t need to speak abstractly
about information. Rather than trying to turn “carry
information” into a precise mathematical statement, we
just compute correlation functions of the order parameter
evaluated at distant points.

For most of the biological systems that we will be dis-
cussing, finding something like an order parameter re-
mains a distant hope. Symmetries are absent, and even
locality is not much of a guide to understanding, for ex-
ample, a network of neurons in which each cell may be
connected to many thousands of neighbors. Under these
conditions, some more general approaches to formalizing
our intuitions about information flow would be useful. In-
terestingly, as we write this, information theoretic ideas
are becoming more important in the study of topologi-
cal phases in correlated electron systems, where no local
order parameter is possible.
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II. BUILDING BLOCKS OF INFORMATION
THEORY

Here we give a brief exposition of information theory,
focusing on topics that are most relevant for our sub-
sequent discussion; see also Ref @] The foundational
papers by Shannon are wonderfully readable ﬂ], there is
an excellent textbook account aimed at the core of the
subject B], and a more recent text that emphasized con-
nections between ideas information theory and statisti-
cal physics M] Ideas which have been most widely used
in thinking about biological systems are not necessar-
ily those that have been most useful in the (enormously
successful) application of information theory to commu-
nication technology, so our perspective here is somewhat
different from that in Ref [3].

When we ask a question, and hear the answer, we gain
information. In 1948 Shannon asked whether we could
attach a number to the amount of information we gain
ﬂj] He imagined that, upon asking the question, we could
envision a set of possible answers (n =1, 2, ---, N) and
that we could assign probabilities p = {p1, p2, -+, PN}
to each of these answers. Any acceptable measure of
information must obey some constraints: if all N possi-
ble answers are equally likely, then the information must
grow with N; if the question can be decomposed into in-
dependent parts, then the information gained on hearing
the answer to each part should add to the total; if we
can decompose the full question into a tree of choices (as
we do when playing twenty questions), then the total in-
formation should be the weighted sum along the paths
through the tree. Remarkably, these postulates allow
only one possible measure of information, the entropy of
the distribution of answers,! S[p] = —k Y pn log pn.

A seemingly very different question concerns the
amount of space required to write down, or represent
the answer to our question. While each possible answer
might require a different amount of space, if this is a ques-
tion we can ask many times (what will the temperature
be at noon tomorrow?) then it makes sense to ask about
the minimum amount of space required, per answer, in
the limit of a long sequence of question/answer pairs.
The answer is again the entropy. There is some ambi-
guity about units—the number of characters we need to
write the answer depends on our choice of alphabet, and
the entropy itself has an arbitrary constant k—but if we
choose, for example, a binary alphabet, we can set k = 1
and log = log,, then all of the ambiguity is resolved.
When entropy or information is measured in these units,
they are called ‘bits.’

Getting the precise answer to a question is a rare thing.

I Shannon’s theorem makes precise the vague statement made in
many statistical mechanics classes, that entropy is related to our
lack of information about the microscopic state of a system. The
more positive version is that the entropy is the information we
would gain upon learning the full microscopic state.

More common is that we are interested in x but can only
measure y. Before a measurement we know only that
2 is drawn from the distribution Px (z); after the mea-
surement we know that it is drawn from the conditional
distribution P(z|y). The same arguments that establish
the uniqueness of the entropy now show that the only ac-
ceptable measure of the information about = gained by
observing y is the reduction in entropy,

Iy —>z) = —ZPX(:U) log, Px ()

— |- 3" P(aly)log, Paly)| . (1)

If we ask not about the information gained from observ-
ing a particular y, but the average over all the y’s we can
observe, this average information is actually symmetric
in x and y, and is usually called the “mutual informa-
tion.” It can be written in a manifestly symmetric form,
and unlike the entropy itself it is well defined even when
x and y are continuous variables,
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where P(x,y) is the joint distribution of z and y. This
can be extended to the case where x and y are multi-
dimensional, or even functions, in which case the sums
over states become functional integrals as in quantum
mechanics or field theory.

One way to think about the mutual information is as
a measure of dependency or correlation. Clearly we have
I(x;y) = 0 if the variables z and y are independent, so
that P(z,y) = Px(z)Py(y), and Shannon’s arguments
tell us that I(x;y) is the only measure of correlation that
satisfies a set of sensible requirements. If x and y are
jointly Gaussian, then

I(w3y) = — 5 logy(1 — ), 6

where ¢ is the usual linear correlation coefficient. But
it is easy to imagine relations between z and that are
highly informative but not linear. Even if the underlying
variables are linearly correlated, the things we measure
might be nonlinearly transformed version of these vari-
ables, and in this case computing the mutual informa-
tion becomes an especially powerful way of analyzing the
data; see Section [IID] below.

The more conventional way of thinking about the mu-
tual information is in terms of a communication chan-
nel. There is a input message x, and it is sent along
channel that produces the output y. The fact that
y is chosen from a probability distribution [P(y|z) =
P(z|y)Py (y)/Px(x)] means that the communication is
noisy, and this must limit the amount of information that
can be transmitted. If we think of the mutual informa-
tion as being a functional of the distributions Px (z) and
P(y|z), then the convexity of the logarithm means that



there is a maximum as functional of the distribution of
inputs; this maximum is called the channel capacity,?
and is the limit to information transmission set by noise
in the channel.?

We note that actually finding the capacity of a chan-
nel, given a detailed model of the input/output relation
and noise as represented by P(y|x), can be challenging.
Simple models, such as y being a linearly filtered version
of x with added Gaussian noise, are tractable, and gen-
eralize in a straightforward fashion to cases where the
signals are varying in time. For this reason, Gaussian
channels have dominated the discussion of both biolog-
ical and engineered systems, and the capacity-achieving
strategies that depend on the system’s input and out-
put noise levels are well-understood @, , ] Beyond the
Gaussian channel, progress has been made using various
approximative schemes, such as by assuming that noise
is small compared to the dynamic range of the signal (the
small-noise approximation), but there is certainly room
for further theoretical developments using biophysically-
informed noise models.

Examples of information transmission through a noisy
channel are everywhere in biological systems. Most ob-
viously, our eyes and ears take inputs from the outside
world and the neurons emerging from our sense organs
generate streams of identical electrical pulses, termed ac-
tion potentials or spikes. Even single celled organisms
have sensors, as with the bacterial chemotaxis system,
which responds to changing concentrations of molecules
in the environment and generates at the output changes
in the direction of swimming. There are also purely in-
ternal examples, as when a cell synthesizes “transcription
factor” proteins that bind to DNA and influence the rate
at which encoded information is read out to make other
proteins; here the transcription factor concentration is
the input and the resulting protein concentration is the
output. In some of those cases variables are naturally
continuous (sound pressure), in other cases they are nat-
urally discrete (counting individual molecules), and in
many cases it is useful to pass between descriptions that
are either discrete or continuous (e.g, concentration in-
stead of counting molecules); it is attractive that we can
discuss information transmission in all these cases, in the
same language and the same units.

2 It is a remarkable fact that one can transmit information with-
out error along a channel that has a non—zero noise level, pro-
vided that the rate of transmission does not exceed this capacity.
Strictly speaking “capacity” usually is used to describe this max-
imum rate of errorless transmission, rather than the maximum
of the mutual information between input and output [3].

In engineered systems, much emphasis is placed on devising cod-
ing schemes, i.e., algorithms that transform inputs z into mes-
sages to be sent through the channel (and likewise recover z from
the channel output), so that information can be transmitted over
noisy channels as close to capacity as possible using bounded
processing resources. While interesting, coding questions have
remained largely unexplored in biological systems.

Information is a difference in entropies, as in Eq (),
and because information is mutual we can write this in
two ways,

I(z;y) = S[Py(y)] = (SIPWl2)]) P () (4)
= S[Px(@)] = (SIP([Y))py ), ()
where (-),,;) denotes an average over p(x). If either the

input or the output is discrete, then both the entropy
and the conditional entropy are positive semi—definite,
and hence the entropy sets an upper bound on the infor-
mation. Further, if we can assign a cost to every output
state y—e.g., because generating more action potentials
costs more energy, then there is a maximum entropy con-
sistent with a given average cost (for more on maximum
entropy see Section [ITC)). Thus there is a rigorous path
from limits on physical resources to limits on information
transmission.

Another way of bounding information is through the
data processing inequality. If the output y receives infor-
mation about the input x only through some intermedi-
ate z, we can write

P(ylz) =Y Pulyl2)Pi(z|z). (6)

Now there are two communication channels, first z — z
(channel I) and then z — y (channel II). Each chan-
nel is associated with a mutual information, Ir(z;z) and
I11(z;y), and each of these is an upper bound on the in-
formation transmission through the combined channel,
I(z;y). Another way of saying this is that any process-
ing from z to y can only result in a loss of information, so
that I(z;y) < It(x; z). In this sense, information can be
destroyed, but not created. This result is conceptually
important, and we will see that it is of practical use in
analyzing experiments (Section [[ITDJ). As for the mutual
information, so too for the channel capacities: to sup-
port mutual information I(z;y), between = and y, the
capacities of both channels I and IT must be larger than
I(z;y).

The universality of information-theoretic quantities is
their strength, but it also leaves one with an uncomfort-
able feeling that there is more to the story of biological
signal processing than bits. In particular, not all bits may
be of equal value or utility to the organism. Information
processing usually has a goal beyond communication, and
this seems especially true in biological systems. Perhaps
because Shannon called his work a mathematical theory
of communication, it is not as widely appreciated that
information theory has anything to say about such goal-
defined tasks. The key idea is rate—distortion theory,
which again traces back to Shannon ﬂa, ]

As an example, consider a single celled organism in an
environment where various nutrients are present at con-
centrations ¢ = {c1, ¢a, - -+, ¢n}, and over time this en-
vironmental state varies. To metabolize these molecules,
the cell synthesizes e; molecules of enzyme 1, es copies
of enzyme 2, and so on up to enzyme K; to fully con-
vert the inputs into useful molecules, there may need to



be more enzymes than nutrients. The growth rate of
the cell depends on both the environment and the state
of the cell, A\(c,e). Under any particular environmental
condition ¢, there is an optimal setting of the internal
state e that maximizes the growth rate. If the cell finds
this optimum exactly, then by looking at e we would
know exactly the environmental variable ¢, and this ex-
act knowledge of real variables corresponds to an infinite
amount of information. At the opposite extreme, the
cell could choose the copy numbers of various enzymes
at random, and hope that, averaged over the distribu-
tion of environments, the average growth rate is not so
bad; in this case the internal state of the cell carries zero
information about the environment. But neither infinite
nor zero information seems plausible; what happens in
between? Rate—distortion theory tells us that if the cell
needs to achieve a given average growth rate, then there
is a minimum required mutual information between the
state of the environment and the internal state of the cell,
I(c,e) = Imin({N)).

More generally, if we have inputs x and outputs v,
then given some measure of performance U(z,y), we can
plot the average performance vs. the mutual informa-
tion I(z;y). The rate-distortion curve I, ((¢4)) divides
this plane into accessible and inaccessible regions. Given
a certain number of bits, there is a maximal achievable
performance, and conversely achieving any given level of
performance requires a minimum number of bits. Thus,
although collecting and transmitting bits cannot be the
goal of an organism, any real goal requires a minimum
number of bits. If bits are cheap, then this is a true but
not very useful observation. If, on the other hand, the
limited resources available to cells and organisms mean
that more bits are hard to get, then selection for bet-
ter performance will translate into selection for mecha-
nisms that gather and process more bits with the same
resources.

Rate distortion is a framework that formalizes lossy
data compression: signals z can be sent through the
channel to yield outputs y which are then used to find the
best achievable reconstruction #(y) of the input signal.
The metric for the reconstruction quality is the distor-
tion function, for example, the RMS error between the
true signal x and its reconstruction z. In this sense, rate
distortion tells us the minimum number of bits to recover
the input signal to within a desired level of quality. When
thinking about biological systems, it is often convenient
to turn this reasoning around and explicitly construct
various decoding or readout schemes that reconstruct the
input signals from the activity of the biological network.
Classic examples involve decoding of motion trajectories
from the spiking activity of neurons in the visual system
ﬂ, ], or the decoding of hand trajectories from the ac-
tivity of neurons in motor cortex during drawing E], for
more on decoding of neural activity see Ref [10]. De-
coding schemes can be used to put a lower bound on
information transmission (Section [[IIl) and might further
suggest how much of the total information is encoded ex-

plicitly, in a way that can be extracted using biologically
plausible mechanisms. Indeed, the relationship between
the total information and the component which is ac-
cessible in simple form is an issue in neural coding that
needs to be explored more fully.

III. INFORMATION AND DATA ANALYSIS

In complex systems, we may be unsure which features
of the system dynamics are the most relevant. Even if we
can identify the correct features, we might not know the
biologically meaningful metric that measures the simi-
larity or difference along these relevant dimensions. In-
formation theory gives us a way out of these difficul-
ties, because it singles out measures that are completely
general: while some particular correlation function of X
and Y might vanish, if these variables are related in any
way then there must be a nonzero mutual information
I(X;Y); further, there is an obvious sense in which the
stronger the relationship, the greater the mutual informa-
tion. Against this generality is the difficulty of actually
estimating the entropy of a probability distribution from
a limited set of samples.

A. Quantifying real information flows

In thermodynamics, entropy changes are related to
heat flows, and this can be used to measure the entropy in
equilibrium systems. Away from equilibrium statistical
mechanics, we have no such general method for measur-
ing entropy. Indeed, the entropy depends on the entire
probability distribution, and so “measuring” the entropy
is quite unlike measuring the usual observables.

We can estimate the entropy of a probability distribu-
tion by counting how often each state occurs, using this
frequency as an estimate of the probability, and plugging
into the definition S = — 3" py logy pn. While the errors
in estimating the individual probabilities p,, are random,
the convexity of the logarithm means that these random
errors contribute to a systematic error than declines as
1/+/Ns, where N; is the number of samples. The diffi-
culty is that the coefficient of this systematic error is pro-
portional to the number of possible states of the system,
and hence accurate estimates require many more samples
than states. The problem becomes worse when we try to
estimate the mutual information between two variables,
since the number of possible states is the product of the
number of states for each variable taken separately.

The problem of systematic errors in estimating entropy
and information was appreciated very early, in the 1950s,
as information theoretic ideas began to be applied to bi-
ological problems ﬂl_1|] Motivated in large part by efforts
to measure the information that neural responses carry
about sensory inputs, there has been a substantial effort
to calculate and correct for these systematic errors HE,
[14]. A different direction is to note that the single num-



ber, entropy, might be well determined even if the full
distribution is not. This idea can be made concrete in a
Bayesian approach, placing a prior on the space of prob-
ability distributions; priors that are uniform in entropy,
as opposed to uniform in probability, seem especially ef-
fective ] In many cases, the variables of interest
are not naturally discrete, and so the problem of entropy
estimation is tangled with that of density estimation HE]
Although much progress has been made, the difficulty of
estimating entropy and information from finite samples
leads to periodic inventions of other measures that might
serve similar purposes (e.g., quantifying dependency be-
yond linear correlation); for a recent reminder of why
mutual information is not just one measure among many;,

see Ref [20].

An important ingredient in estimating entropy and in-
formation from real data has been the use of bounds. It
may be difficult to estimate the entire probability distri-
bution, but it often is feasible to measure, with small er-
ror bars, several average quantities (e.g., moments), and
construct the probability distribution that matches these
averages exactly but has the maximum possible entropy
(Section[ILC). The data processing inequality means, for
example, that if we want to measure the mutual infor-
mation between x and y, and y is of high dimensionality,
any projection into a lower dimensional space, y — z, can
only result in a loss of information, I(z;x) < I(y;z). Re-
ducing dimensionality makes the problem of estimating
distributions much easier, and thereby eases the sampling
problems of entropy estimation; since the lower dimen-
sional variable provides a lower bound to the true infor-
mation, it makes sense to search for optimal projections

Section [[ITD]). Finally, as emphasized long ago by Ma
iﬂ], the probability that two randomly chosen states are
the same, P. = p2, provides a lower bound to the en-
tropy, S > —log, P, that can be estimated reliably from
relatively few samples. For more details, see Appendix
A.8 of Ref [1].

A modest though widespread use of information theory
in the analysis of biological data concerns the description
of regulatory sites along DNA. The readout of informa-
tion encoded in the genome—the synthesis of proteins—is
regulated in part by the binding of “transcription factor”
proteins (TFs) to these sites, and the strength with which
one TF binds depends on the DNA sequence at the bind-
ing site. In this sense, the local sequences can be thought
of as “addresses” that distinguish certain genes from the
rest, but it is known that transcription factors do not do
exact string matching; instead, they bind to an ensem-
ble of sites that permit some variation. Early work used
simple arguments to compute how much “information” is
contained in these binding site ensembles, i.e., as the dif-
ference between the entropy of random sequences and the
difference of the ensemble that the TF will bind [22], and
this has given rise to a popular graphical way of depicting
TF binding site specificity in the form of “sequence lo-
gos” ] Subsequent work has refined these arguments
and asked whether the information in the binding sites

is sufficient to address specific genes in genomes of pro-
and eukaryotes [24].

Meaningful quantitative statements about information
flow obviously depend on having high quality data. In
the nervous system, the fact that the relevant output
signals are electrical means that quantitative measure-
ments have been the norm since the invention of the vac-
uum tube m] Steady improvements in technology now
make it possible to collect sufficient data for information
theoretic analyses in almost any neural system, even in
freely behaving animals; in practice, much of the moti-
vation for these analyses has come from ideas about the
optimization of the neural code, and so these measure-
ments are reviewed below (Section IV.B). In biochemical
and genetic networks, the fact that outputs are the con-
centrations of molecules means that there is no universal
measurement tool.

Classical methods for measuring the concentrations of
signaling and control molecules inside cells include rais-
ing antibodies against particular molecules of interest,
and then tagging antibodies against these antibodies with
fluorescent labels. Recent work in the fly embryo shows
that, with care, this classical technique can pushed to
give measurements of concentration that are accurate to
~ 3% of the relevant dynamic range [26]. More modern
methods involve genetically engineering the organism to
produce fusion of the protein of interest with a fluores-
cent protein ﬂﬂ], and here too there has been progress in
demonstrating that the fusion proteins can replace the
function of the native protein, quantitatively @, ]
Finally, rather than monitoring protein concentrations,
one can count the messenger RNA molecules (mRNA)
that are an intermediate step in protein synthesis; recent
work has pushed to the point of single molecule sensitiv-
ity, so that counting is literal @, |ﬁ|g] Similarly, progress
has been made in quantifying the activity of intracellular
signaling networks, and subsequently using information
theoretic approaches to compare how signals propagate
in different network architectures [32], or how they are
encoded in the dynamical properties of the response ﬂﬁ]

B. Quantifying correlations

In the last decade it has become possible to perform si-
multaneous recordings from tens or hundreds of nodes in
interacting biological interacting networks. Gene expres-
sion arrays and sequencing technology have enabled such
readouts for gene expression patterns; cheap sequencing
can map the distributions of gene variants in populations;
multi-electrode arrays and lately optical imaging have
pushed the boundaries in neuroscience to the point where
full temporal activity traces for every neuron in small
brains—a zebrafish larva, the worm C' elegans, or the fruit
fly—don’t seem out of reach; and in the field of collective
behavior, simultaneous tracing of positions of hundreds
or thousands of individuals can be performed. Because
the barriers between subfields of biology are large, each



of these experimental developments has led to an inde-
pendent discovery of the need for new and more pow-
erful analysis tools. Even the simple question of when
the activity at two nodes in the network is correlated
is complicated, because it is surely not true that linear
correlations capture the full relationships among pairs of
variables in these complex systems.

As microarray methods provided the first global pic-
tures of gene expression in cells, several groups tried to
analyze the covariation in expression levels simple by
computing correlations. With enough data, it became
possible to estimate the mutual information between ex-
pression levels ﬂ@] These initial analyses revealed that,
as expected, linear correlations did not exhaust the rela-
tionships between genes; while the most correlated pairs
had the highest mutual information, at intermediate or
even minimal levels of correlation one could find pairs of
genes whose expression levels shared nearly half the mu-
tual information of the most correlated pairs. In addi-
tion, it became clear that pairs of expression levels could
share more than one bit of mutual information, which
contributed to the realization that the control of gene
expression involved more than just on/off switches.

Measurements of mutual information also provide a
new basis for clustering, in which we try to maximize
the average mutual information between the expression
levels of pairs of genes in the same cluster HE] This
approach is interesting mathematically because it is in-
variant to any invertible transformations of the expres-
sion levels (and hence to systematic distortions in the
measurement), and because the clusters have no “cen-
ters” or prototypical members. These information the-
oretic methods were able to reveal biologically signifi-
cant structures even inside tightly correlated “modules”
where other methods failed. Further developments place
the estimates of mutual information among many pairs of
gene expression levels at the core of algorithms for recon-
structing the underlying network of interactions, where
the data processing inequality provides a guide to disen-
tangling direct interactions from more widespread corre-
lations [36].

One can look at interactions between the genes in a
very different way, analyzing joint presence or absence
of particular genes in the sequences of many organ-
isms. Here, each “sample,” i.e., one organism’s genome,
is represented as a long binary vector, where 1 repre-
sents a presence of a particular gene and 0 its absence.?

4 Some care is needed here. Two different organisms almost never
have genes with exactly the same sequences, but if we are com-
paring organisms that are not too far separated in evolutionary
distance, then finding the corresponding or “homologous” genes
is relatively straightforward. It is more difficult to be certain of
the historical path that generated these homologs: descent from
a common ancestor (orthologs’), convergent evolution, gene du-
plication (paralogs), ... . For more about sequence similarity, see

Section [ITCl

Estimating the mutual information between the pres-
ence/absence of pairs of genes is technically straightfor-
ward, and reveals the organization of genes into clus-
ters ﬂﬂ], this approach can be extended beyond pairs
to probe higher—order interactions among genes. Infor-
mation theoretic measures can also be used to quantify
the correlations between the presence/absence of partic-
ular genes and various phenotypes, and these analyses
point toward functional modularity in the organization
of genomes [39).

C. Systems with many degrees of freedom

One of the great triumphs of the twentieth century
is the identification and characterization of the molec-
ular building blocks of life. But life is more than the
sum of its parts. From the spectacular aerial displays
by flocks of birds down to the coordinated movements of
cells in a gastrulating embryo, many of the most striking
phenomena in the living world are the result of inter-
actions among hundreds, thousands, or even millions of
individual elements. The enormous success of statistical
physics in describing emergent phenomena in equilibrium
systems has led many people to hope that it could pro-
vide a useful language for describing emergence in bio-
logical systems as well. Perhaps the best developed set
of ideas in this direction concerns the dynamics of neu-
ral networks @, but there have also been important
developments in the description of collective animal be-
havior M] and in models for genetic networks. While
each case has its own special features, it seems fair to say
that, in all these cases, the search for simple, analyzable
models often takes us away from contact with the de-
tails of measurements on the real biological systems. In
extreme cases, it is not clear whether these models are
just metaphors (the alignment of birds in a flock is like
the alignment of spins in a magnet), or if they are to be
taken seriously as theories that make quantitative pre-
dictions. Over the past decade, progress in experimental
techniques, as noted in the previous section, have held
out the promise of much more detailed confrontations
between theory and experiment.

Although there are many interesting questions about
emergent behavior in biological networks, we focus here
on one question where information theoretic ideas have
been crucial: if there a variable y; that lives at each node
of the network, can we make a model for the joint distri-
bution of these variables, Py(y) = P,(v1, y2, -, yn)?
Progress on this problem has been made using the idea
of maximum entropy [45].

Let us assume that experiments provide T observations
on the state of the system, y. Often, the dimension of the
system is so large that T samples are completely insuf-
ficient to empirically sample P,(y). However, we might
be able to estimate certain statistics on the data, which
we denote by (O, )expt, where p=1,..., M. These could
be, for example, expectation values of individual network



nodes, (y;), the covariances, (y;y;), or any other function
for which the samples provide a reliable estimate. We
look for a model distribution P,(y) that will exactly re-
produce the measured expectation values, but will other-
wise be as unstructured, or random, as possible—hence
maximum entropy. This amounts to solving a variational
problem for P, for which the solution is:

~ N M A
P(Ol,...,OM)(y) = m exp [Z 9,.0,(y) (7)

Thus, the maximum entropy distribution has an expo-
nential form, where the coupling constants g, have to

be chosen so that the constraints (O, )expt = (O#>f, are
exactly satisfied. Equation (7)) has the form of a Boltz-
man distribution in which every state of the system is
assigned an “energy” E(y) = Eﬁil guéu(y), and this
equivalence to equilibrium statistical mechanics is an im-
portant source of intuition and calculational tools. But
Eq (@) is not a description of a system in thermal equi-
librium. If the only thing we measure about a system
is its energy, then asking for the maximum entropy dis-
tribution consistent with the average energy does indeed
correspond to a description of thermal equilibrium, but in
most biological systems the quantities that we measure
have no relation to the energy, and we are measuring
many of them.

The maximum entropy method does not correspond to
a single model for the system, but rather provides a sys-
tematic strategy for building a hierarchy of models that
provide increasingly good approximations to the true dis-
tribution. At each step in the hierarchy, the models are
parsimonious, having the minimal structure required to
reproduce the expectation values that we are trying to
match. For every new expectation value that we can
measure, the new maximum entropy model provides a
tighter upper bound on the entropy of the true distribu-
tion, and can uniquely decompose the total amount of
correlation among the N nodes in the network into con-
tributions from pairwise, triplet-, ..., K-fold interactions
]; the hope is that we arrive at a good approximation
while K < N.

Equation (@) tells us the form of the maximum en-
tropy distribution, but to complete the construction of
the model we need to find the coupling constants {g,}.
Usually in statistical mechanics we are given the cou-
pling and try to compute the expectation values or cor-
relation functions ({g,} — {(O.(y))}). Here we need to
do inverse statistical mechanics, mapping the experimen-
tally measured expectation values back to the coupling
constants ({(O,(y))} — {gu}). Such inverse problems
have a history dating back (at least) to the demonstra-
tion by Keller and Zumino [47] that the temperature de-
pendence of the second virial coefficient in a classical gas
determines the interaction potential between molecules
uniquely, provided that this potential is monotonic; the
search for rigorous statements about inverse statistical
mechanics has attracted the attention of mathematical
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physicists @, @], although many questions are open. At
a practical level, estimating the coupling constants from
measured expectation values can be seen as part of the
broader problem of learning probabilistic models from
data, and hence part of machine learning in computer
science. For a small sampling of the interplay between
ideas in statistical physics and machine learning, see Refs

i, 6d-553).

Interest in maximum entropy approaches to biologi-
cal networks was stimulated by results from an analysis
of activity patterns in small groups of neurons from the
vertebrate retina |54]. As the retina responds to natural
movies, pairwise correlations are weak, of mixed signs,
and widespread. Models that ignore these weak correla-
tions make predictions about the frequency of patterns
in groups of ten neurons that can be wrong by many or-
ders of magnitude, but these errors are largely cured in
maximum entropy models that match the pairwise cor-
relations. Even in these small networks, there are hints
that what one sees in the network are genuinely collective
states. By now, these ideas have been extended and ap-
plied to several different neural systems @—I@] Most re-
cently it has been possible to build models for the joint of
activity of more than 100 neurons in the retina, and these
models are so accurate that they can predict distribution
of the effective energy deep into the tail of patterns that
occur only once in a two hour long experiment ﬂ@] The
states that dominate the distribution are indeed collec-
tive, so one can reconstruct the time dependent response
of single cells from the behavior of the population, with-
out reference to the visual stimulus. Most provocatively,
that distribution that we reconstruct from the measured
expectation values exhibits many of the signature of an
equilibrium statistical mechanics problem near its critical
point [66].

An independent stream of work has used maximum en-
tropy ideas to think about the ensemble of amino acid
sequences that form a family of proteins, folding into
essentially the same three—dimensional structures. This
work was inspired by experiments that actively explored
sequence space, trying to respect pairwise correlations
among amino acids at different sites @, @], using an al-
gorithm that is equivalent in some limits to maximum en-
tropy @] Although these correlations extend over long
distances, the effective interactions among amino acids
in these models were found to be spatially local; this
raises the possibility that we can infer the spatial neigh-
bor relations among amino acids from data on sequence
variation, in effect folding the protein via sequence com-
parisons . This new approach to the protein fold-
ing problem has generated considerable excitement, but
there are many open questions about the sufficiency of
the available data and the approximations that have been
used to solve the inverse problem. Note that this effort to
describe the distribution of sequences consistent with a
given protein structure is the inverse of the usual protein
folding problem, where we are given the sequence and
asked to predict the structure, and there is a big con-



ceptual question about the relation between these two
problems.

In the immune system we can look at special cases
of sequences ensembles, the distribution of antibody
molecules that organisms use to combat infection and the
distribution of viral sequences in patients that have long
term infections such at HIV. In the problem of antibody
diversity, maximum entropy models built from pairwise
correlations provide a surprisingly accurate description
of the distribution as a whole ﬂﬁ], while for HIV the ef-
fective energy in maximum entropy models predicts viral
fitness and vulnerability to immune attack ﬂﬁ] This is a
small window into a much larger literature on statistical
physics approaches to the immune system.®

Birds in a flock are thought to follow only their near
neighbors, yet the entire flock can decide to move in a sin-
gle direction and at nearly uniform speed. Order spreads
through the flock much as through spins in a magnet, and
this is more than a metaphor: maximum entropy models
consistent with measured local correlations in a flock pro-
vide successful quantitative, parameter—free predictions
of correlations in flight direction and speed throughout
the flock m, ﬂ] It is also possible to do this analysis
in more detail, building maximum entropy models that
match the correlations between a bird and its nearest
neighbor, its second neighbor, and so on; one finds that
the resulting couplings which link each bird to its k*®
neighbor decline exponentially with k, providing some
of the most direct support yet for the hypothesis that
interactions are local [78]. Real starling flocks exhibit
long-ranged correlations of the fluctuations in flight di-
rection and speed @], analysis of the maximum entropy
models shows that the directional correlations arise from
Goldstone modes associated with the spontaneous polar-
ization of the flock m], while the speed correlations are
long—ranged only because the parameters of the model
are tuned close to a critical point m], signatures of crit-
icality have also been found in the behavior of insect
swarms [8(].

D. Information-theoretic parameter inference

A standard tool for fitting parametric models to data
is maximum likelihood inference. This procedure, how-
ever, depends on our ability to write down the likelihood
function: the probability of making specific experimen-
tal observations given the parameters of the model. In
studying biological systems we often are faced with situ-
ations where this is impossible, for two very distinct rea-
sons. First, while we might have a good idea for how a
part of the system works (e.g., that transcription factors
recognize and bind DNA sequences in a way that is gov-

5 See, for example, the program at the Kavli Institute for Theo-
retical Physics, http://immuno-m12.wikispaces.com,

erned by equilibrium statistical mechanics), what we can
measure is far “downstream” of these events (the activa-
tion level of a gene), and we may not have a quantitative
model for the intervening steps. Second, and less funda-
mentally, many experiments still are not as calibrated as
one might hope, so we don’t have a model for the noise
in the measurement itself.

Without the ability to write down the likelihood func-
tion, is there any way to do unbiased parametric inference
of the process of interest? There is isn’t much we can do
about the general version of this problem, but in many
biological systems one crucial step in the process that we
are trying to describe involves a substantial reduction of
dimensionality. Thus, in the visual system, we expect
that neurons respond not to every possible detail of the
image or movie falling onto the retina, but only to some
limited set of features; in the simplest case these features
might be described simply as linear projections onto a
template or “receptive field.” If this picture is right,
then the transformation from input movie z to output
spikes z can be written as © — y — z, where x is a vec-
tor in a space of very large dimensionality (the space of
movies), while both y and z are low dimensional, in the
simplest case just scalars. The mapping y — z then is
easy to characterize; the problem is how to choose the
projection that describes x — y. The data processing
inequality tells us that the best possible predictions of
z will be generated by a model in which the mapping
r — y captures as much information as possible about
z. Importantly, the difficulty of searching for such “max-
imally informative projections” does not vary much with
the structure of the distribution of the inputs z, which
means that we can use this approach to characterize the
encoding of complex, naturalistic input signals @] Ap-
plications and extensions of this idea have been explored
in several different systems @—@]

The idea of searching for maximally informative pro-
jections has also been used to analyze experiments on
the interactions of transcription factors with their tar-
get sites along DNA; here the projection is from the lo-
cal DNA sequence to the binding energy of the TF ﬂ@]
An important success of this initial effort was to show
that two independent experiments which characterized
the same transcription factor in fact led to consistent
models of TF-DNA binding, despite earlier claims to
the contrary. This work also demonstrated the formal
equivalence between information-theoretic parameter in-
ference and “error-model-averaged” maximum likelihood
inference. Subsequent experiments exploited these idea
to give a much more detailed view of how a transcription
factor and the RNA polymerase bind and interact at the
lac operon [88], and related methods were developed to
allow analysis of a wider range of input data @]

Because the issues of model inference for processes em-
bedded into unknown larger systems or subject to un-
known noise processes are prevalent in biology, we ex-
pect to see further applications for information theoretic
inference in biology. We also note that these applica-


http://immuno-m12.wikispaces.com

tions can be seen as specific examples of a more general
framework that relates learning (including parameter in-
ference) to information flow between the data and its
compressed representations. There are many interesting
links between the learning problem, statistical mechan-
ics, and field theory, which are beyond the scope of this
review.

IV. OPTIMIZING INFORMATION FLOW

Information is essential for life, but bits are not free. Is
it then possible that organisms are driven to extract and
represent the maximum possible information given the
physical constraints? This is an idea that arose almost
immediately after Shannon’s original work, and has been
a productive source for thinking about many specific bi-
ological systems, across many scales.

A. The genetic code

Five years after Shannon’s papers, Watson and Crick
proposed the double helical structure for DNA, and after
another five years Crick could articulate “the sequence
hypothesis”: the sequence of amino acids in proteins is
determined by the sequence of bases along the DNA @]
Once one has this idea, the mapping between two major
classes of biopolymers becomes a problem of coding, and
it seemed natural to bring the new ideas of information
theory to bear on this central problem of life [91]. In
particular, it was hoped that the code might be efficient
in the sense defined by Shannon, using as few bases as
possible to encode the amino acid sequence of a protein.
As we now know, the genetic code maps triplets of bases
(codons) into one of twenty amino acids (plus “stop”), so
that there is substantial redundancy.

The failure of the real genetic code to instantiate any of
the early ideas about efficiency or optimality must have
been a disappointment, and it is hard to find much se-
rious interaction between information theory and molec-
ular biology for some time after the code was worked
out. This split may have been premature. In a triplet
code, there are three possible “reading frames,” and the
first organism to have its entire genome sequenced—the
bacteriophage ®X174—makes use of the same DNA in
multiple reading frames @], an unexpected multiplexing
that enhances efficiency in the original Shannon sense.
Another observation is that the redundancy of the code
is structured, so that random changes of a single base
along the DNA are likely to map one amino acid either
into itself (‘silent’ mutations) or into amino acids with
very similar chemical properties. This would not be true
in a random assignment of codons to amino acids, and it
has been suggested that the real code may even be nearly
optimal in this respect @, @], if correct this means that
the genetic code is not an optimal noiseless compression,
as in the earliest (incorrect) proposals, but may be near
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the bounds set by rate-distortion theory [95]. A full de-
velopment of this idea will require understanding the cost
of amino acid substitutions, which relates back to the
analysis of sequence ensembles in Section [ITCl

The genetic code really is a strategy for communicat-
ing from DNA bases to amino acids, and here too there
are errors. Although one often pictures the specificity
of life’s mechanisms as deriving from the specific binding
between complementary molecular components (as in the
pairing of A with T and C with G in DNA), a beauti-
ful chapter in the physics of life is the appreciation that
these equilibrium interactions are not sufficiently selec-
tive, and hence that cells must build Maxwell demons
to sort molecules with higher precision; the broad class
of mechanisms that implement these demons is called ki-
netic proofreading [96,197] [see also Section 4.5 of Ref [1]].
This creates an interesting tradeoff for the cell, which can
operate at high fidelity but high energetic cost (paying
for the demon), or trade the cost of errors against the
reduced energetic cost of correcting them @] Although
the costs and benefits of information flow in reading the
genetic code have been much discussed, this still has not
been given a fully information theoretic formulation.

B. Efficient representations in sensory processing

One of the earliest uses of information theory to think
about biological systems was an attempt to estimate the
amount of information carried by neuronal action poten-
tials ﬂE, @] The answer depends crucially on the time
resolution with which such spikes can be generated and
detected by neurons. If the average rate of action poten-
tials is 7, and the system can work with a time resolution
A7 < 1/7, then the stream of spikes becomes a binary
sequence of 1/A7 symbols per second, and the proba-
bility of a 1 (spike) is #A7r. The maximum entropy of
this sequence, which sets the capacity for the neuron to
carry information, is then S ~ log,(e/TAT) bits/spike.
In contrast, if the system is limited to counting spikes
in windows much larger than the typical interspike in-
terval, then the entropy becomes S ~ log, (eFAT)/(FAT)
bits/spike. Evidently higher time resolution allows for
higher information rates, and dramatically so: if spike
rates are a few per second (as often true, on average),
then time resolutions of a few milliseconds could allow
for up to ten bits per spike. In 1952, when MacKay
and McCulloch first made such estimates, locating real
neural codes on the continuum from timing to counting
was a matter of speculation. But this work established
an agenda: could we measure the information that spike
trains carry, for example about sensory inputs, and does
this information approach the limits set by the entropy
of the spike sequences themselves?

MacKay and McCulloch were thinking about a sin-
gle neuron. But signals often are conveyed by larger
populations of neurons, for example in the retina where
many neurons respond to overlapping regions of the vi-



sual world. As early as 1959, Barlow suggested that
processing in the retina would have the function of re-
moving redundancy among the outputs of neighboring
ganglion cells, and argued that several major features of
these cells’ responses could be understood in this way:
a reduction in the response to sustained stimuli (termed
adaptation) serves to reduce redundancy in time, while
the tendency of cells to respond to differences between
light intensity in a small patch and the surrounding re-
gion (“center—surround” organization) serves to reduce
redundancy in space : ﬁ]

It would take many years until these ideas about effi-
cient coding in sensory processing would be made quan-
titative. An important qualitative idea, however, is that
the efficiency of a code depends on the distribution of
inputs. Thus, we might expect that real organisms use
codes that are matched to the distribution of signals that
they encounter in their natural environment; put simply,
the function of the code would make sense only in con-
text, and the relevant context is quite complex. This re-
alization stands in contrast to the long tradition of using
highly simplified stimuli in laboratory studies of sensory
function, and has led to the emergence of a subfield of
neuroscience concerned specifically with the structure of
natural sensory signals and the neural response to these
signals m, @]

The first stages of retinal coding occur with neurons
that produce analog voltages rather than discrete spikes.
Laughlin focused on cells in the first stage of processing
after the photoreceptors in the fly retina, and asked if the
nonlinear input/output relation that transforms light in-
tensity into voltage is matched to the environmental dis-
tribution of light intensities @] If the voltage noise is
small and constant throughout the dynamic range, then
optimal information transmission implies that a (normal-
ized) input/output relation should be equal to the cu-
mulative probability distribution of the light intensity.
By sampling natural scenes with a custom-built photode-
tector to predict the optimal input/output relation and
comparing it with the measured one, Laughlin found a
remarkable agreement with the theory, especially consid-
ering that there are no free parameters. Although there
are obvious open questions, this was a really beautiful
result that inspired the community to take these ideas
more seriously.

For spiking neurons, measurements of information
transmission in response to complex, dynamic stimuli be-
gan to appear in the 1990s. Initial measurements were
based on decoding the spike trains to recover estimates of
the input sensory signals ﬂﬂ, 1105, @], and then analysis
tools for more direct estimates were developed ﬂE, m]
In the primary sensory neurons of the frog inner ear, the
mechanical sensors of the cockroach, ganglion cells in the
vertebrate retina | and subsequent layers of visual
processing in mammals ﬂ@, ], and motion—sensitive
neurons deeper in fly visual system, as well as other sys-
tems, it was found that spike trains could transmit more
than one bit per spike, and typically reached 30-50% of
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the limit set by the spike train entropy, even with time
resolutions in the millisecond range. In accord with the
idea of matching to natural signals, information rates and
coding efficiencies are larger with distributions of stim-
uli that capture features of the natural ensemble ﬂmﬂ,
and in some cases truly natural stimuli reveal codes that
maintain their efficiency down to sub-millisecond resolu-
tion m] .5 Despite much prejudice to the contrary, there
are demonstrations of efficient coding, with time resolu-
tions of a few milliseconds, by single neurons in the cere-
bral cortex of our primate cousins , ], suggesting
strongly that these principles extend to brains much like
our own.

If neurons implement coding strategies that are
matched to the distribution of sensory inputs, what hap-
pens when this distribution changes? When we walk from
a dark room out into the bright sunlight, the mean light
intensity changes, and it takes a moment for our visual
system to adapt to this new level. This adaptation is vis-
ible in the response of individual neurons in the retina,
and this is one of the classical observations about neu-
ral coding, having roots in Adrian’s first experiments in
the 1920s ] But the efficient coding hypothesis pre-
dicts that the code should adapt not just to the mean,
but to the whole distribution. In particular, natural im-
ages have an intermittent structure, so that the variance
in light intensity varies significantly from point to point
in a scene, and hence the variance seen by neurons re-
sponding to a small patch of the world will vary in time,
so adaptation to the variance would enhance efficiency
, and similar arguments could be made about other
sensory modalities. Early experiments in the vertebrate
retina demonstrated this adaptation to variance explic-
itly m] Subsequent experiments have shown that reti-
nal adaptation is an even richer phenomenon, so that
properly chosen distributions of inputs can drastically
change even very basic features of the code exhibited by
single neurons, and this is part of a growing realization
that the retina is capable of much more complex compu-
tations than originally believed m]

Adaptation to the variance of input signals has now
been seen in many systems : motion—sensitive neu-
rons of the fly visual system ) , auditory neu-
rons at several stages of processing in mammals and
birds , whisker motion sensing neurons in ro-
dents [127], and in the farthest reaches of primate visual
cortex, where cells responsive to the shapes of objects
adapt to the variance along different parameters describ-
ing these shapes @] In many of these systems, chang-
ing the variance of the input distribution simply produces
a rescaling of the input/output relation, as first observed
in the fly motion-sensitive cells @] If the typical sig-

6 These results depend on getting control over the problems of es-
timating entropy and information from limited samples, as dis-
cussed in Section [[ITAl



nals are large compared to internal noise levels but not so
large as to saturate the system, then the dynamic range
of the inputs themselves provides the only scale in the
problem, and hence optimization must lead to the ob-
served scaling behavior; in the fly it was even possible
to check that the scaling factor chosen by the adaptation
mechanism served to optimize the transmitted informa-
tion M] When the input distribution shifts suddenly,
the input/output relation adjusts with remarkable speed,
perhaps so rapidly that there is no sharp distinction be-
tween adaptation and the nonlinear transient response.
The time scales involved are essentially the shortest ones
allowed by the need to gather statistics and verify that
the distribution has, in fact, changed @, ]

Barlow’s original idea about redundancy reduction in
the retina was implemented mathematically by Atick and
Redlich M], who approximated retinal ganglion cells
as analog devices that respond to a linearly filtered ver-
sion of their visual inputs. They searched for optimal
filters, and showed that in low background lights gan-
glion cells should integrate over small regions of space
and time, while at high light levels the response should
be differentiating; this corresponds to a crossover be-
tween noise reduction and redundancy reduction being
the dominant factors in enhancing information transmis-
sion, and agrees with the data.

If we imagine that neurons filter their inputs to remove
redundancy, then the outputs should become close to un-
correlated or “white.” But many natural input signals
have power spectra in time that are approximately 1/w,
and whitening this spectrum requires a transfer function
between input and output ~ y/w, which is not so easy to
realize. Nonetheless, the linear transfer function from the
photoreceptor cells to the second order neurons studied
by Laughlin has precisely this form ﬂElH The trans-
fer of the signal from one cell to the next is mediated,
here as elsewhere in the brain, by the neurotransmitter
molecules that are packaged into discrete vesicles. Care-
ful measurements of the signal and noise characteristics
in both cells leads to very high estimates of the informa-
tion capacity of this connection (synapse), more than one
thousand bits per second @], and this is close to the

hysical limit set by the entropy of counting the vesicles
ﬁ, ).

In the actual retina, of course, not all cells are identical,
and is interesting to ask if we can predict the distribution
over cell types from optimization principles. There is an
old discussion about the choice of three color sensitivities
for the photoreceptors in the bee’s eye, arguing that the
particular combination that is found in a whole family
of related species serves to provide maximal information
about the identity of the flowers from which bees collect
nectar @] In the primate retina, more rigorous argu-
ments have been used to predict the distribution of the
three cone types, which is both highly non—uniform and
varies with position on the retina . Retinal process-
ing involves a plethora of cell types, but all visual sys-
tems divide signals into ‘on’ and ‘off” pathways, which
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respond with more action potentials when the light level
rises above or below its local average value; Ratliff et
al @] have argued that the preponderance of off cells
is matched to an asymmetry in the distribution of light
intensities found in natural scenes, and that other differ-
ences between on an off pathways also serve to optimize
information transmission.

If we focus on a single class of retinal ganglion cells,
we find that they form a lattice across the surface of the
retina [see, for example, Ref @]] The geometrical prop-
erties of this lattice, specifically, the size over which each
cell integrates the signal relative to the lattice spacing,
can be predicted from information optimization ﬂmg]
These lattices are, however, not perfectly regular due to
discreteness and imperfections in the spatial arrangement
of the photoreceptors, and in principle these irregularities
should lead to a loss of information. Remarkably, these
variations turn to be correlated with the local variations
in the connectivity from the photoreceptor array to the
ganglion cell layer in such a way as to almost perfectly
compensate for the information loss

Attempts to analyze the optimization problem for spik-
ing neurons were quite scattered until the work of Smith
and Lewicki on the coding of complex sounds @, ]
Rather than trying to build models of the process by
which continuous inputs are converted into spikes, and
then optimizing the parameters of these models, they
chose the spike times themselves as the variables describ-
ing the encoding process and optimized the code assum-
ing that the goal was to reconstruct the inputs using
a simple linear algorithm, following ﬂﬂ] The result of
the calculation is then a set of spike trains for a popula-
tion of neurons responding to acoustic inputs, and these
spike trains could be analyzed in the same way that ex-
perimentalists routinely analyze data from real neurons.
The results were impressive: optimal spike encoders for
speech—like sounds, but not for other sound ensembles,
almost perfectly match the characteristics of real audi-
tory neurons. Further, the rate-distortion functions for
these neural codes reach or even surpass the performance
of the best artificial systems.

The problem of optimal coding has also been studied
from a theoretical angle. In a population of rate neurons
that suffer from negligible intrinsic noise, the optimal
code decorrelates the inputs: this should happen not only
at pairwise order (by whitening), as suggested by early
works of Barlow, van Hateren and others m, , but
at all orders of correlation; in other words, the optimal
code will minimize the mutual information between dif-
ferent neurons at the output. This led to the idea of ‘in-
dependent component analysis’ (ICA) and sparse codes.
Imagining that neurons in the visual pathway perform
linear filtering on the incoming stimuli and optimizing
the filters using ICA over natural scenes, two groups re-
covered the well-known Gabor-like filters found in the
primary visual cortex [141, 142].

In the presence of nonlinearities and noise, optimizing
information is much more difficult; early work in this di-



rection was done by Linsker M] If neurons are noisy,
perfect decorrelation is no longer optimal. In this case,
some amount of redundancy (in engineered codes in the
form of error-correcting bits) can be beneficial [144]. Tt
is interesting to note that real neuronal spike trains are
usually weakly correlated at the pairwise level and re-
dundant ], and at the level of a large population
this redundancy can suffice to predict well the behav-
ior of one neuron from the state of the rest of the net-
work ] If noise is small, information optimization
can be carried out in a continuous nonlinear system, and
the tradeoffs between decorrelation and redundancy re-
duction can be explored in detail; in this framework,
Karklin and Simoncelli managed to derive many prop-
erties of the retina simultaneously from the statistical
structure of natural scenes M] This optimization, as
well as previous work M], also incorporated an impor-
tant constraint on metabolic efficiency (cost of spiking).
By departing from analytically tractable cases, numeri-
cal exploration has been used to study optimal coding
at arbitrary noise levels with high-dimensional stimuli
]. Using a model for an interacting neural popula-
tion that can be linked to maximum maximum entropy
models with an Ising form (Section [[TLCl), small networks
experienced a transition between redundant coding and
decorrelation based on the statistical structure of the in-
puts and the level of noise in single units. Surprisingly,
when noise in single units is high enough, the redun-
dant strategy with information-maximizing connectivity
yields a network with strong attractor states to which
different stimuli map uniquely, recovering Hopfield-like
associative memory @] from an optimization principle.
Mapping out a complete ‘phase diagram’ of optimal cod-
ing strategies for high-dimensional noisy nonlinear in-
put/output maps remains a challenge.

Finally, we note that many popular models for cod-
ing by large populations of neurons are inefficient in the
extreme. It is widely assumed that neurons in a single
region of the visual cortex, for example, are selective for a
very limited number of features (e.g., the velocity of mo-
tion, or the orientation of an edge). If all the neurons in
the population respond independently to these features,
with each of the N cells preferring a slightly different
value, and we assume that what matters is the number of
spikes each neuron generates in a relatively large window
of time (“rate coding”), then the response of the popula-
tion as a whole will allow us to determine the value of the
feature with a precision ~ 1/ V/'N. But this means that
the information conveyed by the population is ~ log(N),
and thus the information per neuron vanishes as N be-
comes large. Are we missing something? One possibility
is that the diversity of dynamical responses among neu-
rons with redundant static feature selectivity can be suf-
ficient to create a combinatorial code for stimulus timing,
allowing the information to grow linearly with the num-
ber of neurons over a much larger dynamic range m]
A more radical alternative is suggested by the discovery
of “grid cells,” neurons that encode an animal’s position
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relative to a lattice ﬂﬁﬂ In this system, it is possible
for a population of neurons with different lattice spacing
to generate a truly efficient code, with more neurons al-
lowing exponentially more accuracy in the representation
of position [152, [153]. These ideas point to the need for
direct measurement of the information carried by large
populations of cells, under reasonably natural conditions.

C. Biochemical and genetic networks

Even the simplest of bacteria have genes that code for
many hundreds of proteins, and our own genome codes
for more than ten thousand proteins. No single cell needs
to make all these proteins at once, and there are many
layers of regulation to control the readout or expression
of individual genes. One important class of these mech-
anisms is the binding of protein molecules, called tran-
scription factors, to specific sequences along the DNA,
close to the start of the coding region of a gene. Tran-
scription factor binding can both repress or activate pro-
tein synthesis; in bacteria there are simple geometrical
pictures for how this can happen that are probably good
approximations to reality, but the situation in higher
organisms is less clear. In all cases, transcription fac-
tors act at concentrations in the nanoMolar range, and
1nM ~ 1molecule/um?. But a bacterium has a volume
of only a few cubic microns, which means that the reg-
ulation of transcription is controlled by just handfuls of
molecules.

The small numbers of molecules involved means that
the regulation of gene expression is, inevitably, noisy, and
this noise was measured directly in the early 2000s
[156). How does this noise limit the transmission of infor-
mation through the system, from the input concentration
of transcription factors to the output level of the protein
encoded by the target gene? Here information provides a
measure of regulatory power, counting the number of re-
liably distinguishable output states that can be accessed
by adjusting the inputs m, m] We recall that if the
input/output relation and noise in the system are fixed,
then we can optimize information transmission by ad-
justing the distribution of input signals. This matching
condition, which is essentially the same as in Laughlin’s
discussion of the fly retina, allows the system to get as
much regulatory power as possible out of a limited num-
ber of molecules. An important difference from Laugh-
lin’s discussion is that noise in the case of transcriptional
regulation must be (and is measured to be) strongly de-
pendent on the levels of input and output.

Early events in development of the fruit fly embryo
provide a productive testing ground for ideas about the
regulation of gene expression. During the construction
of the egg, the mother places the mRNA for a transcrip-
tion factor at the end that will become the head; the
combination of synthesis, diffusion and degradation of
the protein (Bicoid) translated from this mRNA results
in a spatially varying concentration along the length of



embryo—a gradient in the concentration of a primary
morphogen, to use the conventional language. Bicoid
is the input to an interacting network of genes (called
“gap genes” and “pair-rule genes”) that end up being
expressed in distinct spatial patterns, which will define
the final body plan of the larval fly. Importantly, these
patterns are visible within a few hours after the egg is
laid, before cells start to move and even before there are
membranes marking the boundaries between the cells.

A first generation of quantitative experiments on this
system mapped the relationship between the input tran-
scription factor concentration and the output level of one
of the gap genes, making measurements nucleus by nu-
cleus in single embryos, and demonstrating that the re-
sults are consistent across embryos m, @] If we think
of z as the input concentration and y as the output con-
centration, then these experiments allow us to estimate
the behavior of the communication channel, P(y|z). We
can solve numerically for the distribution of inputs that
optimizes information transmission, and compare with
experiment. Because the mean input/output relation has
broad, flat segments, many different input distributions
give essentially the same mutual information between x
and y, but all these near—optimal input distributions have
the same output distribution, so we make the compari-
son of the predicted P,y (y) with experiment [160]. The
agreement, which involves no adjustable parameters, is
excellent. Importantly, we can also estimate directly the
mutual information I(z;y) from the data, and find that
it is 0.88 4+ 0.09 of the optimum, so that the system re-
ally is transmitting nearly the maximal information given
the measured noise levels. This information is about a bit
and a half, showing that the regulation of gene expression
in this case is more than just an on/off switch.

Thinking of transcriptional regulation in the early em-
bryo as having one input and one output is a drastic
oversimplification, but dealing with multiple inputs and
multiple outputs is very difficult. It is thus useful to
note that the information of relevance for development
is information about the position of the cell. If we can
measure the expression levels of multiple genes simulta-
neously, we can ask how much information these level
provide about position even if we can’t also measure all
the input signals. Indeed, the qualitative concept of posi-
tional information is very old m , and it is attractive to
try and make this quantitative , @] Refinement of
classical staining methods make it possible to measure,
simultaneously and with high accuracy, the normalized
concentrations of four gap genes that provide dominant
signals along the central 80% of the embryo’s length HE]
Analysis of these experiments shows that is is possible
to “decode” the expression levels and estimate the po-
sition of a nucleus to an accuracy of better than 1% of
the length of egg, corresponding to a total of 4.14 4+ 0.05
bits of information about position [162]. This precision
is comparable to the spacing between neighboring cells,
and to the precision of subsequent developmental events,
suggesting that the embryo really does use this informa-

13

tion.

Each of the four gap genes has a complicated profile
of concentration vs. position along the embryo, and the
noise levels have an even more complicated structure.
But since cells are almost uniformly distributed, match-
ing of the distribution on inputs to the noise character-
istics of the system would require that the error in esti-
mating position be almost uniform as well. This is, in
fact, what we see in the data m], indeed, if we imag-
ine trying to redistribute the cells so as to transmit more
information, we could gain less than 2%. This seems a
striking signature of optimization.

Optimization of information flow should involve more
than matching: we should be able to find the architec-
ture and parameters of genetic networks that allow for
maximal information transmission. One ambitious idea
is to define a dynamics in the space of networks that is
a schematic of the evolutionary process, and then use in-
formation as a surrogate for fitness ﬂ@] The networks
that emerge from such simulations have many qualitative
features in common with the networks functioning in real
embryos, including the fruit fly. One can find examples of
multiple genes driven by a common maternal morphogen,
each one activating itself and repressing other genes in
the network, much as for the gap genes. A conceptu-
ally striking feature of this work is that it explicitly con-
structs paths through the space of possible networks that
lead from simpler to more complex body plans, through
gene duplication followed by mutation. Importantly, al-
most all the steps along the path are either neutral or
increase the fitness. As the authors emphasize, this “..
provides a quantitative demonstration that continuous
positive selection can generate complex phenotypes from
simple components by incremental evolution, as Darwin
proposed.”

Rather than reconstructing entire evolutionary trajec-
tories for networks, we can try to find locally optimal
networks within some broad class of models M]
Here again we can see features that remind us of real
networks, but there are surprises. When the available
concentration of transcription factors is severely limited,
the optimal strategy for transmitting information is for a
single transcription factor to broadcast to multiple, com-
pletely redundant targets, essentially using the redun-
dancy to make multiple measurements of a weak signal.
Observations of redundancy in genetic networks usually
is taken as prima facie evidence against optimization and
in favor of an interpretation in which network architec-
ture is just an artifact of evolutionary history, but here
we have a quantitative demonstration that such quali-
tative arguments can be wrong. More subtly, these cal-
culations show that even qualitative features of the net-
works which maximize information transmission depend
on some molecular details of the regulatory mechanisms.
This is slightly worrisome, but also suggests a path for
some of the intricacy of complex molecular interactions
to influence macroscopic behavior. A related approach to
these same problems is inspired not by embryos but by ar-



tificial genetic circuits that have more limited topologies
and inputs, allowing for an exhaustive exploration ﬂﬁ]
In these cases, the optimization of information transmis-
sion leads to very broad maxima in the space of network
parameters, so that network topology is the dominant
consideration. These efforts at full optimization have
been limited to static inputs and outputs; information
transmission in dynamic contexts raises new questions,
which are just starting to be explored ﬂ@, @] Fi-
nally, interesting questions that have been highlighted
recently include the link between information transmis-
sion and cellular decision making ﬂﬂ], and using infor-
mation theory to put strict bounds on the reliability of
biochemical processes even when many of these processes
are unknown or unobserved

D. More ambitious goals

Success at gambling, and perhaps at life, plausibly de-
pends on how much information we have. If we know
more about the outcome of a coin flip (or a horse race, or
the stock market, or ... ), then we should be able to win
our bets more often, and hence make more money. But
it is not obvious that the knowledge measured by Shan-
non’s bits quantifies the useful knowledge in this context.
Kelly analyzed a simple gambling game and showed that
the maximum rate at which winnings can grow is pre-
cisely the information that bettors have about the out-
come, and his proof is constructive, so we actually know
how to achieve this maximum M] We can think of the
choices that organisms make—e.g., to express different
levels of proteins—as being bets on the state of the envi-
ronment, and there have been several efforts to construct
scenarios that match the structure of Kelly’s argument,
so that the growth rate of the organisms becomes equal to
the information that they have about environmental con-
ditions More generally, from rate distortion
theory we know that achieving a given average growth
rate across a wide range of conditions will require some
minimum amount of information about the environment
M] These connections between growth rates and infor-
mation provide a path for evolution to select for organ-
isms that gather and represent more information about
their environment.

Another interesting connection of information theo-
retic optimization to biological function is in the problem
of search @] Organisms search for food, for shelter,
for mates, and more; it may even be possible to think
more generally about computations or decisions as the
search for solutions. If we imagine that we are looking
for something in one of IV possible places, we can order
these by our current estimate of the probability P, that
we will find what we are looking for in the n*" place,
so that P, > P, > --- > P,. Then if we look first in
the most likely place, and then down the list, the mean
number of tries before we find what we are looking for is
n = 25:1 nP,. Given 7, there is a probability distribu-
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tion (P, o< e~*") that has maximal entropy. Conversely,
if our uncertainty corresponds to a probability distribu-
tion with entropy S, then the mean search time 7 has a
minimum, independent of all other details. The only way
we can speed up our search is to reduce the entropy of
the distribution, or to gain information in the Shannon
sense; while there is no guarantee that our search will go
as fast as allowed by this information, it cannot go faster.

The idea of “infotaxis” is to replace the task of finding
something with the task of gaining information about its
location [178]. In the context of a flying insect search-
ing for the source of an odor, where new information
arrives only intermittently when the flight path crosses
odor plumes, optimizing the gathering of information by
properly alternating upwind flight with cross—wind ‘cast-
ing’ in fact leads to the source, and the flight paths that
are generated by this algorithm are reminiscent of the
paths taken by insects in natural environments.” For the
purposes of this review, perhaps the most important re-
sult from the infotaxis idea is the demonstration that a
biologically grounded, goal-directed behavior can be re-
placed with an abstract, information theoretic optimiza-
tion principle. This certainly encourages us to think that
some of the nitty—gritty of biology should be derivable
from more general principles.

In their earliest work, Attneave and Barlow expressed
the hope that the search for efficient representations of
sensory data would drive discovery of features and ob-
jects that form our perceptual vocabulary, and Attneave
even tried simple experiments to show that human sub-
jects use efficient strategies in abstracting simple figures
into sketches ﬂ@, 101, @] As an example, if our world
consists of a finite set of rigid objects, each seen from
many different perspectives, then the most efficient rep-
resentation of the image data reaching our eyes would
consist of a discrete label for object identity and a few pa-
rameters to describe the viewing geometry. In this case,
optimization in an information theoretic sense would re-
quire our brains to recognize objects, and the labeling of
these objects would constitute a ‘naming’ of the mean-
ingful features of the visual world, without any additional
instructions. At its most ambitious, the claim would
be that these features acquire meaning because they are
maximally informative, as opposed to having meaning
imposed upon them.

Shannon frequently used English as an example of in-
formation theoretic ideas, and even played a “guessing

7 As an aside, we note that insects seem to “know” about the
intermittent structure of turbulent flows } In particular,
moths exposed to smooth ribbon plumes, which provide a con-
tinuous signal and should in principle be easy to follow, fly along
strongly zig—zag trajectories, spending most their time casting
crosswind, while the same moths exposed to intermittent or tur-
bulent plumes fly efficiently toward the source of the odor. This
is one of the strongest, qualitative results demonstrating that
neural processing is tuned to the statistical structure of physical
signals that arise in the natural environment.



game” with human subjects to estimate the entropy of
written texts m On the other hand, there is a persis-
tent suspicion that there must be more than just statis-
tics involved in the structure and meaning of language,
and one of the foundational papers of modern linguistics
is essentially an attack on Shannon’s probabilistic models
for language ]. Some of these early arguments are re-
lated to the crude Markovian models that Shannon used
as illustrations, and some are related to the confusion be-
tween learning a probabilistic model and simply counting
events,® but questions remain, and Shannon himself es-
chewed any connection to the problem of meaning. In
what proved to be a more direct attack on this ques-
tion, Pereira et al @] developed an algorithm to clus-
ter nouns based on the distribution of verbs that occur
in the same sentence; their approach can be thought of
as compressing the description of the noun while pre-
serving information about the identity of the verb, and
hence is yet another example of efficient representation

]. The resulting clusters exhibit a striking degree of
semantic (rather than just syntactic) coherence, and it
hard to resist saying that this purely information theo-
retic approach is extracting meaning. These references
are just a small sampling from the roots of a huge litera-
ture. By now, we all interact with probabilistic models of
language every day (through internet search engines, au-
tomatic translation, ...), so perhaps the larger conceptual
question of whether the search for efficient representation
captures meaning has become less urgent. Nonetheless,
we suspect that there are many open questions here, in-
cluding whether we really understand how to write down
models that capture the very long-ranged correlations
that are present in texts.

The entropy of a probability distribution is defined
without reference to anything else, at least in the case of
discrete variables, but information is always about some-
thing. Thus it makes no sense to ask about the informa-
tion content of a signal; one has to ask how much infor-
mation the signal provides about some quantity of inter-
est.? Arguably the most successful uses of information

8 Thus, Chomsky famously argued that statistical approaches
could not distinguish between sentences that have never oc-
curred but are instantly recognizable as grammatical (Color-
less green ideas sleep furiously) and sentences that never oc-
curred because they are forbidden by grammatical rules (Fu-
riously sleep ideas green colorless) [182]. As a concrete re-
joinder, Pereira constructed a simple Markov model in which
successive words belong to clusters, so that P(Wyy1, Wn) =
> QWn11|C)Q(Wh|C)P(C), and learned the model on a
modest body of newspaper texts using just sixteen clusters. He
found that Chomsky’s two example sentences have probabilities
that differ by a factor of more than 105 [183]. But between the
dates of these references, a much more sophisticated view of the
learning problem had emerged.

We could be interested in the value of the signal itself, in which
case the information is equal to the entropy. But this is seldom
the case. If the signal is the text of a newspaper, for example,
we probably are not interested in the text itself, but what it tells
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theory in thinking about biological systems are in those
cases where the question “information about what?” has
a clear answer. But this makes us worry that more of the
predictive power of our theories resides in this qualitative
knowledge of the biologically relevant information than
in the more mathematical principle of optimizing infor-
mation transmission. Can we do something more general
than just making a list of which information is relevant
for each particular system?

Information cannot be useful to an organism unless it
carries predictive power: if we use information to guide
our actions, it takes time to act, and hence any mea-
sure of the success of our actions will be in relation to
a future state of the world [186]. While not all pre-
dictive information is equally useful, non—predictive in-
formation is useless, and so separating predictive from
non—predictive information is an important task. If we
observe a system for time 7T, then the distribution from
which trajectories are drawn has an entropy S(7) that
we expect to be extensive at large T'. But the mutual in-
formation between, for example, observations on the past
(=T <t <0) and and equally long future (0 < ¢ < T
is given by Iprea(T) = 25(T") — S(27'). Importantly, any
extensive component of the entropy cancels, and the in-
formation that the past provides about the future must
be sub-extensive, even if we allow for an unlimited fu-
ture, so most of the bits we observe must be discarded if
we want to isolate the predictive bits. This sub—extensive
entropy is related to our intuitive notions of the complex-
ity of the underlying processes m, , and provid-
ing an efficient representation of predictive information
is connected to problems ranging from signal processing
to learning @, ] Recent work provides preliminary
evidence that populations of neurons in the retina indeed
provide such an efficient representation, separating pre-
dictive information from the non-predictive background
at least in simplified visual worlds @], but much more
remains to be done in this direction.

V. OUTLOOK

We can trace the use of information theoretic ideas to
describe biological systems back roughly sixty years, al-
most to the origins of information theory itself. We have
emphasized that these connections between information
and the phenomena of life have two very different fla-
vors, one grounded in data and the other aiming for a
theory in which the behaviors of real biological systems
are derivable from some sort of optimization principle.
Both directions have been productive, and as the volume
of quantitative experimental data on biological systems

us about events in the world. In particular, the entropy of the
text is increased if we introduce random spelling errors, but the
information about events is decreased.



grows, it seems clear that the utility of the approaches to
data analysis described in Section [T will grow in paral-
lel. The search for real theories is more ambitious.

It is important that we have concrete examples of bio-
logical systems that are operating near an optimum of in-
formation transmission or efficiency of representation, as
reviewed in Section [Vl What we don’t know is whether
these are isolated instances, or examples of a general prin-
ciple. It is relatively easy to work out what optimization
means in simplified settings, but much harder to address
the theoretical issues that arise in more realistic contexts,
e.g. with many interacting degrees of freedom and the
complexities of fully natural signals. At the same time,
it took decades to get to the point where even the most
basic quantities—the actual information carried by bi-
ological signals—could be measured reliably. Now that
many of these foundational steps have been solidified, we
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believe that the coming years will see much more mean-
ingful confrontations between theory and experiment, in
a wide range of systems.
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