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We derive analytically the scaling behavior in the thermodynamic limit of the number of nonfrozen and
relevant nodes in the most general class of critical Kauffman networks for any number of inputs per node, and
for any choice of the probability distribution for the Boolean functions. By defining and analyzing a stochastic
process that determines the frozen core we can prove that the mean number of nonfrozen nodes in any critical
network with more than one input per node scales with the network size N as N2/3, with only N1/3 nonfrozen
nodes having two nonfrozen inputs and the number of nonfrozen nodes with more than two inputs being finite
in the thermodynamic limit. Using these results we can conclude that the mean number of relevant nodes
increases for large N as N1/3, with only a finite number of relevant nodes having two relevant inputs, and a
vanishing fraction of nodes having more than three of them. It follows that all relevant components apart from
a finite number are simple loops, and that the mean number and length of attractors increases faster than any
power law with network size.
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I. INTRODUCTION

Random Boolean networks are often used as generic mod-
els for the dynamics of complex systems of interacting enti-
ties, such as social and economic networks, neural networks,
and gene or protein interaction networks �1�. The simplest
and most widely studied of these models was introduced in
1969 by Kauffman �2� as a model for gene regulation. The
system consists of N nodes, each of which receives input
from K randomly chosen other nodes. The network is up-
dated synchronously, the state of a node at time step t being
a Boolean function of the states of the K input nodes at the
previous time step, t−1. The Boolean updating functions are
randomly assigned to every node in the network, and to-
gether with the connectivity pattern they define the realiza-
tion of the network. For any initial condition, the network
eventually settles on a periodic attractor.

Of special interest are critical networks, which lie at the
boundary between a frozen phase and a chaotic phase �3,4�.
In the frozen phase, a perturbation at one node propagates
during one time step on an average to less than one node, and
the attractor lengths remain finite in the limit N→�. In the
chaotic phase, the difference between two almost identical
states increases exponentially fast because a perturbation
propagates on an average to more than one node during one
time step �5�. Whether a network is frozen, chaotic, or criti-
cal depends on the connectivity K as well as on the weights
of the different Boolean functions. If these weights are cho-
sen appropriately, critical networks can be created for any
value of K.

The nodes of a critical network can be classified accord-
ing to their dynamics on an attractor. First, there are nodes
that are frozen on the same value on every attractor. Such
nodes give a constant input to other nodes and are otherwise
irrelevant. They form the frozen core of the network. Second,
there are nodes whose outputs go only to irrelevant nodes.
Though they may fluctuate, they are also classified as irrel-
evant since they act only as slaves to the nodes determining
the attractor period. Third, the relevant nodes are the nodes

whose state is not constant and that control at least one rel-
evant node. These nodes determine completely the number
and period of attractors. If only these nodes and the links
between them are considered, they form loops with possibly
additional links and chains of relevant nodes within and be-
tween loops. The recognition of the relevant elements as the
only elements influencing the asymptotic dynamics was an
important step in understanding the attractors of Kauffman
networks. The behavior of the frozen core was first studied
by Flyvbjerg �6�. Then, in an analytical study of K=1 net-
works Flyvbjerg and Kjaer �7� introduced the concept of rel-
evant elements. This concept was generalized to general
critical networks by Bastolla and Parisi �8,9�. They gained
insight into the properties of the attractors of the critical net-
works by using numerical experiments based on the modular
structure of the relevant elements. Finally, Socolar and
Kauffman �10� found numerically that for critical K=2 net-
works the mean number of nonfrozen nodes scales as Nnf
�N2/3, and the mean number of relevant nodes scales as
Nrel�N1/3. The same result is hidden in the analytical work
on attractor numbers by Samuelsson and Troein �11�, as was
shown in �12�. An explicit analytical derivation of these and
other scaling laws was given in �13�. For K=1, these power
laws are Nnf �N and Nrel�N1/2, since there is no frozen core
in a K=1 critical network.

In this work, we will derive the scaling behavior of the
number of nonfrozen and of relevant nodes in critical Kauff-
man networks with K�3. Since the scaling behavior is dif-
ferent for K=1 and 2, one could expect that the exponents
are generally K-dependent. However, we will show that the
exponents 2 /3 and 1/3 found for K=2 are valid also for
larger K and for all possible probability distributions of the
Boolean functions, as long as the network is critical. We also
obtain results for the number of nonfrozen nodes with two
and more nonfrozen inputs, and for the number of relevant
nodes with two and more relevant inputs.

The outline of this paper is the following. In the next
section, we introduce a stochastic process that yields the fro-
zen core in K=3 networks. The mean-field theory for this
process is presented in Sec. III, and an improved treatment
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including fluctuations is presented in Sec. IV, yielding the
scaling behavior of the number of nonfrozen nodes in critical
networks. The next three sections are devoted to special
points in parameter space, where the stochastic process does
not generate all of the frozen core. In Secs. V and VI those
points are considered, where the stochastic process gives a
smaller frozen core, and it is shown that “self-freezing loops”
generate the rest of the frozen core. In Sec. VII, we consider
points in parameter space, where the stochastic process does
not generate any frozen nodes, and where self-freezing loops
are responsible for all of the frozen core. Finally, in Secs.
VIII and IX we evaluate the case K�4 and the scaling be-
havior of the relevant nodes and attractor properties. Section
X discusses the implications of our results.

II. A STOCHASTIC PROCESS THAT LEADS
TO THE FROZEN CORE

From now on, we set K=3 and derive explicitly the scal-
ing behavior of the nonfrozen nodes. The generalization to
larger K and the scaling behavior of the relevant nodes will
be discussed later. The first step of the calculation, which is
performed in this section, consists in defining a stochastic
process that determines the frozen core. This process is in-
spired by the one used in �13� for K=2, however, it needed to
be modified before it could be generalized to larger K. The
treatment presented in the following is based on the exis-
tence of nodes with constant functions �functions in which
the output is fixed irrespectively of the input� and it therefore
applies to all critical models that have a nonzero fraction of
constant functions. Networks with no constant functions, and
in particular networks with only canalyzing functions will be
discussed separately.

Flyvbjerg �6� was the first one to use a dynamical process
that starts from the nodes with constant update functions and
determines iteratively the frozen core. Performing a mean-
field calculation for this process, he could identify the critical
point. We define in the following a process that goes beyond
mean-field theory and gives exact results for the frozen core.
We consider the ensemble of all networks of size N with a
fixed number of nodes with constant update functions. All
nodes with a constant update function are certainly part of
the frozen core. We construct the frozen core by determining
stepwise all those nodes that become frozen due to the influ-
ence of a frozen node. In the language of �10�, this process
determines the “clamped” nodes.

In a K=3 network, each node has three inputs, and there
are consequently 223

=256 possible Boolean functions. In or-
der to specify a model, one has to specify the probabilities
for a node to choose each of these functions. Instead of per-
forming the calculation in terms of all these parameters, it
turns out that three parameters are sufficient. For the K=2
networks, we introduced three parameters corresponding to
the occurrence of three types of Boolean functions. For
larger K, there are more types of Boolean functions, and we
use therefore a different set of parameters. The first param-
eter is �, which is the proportion of nonfrozen nodes in the
network. 1−� is therefore the proportion of nodes with a
constant update function. We require ��1 for the calcula-

tion performed in this and the following section. The case
�=1 will be discussed further below. The second parameter
is �2, which is the probability that a randomly chosen node
that does not have a constant update function will become a
frozen node when one of its three inputs is connected to a
frozen node. If one input of a node is fixed at some value, the
node has effectively two inputs left. We now consider those
nodes that have not become frozen by fixing one input, i.e.,
we are considering the proportion 1−�2 of all nonfrozen
nodes. The parameter �1 is then the probability that such a
node becomes frozen when one of the remaining two inputs
is connected to a frozen node. This probability can again be
expressed in terms of the probabilities of the different pos-
sible update functions. Thus all the networks with the same
parameters �2, �1, and � will be treated as of the same type.
As we will see below, the properties we are interested in will
be the same not only for the functions that belong to the
same type of network �i.e., that have the same parameters but
possibly different Boolean functions� but also for the differ-
ent types as long as their parameters are such that the net-
work satisfies the criticality condition �3� derived below.
This means that we can have critical networks with all pos-
sible choices of Boolean functions and that they will all be
characterized by the same exponents as a consequence of
being critical.

Now, let us define the stochastic process that determines
the frozen core. For this purpose, we differentiate four types
of nodes, the numbers of which will change during the pro-
cess, and we place these nodes in four different “containers.”
Initially, all nodes with constant functions are placed in a
container labeled F, and the remaining nodes in a container
labeled N3. In this container are all those nodes for which we
do not yet know if they are connected to a frozen node. The
other two containers, labeled N2 and N1, are initially empty.
They will contain nodes with one and two frozen inputs that
are themselves not �yet� frozen. Since the number of nodes in
the different containers is going to change during our sto-
chastic process, we denote the initial values of numbers of
nodes in the containers as Nf

ini, N2
ini=N1

ini=0, and N3
ini, and the

total number of nodes as Nini �this is the actual number of
nodes in the network�. The contents of the containers will
change with time. The “time” we are defining here is not the
real time for the dynamics of the system. Instead, it is the
time scale for a stochastic process that we use to determine
the frozen core. During one time step, we choose one node
from the container F and determine the influence of this
node on the nodes connected to it. After determining its in-
fluence we will remove it from the system, and the number
of nodes N in the system is reduced by 1. Now, for each
nonfrozen node in container N3 we ask whether it receives
input from the chosen frozen node. If this is the case it
freezes with probability �2 due to the influence of this node
and moves to container F. With probability 1−�2 it does not
become frozen and moves to container N2. In one time step,
we therefore move each node of container N3 with probabil-
ity 3�2 /N to the container F, and with probability 3�1
−�2� /N to the container N2. Similarly, a node from the con-
tainer N2 receives input from the chosen frozen node with
probability 2 /N, and it will then become frozen with prob-
ability �1 and will be placed in the container F. If it does not
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freeze, we place it in container N1, where we find all those
nodes that have two inputs from frozen nodes and are not
frozen. When nodes from this container choose a frozen node
as an input, they automatically become frozen. During this
process, the probabilities �2 and �1 will not change since the
nodes from containers N3 and N2, for which we are in every
time step determining whether they are going to freeze, are
chosen at random, and moving them from the containers will
not change probability distribution of the functions of the
nodes left in the containers. In the next time step, we choose
another frozen node from container F and determine its ef-
fect on the other nodes. Some nodes move again to a differ-
ent container, and the chosen frozen node is removed from
the system. We repeat this procedure until we cannot con-
tinue because either container F is empty, or because all the
other containers are empty. If container F becomes empty,
we are left with the nonfrozen nodes. We shall see below that
most of the remaining nodes are in container N1, with the
proportion of nodes left in containers N2 and N3 vanishing
in the limit Nini→�. If all containers apart from container F
are empty at the end, the entire network becomes frozen.
This means that the dynamics of the network goes to the
same fixed point for all initial conditions.

III. MEAN-FIELD APPROXIMATION
AND THE CRITICALITY CONDITION

Let us first describe this process by deterministic equa-
tions that neglect fluctuations around the average change of
the number of nodes in the different containers. As long as
all containers contain large numbers of nodes, these fluctua-
tions are negligible, and the deterministic description is ap-
propriate. The average change of the node numbers in the
containers during one time step is

�N3 = −
3N3

N
,

�N2 = −
2N2

N
+ �1 − �2�

3N3

N
,

�N1 = −
N1

N
+ �1 − �1�

2N2

N
,

�Nf = − 1 +
N1

N
+ �1

2N2

N
+ �2

3N3

N
,

�N = − 1. �1�

The total number of nodes in the containers, N, can be used
instead of the time variable, since it decreases by one during
each step. The equation for N3 can then be solved by going
from a difference equation to a differential equation,

�N3

�N
�

dN3

dN
= −

3N3

N
,

which has the solution

N3 = N3 N3
ini

�Nini�3 =
�

�Nini�2N3,

where �=
N3

ini

Nini . Similarly, we find

N2 = 3�1 − �2�
�

NiniN
2 − 3�1 − �2�

�

�Nini�2N3,

N1 = 3�1 − �1��1 − �2��N − 6�1 − �1��1 − �2�
�

NiniN
2

+ 3�1 − �1��1 − �2�
�

�Nini�2N3,

Nf = �1 − 3�1 − �1��1 − �2���N + 3�1 − 2�1��1 − �2�
�

NiniN
2

+ �3�1�1 − �2� − 1�
�

�Nini�2N3. �2�

When 1−3�1−�1��1−�2���0, the equation Nf =0,
which represents the stopping condition for the process, has
a solution for a nonzero value N. This solution shows that the
number of nonfrozen nodes in each container is proportional
to Nini. This means that on an average a nonfrozen node has
more than one nonfrozen input. A perturbation at one node
propagates during one time step on an average to more than
one node and we are obviously in the chaotic phase.

For 1−3�1−�1��1−�2���0 the equation Nf =0 does not
have a nonzero solution for N� �0,Nini�. In this case, we will
stop the process when Nf drops below 1. We are in the frozen
phase, or we have a critical system.

In the case 1−3�1−�1��1−�2��	0, the values N3 and
N2 will sink below 1 when N becomes of the order �Nini, and
the higher-order terms contributing to Nf and N1 can be ne-
glected compared to the first one. For smaller N, only frozen
nodes and nodes with one input are left. When Nf falls below
1, there remain only a constant number of the nodes of type
N1,

N1 �
3�1 − �1��1 − �2��

1 − 3�1 − �1��1 − �2��
.

The network is essentially frozen, with only a finite number
of nonfrozen nodes in the limit Nini→�. If we now choose
the inputs for these nodes, we obtain simple loops with trees
rooted in the loops. This property of the frozen phase was
also found in �10�.

When parameters of the networks are such that

1 − 3�1 − �1��1 − �2�� = 0 �3�

is fulfilled, we are at the boundary between frozen and cha-
otic phase in the parameter space. Thus the network is criti-
cal. Since the stochastic process stops at Nf =1, we have

1 =
�1 − 2�1�
�1 − �1�

�Nend�2

Nini + � �1

�1 − �1�
− �	 �Nend�3

�Nini�2 .

In the limit Nini→� the first term is dominant and the num-
ber of nonfrozen nodes would scale with the square root of
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the network size if the deterministic approximation to the
stochastic process was exact. We shall see below that includ-
ing fluctuations changes the exponent from 1/2 to 2/3. The
final number of N2-nodes for the deterministic process for
the critical networks is independent of network size, and the
final number of N3-nodes is ��Nini�−1/2 and vanishes for
Nini→�. We shall see below that the fluctuations change
these two results to N2��Nini�1/3 and N3�const.

The deterministic description of our process gives the
wrong scaling of the number of nonfrozen nodes in the case
of critical networks, but a correct criticality condition �3�. We
are interested in the dynamical behavior of the networks in
the critical phase and we will from now on study only net-
works with the parameters such that the criticality condition
1−3�1−�1��1−�2��=0 is fulfilled.

Before we proceed by introducing the noise into the de-
terministic equations, there is one more piece of information
we can extract from the deterministic description of the criti-
cal process that is going to help us later in determining the
noise term. Introducing n=N /Nini and nj =Nj /Nini for j
= f ,1 ,2 ,3, Eqs. �2� simplify to �using the criticality condi-
tion�

n3 = �n3,

n2 =
1

1 − �1
�n2 − n3� ,

n1 = n − 2n2 + n3,

nf =
1 − 2�1

1 − �1
n2 + � �1

1 − �1
− �	n3. �4�

This means that our stochastic process remains invariant �in
the deterministic approximation� when the initial number of
nodes in the containers and the time unit are all multiplied by
the same factor. For small n, the majority of nodes are in
container N1, since n1=n−O�n2�. Now, if we choose a suf-
ficiently large Nini, n reaches any given small value while
Nf �n2Nini is still large enough for a deterministic descrip-
tion. We can therefore assume that for sufficiently large net-
works Nf /N�n becomes small before the effect of the noise
becomes important. This assumption will simplify our calcu-
lations below.

IV. THE EFFECT OF FLUCTUATIONS

The number of nodes in container N j, j=1,2 ,3, that
choose a given frozen node as an input is Poisson distributed
with a mean jNj /N and a variance jNj /N. We now assume
that n is small at the moment where the noise becomes im-
portant, i.e., that the variance of the three noise terms is
N1 /N=n1 /n=1−2n+n2=1−O�n� and 2N2 /N=2n2 /n
= 2

1−�1
�n−n2�=O�n� and 3N3 /N=3�n2=O�n2�. All three

noise terms occur in the equation for Nf, and since the first
term dominates for small n, we consider only this term in the
equation for Nf. In the equations for N1 and N2, the noise
term is much smaller than the number of nodes in these
containers and can therefore be dropped.

The effect of the noise on the final value of N3 can be
obtained by the following consideration: as we will see be-
low, the mean final value of N3 will be a constant, which is
independent of Nini. This means that each node that is ini-
tially in the container N3 has a probability of the order 1 /Nini

of never choosing a frozen input during the stochastic pro-
cess, and this probability is independent for each node. From
this follows that the final number N3 is Poisson distributed
with a variance that is identical to the mean. This variance is
finite in the limit Nini→� and it does not affect the final
value of N2 or N1. Since we have obtained the variance of the
final value of N3 by this simple argument, we will not ex-
plicitly consider the noise term in the equation for N3.

We therefore obtain the stochastic version of Eqs. �1�,
where we need to retain only the noise term in the equation
for Nf:

�N3 = −
3N3

N
,

�N2 = −
2N2

N
+

1

��1 − �1�
N3

N
,

�Nf = − 1 +
N1

N
+ 2�1

N2

N
+ �3 −

1

��1 − �1�	N3

N
− 
 ,

�N = − 1. �5�

The random variable 
 has zero mean and unit variance. As
long as the nj change little during one time step, we can
summarize a large number T of time steps into one effective
time step, with the noise becoming Gaussian distributed with
zero mean and variance T. Exactly the same process would
result if we summarized T time steps of a process with
Gaussian noise of unit variance. For this reason, we can
choose the random variable 
 to be Gaussian distributed with
unit variance.

Compared to the deterministic case, the equations for N3
and N2 are unchanged. Inserting the solution for N3 and N2
into the equation for Nf, we obtain

dNf

dN
=

Nf

N
+

1 − 2�1

1 − �1

N

Nini + 2� �1

1 − �1
− �	� N

Nini	2

+ 


�6�

with the step size dN=1 and 

2�=1. �In the continuum limit
dN→0 the noise correlation becomes 

�N�
�N���=��N
−N��.� This is a Langevin equation, and the corresponding
Fokker-Planck equation is

−
�P

�N
=

�

�Nf
�Nf

N
+

1 − 2�1

1 − �1

N

Nini + 2� �1

1 − �1
− �	� N

Nini	2P

+
1

2

�2P

�Nf
2 . �7�

Since we are investigating networks in the thermody-
namic limit, keeping only the leading terms will give a good
approximation. Thus we can neglect the last term in the ex-
pression under the partial derivative with respect to Nf once
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N /Nini has become sufficiently small. We are left with the
Fokker-Planck equation of the same type as the one already
studied in �13�, but with a different coefficient.

−
�P

�N
=

�

�Nf
�Nf

N
+

�N

Nini	P +
1

2

�2P

�Nf
2 , �8�

where �= �1−2�1� / �1−�1�.
We introduce the variables

x =
Nf

�N
and y =

N

�Nini/��2/3 �9�

and the function f�x ,y�= �Nini /��P�Nf ,N�. The free param-
eter  will be fixed below by the condition that the probabil-
ity distribution of the number of nonfrozen nodes is normal-
ized. The Fokker-Planck equation then becomes

y
�f

�y
+ f + � x

2
+ y3/2	 �f

�x
+

1

2

�2f

�x2 = 0. �10�

Let W�N� denote the probability that N nodes are left at the
moment where Nf reaches the value zero. It is

W�N� = �
0

�

P�Nf,N�dNf − �
0

�

P�Nf,N − 1�dNf .

Consequently,

W�N� =
�

�N
�

0

�

P�Nf,N�dNf = �Nini/��−−1/3 �

�y
�y�

0

�

f�x,y�dx

� �Nini/��−−1/3G�y�

with a scaling function G�y�. W�N� must be a normalized
function,

�
0

�

W�N�dN = �Nini/��−−1/3+2/3�
0

�

G�y�dy = 1.

This gives =1/3. This condition is independent of the pa-
rameters of the model, and therefore G�y� and f�x ,y� are
independent of them too. Now, we have

W�N� = �Nini/��−2/3G�y� .

The mean number of nonfrozen nodes is

N̄ = �
0

�

NW�N�dN = �Nini/��2/3�
0

�

G�y�ydy ,

which is proportional to �Nini�2/3.
The probability W2�N2� that N2 nodes are left in container

N2 at the moment where container F becomes empty is ob-
tained from the relation

N2 =
1

1 − �1

N2

Nini −
1

1 − �1

N3

�Nini�2 .

Since W�N�dN=W2�N2�dN2, we find that the mean num-
ber of nodes left in container N2 is

N̄2 = �
0

�

N2W2�N2�dN2

= �
0

�

N2W�N�dN

=
1

���1/3�1 − 2�1�
�Nini�1/3�

0

�

y2G�y�dy +
1

�
�

0

�

y2G�y�dy

� �Nini�1/3.

In the same manner we find for the number of nodes left in
container N3

N̄3 = �
0

�

N3W3�N3�dN3

= �
0

�

N3W�N�dN

=
��1 − 2�1�2

�1 − �1�2 �
0

�

y3G�y�dy � const.

Thus we have shown that the number of nonfrozen nodes
scales with network size Nini as �Nini�2/3, with most of these
nodes receiving only one input from other nonfrozen nodes.
The number of nonfrozen nodes with two nonfrozen inputs
scales as �Nini�1/3 and the number of nodes with three such
inputs is independent of the network size.

V. SPECIAL POINTS AND CANALYZING FUNCTIONS

For �1=1/2, the second term in the Langevin equation
�6� is zero. In this case the next order term has to be taken
into account since it is the leading one now. We will see that
the mechanism of creating the frozen core is different for
such systems, but in the end we will find the same scaling
behavior of the number of nonfrozen nodes.

Now we have to consider the modified Langevin equation

dNf

dN
=

Nf

N
+ 2�1 − ��� N

Nini	2

+ 
 �11�

and the corresponding Fokker-Planck equation

−
�P

�N
=

�

�Nf
�Nf

N
+ 2�1 − ��� N

Nini	2P +
1

2

�2P

�Nf
2 . �12�

We again introduce new variables

x =
Nf

�N
and y = � �Nini�2

2�1 − ��	
−4/5

N2 �13�

and the function f�x ,y�= � �Nini�2

2�1−�� �
P�Nf ,N�. The Fokker-

Planck equation then becomes

2y
�f

�y
+ f + � x

2
+ y5/4	 �f

�x
+

1

2

�2f

�x2 = 0.

For the probability that N nodes are left when Nf reaches
zero we obtain
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W�N� = � �Nini�2

2�1 − ��	
−2/5

G̃�y�

with a new scaling function G̃. We have used the fact that
this probability has to be normalized, which gives =1/5.

Using this result, we find for the mean number of nonfro-
zen nodes

N̄ = �
0

�

NW�N�dN =
1

2
� �Nini�2

2�1 − ��	
2/5�

0

�

G̃�y�dy � �Nini�4/5.

�14�

For the mean number of nonfrozen nodes left in contain-
ers N2 and N3 we find

N̄2 = �
0

�

N2W2�N2�dN2

= �
0

�

N2W�N�dN

=
�Nini�3/5

�2�1 − ���4/5�
0

�

y1/2G̃�y�dy −
�Nini�2/5

�2�1 − ���6/5�
0

�

yG̃�y�dy

� �Nini�3/5 �15�

and

N̄3 = �
0

�

N3W3�N3�dN3

= �
0

�

N3W�N�dN

=
�

2

�Nini�2/5

�2�1 − ���6/5�
0

�

yG̃�y�dy � �Nini�2/5. �16�

We see that the number of nodes which become frozen
due to the influence of the constant functions is smaller than
in the case of other critical networks. When we look at the
parameters for these networks more closely, we see that these
networks are effectively canalyzing with two inputs per
node. The probability that a node with two inputs is going to
freeze during one time step is �1=1/2 and this means that
the network has Boolean functions such that nodes with two
nonfrozen inputs effectively belong to the C1 or C2 class of
Boolean functions with two variables, i.e., canalyzing func-
tions. The class C1 contains those functions that depend only
on one of the two variables, but not on the other one. The
class C2 contains the remaining canalyzing functions, where
one state of each input fixes the output. It has been shown in
�14� that in K=2 networks with only this type of functions
another mechanism of creating the frozen core arises. The
only condition for this is that the number of nodes from class
C2 is large enough. We will show that it is exactly what
happens in the networks we are analyzing now. The number
of nonfrozen nodes with two inputs and canalyzing C2 func-
tions is here large enough to allow for the creation of the

self-freezing loops that are going to increase the number of
frozen nodes and thus change the scaling of the nonfrozen
nodes from �Nini�4/5 to �Nini�2/3.

VI. CREATING SELF-FREEZING LOOPS
AND THEIR EFFECT

We are now considering a reduced network consisting of
those nodes that are not frozen through the influence of the
nodes with constant functions. The size of this network is
N��Nini�4/5, most of the nodes have one nonfrozen input,
N2��Nini�3/5 have two, and N3��Nini�2/5 have three nonfro-
zen inputs. Nodes with two nonfrozen inputs have a prob-
ability to freeze �1=1/2 and as such effectively have cana-
lyzing Boolean functions of two arguments, belonging to C1
or C2 class. So, the number of nodes with two nonfrozen
inputs that belong to the C2 class has to be ��Nini�3/5 as it is
the fraction of all nonfrozen nodes with two inputs.

Let us now assume that there exist groups of nodes that
fix each other’s value and do not respond to changes in nodes
outside this group. The simplest example of such a group is
a loop of C2 nodes where each node canalyzes �fixes� the
state of its successor once it settles on its majority bit �the
one occurring three times in its update function table�. These
loops, introduced in �14�, are called self-freezing loops. They
can also contain chains of nodes with one nonfrozen input or
with two nonfrozen inputs and a C1 function between C2
nodes. If a chain between two C2 nodes as a whole inverts the
state of the first C2 node, the inverted majority bit of the first
C2 node has to canalyze the second C2 node. The only effect
of nodes with C1 functions and those with one nonfrozen
input in such loops is to delay the signal propagation be-
tween two adjacent C2 nodes. The procedure of finding self-
freezing loops is explained in detail in �14�. The number of
nodes on self-freezing loops is there found by mapping the
problem of finding a self-freezing loop in a C2 network onto
the problem of finding the relevant nodes sitting on relevant
loops in a critical network that contains no canalyzing func-
tions at all, but only reversible �where the output is changed
whenever one of the inputs is changed� and constant func-
tions. Using results for these reversible networks obtained in
�13� it was found that the number of nodes on self-freezing
loops scales as �N1/3 where N is the number of C2 nodes.

Obviously, nodes depending on or canalyzed by the fro-
zen nodes of the self-freezing loops freeze also, and such
nodes may lead to the freezing of further nodes, etc. We can
introduce a dynamical process in order to determine the total
number of nodes that become frozen because of the self-
freezing loops. This process is almost the same as the one we
have used for identifying the influence of the constant func-
tions on the networks dynamics. We again have four contain-
ers where the nodes left after determining the influence of the
nodes with constant functions are placed. Initially nodes
found to be on the self-freezing loops are going to be moved
from the container with nodes with two inputs, N2, to the
container F. Thus the initial number of nodes in the contain-
ers is going to be Nf

0= ��Nini�3/5�1/3= �Nini�1/5, N2
0= �Nini�3/5

−Nf
0��Nini�3/5 and N3

0= �Nini�2/5, and the total number of
nodes is N0= �Nini�4/5. Now we run the same dynamical pro-
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cess as before determining influence of the nodes from the
frozen loops on the rest of this reduced network one by one
and then removing them from the system. At the end of this
process we will again have nodes in the container N2. They
can now make new self-freezing loops made of C2 nodes
with the chains of nodes with one nonfrozen input between
them. We can then again move N2

1/3 nodes that are on the new
self-freezing loops to the container F and run the same pro-
cess again. We can even take over the values of N1, N2, and
N3 and N at the end of the first process, since N2

1/3 frozen
nodes moved from container N2 are negligible in comparison
to N2. These processes can be repeated as long as the number
of nodes of type C2 is large enough to allow for the creation
of self-freezing loops. The equations for the change of N3
and N2 nodes

�N3 = −
3N3

N
,

�N2 = −
2N2

N
+

2

�

N3

N
�17�

apply together to all the successive processes of freezing the
network through the influence of nodes of the self-freezing
loops. Between each two of them the new self-freezing loops
have been found and moved from the container with N2
nodes allowing for the new process to start. The equation for
N is �N=−1, as before. The solution of these equations is
obtained by going to differential equations for dN2 /dN and
dN3 /dN. Using the values of N, N2, and N3, found in Eqs.
�14�–�16�, as initial values of the variables, these differential
equations have the solution

N3 =
N3

0

�N0�3N3, �18�

N2 =
N2

0 + �2/��N3
0

�N0�2 N2 −
2N3

0

��N0�3N3. �19�

The number of remaining N1 nodes increases in the second
process, the number of C2 �those in container N2� nodes de-
creases, thus leading to an increasing weight of N1 nodes in
the nonfrozen network.

The repeated process of identifying generalized self-
freezing loops and the nodes frozen by them breaks down
when the remaining nonfrozen nodes cannot be considered
as an effective C2 network anymore. This happens when in
the process of creating self-freezing loops the probability
that a C2 node is going to be attached to the end of the chain
of nodes with one nonfrozen input �thus making closing self-
freezing loop possible� becomes of the same order of mag-
nitude as the probability that this chain becomes a loop.
Since the mean size of the loops of nodes with one input is
found to be of the order of �N �15� the assembly of the
self-freezing loop becomes improbable when N2��N.

This condition gives to leading order

�N0�2

N2
0 � N3/2 �20�

or N��Nini�2/3. We again have the same scaling of the num-
ber of nonfrozen nodes with the network size. The scaling of
the number of nonfrozen nodes with two and three nonfrozen
inputs with the network size we find from Eqs. �19� and �18�
to be N2��Nini�1/3 and N3�const. This is the same scaling
we have for the case of all other critical networks investi-
gated until now.

When finding the number of nodes on the self-freezing
loops and defining our second process we assumed that there
the influence of the nodes with three nonfrozen inputs per
node is negligible. We can check if our assumption was jus-
tified. In the beginning of this process the number of nodes
with three inputs was N3

0��Nini�2/5. The number of nodes
that are initially on self-freezing loops is �N2

0�1/3= �Nini�1/5.
The mean number of nodes with three inputs on the self-
freezing loops is then

�N2
0�1/3N3

0

N2
0 = const.

In the limit of large network size, only a few �if any� self-
freezing loops are destroyed by nodes with three nonfrozen
inputs, and this does not change the scaling behavior of the
number of nodes on self-freezing loops.

VII. NETWORKS WITHOUT CONSTANT FUNCTIONS

A. Case �1=1/2, �2=1/3

Until now, we have assumed that the network has nodes
with constant functions. In this section, we consider net-
works without constant functions, i.e., with �=1. The criti-
cality condition �3� then becomes

3�1 − �1��1 − �2� = 1.

Although the criticality condition was derived under the as-
sumption that the network has a nonvanishing proportion of
frozen nodes �i.e., that ��1�, it can be extended to �=1,
since it is valid for any � arbitrarily close to 1. Furthermore,
decreasing � slightly for fixed �1 and �2 moves the system
to the frozen phase, indicating that a system satisfying the
criticality condition with �=1 is at the boundary of the fro-
zen phase. As we will see, the value of the parameters in the
critical networks without constant functions we are consid-
ering here is allowing the formation of the self-freezing
loops and leads to the frozen core of the same size as for all
the other critical networks. Canalyzing networks and thresh-
old networks are examples of this category of networks, and
they are considered important for biological applications.

The procedure of creating self-freezing loops in the case
of networks with nodes with two nonfrozen inputs was in-
troduced and explained in detail in �14�. It is the same pro-
cedure we have used in the previous section. Using a similar
line of arguments we can explain the assembly of the self-
freezing loops for the networks with three inputs per node
determined with parameters being �1=1/2, �2=1/3, and �
=1. In this case there is a mapping of the problem of finding
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the nodes on the self-freezing loops in this network onto the
problem of finding the relevant nodes on relevant loops in
critical network with three inputs per node and only revers-
ible and constant functions, i.e., with �1=�2=0 and �
=1/3. Self-freezing loops are found by starting with a node
and keeping track of the connection to those inputs that are
able to canalyze this node if they are canalyzed themselves.
This procedure is iterated for these input nodes, etc., until a
loop is formed or until it has to stop because no canalyzing
inputs are found. Similarly, relevant loops in a critical net-
work with �1=�2=0 are found by starting with a node and
keeping track of the connection to those inputs that do not
have a constant function. This procedure is iterated for the
nonfrozen inputs, etc., until a loop is formed or until it has to
stop because no nonfrozen inputs are found. In both cases, a
connection to an input is made with probability 1 /3, showing
that the two processes can be mapped on each other. As we
will show in Sec. IX below, in critical networks with three
inputs per node and nonzero fraction of frozen nodes the
number of relevant nodes on relevant loops scales as
�Nini�1/3. Therefore we conclude that in the network with
�1=�2=0, the number of nodes on self-freezing loops scales
also as �Nini�1/3.

We can now proceed just as in the previous section, but
with �=1 and Nj

0=Nj
ini. We continue making self-freezing

loops and determining which nodes are frozen by them until
N2��N. Inserting this condition in Eq. �19�, we find to lead-
ing order

2
N3/2

Nini = 1,

leading again to N��Nini�2/3.

B. General case

Now, let us turn to the case �=1 with �1�1/2. �The
situation �1	1/2 is not possible for nonfrozen Boolean
functions with two inputs.� The probability that a node we do
not know anything about freezes when connected to a frozen
node is now �2	1/3. Every node has three inputs and this
frozen node could be any of them. This means that on an
average a node can be frozen by more than one input, and the
self-freezing components we look for in the network here
consist of at least as many nodes as those in the previous
section. However, we do not need to know the exact number
of frozen nodes in these components. We will build only one
self-freezing loop and move its �Nini�1/3 nodes to the con-
tainer F. Then we start the calculation of Sec. II by setting
�=1− �Nini�−2/3. Since �1�1/2, the leading-order terms of
the calculation performed in Sec. II are retained in this case,
and we can take over all the main results of that section. In
particular, it follows that a single self-freezing loop is suffi-
cient to generate the entire frozen core, and we do not need
to identify other self-freezing loops. As before, the number
of nonfrozen nodes scales as �Nini�2/3.

VIII. GENERALIZATION TO LARGER K

The process introduced in Sec. II can easily be general-
ized to networks with K	3. We first consider again the case

��1. For a network with K inputs we define a set of param-
eters � and �i with i� �1,K−1�. � is again a fraction of the
nonfrozen nodes and �i is the probability that a nonfrozen
node that has K− i inputs from frozen nodes freezes when
receiving another frozen input in our process. These K pa-
rameters are going to define completely the class of networks
we observe in the process. Using the deterministic descrip-
tion of the process analogous to the one described in Sec. III
we find the criticality condition for networks with any K:

K�1 − �1��1 − �2� ¯ �1 − �K−1� = 1. �21�

Introduction of noise in the process gives the Langevin equa-
tion

dNf

dN
=

Nf

N
+ �

i=1

K−1

f i��1, . . . ,�i�� N

Nini	i

+ 
 , �22�

where the f i��1 , . . . ,�i� are functions of the parameters of
the system obtained from the stochastic process They satisfy
f i��1 , . . . ,�i�=0 when � j =1/ �j+1� for all j� �1, i�. We see
that in this general Langevin equation the leading term in N
is the same as in Eq. �6�. Therefore we find that in the ther-
modynamic limit the number of nonfrozen nodes scales in
critical networks as �Nini�2/3 with the network size.

Just like in the K=3 networks, parameter values can be
such that one or more of the leading terms in the Langevin
equation vanish. These special points in the parameter space
describe networks where the Boolean functions are such that
the nodes left nonfrozen after determining the influence of
the frozen nodes in our process can additionally generate
self-freezing loops. Their influence on the rest of the network
has to be determined by generalization of the process intro-
duced in Sec. VI. The number of classes of special points
will increase with K, leading to a hierarchy of special points.
For each K, there are K−3 classes of points in parameter
space that are equivalent to the special points of networks
with K−1 inputs per node �that is they have the same leading
term in the Langevin equation�, and one new class of special
points where only the last term in the Langevin equation �22�
is nonzero. Furthermore, there is the case �=1. As an illus-
tration, in the case K=4 there are two classes of special
points for ��1. One of them has �1=1/2. In this case, the
influence of the frozen nodes will lead to �Nini�4/5 nonfrozen
nodes. Boolean functions of the nodes with two nonfrozen
inputs and the number of them left after the first process are
such that self-freezing loops are made and their influence
will again give �Nini�2/3 as the number of nonfrozen nodes in
the network. This case can obviously be reduced to the K
=3 network. The other class of special points is obtained
when the parameters of the network are �1=1/2 and �2
=1/3. In this case, �Nini�6/7 nodes will be left nonfrozen after
determining the influence of the frozen nodes. One can easily
show that the creation of self-freezing loops is possible and
that their influence leads to a number of nonfrozen nodes that
scales as �Nini�2/3 with the network size.

For general values of K, the K−2 classes of special points
with ��1 are given by the condition � j =1/ �j+1� for all
j� �1, i� where i takes for every class one of the values from
the interval �1, K−2�. This means that f1=0 , . . . , f i=0
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in the Langevin equation �22� and the term
f i+1��1 , . . . ,�i+1��N /Nini�i+1 is the leading one. The nodes
left nonfrozen after determining the influence of the nodes
with constant functions scale with the network size as
�Nini��2i+2�/�2i+3�. The numbers and Boolean functions of the
nodes with k� �2, i+1� nonfrozen inputs are such that they
allow for the creation of the self-freezing loops, and their
influence will for each of these special points, i.e., for each
i� �1,K−2�, reduce the number of nonfrozen nodes to
�Nini�2/3.

For networks without constant functions �that is with �
=1� the frozen core arises only because of the creation of
self-freezing loops and their effect on the network. Just like
for all other parameter values, there is straightforward gen-
eralization of the analysis performed for this type of network
in the case when K=3 in Sec. VII. In the case when �i
=1/ �i+1� for all i� �1,K−1� there exists again a mapping of
the self-freezing loops on the relevant loops of a K critical
network with only reversible and nonfrozen functions, from
which it follows that the number of nodes that are initially on
self-freezing loops scales as �Nini�1/3. The process described
in Sec. VI can then be generalized to these networks. For any
other choice of parameters satisfying the criticality condition
�21� for �=1, self-freezing loops can also be formed, and
after moving only one of them in the container with frozen
nodes we will have the same process as for the one of the
classes of critical networks with ��1 that were already
studied. Scaling of the number of nonfrozen nodes in the
critical networks without frozen nodes and any fixed number
of inputs will be the same as in all other critical networks.

Let us end this section by noting that there is another class
of special points when the Boolean functions are chosen such
that each of them responds only to one of the K inputs. In
this case, the network is effectively a K=1 network, since for
each node those K−1 inputs to which the node does not
respond, can be cut off. In the calculations of the previous
sections we have always assumed that a nonvanishing pro-
portion of functions is not of this type.

IX. RELEVANT NODES AND THE NUMBER
AND LENGTH OF ATTRACTORS

Relevant nodes are the nodes whose state is not constant
and that control at least one relevant node. These nodes de-
termine completely the number and period of attractors. In
the previous sections, we have shown that the number of
nonfrozen nodes scales as �Nini�2/3 for any critical network.
We have also seen that among them there are only �Nini�1/3

nodes having two nonfrozen inputs, and that the number of
nonfrozen nodes with more than two nonfrozen inputs van-
ishes in the thermodynamic limit. The nonfrozen nodes can
now be connected to a network. This is a reduced network,
where all frozen nodes have been cut off. In �13�, we defined
a stochastic process for the formation of this reduced net-
work and the identification of the relevant nodes for critical
K=2 networks. The relevant nodes are determined by remov-
ing iteratively nodes that are not relevant because they influ-
ence only frozen and irrelevant nodes. The number of rel-
evant nodes was found to scale as �Nini�1/3, and the scaling

function characterizing their probability distribution depends
on the parameters of the model.

The scaling of the number of nonfrozen nodes as well as
the scaling of the number of nonfrozen nodes with two non-
frozen inputs as a function of the network size is the same for
every critical network, as we have shown in this paper. Since
the fraction of nodes with more than two nonfrozen inputs is
vanishing in the thermodynamic limit, the network of non-
frozen nodes, which is the starting point for the process of
determining the relevant nodes, is the same as in the K=2
case. So, we can conclude that the results for the scaling of
the number of relevant nodes found in �13� for the K=2
critical networks are valid for any critical network. The num-
ber of relevant nodes in critical networks scales as �Nini�1/3

with the network size. Among them are a constant number of
relevant nodes with two relevant inputs and a vanishing
number of relevant nodes with more than two relevant inputs
in the limit Nini→�. If only these nodes and the links be-
tween them are considered, they form loops with possibly
additional links and chains of relevant nodes within and be-
tween loops.

It follows that all critical networks with K	1 show the
same scaling behavior. The only exception is the case K=1,
which is different because there is no frozen core.

As we have shown in �13�, we can derive properties of
attractors from the results for the relevant nodes. In particu-
lar, we can take over the result of �13� that all relevant com-
ponents apart from a finite number are simple loops, and that
the mean number and length of attractors increases faster
than any power law with the network size.

X. CONCLUSIONS

In this paper, we have considered the limit of large net-
work size, and we have found the scaling behavior of the
number of nonfrozen nodes, of the number of nonfrozen
nodes with more than one nonfrozen input, of the number of
relevant nodes, and of the number of relevant nodes with
more than one relevant input in a general class of critical
random Boolean networks with fixed number of inputs per
node. The mean values of these quantities scale with network
size Nini as a power law in Nini, with the exponents being the
same for any critical network. No matter what the distribu-
tion of the Boolean functions is and how many inputs per
node the critical network has, the number of nonfrozen nodes
scales with the network size as �Nini�2/3, the number of non-
frozen nodes with two nonfrozen inputs scales as �Nini�1/3,
the exponent for the number of nonfrozen nodes with three
nonfrozen inputs is zero, and it is −n /3 for the number of
nonfrozen nodes with n+3 nonfrozen inputs. The number of
relevant nodes scales always as �Nini�1/3, with a constant
number of them having two inputs and a vanishing propor-
tion having more than two.

It follows that all critical random Boolean networks with
K	1 belong to the same class of systems. Changing the
weights of the different Boolean functions �for instance, by
choosing threshold networks or canalyzing networks� or
changing the number of inputs per node �which might make
the model more relevant for biological applications� will not
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change the scaling of the number of nonfrozen and relevant
nodes with the size of the network, and it will not change the
fact that the number and length of attractors increases faster
than any power law with the network size, as long as the
network is critical. Using a different method, Samuelsson
and Socolar have recently also found that the number of
nonfrozen nodes scales in the same way for all K	1 critical
networks �16�.

From the calculations performed in this paper it can be
concluded that the results are also valid for networks that
have nodes with different values of K. If Kmax is the largest
number of inputs occuring in the network, we can set K
=Kmax, and we can view nodes with less inputs as nodes with
Kmax inputs, but with a function that does not depend on all
of its inputs. In contrast, our results cannot be generalized to
networks with a broad distribution of the number of outputs.
The method employed in this paper is based on a Poissonian
distribution of the number of outputs, and is most likely valid
also for other distributions as long as the second moment of
the number of outputs is finite. This can for instance be con-
cluded from the analogy between the propagation of activity
in a Boolean network and percolation on a directed graph,
for which many results are known �17�.

The finding that the number and length of attractors in
critical Boolean networks increases superpolynomially with
network size is detrimental to the hypothesis that these net-
works are models of gene regulation networks, where only a
limited number of dynamic pathways should exist. However,
by considering asynchronous update instead of parallel up-
date and by requiring that dynamics should be robust with

respect to fluctuations in the update sequence, the number of
attractors reduces to a power law in system size, which is
more realistic than the superpolynomial growth �18,19�. The
method presented in this paper is independent of the updat-
ing scheme, and the scaling of the number of nonfrozen and
relevant nodes is therefore the same for asynchronous update
as for parallel update. The relevant components are conse-
quently also the same. With the insights obtained in the
present paper, we can immediately apply the results for asyn-
chronous update in K=2 critical networks to critical net-
works with larger values of K, and we can conclude that the
number of attractors in critical networks with asynchronous
update increases as a power law of the system size.

Finally, let us consider networks where the connections
between nodes are not made at random, but that show some
degree of clustering. Such networks have a finite proportion
of nodes that have correlated inputs and that can therefore
become frozen, e.g., because their inputs are always in the
same state. In contrast, the randomly wired networks consid-
ered in the present paper have only a limited and small num-
ber of nodes with correlated inputs even in the thermody-
namic limit of infinite network size. For small-world
networks, which have a high degree of clustering, our
method for determining the frozen core is not valid because
it is based on the assumption that nodes choose their inputs
independently from each other. Small-world networks need
therefore a separate analytical treatment, which has not been
done so far.
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