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A system is in a self-organized critical state if the distribution of some measured events obeys a power
law. The finite-size scaling of this distribution with the lattice size is usually enough to assume that the
system displays self-organized criticality. This approach, however, can be misleading. In this paper we
analyze the behavior of the branching rate s of the events to establish whether a system is in a critical
state. We apply this method to the Olami-Feder-Christensen model to obtain evidence that, in contrast
to previous results, the model is critical in the conservative regime only.

PACS numbers: 05.65.+b, 05.45.Ra
In spite of many efforts and more than a decade of
studies, the presence of self-organized critical behavior in
nature (and in some computer models) is a matter of con-
troversy. The concept of self-organized criticality (SOC)
was originally proposed by Bak, Tang, and Wiesenfeld
to describe the appearance of scale invariance in nature.
The idea was presented through the study of the behavior
of avalanches in a sandpile “toy” model [1]. This simple
model displayed the fundamental properties associated
with self-organized criticality. Under a slow driven pertur-
bation the system evolves to a critical state, with no char-
acteristic time and length scales. Once in this state, the
response of the system to the slow perturbation has no
typical length, and even a small perturbation (as the addi-
tion of a single grain of sand) can start a big avalanche.

Avalanching behavior as well as scale invariance have
been experimentally observed in a variety of situations in
nature, ranging from such different phenomena as earth-
quakes [2] or magnetic systems (the Barkhausen effect)
[3], to biological problems such as the evolution of species
[4] or lung inflation [5], just to give some examples. Al-
though by now the initial attempt to explain the appearance
of all linear scaling in nature through the concept of SOC
may seem a little naive, the ubiquity of its presence is still
a strong suggestion that some kind of “robust” and gen-
eral mechanism may be behind many of these phenomena.
The concept of SOC has become polemic, and, up to now,
there is no general agreement about the ingredients neces-
sary to create the self-organized critical state. Particularly,
there are discussions about the need for some type of lo-
cal conservation as an essential ingredient of the system to
display SOC. The existence of SOC in nonconservative
models would be highly desirable in this context, since,
in practice, some type of dissipation is always present in
nature.

One of the best successful applications of the ideas of
SOC for nonconservative systems is the investigations of
Olami, Feder, and Christensen on a model for the dynamic
of earthquakes (hereafter called OFC model [6]). In this
model there is a parameter a that controls the level of
conservation. Based on strong numerical evidence [7], it
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has been taken as an example of a system that has self-
organized criticality in the nonconservative regime, that is,
for a , 0.25.

In this paper we revisited the OFC model, but with a
different technique. Instead of looking for power laws
in distribution functions of avalanche sizes versus lattice
sizes, we looked at the behavior of the average branching
rate, both in the conservative and in the nonconservative
regimes. In contrast to previous evidence, we concluded
that the OFC model is critical only for a � 0.25 (that is,
in the conservative regime). For values of a close to but
smaller than 0.25, this model could be classified as “almost
critical.” This means that, although being critical only for
a � 0.25, for all practical purposes the system behaves as
if it were critical for a wide range of values of a, with
well-defined power laws over many decades.

In a recent paper, Kinouchi and Prado [8] showed that
some models which exhibit numerical evidence of self-
organized criticality in a wide range of the coupling pa-
rameters were indeed what they called “almost critical.”
Through the analysis of the branching rate s as a function
of the dissipation parameter a, they have shown that, al-
though those systems are critical only for a � ac, there
is a rather large region around this point where approxi-
mate scale invariance holds. They called this behavior
“almost critical” since, in practice, it can hardly be dis-
tinguished from “true” criticality based on the usual nu-
merical evidences only. By usual numerical evidences we
mean power-law behavior and scale invariance in distri-
bution functions (the avalanche size distribution function,
for instance). They also suggested that the analysis of the
branching rate s (where 0 # s # 1) as a function of the
coupling constant a could be a more efficient way to de-
termine whether a model is critical or not. Looking for
power laws in lattices of increasing sizes is not a very ef-
ficient way to determine if a system is in fact critical, and
this approach has already led to mistakes [9]. If the ana-
lyzed lattices are not big enough, the distribution functions
of avalanche sizes F�s� are power laws, even if the model
does not display SOC. Because the computational cost
of simulating the OFC model (and many others) in big
© 2000 The American Physical Society
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lattices is prohibitive and there is no way to know, before-
hand, if the considered lattices are big enough to show the
real characteristics of the dynamical behavior of the sys-
tem, such an approach is hardly conclusive.

It has been shown that some SOC models, with no spa-
tial correlations and in the thermodynamic limit, can be
mapped into a branching process [10]. A branching pro-
cess is a Markovian process and can be characterized by
a sequence of random variables �P�n��`

n�0, n [ N , where
P�n� represents the total number of individuals of the nth
generation. Consider a group of individuals (ancestors)
that can replicate, giving birth to some descendants, and
let pi �i � 0, 1, . . . , `� be the probability of an ancestor
to give birth to i descendants. Each of its descendants
in turn can give birth to other descendants with the same
probability pi so that pi does not depend on the previous
generations or on the number of descendants of other indi-
viduals in the same generation. The branching rate, s �P`

i�0 ipi , is then defined as the average number of descen-
dants per ancestor. It is a well-known result that, in order to
have a critical branching process, one must have s � 1.
Then the total number of descendants P�n� in each gen-
eration (the size of the “colony”) behaves as a power law
P�n� ~ n23�2 [11]. On the basis of these considerations
about the branching rate, and using different approaches,
several authors [12] were able to show that the random
version of the OFC model was critical in the conservative
regime only.

Therefore, we decided to use this same approach to re-
visit the original Olami-Feder-Christensen model [6]. This
coupled-map lattice model is inspired on the spring block
model developed by Burridge and Knopoff [13]. Each site
�i, j� of a square lattice is associated with a continuous
“energy” Fij , initially set to a random value in the interval
�0, Fc�. The system is driven by a global perturbation that
increases the energy of all sites uniformly and simultane-
ously. This process goes on until eventually one site be-
comes supercritical, that is, Fij $ Fc. This site becomes
unstable and the system then relaxes according to the rules

Fij ! 0

and

Fnn ! Fnn 1 aFij ,
TABLE I. Values of s, sb , and �s� for different values of the conservative parameter a in the
Olami-Feder-Christensen model. Results presented are those obtained with the biggest lattice
�Lmax� we were able to simulate. They represent the average of results obtained for different
initial configurations, and the errors are the errors associated with those averages.

a s sb �s� Lmax

0.15 0.7052 6 0.0002 0.7151 6 0.0002 3.40 6 0.02 100
0.18 0.8361 6 0.0003 0.8430 6 0.0003 6.08 6 0.08 150
0.21 0.9125 6 0.0002 0.9205 6 0.0002 11.0 6 0.6 100
0.22 0.9546 6 0.0009 0.9581 6 0.0009 21.4 6 0.4 200
0.23 0.982 6 0.001 0.983 6 0.001 53 6 3 400
0.24 0.9938 6 0.0004 0.9946 6 0.0004 148 6 9 400
0.25 1.000003 6 0.000009 1.000068 6 0.000009 39839 6 68 400
where Fnn are the four nearest neighbors of site �i, j�.
The parameter a controls the level of conservation of the
model. If a � 0.25, the system is said to be “conserva-
tive,” that is, all of the energy (or strength) lost by the site
�i, j� is distributed to its neighbors. This relaxation rule
can possibly produce a chain reaction that ends only when
all sites are stable again �Fij , Fc, ;i, j�. As in the origi-
nal work, we assume open boundaries. Also, as shown in
Ref. [6], one must have a , 0.25 to mimic the dynamic of
a real earthquake (some energy or “strength” is always lost
to the upper moving tectonic plate). This model is believed
to display self-organized criticality even when the dynamic
is nonconservative �0 , a , 0.25�. This is a result not yet
fully understood, and the value of the lower bound for a

(if it exists), under which the system has a localized be-
havior, has been a matter of controversy (note that we
know that a � 0 ) s � 0, and, for a � 0.25, we should
have s � 1). Because it is a model defined on a lattice,
analytical approaches are difficult and most of the results
have been obtained from computer simulations.

As the existence of a lattice introduces spatial correla-
tions, it is not possible to define the probability pi ana-
lytically. We estimate the branching rate s numerically
[s � �nd�, where �nd� is the average number of super-
critical sites (descendants) originated by an unstable site].
Just for comparison, we also study the random neighbor
version of the OFC (R-OFC) model [14], for which there
are some analytical results [12] showing that the model is
critical for a � 0.25 only.

Our results are presented in Tables I and II and in
Figs. 1–3. We checked the dependence of s on the lattice
size (see Figs. 2 and 3), and special care has been taken
to guarantee that the long transients were eliminated. We
also checked the effects of the boundaries. In the OFC
model we considered open boundaries to calculate s,
taking into account that the average number of descen-
dants for a boundary site is the number of unstable sites
it gives birth to, divided by the real number of neighbors
of the “ancestor” site (three for a border site and two for
a corner site). The R-OFC model was simulated without
borders. In most of the cases, we first generated different
stationary configurations from different random initial
configurations. The errors were estimated by averaging
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TABLE II. Values of s, sb , and �s� for different values of
the conservative parameter a in the random version of the
Olami-Feder-Christensen model. Results presented are those ob-
tained with the biggest lattice �Lmax� we were able to simulate.
They represent the average of results obtained for different ini-
tial configurations, and the errors are the errors associated with
those averages.

a s �s� Lmax

0.15 0.6006 6 0.0003 2.083 6 0.001 100
0.18 0.7140 6 0.0003 3.497 6 0.004 100
0.21 0.8595 6 0.0002 7.12 6 0.01 400
0.22 0.9297 6 0.0002 14.22 6 0.04 500
0.23 0.9876 6 0.0002 81 6 1 800
0.24 0.99923 6 0.00008 1306 6 80 1000

results obtained for different initial configurations of the
lattice (the errors so obtained are usually bigger than the
ones obtained by averaging s during many generations,
except when the system is conservative). The number of
iterations needed to reach the stationary state is very big,
and grows with the lattice size. In the OFC model the
transient is bigger for smaller values of a, while in the
R-OFC model the transient grows as a grows, making it
impossible to simulate the case a � 0.25 (the point in the
graph in this case was obtained from theoretical results).

Once we were sure to have a stationary configuration,
we analyzed the statistics of 100 000–5 000 000 avalanches
in the stationary state, in order to obtain (a) the average
avalanche size �s�, (b) the branching rate s (weighting
border sites), (c) the branching rate in the bulk sb (tak-
ing into account only sites in the bulk), and (d) the aver-
age number of generations in an avalanching process �n�.
Table I shows the results for the OFC model and Table II
shows the results for the R-OFC model. Note that, in the
model R-OFC, s � sb (there are no borders).
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FIG. 1. Branching rate as a function of the conservation pa-
rameter a. Squares refer to the Olami-Feder-Christensen model
(OFC) and the circles refer to the random version of the OFC
(R-OFC) model. In all cases the lattice size is L � 100.
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FIG. 2. Branching rate as a function of the inverse of lat-
tice size �1�L� for the random version of the Olami-Feder-
Christensen model. Different curves refer to different levels of
conservation (a � 0.22, 0.23, and 0.24). We can see that even
for a � 0.24, if we let L ! `, the branching rate s tends to a
value smaller than 1. The system shows a qualitatively different
behavior only if a � 0.25.

There are no relevant differences between the behaviors
of the OFC and the R-OFC models. For both of them,
s�a� ! 1 smoothly from below as a ! 0.25, with no
sign of any type of discontinuity in its behavior. Also, as
can be seen in Fig. 1, sOFC , sR-OFC, for 0.23 # a ,

0.25. From theoretical considerations [12], we know that
sR-OFC , 1 for a , 0.25.

In Figs. 2 and 3 we present the dependence of s on
the lattice size for the R-OFC and the OFC models. These
figures show that s grows almost linearly with 1�L with no
suggestion that s ! 1 as 1�L ! 0. The behavior of the
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FIG. 3. The branching rate as a function of the inverse of lat-
tice size �1�L� for the Olami-Feder-Christensen model. Differ-
ent curves refer to different levels of conservation (a � 0.23,
0.24, and 0.25). We can see that even for a � 0.24, if we let
L ! `, the branching rate s tends to a value smaller than 1.
Note that, in the conservative case �a � 0.25�, s is almost 1.00
even to very small lattices.
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system seems to be qualitatively different only if a � 0.25
(conservative case).

We also checked the dependence of s on the generation
n within an avalanching process. We see that s�n� con-
verges relatively fast to an asymptotic value [15]. None
of our conclusions were affected if we considered these
asymptotic values of s�n� instead of the average value.

The existence of SOC in the nonconservative regime of
the OFC model has been accepted based mainly on nu-
merical results of a Letter by Middleton and Tang [7] in
1995. In this paper, the authors showed how the natural
tendency of this model to synchronize is destroyed by inho-
mogeneities introduced by the asymmetries of the bound-
aries, creating long-range correlations and leading to a
power-law behavior in the distribution of avalanche sizes.
The apparent contradiction between this result and ours
can be understood from the conclusions of Kinouchi and
Prado [8]. In this paper, the study of two different models
with an analytical solution (the extremal Feder and Feder
model (EFF) with and without noise), shows that the effect
of noise is to enlarge the region where the system displays
an apparent critical behavior, leading to what was called
“almost criticality.” The EFF model with noise displays a
power-law behavior (although it is not critical). In con-
trast, in the noiseless model, large avalanches occur in the
conservative limit only. This also seems to be the case with
the OFC model. The randomness introduced by the asym-
metries of the boundaries creates correlations that enlarge
the critical region, leading to an almost critical behavior,
although it is not enough to ensure true criticality.

In conclusion, we showed that the analysis of s�a� is
a complementary approach to define if a model is or is
not critical. This new method revealed that the behavior
of the OFC model is qualitatively identical to the behav-
ior of the R-OFC model. In contrast to previous results,
the Olami-Feder-Christensen model seems to be critical
only in the conservative regime, that is, for a � 0.25.
Both models are “almost” critical in the sense defined in
Ref. [8]: s � 1 when a � 0.25, leading to a power-law
behavior of the avalanche sizes for many decades, and
making it (almost) impossible to distinguish this behavior
from true self-organized criticality based on the observa-
tion of power laws and finite-size scaling fits.

Although, according to the present results, this seems
highly unlikely, we point out that numerical arguments can
never rule out the possibility of a true critical behavior in a
very tiny region around the conservative limit. It should be
mentioned although that previous numerical results suggest
that this range is not so tiny at all, but rather large. Our
results, on the other hand, are a clear indication that the
nonconserving OFC model is not critical.

The authors acknowledge Dr. Osame Kinouchi for help-
ful discussions and suggestions. J. X. C. acknowledges the
Brazilian agency CAPES for financial support.
*Email address: josue@if.usp.br
†Email address: prado@if.usp.br

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59,
381 (1987); Phys. Rev. A 38, 364 (1988).

[2] B. Gutenberg and C. F. Richter, Ann. Geophys. (C.N.R.S.)
9, 1 (1956); A. Sornette and D. Sornette, Europhys. Lett.
9, 197 (1989); P. Bak and C. Tang, J. Geophys. Res. 94,
15 635 (1989); K. Ito and M. Matsuzaki, J. Geophys. Res.
95, 6853 (1990).

[3] G. Durin, G. Bertotti, and A. Magni, Fractals 3, 351 (1995);
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