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Abstract

An important problem in modeling networks is how to generate
a randomly sampled graph with given degrees. A popular model is
the configuration model, a network with assigned degrees and random
connections. The erased configuration model is obtained when self-
loops and multiple edges in the configuration model are removed. We
prove an upper bound for the number of such erased edges for regularly-
varying degree distributions with infinite variance, and use this result
to prove central limit theorems for Pearson’s correlation coefficient and
the clustering coefficient in the erased configuration model. Our results
explain the structural correlations in the erased configuration model
and show that removing edges leads to different scaling of the clustering
coefficient. We then prove that for the rank-1 inhomogeneous random
graph, another null model that creates scale-free simple networks, the
results for Pearson’s correlation coefficient as well as for the clustering
coefficient are similar to the results for the erased configuration model.

1 Introduction and results

1.1 Motivation

The configuration model [6,43] is an important null model to generate graphs
with a given degree sequence, by assigning each node a number of half-
edges equal to its degree and connecting stubs at random to form edges.
Conditioned on the resulting graph being simple, its distribution is uniform
over all graphs with the same degree sequence [13]. Due to this feature the
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configuration model is widely used to analyze the influence of degrees on
other properties or processes on networks [11,14,15,25,32,38].

An important property that many networks share is that their degree
distributions are regularly varying, with the exponent γ of the degree distri-
bution satisfying γ ∈ (1, 2), so that the degrees have infinite variance. In this
regime of degrees, the configuration model results in a simple graph with
vanishing probability. To still be able to generate simple graphs with ap-
proximately the desired degree distribution, the erased configuration model
(ECM) removes self-loops and multiple edges of the configuration model [7],
while the empirical degree distribution still converges to the original one [13].

The degree distribution is a first order characteristic of the network struc-
ture, since it is independent of the way nodes are connected. An important
second order network characteristic is the correlation between degrees of
connected nodes, called degree-degree correlations or network assortativity.
A classical measure for these correlations computes Pearson’s correlation
coefficient on the vector of joint degrees of connected nodes [29, 30]. In
the configuration model, Pearson’s correlation coefficient tends to zero in
the large graph limit [17], so that the configuration model is only able to
generate networks with neutral degree correlations.

The configuration model creates networks with asymptotic neutral de-
gree correlations [17]. By this we mean that, as the size of the network
tends to infinity, the joint distribution of degrees on both sides of a ran-
domly sampled edge factorizes as the product of the sized-biased distribu-
tions. As a result, the outcome of any degree-degree correlation measure
converges to zero. Although one would expect fluctuations of such mea-
sures to be symmetric around zero, it has frequently been observed that
constraining a network to be simple results in so-called structural negative
correlations [8, 22, 40, 44], where the majority of measured degree-degree
correlations are negative, while still converging to zero in the infinite graph
limit. This is most prominent in the case where the variance of the degree
distribution is infinite. To investigate the extent to which the edge removal
procedure of the erased configuration model results in structural negative
correlations, we first characterize the scaling of the number of edges that
have been removed. Such results are known when the degree distribution
has finite variance [1, 26, 27]. However, for scale-free distributions with in-
finite variance only some preliminary upper bounds have been proven [23].
Here we prove a new upper bound and obtain several useful corollaries. Our
result improves the one in [23] while strengthening [20, Theorem 8.13]. We
then use this bound on the number of removed edges to investigate the con-
sequences of the edge removal procedure on Pearson’s correlation coefficient
in the erased configuration model. We prove a central limit theorem, which
shows that the correlation coefficient in the erased configuration model con-
verges to a random variable with negative support when properly rescaled.
Thus, our result confirms the existence of structural correlations in simple

2



networks theoretically.
We then investigate a ‘global’ clustering coefficient, which is the num-

ber of triangles divided by the number of triplets connected by two edges,
eventually including multiple edges, see (3) and (4) for the precise defini-
tion. Thus, the clustering coefficient measures the tendency of sets of three
vertices to form a triangle. In the configuration model, the clustering coeffi-
cient tends to zero whenever the exponent of the degree distribution satisfies
γ > 4/3, whereas it tends to infinity for γ < 4/3 [31] in the infinite graph
limit. In this paper, we obtain more detailed results on the behavior of
the clustering coefficient in the configuration model in the form of a cen-
tral limit theorem. We then investigate how the edge removal procedure of
the erased configuration model affects the clustering coefficient and obtain a
central limit theorem for the clustering coefficient in the erased configuration
model.

Interestingly, it was shown in [34,35] that in simple graphs with γ ∈ (1, 2)
the clustering coefficient converges to zero. This again shows that constrain-
ing a graph to be simple may significantly impact network statistics. We ob-
tain a precise scaling for the clustering coefficient in ECM, which is sharper
than the general upper bound in [34].

We further show that the results on Pearson’s correlation coefficient and
the clustering coefficient for the erased configuration model can easily be ex-
tended to another important random graph null model for simple scale-free
networks: the rank-1 inhomogeneous random graph [5, 9]. In this model,
every vertex is equipped with a weight wi, and vertices are connected in-
dependently with some connection probability p(wi, wj). We show that for
a wide class of connection probabilities, the rank-1 inhomogeneous random
graph also has structurally negative degree correlations, satisfying the same
central limit theorem as in the erased configuration model. Furthermore,
we show that for the particular choice p(wi, wj) = 1− e−wiwj/(µn), where µ
denotes the average weight, the clustering coefficient behaves asymptotically
the same as in the erased configuration model.

Note that in the (erased) configuration model as well as the inhomoge-
neous random graph, Pearson’s coefficient for degree correlations and the
global clustering coefficient naturally converge to zero. We would like to
emphasize that this paper improves on the existing literature by establish-
ing the scaling laws that govern the convergence of these statistics to zero.
This is important because very commonly in the literature, various quan-
tities measured in real-world networks are compared to null-models with
same degrees but random rewiring. These rewired null-models are similar
to a version of the inhomogeneous random graph [2, 12]. Without knowing
the scaling of these quantities in the inhomogeneous random graph, it is not
possible to asses how similar a small measured value on the real network is
to that of the null model. Our results enable such analysis. In fact, we do
even more, by also establishing exact limiting distributions of the rescaled
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Pearson’s correlations coefficient and clustering coefficient, which are the
most standard measures in statistical analysis of networks.

1.2 Outline of the paper

The remainder of paper is structured as follows. In the next three sections we
formally introduce the models, the measures of interest and some additional
notation. Then, in Section 1.7, we summarize our main results and discuss
important insights obtained from them. We give a heuristic outline of our
proof strategy in Section 2 and recall several results for regularly-varying
degrees. Then we proceed with proving our result for Pearson’s correlation
coefficient in Section 3 and the clustering coefficient in Section 4. We then
show in Section 5 how the proofs for Pearson’s correlation coefficient and
the clustering coefficient in the erased configuration model can be adapted
to prove the central limit theorems for the rank-1 inhomogeneous random
graph. Finally, Appendix 6 contains the proof for the number of erased
edges, Theorem 2.1, as well as some additional technical results.

1.3 Configuration model with scale-free degrees

The first models of interest in this work are the configuration model and
the erased configuration model. Given a vertex set [n] := {1, 2, . . . , n} and
a sequence Dn = {D1, D2, . . . , Dn}, whose sum

∑
i∈[n]Di is even, the con-

figuration model (CM) constructs a graph Gn with this degree sequence by
assigning to each node i, Di stubs and then proceeds by connecting stubs at
random to form edges. This procedure will, in general, create a multi-graph
with self-loops and multiple edges between two nodes. To make sure that
the resulting graph is simple we can remove all self-loops and replace mul-
tiple edges between nodes by just one edge. This model is called the erased
configuration model (ECM).

We will denote by CM(Dn) and ECM(Dn) graphs generated by, respec-
tively, the standard and erased configuration model, starting from the de-
gree sequence Dn. We often couple both constructions by first constructing
a graph via the standard configuration model and then remove all the self-
loops and multiple edges to create the erased configuration model. In this
case we write Gn for the graph created by the CM and Ĝn for the ECM graph
constructed from Gn. In addition we use the hats to distinguish between
objects in the CM and the ECM. For example, Di denotes the degree of node
i in the graph CM(Dn) while its degree in ECM(Dn) is denoted by D̂i.

We consider degree sequences Dn = {D1, D2, . . . , Dn} where the degrees
Di are i.i.d. copies of an integer-valued random variable D with regularly-
varying distribution

P (D > t) = L(t)t−γ , γ > 1. (1)
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Here, the function L(t) is slowly varying at infinity and γ is the exponent of
the distribution.

As commonly done in the literature, Dn may include a correction term,
equal to one, in order to make the sum Ln =

∑
i∈[n]Di even. We shall

ignore this correction term, since it does not effect the asymptotic results.
In the remainder of this paper D always refers to a random variable with
distribution (1).

1.4 Rank-1 inhomogeneous random graphs

Another model that generates networks with scale-free degrees is the rank-1
inhomogeneous random graph [5,9]. In this model, every vertex is equipped
with a weight. We assume these weights are an i.i.d. sample from the scale-
free distribution (1). Then, vertices i and j with weights wi and wj are
connected with some connection probability p(wi, wj). Let the expected
value of (1) be denoted by µ. We then assume the following conditions on
the connection probabilities, similarly to [16]:

Condition 1.1 (Class of connection probabilities). Assume that

p(wi, wj) =
wiwj
µn

h

(
wiwj
µn

)
,

for some continuous function h : [0,∞) 7→ [0, 1] satisfying

(i) h(0) = 1 and h(u) decreases to 0 as u→∞,

(ii) q(u) = uh(u) increases to 1 as u→∞.

(iii) There exists u1 > 0 such that h(u) is differentiable on (0, u1] and
h′+(0) <∞.

This class includes the commonly used connection probabilities q(u) =
(u ∧ 1), where (x ∧ y) := min(x, y) (the Chung Lu setting) [9], q(u) =
1− e−u (the Poisson random graph) [33] and q(u) = u/(1 +u) (the maximal
entropy random graph) [10,21,36]. Note that within the class of connection
probabilities satisfying Condition 1.1, q(u) ≤ (u∧ 1). Note that p(wi, wj) =

q
(
wiwj
µn

)
.

1.5 Central quantities

Pearson’s correlations coefficient r(Gn) ∈ [−1, 1] is a measure for degree-
degree correlations. For an undirected multigraph Gn, this measure is de-
fined as (see [17]),

r(Gn) =

∑
i,j∈[n]XijDiDj − 1

Ln

(∑
i∈[n]D

2
i

)2

∑
i∈[n]D

3
i − 1

Ln

(∑
i∈[n]D

2
i

)2 , (2)
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where Xij denotes the number of edges between nodes i and j in Gn and
self-loops are counted twice. We write rn for Pearson’s correlation coefficient
on Gn generated by CM and r̂n if Gn is generated by ECM.

The clustering coefficient of graph Gn is defined as

C(Gn) =
34n

number of connected triples
, (3)

where 4n denotes the number of triangles in the graph. The clustering
coefficient can be written as

C(Gn) =
64n∑

i∈[n]Di(Di − 1)
=

6
∑

1≤i<j<k≤nXijXjkXik∑
i∈[n]Di(Di − 1)

, (4)

where Xij again denotes the number of edges between vertex i and j in
Gn. For simple graphs, C(Gn) ∈ [0, 1]. However, for multigraphs, C(Gn)
may exceed one. As with Pearson’s correlation coefficient, we denote by Cn
the clustering coefficient in Gn generated by CM, while Ĉn is the clustering
coefficient in Gn generated by ECM.

1.6 Notation

We write Pn and En for, respectively, the conditional probability and ex-

pectation, with respect to the sampled degree sequence Dn. We use
d−→

for convergence in distribution, and
P−→ for convergence in probability.

We say that a sequence of events (En)n≥1 happens with high probability
(w.h.p.) if limn→∞ P (En) = 1. Furthermore, we write f(n) = o(g(n)) if
limn→∞ f(n)/g(n) = 0, and f(n) = O(g(n)) if |f(n)|/g(n) is uniformly
bounded, where (g(n))n≥1 is nonnegative.

We say that Xn = OP (g(n)) for a sequence of random variables (Xn)n≥1

if |Xn|/g(n) is a tight sequence of random variables, and Xn = oP(g(n)) if

Xn/g(n)
P−→ 0. Finally, we use (x ∧ y) to denote the minimum of x and y

and (x ∨ y) to denote the maximum of x and y.

1.7 Results

In this paper we study the interesting regime when 1 < γ < 2, so that the
degrees have finite mean but infinite variance. When γ > 2, the number
of removed edges is constant in n and hence asymptotically there will be
no difference between the CM and ECM. We establish a new asymptotic up-
per bound for the number of erased edges in the ECM and prove new limit
theorems for Pearson’s correlation coefficient and the clustering coefficient.
We further show that the limit theorems for Pearson and clustering for the
inhomogeneous random graph are very similar to the ones obtained for the
ECM.
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Our limit theorems involve random variables with joint stable distribu-
tions, which we define as follows. Let

Γi =
i∑

j=1

ξj i ≥ 1, (5)

with (ξj)j≥1 i.i.d exponential random variables with mean 1. Then we define,
for any integer p ≥ 2,

Sγ/p =

∞∑
i=1

Γ
−p/γ
i . (6)

We remark that for any α > 1 we have that
∑∞

i=1 Γ−αi has a stable distri-
bution with stability index α (see [39, Theorem 1.4.5]).

In the remainder of this section we will present the theorems and high-
light their most important aspects in view of the methods and current lit-
erature. We start with r̂n.

Theorem 1.1 (Pearson in the ECM). Let Dn be sampled from D with 1 <
γ < 2 and E [D] = µ. Then, if Gn = ECM(Dn), there exists a slowly-varying
function L1 such that,

µL1(n)n
1− 1

γ r̂n
d−→ −

S2
γ/2

Sγ/3
,

where Sγ/2 and Sγ/3 are given by (6).

The following theorem shows that the correlation coefficient for all rank-
1 inhomogeneous random graphs satisfying Condition 1.1 behaves the same
as in the erased configuration model:

Theorem 1.2 (Pearson in the rank-1 inhomogeneous random graph). Let
Wn be sampled from D with 1 < γ < 2 and E [D] = µ. Then, when Gn
is a rank-1 inhomogeneous random graph with weights Wn and connection
probabilities satisfying Condition 1.1, there exists a slowly-varying function
L1 such that,

µL1(n)n
1− 1

γ r(Gn)
d−→ −

S2
γ/2

Sγ/3
,

where Sγ/2 and Sγ/3 are given by (6).

Interestingly, the behavior of Pearson’s correlation coefficient in the rank-
1 inhomogeneous random graph does not depend on the exact form of the
connection probabilities, as long as these connection probabilities satisfy
Condition 1.1.
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Asymptotically vanishing correlation coefficient. It has been known
for some time, c.f. [17, Theorem 3.1], that when the degrees Dn are sam-
pled from a degree distribution with infinite third moment, any limit point
of Pearson’s correlation coefficient is non-positive. Theorem 1.1 confirms
this, showing that for the erased configuration model, with infinite second
moment, the limit is zero. Moreover, Theorem 1.1 gives the exact scaling
in terms of the graph size n, which has not been available in the literature.
Compare e.g. to [20, Theorem 5.1], where only the scaling of the negative
part of r̂n is given.

Structural negative correlations. It has also been observed many times
that imposing the requirement of simplicity on graphs gives rise to so-called
structural negative correlations, see e.g. [8,22,40,44]. Our result is the first
theoretical confirmation of the existence of structural negative correlations,
as a result of the simplicity constraint on the graph. To see this, note that
the distributions of the random variables Sγ/2 and Sγ/3 have support on the
positive real numbers. Therefore, Theorem 1.1 shows that when we properly
rescale Pearson’s correlation coefficient in the erased configuration model,
the limit is a random variable whose distribution only has support on the
negative real numbers. Note that this result implies that when multiple
instances of ECM graphs are generated and Pearson’s correlation coefficient
is measured, the majority of the measurements will yield negative, although
small, values. These small values have nothing to do with the network struc-
ture but are an artifact of the constraint that the resulting graph is simple.
Interestingly, Theorem 1.2 shows that the same result holds for rank-1 inho-
mogeneous random graphs, indicating that structural negative correlations
also exist in these models and thus further supporting the explanation that
such negative correlations result from the constraint that the graphs are
simple.

Pearson in ECM versus CM. Currently we only have a limit theorem for
the erased model, in the scale-free regime 1 < γ < 2. Interestingly, and also
somewhat unexpectedly, proving a limit theorem for CM, which is a simpler
model, turns out to be more involved. The main reason for this is that in the
ECM, the positive part of r(Gn), determined by

∑
i,j XijDiDj is negligible

with respect to the other term since a polynomial in n number of edges
are removed (see Section 2.3 for more details). Therefore, the negative part
determines the distribution of the limit. In the CM this is no longer true
and hence the distribution is determined by the tricky balance between the
positive and the negative term, and their fluctuations. This requires more
involved methods to analyze than we could develop so far. Below, we state a
conjecture about this case, and state a partial result concerning the scaling
of its variance that supports this conjecture:
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Conjecture 1.3 (Scaling Pearson for CM). As n → ∞, there exists some
random σ2 such that √

nrn
d−→ N (0, σ2). (7)

The intuition behind this conjecture is explained in Section 2.4. Al-
though we do not have a proof of this scaling limit of rn in the configuration
model, the following result that shows that at least

√
nrn is a tight sequence

of random variables:

Lemma 1.4 (Convergence of nVarn(rn) for CM). As n → ∞, with Varn
denoting the conditional variance given the i.i.d. degrees,

nVarn(rn)
d−→

2− Sγ/6/S2
γ/3

µ
. (8)

We now present our results for the clustering coefficient. The following
theorem gives a central limit theorem for the clustering coefficient in the
configuration model:

Theorem 1.5 (Clustering in the CM). Let Dn be sampled from D with 1 <
γ < 2 and E [D] = µ. Then, if Gn = CM(Dn), there exists a slowly-varying
function L2 such that

Cn

L2(n)n4/γ−3

d−→ 1

µ3

(
C̃γ/2S2

γ/2 − 3C̃γ/4Sγ/4 +
2C̃γ/6Sγ/6
C̃γ/2Sγ/2

)
, (9)

where Sγ/2, Sγ/4 and Sγ/6 are given by (6) and

C̃α =
( 1− α

Γ(2− α) cos(πα/2)

)α
,

with Γ the Gamma-function.

Infinite clustering. For γ < 4/3, Theorem 1.5 shows that Cn tends to in-
finity. This observation shows that the global clustering coefficient may give
nonphysical behavior when used on multi-graphs. In multi-graphs, several
edges may close a triangle. In this case, the interpretation of the cluster-
ing coefficient as a fraction of connected triples does not hold. Rather, the
clustering coefficient can be interpreted as the average number of closed tri-
angles per wedge, where different wedges and triangles may involve the same
nodes but have different edges between them. This interpretation shows that
indeed in a multi-graph the clustering coefficient may go to infinity.
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What is a triangle? The result in Theorem 1.5 depends on what we
consider to be a triangle. In general, one can think of a triangle as a loop
of length three. In the configuration model however, self-loops and multi-
ple edges may be present. Then for example three self-loops at the same
vertex also form a loop of length three. Similarly, a multiple edge between
vertices v and w together with a self-loop at vertex w can also form a loop
of length three. In Theorem 1.5, we do not consider these cases as triangles.
Excluding these types of “triangles” gives the terms Sγ/4 and Sγ/6/Sγ/2 in
Theorem 1.5.

To obtain the precise asymptotic behavior of the clustering coefficient in
the erased configuration model, we need an extra assumption on the degree
distribution (1).

Assumption 1.1. The degree distribution (1) satisfies for all x ∈ {1, 2, . . . }
and for some K > 0

P (D = x) ≤ KL(x)x−γ−1.

Note that for all t ≥ 2

P (D = t) = P (D > t− 1)− P (D > t) = L(t− 1)(t− 1)−γ − L(t)t−γ ,

Hence, since (t − 1)−γ − t−γ ∼ γt−γ−1 as t → ∞, it follows that Assump-
tion 1.1 is satisfied whenever the slowly-varying function L(t) is monotonic
increasing for all t greater than some T .

Theorem 1.6 (Clustering in the ECM). Let Dn be sampled from D, satisfying
Assumption 1.1, with 1 < γ < 2 and E [D] = µ. Then, if Gn = ECM(Dn),
there exists a slowly-varying function L3 such that

L3(n)Ĉn

L(
√
µn)3n(−3γ2+6γ−4)/(2γ)

d−→ µ−
3
2
γ Aγ
Sγ/2

,

where Sγ/2 is a stable random variable defined in (6), and

Aγ =

∫ ∞
0

∫ ∞
0

∫ ∞
0

1

(xyz)γ+1
(1− e−xy)(1− e−xz)(1− e−yz) dx dy dz <∞.

(10)

We now investigate the behavior of the clustering coefficient in rank-1
inhomogeneous random graphs:

Theorem 1.7 (Clustering in the rank-1 inhomogeneous random graph).
Let Wn be sampled from D, satisfying Assumption 1.1, with 1 < γ < 2 and
E [D] = µ. Then, if Gn is an inhomogeneous random graph with weights Wn
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and connection probabilities satisfying Condition 1.1, there exists a slowly-
varying function L3 such that

L3(n)C(Gn)

L(
√
µn)3n(−3γ2+6γ−4)/(2γ)

d−→ µ−
3
2
γ 1

Sγ/2

∫ ∞
0

∫ ∞
0

∫ ∞
0

q(xy)q(xz)q(yz)

(xyz)γ+1
dx dy dz,

where q is as in Condition 1.1(ii), Sγ/2 is a stable random variable defined
in (6), and∫ ∞

0

∫ ∞
0

∫ ∞
0

1

(xyz)γ+1
q(xy)q(xz)q(yz) dx dy dz <∞.

1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

γ

ex
po

ne
nt

CM
ECM

Figure 1: Exponents of the clustering coefficient of CM and ECM for γ ∈ (1, 2)

Maximal clustering in the ECM and the inhomogeneous random
graph. Figure 1 shows the exponents of n in the main multiplicative term
of the clustering coefficient, in the CM and the ECM. The exponent in Theo-
rem 1.6 is a quadratic expression in γ, hence, there may be a value of γ that
maximizes the clustering coefficient. We set the derivative of the exponent
equal to zero

d

dγ
(−3γ2 + 6γ − 4)/(2γ) = −3/2 + 2γ−2 = 0,

which solves to γ =
√

4/3 ≈ 1.15. Thus, the global clustering coefficient of
an erased configuration model with γ ∈ (1, 2) is maximal for γ ≈ 1.15 where
the scaling exponent of the clustering coefficient equals −2

√
3 + 3 ≈ −0.46.

This maximal value arises from the trade off between the denominator and
the numerator of the clustering coefficient in (3). When γ becomes close
to 1, there will be some vertices with very high degrees. This makes the
denominator of (3) very large. On the other hand, having more vertices
of high degrees also causes the graph to contain more triangles. Thus, the
numerator of (3) also increases when γ decreases. The above computation
shows that in the erased configuration model, the optimal trade off between
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the number of triangles and the number of connected triples is attained at
γ ≈ 1.15. Theorem 1.7 shows that the same phenomenon occurs in the
rank-1 inhomogeneous random graph.

Mean clustering in CM vs ECM. In the CM, the normalized clustering
coefficient converges to a constant times a stable random variable squared.
This stable random variable has an infinite mean, and therefore its square
also has an infinite mean. In the ECM as well as in the rank-1 inhomogeneous
random graph however, the normalized clustering coefficient converges to
one divided by a stable random variable, which has a finite mean [37]. Thus,
the rescaled clustering coefficient in the ECM and the rank-1 inhomogeneous
random graph converges to a random variable with finite mean. Formally,

E
[

Cn
n4/γ−3

]
=∞ and E

[
Ĉn

n−3/2γ+3−2/γ

]
<∞.

ECM and inhomogeneous random graphs. Theorems 1.6 and 1.7
show that the clustering coefficient in the erased configuration model has
the same scaling as the clustering coefficient in the rank-1 inhomogeneous
random graph. In fact, choosing q(u) = 1− e−u in Condition 1.1 even gives
the exact same behavior for clustering in the erased configuration model
and in the inhomogeneous random graph. This shows that the erased con-
figuration model behaves similarly as an inhomogeneous random graph with
connection probabilities p(wi, wj) = 1− e−wiwj/(µn) in terms of clustering.

Vertices of degrees
√
n. In the proof of Theorem 1.6 we show that the

main contribution to the number of triangles comes from vertices of degrees
proportional to

√
n. Let us explain why this is the case. In the ECM, the

probability that an edge exists between vertices i and j can be approximated
by 1−e−DiDj/Ln . Therefore, when DiDj is proportional to n, the probability
that an edge between i and j exists is bounded away from zero. Similarly,
the probability that a triangle between vertices i,j and k exists is bounded
away from zero as soon as DiDj , DiDk and DjDk are all proportional to n.
This is indeed achieved when all three vertices have degrees proportional to√
n. If, for example, vertex i has degree of the order larger than

√
n, this

means that vertices j and k can have degrees of the order smaller than
√
n

while DiDj and DiDk are still of order n. However, DjDk also has to be
of size n for the probability of a triangle to be bounded away from zero.
Now recall that the degrees follow a power-law distribution. Therefore, the
probability that a vertex has degree much higher than

√
n is much smaller

than the probability that a vertex has degree of the order
√
n. Thus, the

most likely way for all three contributions to be proportional to n is to have
Di, Dj , Dk be proportional to

√
n. Intuitively, this shows that the largest

contribution to the number of triangles in the ECM comes from the vertices
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of degrees proportional to
√
n. This balancing of the number of vertices and

the probability of forming a triangle also appears for other subgraphs [18].

Global and average clustering. Clustering can be measured by two dif-
ferent metrics: the global clustering coefficient and the average clustering
coefficient [32, 41]. In this paper, we study the global clustering coefficient,
as defined in (3). The average clustering coefficient is defined as the average
over the local clustering coefficient of every vertex, where the local clustering
coefficient of a vertex is the number of triangles the vertex participates in
divided by the number of pairs of neighbors of the vertex. For the configura-
tion model, the global clustering coefficient as well as the average clustering
coefficient are known to scale as n4/3−γ [31]. In particular, this shows that
both clustering coefficients in the configuration model diverge when γ < 4/3.
Our main results, Theorems 1.5 and 1.6, provide the exact limiting behavior
of the global clustering coefficients for CM and ECM, respectively.

The average clustering coefficient in the rank-1 inhomogeneous random
graph has been shown to scale as n1−γ log(n) [10, 16], which is very differ-
ent from the scaling of the global clustering coefficient from Theorem 1.6.
For example, the average clustering coefficient decreases in γ, whereas the
global clustering coefficient first increases in γ, and then decreases in γ (see
Figure 1). Furthermore, the average clustering coefficient decays only very
slowly in n as γ approaches 1. The global clustering coefficient on the other
hand decays as n−1/2 when γ approaches 1. This shows that the global clus-
tering coefficient and the average clustering coefficient are two very different
ways to characterize clustering.

Joint convergence. Before we proceed with the proofs, we remark that
each of the three limit theorems uses a coupling between the sum of different
powers of degrees and the limit distributions Sγ/p. It follows from the proofs
of our main results, that these couplings hold simultaneously for all three
measures. As a direct consequence, it follows that the rescaled measures
convergence jointly in distribution:

Theorem 1.8 (Joint convergence). Let Dn be sampled from D, satisfying
Assumption 1.1, with 1 < γ < 2 and E [D] = µ. Let Gn = CM(Dn), Ĝn =
ECM(Dn) and define α = (−3γ2+6γ−4)/2γ. Then there exist slowly-varying
functions L1, L2 and L3, such that as n→∞,(
L1(n)n

1− 1
γ r̂n,

Cn

L2(n)n4/γ−3
,
L3(n)Ĉn
L(
√
µn)3nα

)
d−→
(
−
S2
γ/2

µSγ/3
,
S2
γ/2 − Sγ/4

µ3
, µ−

3
2
γ Aγ
Sγ/2

)
,

with Aγ as in (10) and Sγ/2, Sγ/3 and Sγ/4 given by (6).
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2 Overview of the proofs

Here we give an outline for the proofs of our main results for the configura-
tion model and the erased configuration model and explain the main ideas
that lead to them. Since the goal is to convey the high-level ideas, we limit
technical details in this section and often write f(n) ≈ g(n) to indicate that
f(n) behaves roughly as g(n). The formal definition and exact details of
these statements can be found in Sections 3 and 4 where the proofs are
given. The proofs for the rank-1 inhomogeneous random graphs follow very
similar lines, and we show how the proofs for the erased configuration model
extend to rank-1 inhomogeneous random graphs satisfying Condition 1.1 in
Section 5. We start with some results on the number of removed edges in
the erased configuration model.

2.1 The number of removed edges

The number of removed edges Zn in the erased configuration model is given
by

Zn =
n∑
i=1

Xii +
∑

1≤i<j≤n

(
Xij − 1{Xij>0}

)
,

where Xij again denotes the number of edges between vertices i and j. For
the analysis of the ECM it is important to understand the behavior of this
number. In particular we are interested in the scaling of Zn with respect
to n. Here we give an asymptotic upper bound, which implies that, up to
sub-linear terms, Zn scales no faster than n2−γ . The proof can be found in
Section 6.1.

Theorem 2.1. Let Dn be sampled from D with 1 < γ < 2 and Ĝn =
ECM(Dn). Then for any δ > 0,

Zn
n2−γ+δ

P−→ 0

The scaling n2−γ is believed to be sharp, up to some slowly-varying
function. We therefore conjecture that for any δ > 0,

Zn
n2−γ−δ

P−→∞.

From Theorem 2.1 we obtain several useful results, summarized in the
corollary below. The proof can be found in Section 6.1. Let Zij be the
number of edges between i and j that have been removed and Yi the number
of removed stubs of node i. Then we have

Yi =

n∑
j=1

Zij = Xii +
∑
j 6=i

(
Xij − 1{Xij>0}

)
.
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Corollary 2.2. Let Dn be sampled from D with 1 < γ < 2 and Gn =
ECM(Dn). Then, for any integer p ≥ 0 and δ > 0,∑n

i=1D
p
i Yi

n
p
γ

+2−γ+δ

P−→ 0 and

∑
1≤i<j≤n ZijDiDj

n
2
γ

+2−γ+δ

P−→ 0.

The first result of Corollary 2.2 gives the scaling of the difference of the
sum of powers of degrees, between CM and ECM. To see why, note that since
D̂q
i = (Di − Yi)q and Yi ≤ Di, by the mean value theorem we have, for any

integer q ≥ 1, ∣∣∣∣∣
n∑
i=1

Dq
i −

n∑
i=1

D̂q
i

∣∣∣∣∣ ≤ q
n∑
i=1

Dq−1
i Yi.

Hence, for any q ≥ 1 and δ > 0,∣∣∣∣∣
n∑
i=1

Dq
i −

n∑
i=1

D̂q
i

∣∣∣∣∣ = oP

(
n
q−1
γ

+2−γ+δ
)
.

2.2 Results for regularly-varying random variables

In addition to the number of edges, we shall make use of several results,
regarding the scaling of expressions with regularly-varying random vari-
ables. We summarize them here, starting with a concentration result on
the sum of i.i.d. samples, which is a direct consequence of the Kolmogorov-
Marcinkiewicz-Zygmund strong law of large numbers.

Lemma 2.3. Let (Xi)i≥1 be independent copies from a non-negative regularly-
varying random variable X with exponent γ > 1 and mean µ. Then, with
κ = (γ − 1)/(1 + γ),

|µn−∑n
i=1Xi|

n1−κ
P−→ 0.

In particular, since Ln =
∑n

i=1Di, with all Di being i.i.d. with regularly-

varying distribution (1) and mean µ, it holds that nκ−1 |Ln − µn| P−→ 0.
Therefore, the above lemma allows us to replace Ln with µn in our expres-
sions.

The next proposition gives the scaling of sums of different powers of
independent copies of a regularly-varying random variable. Recall that (x∨
y) denotes the maximum of x and y.

Proposition 2.4 ([20, Proposition 2.4]). Let (Xi)i≥1 be independent copies
of a non-negative regularly-varying random variable X with exponent γ > 1.
Then,

i) for any integer p ≥ 1 and δ > 0,∑n
i=1X

p
i

n

(
p
γ
∨1
)

+δ

P−→ 0;
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ii) for any integer p ≥ 1 with γ < p and δ > 0,

n
p
γ
−δ∑n

i=1X
p
i

P−→ 0;

iii) for any integer p ≥ 1 and δ > 0

max1≤i≤nD
p
i

n
p
γ

+δ

P−→ 0.

Finally we have following lemma, where we write f(t) ∼ g(t) as t → ∞
to denote that limt→∞ f(t)/g(t) = 1 and recall that (x ∧ y) denotes the
minimum of x and y.

Lemma 2.5 ([20, Lemma 2.6]). Let X be a non-negative regularly-varying
random variable with exponent 1 < γ < 2 and slowly-varying function L.
Then,

E
[
X

(
1 ∧ X

t

)]
∼ γ

3γ − 2− gamma2
L(t)t1−γ , as t→∞.

2.3 Heuristics of the proof for Pearson in the ECM

Let Dn be sampled from D with 1 < γ < 2, consider Gn = CM(Dn) and let
us write rn = r+

n − r−n , where r±n are positive functions given by

r+
n =

∑n
i,j=1XijDiDj∑n

i=1D
3
i − 1

Ln

(∑n
i=1D

2
i

)2 , r−n =
1
Ln

(∑n
i=1D

2
i

)2∑n
i=1D

3
i − 1

Ln

(∑n
i=1D

2
i

)2 .
(11)

First note that by the Stable Law CLT, see for instance [42], there exist
two slowly-varying functions L0 and L′0 such that∑n

i=1D
2
i

L0(n)n
2
γ

d−→ Sγ/2 and

∑n
i=1D

3
i

L′0(n)n
3
γ

d−→ Sγ/3, as n→∞. (12)

Applying this and using that Ln ≈ µn,

L1(n)µn
1− 1

γ r−n ≈
L′0(n)n

3
γ(

(L0(n)n
2
γ

)2

(∑n
i=1D

2
i

)2∑n
i=1D

3
i

d−→
S2
γ/2

Sγ/3
, (13)

with L1(n) = L′0(n)/(L0(n))2. Note that r−n scales roughly as n
1
γ
−1

and
thus tends to zero. This extends the results in the literature that rn has a
non-negative limit [17].
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Next, we need to show that this result also holds when we move to the
erased model, i.e. when all degrees Di are replaced by D̂i. To understand
how this works, consider the sum of the squares of the degrees in the erased
model

∑n
i=1 D̂

2
i . Recall that Yi is the number of removed stubs of node i.

Then we have
n∑
i=1

D̂2
i =

n∑
i=1

(Di − Yi)2 =
n∑
i=1

D2
i +

n∑
i=1

(
Y 2
i − 2DiYi

)
,

and hence ∣∣∣∣∣
n∑
i=1

D̂2
i −

n∑
i=1

D2
i

∣∣∣∣∣ ≤ 2

n∑
i=1

YiDi. (14)

Therefore we only need to show that the error vanishes when we divide by

n
2
γ . For this we can use Corollary 2.2 to get, heuristically,

n
− 2
γ

∣∣∣∣∣
n∑
i=1

D̂2
i −

n∑
i=1

D2
i

∣∣∣∣∣ ≤ 2n
− 2
γ

n∑
i=1

YiDi ≈ n−
1
γ

+2−γ → 0. (15)

These results will be used to prove that when Ĝn = ECM(Dn),

n
1− 1

γ
∣∣r−n − r̂−n ∣∣ P−→ 0,

so that by (13)

L1(n)µn
1− 1

γ r̂−n
d−→
S2
γ/2

Sγ/3
, as n→∞.

The final ingredient is Proposition 3.6, where we show that for some δ > 0,
as n→∞,

n
1− 1

γ
+δ
r̂+
n

P−→ 0 . (16)

The result then follows, since for n large enough L1(n) ≤ Cnδ and hence

µL1(n)n
1− 1

γ r̂n = µL1(n)n
1− 1

γ r̂+
n − µL1(n)n

1− 1
γ r̂−n

d−→ −
S2
γ/2

Sγ/3
.

To establish (16), let X̂ij denote the number of edges between i and j in the

erased graph and note that since we remove self-loops X̂ii = 0, while in the
other cases X̂ij = 1{Xij>0}. We consider the nominator of r̂+

n∑
1≤i<j≤n

X̂ijDiDj ,

and will show that, as n→∞,

n
1− 4

γ
+δ

∑
1≤i<j≤n

X̂ijDiDj
P−→ 0,

by approximating En
[
X̂ij

]
by 1 − e−DiDj/Ln , see Lemma 3.4. Since the

denominator in r̂+
n scales as n3/γ we get that n1−1/γ+δ r̂+

n
P−→ 0.
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2.4 Intuition behind Conjecture 1.3

We note that, by (2) and since
(∑

i∈[n]D
2
i

)2
= oP

(
Ln
∑

i∈[n]D
3
i

)
,

rn =

∑
i,j∈[n]DiDj

[
Xij − DiDj

Ln

]
∑

i∈[n]D
3
i

(1 + oP(1)). (17)

We rewrite

rn =

∑
i,j∈[n]DiDj

[
Xij − DiDj

Ln−1

]
∑

i∈[n]D
3
i

(1 + oP(1)) +

∑
i,j,∈[n]

D2
iD

2
j

Ln(Ln−1)∑
i∈[n]D

3
i

(1 + oP(1)).

(18)
The second term is

OP

(
n4γ−2−3γ

)
= OP

(
nγ−2

)
= oP(n

−1/2), (19)

since γ ∈ (1
2 , 1), and can thus be ignored. We are thus left to study the first

term.
Since En[Xij ] = DiDj/(Ln − 1), this term is centered. Further, the

probability that any half-edge incident to vertex i is connected to vertex j
equals Dj/(Ln − 1). These indicators are weakly dependent, so we assume
that we can replace the conditional law ofXij given the degrees by a binomial
random variable with Di experiments and success probability Dj/(Ln −
1). We will also assume that these random variables are asymptotically
independent. These are the two main assumptions made in this heuristic
explanation.

Since a binomial random variable is close to a normal when the number
of experiments tends to infinity, these assumptions then suggest that

rn ≈ N (0, σ2
n), (20)

where, with Varn denoting the conditional variance given the degrees,

σ2
n =

∑
i,j∈[n]D

2
iD

2
jVarn(Xij)(∑

i∈[n]D
3
i

)2 . (21)

Further, again using thatXij is close to a binomial, Varn(Xij) ≈ Di(Dj/(Ln−
1))(1−Dj/(Ln − 1)) ≈ DiDj/Ln. This suggests that

σ2
n ≈

∑
i<j∈[n]D

3
iD

3
j/Ln(∑

i∈[n]D
3
i

)2 =
1

Ln
, (22)

which supports the conjecture in (7) but now with σ2 = 1/µ.
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It turns out that the above analysis is not quite correct, as Xij = Xji

when i ≤ j, which means that these terms are highly correlated. Since
terms with i < j also appear several times, whereas i = j does not, this
turns out to change the variance formula slightly, as we discuss in the proof
of Lemma 1.4 in Section 3.5.

2.5 Proofs for clustering in CM and ECM

The general idea behind the proof for both Theorems 1.5 and 1.6 is that, con-
ditioned on the degrees, the clustering coefficients are concentrated around
their conditional mean. We then proceed by analyzing this term using stable
laws for regularly-varying random variables to obtain the results.

2.5.1 Configuration model

To construct a triangle, six different half-edges at three distinct vertices need
to be paired into a triangle. For a vertex with degree Di, there are Di(Di−
1)/2 ways to choose two half-edges incident to it. The probability that any
two half-edges are paired in the configuration model can be approximated
by 1/Ln. Thus, the probability that a given set of six half-edges forms a
triangle can be approximated by 1/L3

n. We then investigate I, the set of
all sets of six half-edges that could possibly form a triangle together. The
expected number of triangles can then be approximated by |I|/L3

n. By
computing the size of the set I, we obtain that the conditional expectation
for the clustering coefficient can be written as

En [Cn] ≈ |I|
L3
n

∑
i∈[n]Di(Di − 1)

≈ 1

L3
n

( n∑
i=1

D2
i

)3

− 3
n∑
i=1

D4
i + 2

∑n
i=1D

6
i∑n

i=1D
2
i

 .

The full details can be found in Section 4.1. Here the first term describes the
expected number of times six half-edges are paired into a triangle. The last
two terms exclude triangles including either multi-edges or self-loops. Then
by the Stable-Law CLT ( [42]) we have that there exists a slowly-varying
function L2 such that∑n

i=1D
2
i

L2(n)n
2
γ

d−→ Sγ/2,
∑n

i=1D
4
i

L2(n)2n
4
γ

d−→ Sγ/4 and

∑n
i=1D

6
i

L2(n)6n
2
γ
∑n

i=1D
2
i

d−→
Sγ/6
Sγ/2

.

Hence, using that Ln ≈ µn we obtain that

En [Cn]

L2(n)n
4
γ
−3

d−→ 1

µ3

(
S2
γ/2 − 3Sγ/4 +

2Sγ/6
Sγ/2

)
,

where Sγ/2, Sγ/4 and Sγ/6 are given by (6). To complete the proof we
establish a concentration result for Cn, conditioned on the degrees. To be
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more precise, we employ a careful counting argument, following the approach
in the proof of [13, Proposition 7.13] to show (see Lemma 4.1) that there
exists a δ > 0 such that

nδVarn(Cn)

n
8
γ
−6

P−→ 0,

where Varn denotes the conditional variance given the degrees. Then, it
follows from Chebyshev’s inequality, conditioned on the degrees, that

|Cn − En [Cn]|
L2(n)n

4
γ
−3

P−→ 0,

and we conclude that

Cn

L2(n)n
4
γ
−3

d−→ 1

µ3

(
S2
γ/2 − 3Sγ/4 + 2Sγ/6/Sγ/2

)
.

2.5.2 Erased configuration model

The difficulty for clustering in ECM, compared to CM, is in showing that Ĉn
behaves as its conditional expectation, as well as establishing its scaling. To
compute this we first fix an ε > 0 and show in Lemma 4.2 that the main

contribution is given by triples of nodes with degrees ε
√
n ≤ D ≤

√
n
ε , i.e.∑

1≤i<j<k≤n
X̂ijX̂jkX̂ik =

∑
1≤i<j<k≤n

X̂ijX̂jkX̂ik1
{
ε
√
n≤Di,Dj ,Dk≤

√
n
ε

}
+O(L(

√
µn)3n

3
2

(2−γ))E1(ε),

where E1(ε) is an error function, independent of n, with limε→0 E1(ε) = 0.

Then we use that approximately En
[
X̂ij

]
≈ 1− e−DiDj/Ln to show that

En
[
Ĉn

]
≈

6
∑

1≤i<j<k≤n gn,ε(Di, Dj , Dk) +O(L(
√
µn)3n

3
2

(2−γ))E1(ε)∑n
i=1 D̂i(D̂i − 1)

,

where

gn,ε(x, y, z) =
(

1− e−
xy
Ln

)(
1− e−

yz
Ln

)(
1− e−

zx
Ln

)
1{

ε
√
n≤x,y,z≤

√
n
ε

}.
Here En denotes again expectation conditioned on Dn, hence conditional
on the sampled degrees of the underlying CM. The precise statement can
be found in in Lemma 4.3. After that, we show in Lemma 4.6 that Ĉn
concentrates around its expectation conditioned on the sampled degrees,
so that conditioned on the sampled degree sequence, we can approximate
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Ĉn ≈ En
[
Ĉn

]
. We then replace Ln by µn in Lemma 4.4, so that, conditioned

on the degree sequence,

Ĉn ≈
6
∑

1≤i<j<k≤n fn,ε(Di, Dj , Dk) +O(L(
√
µn)3n

3
2

(2−γ))E1(ε)∑n
i=1 D̂i(D̂i − 1)

,

with

fn,ε(x, y, z) =
(

1− e
− xy
µn

)(
1− e

− yz
µn

)(
1− e

− zx
µn

)
1{

ε
√
n≤x,y,z≤

√
n
ε

}.
We then take the random degrees into account, by showing that

1

L(
√
µn)3n

3
2

(2−γ)

∑
1≤i<j<k≤n

fn,ε(D1, D2, D3)
P−→ 1

6
µ−

3γ
2 Aγ(ε) + E2(ε)

where

Aγ(ε) =

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

1

(xyz)γ+1
(1− e−xy)(1− e−xy)(1− e−xy) dx dy dz

and E2(ε) is a deterministic error function, with limε→0 E2(ε) = 0. Finally,
we again replace the D̂i with Di and use the Stable Law CLT to obtain a
slowly-varying function L3, such that

L3(n)n
2
γ∑n

i=1 D̂i(D̂i − 1)

d−→ 1

Sγ/2
.

Combining all these results implies that, for any ε > 0,

L3(n)Ĉn

L(
√
µn)3n

− 3γ
2

+3− 2
γ

d−→ µ−
3γ
2
Aγ(ε)

S2
γ/2

+
E1(ε) + E2(ε)

S2
γ/2

,

from which the result follows by taking ε ↓ 0.

3 Pearson’s correlation coefficient

In this section we first give the proof of Theorem 1.1, where we follow the ap-
proach described in Section 2.3. We then prove Lemma 1.4, which supports
Conjecture 1.3 on the behavior of Pearson in the CM.

3.1 Limit theorem for r−n

We first prove a limit theorem for r−n , when Gn = CM(Dn). Recall that

r−n =
1
Ln

(∑n
i=1D

2
i

)2∑n
i=1D

3
i − 1

Ln

(∑n
i=1D

2
i

)2 .
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Proposition 3.1. Let Dn be sampled from D with 1 < γ < 2 and E [D] = µ.
Then, if Gn = CM(Dn), there exists a slowly-varying function L0 such that

µL0(n)n
1− 1

γ r−n
d−→
S2
γ/2

Sγ/3
,

as n→∞. Here Sγ/2 and Sγ/3 are given by (6).

Proof. We will first show that there exists a slowly-varying function L0 such
that

µL0(n)n
1− 1

γ

(∑n
i=1D

2
i

)2
µn
∑n

i=1D
3
i

d−→
S2
γ/2

Sγ/3
, (23)

as n→∞ and Sγ/2 and Sγ/3 defined by (6).
Let D(i) denote the i-th largest degree in Dn, i.e. D(1) ≥ D(2) ≥ . . . D(n),

and let Γi be defined as in (5). Then, since
∑n

i=1D
p
(i) =

∑n
i=1D

p
i , for

any p ≥ 0, it follows from [13, Theorem 2.33] that for some slowly-varying
functions L2, L3, L4 and L6, as n→∞,

 n
− 4
γ

L2(n)2

(
n∑
i=1

D2
i

)2

,
n
− 3
γ

L3(n)

n∑
i=1

D3
i ,

n
− 4
γ

L4(n)

n∑
i=1

D4
i ,

n
− 6
γ

L6(n)

n∑
i=1

D6
i


d−→

( ∞∑
i=1

Γ
− 2
γ

i

)2

,

∞∑
i=1

Γ
− 3
γ

i ,

∞∑
i=1

Γ
− 4
γ

i ,

∞∑
i=1

Γ
− 6
γ

i

 .

(24)

Here we include the fourth and sixth moment, since these will be needed
later for proving Theorem 1.5.

Note that L0(n) := L2(n)/L1(n)2 is slowly varying and P
(∑∞

i=1 Γ
−t/γ
i ≤ 0

)
=

0 for any t ≥ 2. Hence (23) follows from (24) and the continuous mapping
theorem. Hence, to prove the main result, it is enough to show that

L0(n)n
1− 1

γ

∣∣∣∣∣r−n −
(∑n

i=1D
2
i

)2
µn
∑n

i=1D
3
i

∣∣∣∣∣ P−→ 0.

We will prove the stronger statement,

n
1− 1

γ
+κ

2

∣∣∣∣∣r−n −
(∑n

i=1D
2
i

)2
µn
∑n

i=1D
3
i

∣∣∣∣∣ P−→ 0. (25)

where κ = (γ − 1)/(γ + 1) > 0 is the same as in Lemma 2.3.

Note that by Lemma 2.3 we have that µn/Ln
P−→ 1. Hence, by (23), we

have that for any δ > 0,

n
1− 1

γ
−δ
(∑n

i=1D
2
i

)2
Ln
∑n

i=1D
3
i

= n
1− 1

γ
−δ
(∑n

i=1D
2
i

)2
µn
∑n

i=1D
3
i

(
µn

Ln

)
P−→ 0,
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from which we conclude that

n
1− 1

γ
−δ

(∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2 P−→ 0. (26)

To show (25), we write∣∣∣∣∣
(∑n

i=1D
2
i

)2
µn
∑n

i=1D
3
i

− r−n

∣∣∣∣∣ =

(∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i

∣∣∣∣∣∣(Ln − µn)
∑n

i=1D
3
i + µn

(∑n
i=1D

2
i

)2
µn
(
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2)
∣∣∣∣∣∣

≤
(∑n

i=1D
2
i

)2
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2 |µn− Ln|µn

+

( (∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2
)2

.

For the first term we have, using (26) and Lemma 2.3,

n
1− 1

γ
+κ

2

(∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2 |µn− Ln|µn

= n
1− 1

γ
−κ

2

( (∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2
)( |µn− Ln|

µn1−κ

)
P−→ 0.

Now, let δ = 1− 1/γ − κ/2 > 0. Then, since 1− 1/γ + κ/2 = 2− 2/γ − δ,
it follows from (26) that

n
1− 1

γ
+κ

2

( (∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2
)2

=

 n
1− 1

γ
− δ

2
(∑n

i=1D
2
i

)2
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2
2

P−→ 0,

which finishes the proof of (25).

3.2 Limit theorem for r̂−n

We now turn to the ECM. Observe that for Ĝn = ECM(Dn), (14) and Corollary
2.2 that, for any δ > 0,∣∣∣∑n

i=1D
2
i −

∑n
i=1 D̂

2
i

∣∣∣
n

1
γ

+2−γ+δ
≤ 2

∑n
i=1DiYi

n
1
γ

+2−γ+δ

P−→ 0.

Since 2
γ >

1
γ + 2− γ for all γ > 1 this result implies that for any δ > 0,∑n

i=1 D̂
2
i

n
2
γ

+δ

P−→ 0. (27)
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This line of reasoning can be extended to sums of D̂p
i , for any p > 0, proving

that the degrees D̂i in the ECM satisfy the same scaling results as those for
Di. In particular we have the following extension of (26) to the erased con-
figuration model. Recall that D denotes an integer-valued random variable
with a regularly-varying distribution defined by (see (1))

P (D > t) = L(t)t−γ.

Lemma 3.2. Let Dn be sampled from D with 1 < γ < 3 and Ĝn = ECM(Dn).
Then, for any δ > 0,

n
1− 1

γ
−δ

(∑n
i=1 D̂

2
i

)2

Ln
∑n

i=1 D̂
3
i −

(∑n
i=1 D̂

2
i

)2

P−→ 0.

Now recall that r̂−n denotes the negative part of Pearson’s correlation
coefficient for the erased configuration model, i.e

r̂−n =

1
Ln

(∑n
i=1 D̂

2
i

)2

∑n
i=1 D̂

3
i − 1

L̂n

(∑n
i=1 D̂

2
i

)2 .

The next proposition shows that |r−n − r̂−n | = oP

(
n

1
γ
−1
)

.

Proposition 3.3. Let Dn be sampled from D with 1 < γ < 2. Let Ĝn =
ECM(Dn), denote by Gn the graph before the removal of edges and recall that
r−n and r̂−n denote the negative part of Pearson’s correlation coefficient in
Gn and Ĝn, respectively. Then,

n
1− 1

γ
+

(γ−1)2

4γ
∣∣r−n − r̂−n ∣∣ P−→ 0.

Proof. The proof consist of splitting the main term into separate terms,
which can be expressed in terms of erased stubs or edges, and showing that
each of these terms converge to zero. Throughout the proof we let

δ =
(γ − 1)2

4γ
.

We start by splitting the main term as follows,

∣∣r−n − r̂−n ∣∣ ≤
∣∣∣∣(∑n

i=1D
2
i

)2 − (∑n
i=1 D̂

2
i

)2
∣∣∣∣

Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2 (28)

+

(
n∑
i=1

D̂2
i

)2
∣∣∣∣∣∣∣

1

Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2 − 1

L̂n
∑n

i=1 D̂
3
i −

(∑n
i=1 D̂

2
i

)2

∣∣∣∣∣∣∣ .
(29)
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For (28) we use that∣∣∣∣∣∣
(

n∑
i=1

D2
i

)2

−
(

n∑
i=1

D̂2
i

)2
∣∣∣∣∣∣ =

(
n∑
i=1

D2
i − D̂2

i

)(
n∑
i=1

D2
i + D̂2

i

)

≤
(

n∑
i=1

2DiYi

)(
n∑
i=1

2D2
i + Y 2

i

)
≤ 6

n∑
i=1

D2
i

n∑
j=1

YjDj ,

to obtain∣∣∣∣(∑n
i=1D

2
i

)2 − (∑n
i=1 D̂

2
i

)2
∣∣∣∣

Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2 ≤ 6
∑n

i=1D
2
i

∑n
i=1 YiDi

Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2
=

6
∑n

i=1 YiDi∑n
i=1D

2
i

(∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2 .
(30)

Now observe that

2− 1

γ
− γ = −(γ − 1)2/γ = −4δ, (31)

and hence

1− 1

γ
+ δ = γ − 1− 3δ = −

(
1

γ
+ 2− γ + δ

)
+

(
2

γ
− δ

2

)
+

(
1− 1

γ
− δ

2

)
− δ,

with all the three terms inside the brackets positive. Therefore, it follows
from (30), together with Corollary 2.2, Proposition 2.4 and (26) that

n
1− 1

γ
+δ

∣∣∣∣(∑n
i=1D

2
i

)2 − (∑n
i=1 D̂

2
i

)2
∣∣∣∣

Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2
≤ n−δ

(
6
∑n

i=1DiYi

n
1
γ

+2−γ+δ

)(
n

2
γ
− δ

2∑n
i=1D

2
i

) n
1− 1

γ
− δ

2
(∑n

i=1D
2
i

)2
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2
 P−→ 0.

(32)

The second term, (29), requires more work. Let us first write(
n∑
i=1

D̂2
i

)2
∣∣∣∣∣∣∣

1

Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2 − 1

L̂n
∑n

i=1 D̂
3
i −

(∑n
i=1 D̂

2
i

)2

∣∣∣∣∣∣∣
:=

(∑n
i=1 D̂

2
i

)2

L̂n
∑n

i=1 D̂
3
i −

(∑n
i=1 D̂

2
i

)2

(
I(1)
n + I(2)

n + I(3)
n

)
,

25



with

I(1)
n :=

(∑n
i=1D

2
i

)2 − (∑n
i=1 D̂

2
i

)2

Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2
I(2)
n :=

Zn
∑n

i=1 D̂
3
i

Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2
I(3)
n :=

Ln

∣∣∣∑n
i=1D

3
i −

∑n
i=1 D̂

3
i

∣∣∣
Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2 ,
and we recall that Zn = Ln−L̂n denotes the total number of removed edges.
Note that

n
1− 1

γ
− δ

2

(∑n
i=1 D̂

2
i

)2

L̂n
∑n

i=1 D̂
3
i −

(∑n
i=1 D̂

2
i

)2

P−→ 0.

Therefore, in order to complete the proof, it suffices to show that

n
3δ
2 I(t)

n
P−→ 0, for t = 1, 2, 3.

For t = 1 this follows from (32), since,

1

γ
− 1 +

δ

2
=
γ2 − 10γ + 9

8γ
=

(γ − 1)(γ − 9)

8γ
< 0,

and hence
3δ

2
< 1− 1

γ
+ δ.

For t = 2 we use that D̂i ≤ Di to obtain,

I(2)
n ≤ En

∑n
i=1D

3
i

Ln
∑n

i=1D
3
i −

(∑n
i=1D

2
i

)2 =
En
Ln

(
1−

(∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i

)−1

By Proposition 3.1 it follows that(
1−

(∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i

)−1

P−→ 1. (33)

In addition we have that ε := γ − 1− 3δ/2 > 0 and hence, by Theorem 2.1
and the strong law of large numbers,

n
3δ
2 I(2)

n ≤
(
nγ−2−εEn

µ

)
µn

Ln

(
1−

(∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i

)−1

P−→ 0.
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Finally, for I
(3)
n we first compute∣∣∣∣∣

n∑
i=1

D3
i −

n∑
i=1

D̂3
i

∣∣∣∣∣ =
n∑
i=1

Y 3
i + 3D2

i Yi − 3DiY
2
i ≤ 4

n∑
i=1

YiD
2
i ,

and hence,

I(3)
n ≤ 4

∑n
i=1 YiD

2
i∑

i=1D
3
i

(
1−

(∑n
i=1D

2
i

)2
Ln
∑n

i=1D
3
i

)−1

.

By (33) the last term converges in probability to one. Finally, by (31),

3δ

2
≤ 2δ = 4δ − 2δ =

(
γ − 2− 2

γ
− δ
)

+

(
3

γ
− δ
)

and hence, by Corollary 2.2 and Proposition 2.4,

n
3δ
2 I(3)

n ≤
(

4n
γ−2− 2

γ
−δ

n∑
i=1

YiD
2
i

)(
n

3
γ
−δ∑

i=1D
3
i

)
P−→ 0,

which finishes the proof.

3.3 Convergence of r̂+
n

The next step towards the proof of Theorem 1.1 is to show that, for some
δ > 0,

n
1− 1

γ
+δ
r̂+
n

P−→ 0,

where

r̂+
n =

∑n
i,j=1 X̂ijD̂iD̂j∑n

i=1 D̂
3
i − 1

L̂n

(∑n
i=1 D̂

2
i

)2 ,

denotes the positive part of Pearson’s correlation coefficient in the erased
configuration model. Here X̂ij = 1{Xij>0} denotes the event that i and j
are connected by at least one edge in the configuration model graph Gn.
The main ingredient of this result is the following lemma, which gives an
approximation for

∑
1≤i<j≤n Pn (Xij = 0)DiDj :

Lemma 3.4. Let Dn be sampled from D with 1 < γ < 2 and E [D] = µ.
Consider graphs Gn = CM(Dn) and define

Mn =
∑

1≤i<j≤n

∣∣∣∣Pn (Xij = 0)− exp

{
−DiDj

Ln

}∣∣∣∣DiDj

Then, for any K > 0 and 0 < δ <
(

2−γ
γ ∧

γ−1
γ

)
,

n
1− 4

γ
+δ
Zn

P−→ 0.
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In our proofs Mn will be divided by

n∑
i=1

D3
i −

1

Ln

(
n∑
i=1

D2
i

)2

,

which is of the order n3/γ . Hence the final expression will be of the order

n
1
γ
−1−δ

= o(n
1
γ
−1

), which is enough to prove the final result.
To prove Lemma 3.4, we will use the following technical result:

Lemma 3.5 ( [24, Lemma 6.7]). For any non-negative x, x0 > 0, yi, zi ≥ 0
with zi < x for all i, and any m ≥ 1, we have

−x0

x2
(x0−x)+−x0

2
max

1≤i≤m

zi
(x− zi)2

≤
m∏
i=1

(
1− zi

x

)yi−exp

{
− 1

x0

m∑
i=1

yizi

}
≤ |x− x0|

(x ∧ x0)
.

Proof of Lemma 3.4. We will first consider the term
∣∣∣Pn (Xij = 0)− exp

{
−DiDj

Ln

}∣∣∣.
It follows from computations done in [14] that

0 ≤ Pn (Xij = 0)−
Di−1∏
t=0

(
1− Dj

Ln − 2t− 1

)
≤ D2

iDj

(Ln − 2Di)2
. (34)

For the product term in (34) we have the following bounds(
1− Dj

Ln − 2Di + 1

)Di
≤

Di−1∏
t=0

(
1− Dj

Ln − 2t− 1

)
≤
(

1− Dj

Ln

)Di
and therefore, using Lemma 3.5 with m = 1, we can bound the difference
between Pn (Xij = 0) and exp {−DiDj/Ln}. For the lower bound we take
x = Ln, x0 = Ln + 1− 2Di, y = Di and z = Dj to get

− Ln(2Di − 1)

(Ln − 2Di + 1)2
− Dj

Ln + 1− 2D1 −Dj
≤ Pn (Xij = 0)− exp

{
−DiDj

Ln

}
(35)

while changing x0 to Ln yields

Pn (Xij = 0)− exp

{
−DiDj

Ln

}
≤ D2

iDj

(Ln − 2Di)2
. (36)

Combining (35) and 36 gives∑
1≤i<j≤n

∣∣∣∣Pn (Xij = 0)− exp

{
−DiDj

Ln

}∣∣∣∣DiDj

≤
∑

1≤i<j≤n

2LnD
2
iDj

(Ln − 2Di + 1)2
+

∑
1≤i<j≤n

DiD
2
j

Ln + 1− 2D1 −Dj
+

∑
1≤i<j≤n

D3
iD

2
j

(Ln − 2Di)2

:= I(1)
n + I(2)

n + I(3)
n .
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We will now show that

n
1− 4

γ
+δ
I(t)
n

P−→ 0, for t = 1, 2, 3, (37)

which proves the result.
For the remainder of the proof we denote

Dmax
n := max

1≤i≤n
Di.

and observe that by our choice of δ,

ε1 :=
2

γ
− 1− δ =

2− γ
γ
− δ > 0 and ε2 := 1− 1

γ
− δ =

γ − 1

γ
− δ > 0.

For t = 1, we have

I(1)
n =

∑
1≤i<j≤n

2LnD
2
iDj

(Ln − 2Di + 1)2
≤ 2L2

n

∑n
i=1D

2
i

(L2
n − 4LnDmax

n )
=

(
2

n∑
i=1

D2
i

)(
1− 4Dmax

n

Ln

)−1

.

By the strong law of large numbers and Proposition 2.4, it follows that

Mn

Ln
=
µn

Ln

Dmax
n

µn

P−→ 0,

and hence (
1− 4Dmax

n

Ln

)−1
P−→ 1. (38)

Proposition 2.4 then implies

n
1+δ− 4

γ I(1)
n ≤

(
2n
− 2
γ
−ε1

n∑
i=1

D2
i

)(
1− 4Dmax

n

Ln

)−1
P−→ 0.

The analysis for I
(2)
n is similar so that we are left with I

(3)
n . Here, we

have

I(3)
n =

∑
1≤i<j≤n

D3
iD

2
j

(Ln − 2Di)2
≤
∑n

i=1D
2
i

∑n
j=1D

3
j

(L2
n − 4LnDmax

n )

=
1

L2
n

(
n∑
i=1

D2
i

) n∑
j=1

D3
j

(1− 4Dmax
n

Ln

)−1

.

The last term again converges in probability to one, by (38). For the re-
maining terms we use the definition of ε2 and Proposition 2.4 to obtain

n
1+δ− 4

γ I(3)
n ≤ n2− 5

γ
+ε2 1

L2
n

(
n∑
i=1

D2
i

) n∑
j=1

D3
j

(1− 4Dmax
n

Ln

)−1

=
n2

L2
n

(
n
− 2
γ
− ε2

2

n∑
i=1

D2
i

)n− 3
γ
− ε2

2

n∑
j=1

D3
j

(1− 4Dmax
n

Ln

)−1
P−→ 0,

which finishes the proof of (37).
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We proceed to prove the convergence of r̂+
n :

Proposition 3.6. Let Dn be sampled from D with 1 < γ < 2, E [D] = µ
and let Ĝn = ECM(Dn). Then, for any slowly-varying function L,

L(n)n
1− 1

γ r̂+
n

P−→ 0. (39)

Proof. Let

δ =

(
2− γ

4γ
∧ γ − 1

4γ

)
.

We will show that
n

1− 1
γ

+δ
r̂+
n

P−→ 0, (40)

which then implies (39), since by Potter’s theorem L(n)n−δ → 0, for any
δ > 0.

The main part of the proof of (40) will be to show that

n
1− 4

γ
+2δ

∑
1≤i<j≤n

X̂ijDiDj
P−→ 0, (41)

To see that (41) implies (40), we write

r̂+
n ≤

∑
1≤i<j≤n X̂ijDiDj∑n

i=1 D̂
3
i − 1

L̂n

(∑n
i=1 D̂

2
i

)2

=
∑

1≤i<j≤n
X̂ijDiDj

(
1∑n

i=1 D̂
3
i

)1−

(∑n
i=1 D̂

2
i

)2

L̂n
∑n

i=1 D̂
3
i


−1

.

By Lemma 3.2, 1−

(∑n
i=1 D̂

2
i

)2

L̂n
∑n

i=1 D̂
3
i


−1

P−→ 1,

and hence, using (41) and Proposition 2.4,

n
1− 1

γ
+δ
r̂+
n ≤

n1− 4
γ

+2δ
∑

1≤i<j≤n
X̂ijDiDj

( n
− 3
γ
−δ∑n

i=1 D̂
3
i

)1−

(∑n
i=1 D̂

2
i

)2

L̂n
∑n

i=1 D̂
3
i


−1

P−→ 0.

To prove (41) let κ = (γ − 1)/(γ + 1) and define the events

An =
{
|Ln − µn| ≤ n1−κ} , (42)

Bn =

 ∑
1≤i<j≤n

∣∣∣∣Pn (Xij=0)− exp

{
−DiDj

Ln

}∣∣∣∣DiDj ≤ n
4
γ
−1−3δ

 .
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Then, if we set Λn = An ∩ Bn, it follows from Lemma 2.3 and Lemma 3.4
that P (Λn)→ 1 and hence, it is enough to prove that for any K > 0

lim
n→∞

P

n1− 4
γ

+2δ
∑

1≤i<j≤n
X̂ijDiDj > K,Λn

 = 0. (43)

First, since En
[
X̂ij

]
= Pn (Xij > 0) and Λn is completely determined

by the degree sequence,

En

 ∑
1≤i<j≤n

X̂ijDiDj1Λn

 =
∑

1≤i<j≤n
Pn (Xij > 0)DiDj1Λn

=
∑

1≤i<j≤n
(1− Pn (Xij = 0))DiDj1Λn

≤
∑

1≤i<j≤n

(
1− exp

{
−DiDj

Ln

})
DiDj1Λn + n

4
γ
−1−3δ

≤
∑

1≤i<j≤n

(
1− exp

{
− DiDj

µn− n1−κ

})
DiDj + n

4
γ
−1−3δ

.

From this we obtain, using Markov’s inequality, that

P

n1− 4
γ

+2δ
∑

1≤i<j≤n
X̂ijDiDj > K,Λn


≤ n

3− 4
γ

+2δ

K
E
[(

1− exp

{
− D1D2

µn− n1−κ

})
D1D2

]
+O

(
n−δ

)
, (44)

where D1 and D2 are two independent copies of D. It follows that D1D2 is
again regularly varying with exponent 1 < γ < 2. Therefore, since 1−e−x ≤
(1 ∧ x) and using Lemma 2.5,

n
3− 4

γ
+2δ

K
E
[(

1− exp

{
− D1D2

µn− n1−κ

})
D1D2

]
≤ n

3− 4
γ

+2δ

K
E
[(

1 ∧ D1D2

µn− n1−κ

)
D1D2

]
= O

(
n

4− 4
γ
−γ+2δ

)
. (45)

Now observe that by our choice of δ > 0 and since 2− γ < 1, we get

4− 4

γ
− γ + 2δ =

−(γ − 2)2

γ
+ 2δ ≤ −(γ − 2)2

γ
+

2− γ
2γ

≤ −(γ − 2)2

2γ
< 0,
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Plugging this into (45), it follows from (44) that

P

n1− 4
γ

+2δ
∑

1≤i<j≤n
X̂ijDiDj > K,Λn

 = O

(
n
− (γ−2)2

2γ + n−δ
)
.

and hence (43) follows.

3.4 Proving Theorem 1.1

We are now ready to prove the central limit theorem for the ECM.

Proof of Theorem 1.1. Let Ĝn = ECM(Dn) and Sγ/2 and Sγ/3 be defined as
in (6) and let L0 be given by Proposition 3.1. Now we write

µL0(n)n
1− 1

γ r(Ĝn) = µL0(n)n
1− 1

γ r̂+
n − µL0(n)n

1− 1
γ r̂−n .

By Proposition 3.6 it follows that the first part converges to zero in proba-
bility, as n → ∞. For the second part, let δ = (γ − 1)2/(4γ) and note that
by Potter’s theorem [4, Theorem 1.5.6] we have that L0(n) ≤ nδ for all large
enough n. Then, if we denote by Gn the graph before the removal of edges,
it follows by Proposition 3.3 that

µL0(n)n
1− 1

γ
∣∣r−n − r̂−n ∣∣ P−→ 0.

Finally, we remark that the graph Gn is generated by the CM so that the
above and Proposition 3.1 now imply

µL0(n)n
1− 1

γ r̂−n
d−→
S2
γ/2

Sγ/3
,

as n→∞ from which the result follows.

3.5 Pearson in the CM: Proof of Lemma 1.4

In this section, we prove Lemma 1.4 on the tightness of the conditional
variance of Pearson in the CM.

Proof. Since, conditionally on the degrees, the only randomness in rn is in
(Xij)1≤i<j≤n, we use the covariance formula for sums of random variables
to compute that

Varn(rn) =

∑
i,j,k,l∈[n]DiDjDkDlCovn(Xij , Xkl)[∑

i∈[n]D
3
i −

(∑
i∈[n]D

2
i

)2
/Ln

]2 (46)

=

∑
i,j,k,l∈[n]DiDjDkDlCovn(Xij , Xkl)(∑

i∈[n]D
3
i

)2 (1 + oP(1)),
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since
∑

i∈[n]D
3
i �

(∑
i∈[n]D

2
i

)2
/Ln and where we write Covn for the con-

ditional variance in the CM given the i.i.d. degrees. We next compute
Covn(Xij , Xkl), depending on the precise form of {i, j, k, l}. For this, we
note that

Xij =

Di∑
s=1

Dj∑
t=1

Ist, (47)

with Ist the indicator that the sth half-edge incident to i pairs to the jth
half-edge incident to j.

Case (i, j) = (k, l) with i < j. We compute that

Varn(Xij) =
∑
(s,t)

∑
(s′,t′)

Covn(Ist, Is′t′) (48)

=
Di(Di − 1)Dj(Dj − 1)

(Ln − 1)(Ln − 3)
+

DiDj

(Ln − 1)
−

D2
iD

2
j

(Ln − 1)2

=
DiDj

(Ln − 1)
+ 2

D2
iD

2
j

(Ln − 1)2(Ln − 3)
− DiDj(Dj − 1)

(Ln − 1)(Ln − 3)
− D2

iDj

(Ln − 1)(Ln − 3)

=
DiDj

Ln
(1 + oP(1)).

Thus,

n

∑
i<j∈[n]D

2
iD

2
jVarn(Xij)(∑

i∈[n]D
3
i

)2 =
n

Ln
(1 + oP(1))

∑
i<j∈[n]D

3
iD

3
j(∑

i∈[n]D
3
i

)2 (49)

=
1

µ
(1 + oP(1))

∑
i<j∈[n]D

3
iD

3
j(∑

i∈[n]D
3
i

)2 .

Since we sum over all i, j ∈ [n] and not just i < j, this term appears 4 times.

Case |{i, j, k, l}| = 1. In this case, we obtain

Varn(Xii) =
Di(Di − 1)

(Ln − 1)
+
Di(Di − 1)(Di − 2)(Di − 3)

(Ln − 1)(Ln − 3)
− D4

i

(Ln − 1)2
(50)

=
D2
i

Ln
(1 + oP(1)) +

D4
i

L3
n

(1 + oP(1))− 6
D3
i

L2
n

(1 + oP(1))

=
D2
i

Ln
(1 + oP(1)),

since Di = OP (nγ) with γ ∈ (1
2 , 1). Therefore,

n

∑
i∈[n]D

4
i Varn(Xii)(∑

i∈[n]D
3
i

)2 =
n(1 + oP(1))

Ln

∑
i∈[n]D

6
i(∑

i∈[n]D
3
i

)2 .
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The above two computations show that these contributions sum up to

1

µ
(1+oP(1))

4
∑

i<j∈[n]D
3
iD

3
j(∑

i∈[n]D
3
i

)2 +
1

µ
(1+oP(1))

∑
i∈[n]D

6
i(∑

i∈[n]D
3
i

)2

d−→
2− Sγ/6/S2

γ/3

µ
.

(51)
We are left to show that all other terms constitute error terms.

Case |{i, j, k, l}| = 4. When |{i, j, k, l}| = 4, we compute that

Covn(Xij , Xkl) = DiDjDlDk

( 1

(Ln − 1)(Ln − 3)
− 1

(Ln − 1)2

)
(52)

=
2DiDjDlDk

(Ln − 1)2(Ln − 3)
.

Thus, the contribution to the variance of rn of this case equals(∑
i∈[n]D

2
i

)4

L3
n

(∑
i∈[n]D

3
i

)2 (1 + oP(1)) = OP

(
n2γ−3

)
= oP(n

−1), (53)

since γ ∈ (1
2 , 1).

Case |{i, j, k, l}| = 3. When |{i, j, k, l}| = 3, we compute that

Covn(Xij , Xil) =
Di(Di − 1)DjDl

(Ln − 1)(Ln − 3)
− D2

iDjDl

(Ln − 1)2

= 2
D2
iDjDl

(Ln − 1)2(Ln − 3)
− DiDjDl

(Ln − 1)(Ln − 3)
(54)

Thus, the contribution to the variance of rn of this case equals

2

(∑
i∈[n]D

2
i

)2

L3
n

∑
i∈[n]D

3
i

(1 + oP(1))−

(∑
i∈[n]D

2
i

)3

L2
n

(∑
i∈[n]D

3
i

)2 (1 + oP(1)) (55)

= OP

(
nγ−3

)
+OP

(
n−2

)
= oP(n

−1),

since γ ∈ (1
2 , 1).

This completes the proof.
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4 Clustering coefficient

In this section, we prove Theorems 1.5 and 1.6 on the clustering coefficient in
the configuration model as well as the erased configuration model. In both
models, we first study the clustering coefficient when the degree sequence
is fixed. We show that the clustering coefficient concentrates around its
expected value when the degrees are given. Then, we analyze how the
random degrees influence the clustering coefficient.

4.1 Clustering in the configuration model

In this section, we compute the clustering coefficient for a configuration
model with a power-law degree distribution with γ ∈ (1, 2). To prove Theo-
rem 1.5, we first use a second moment method to show that the number of
triangles 4n concentrates on its expected value conditioned on the degrees.
Then we take the random degrees into account and show that the rescaled
clustering coefficient converges to the stable distributions from Theorem 1.5.

4.1.1 Concentration for the number of triangles

The concentration result is formally stated and proved in the next lemma.

Lemma 4.1. Let Dn be sampled from D with 1 < γ < 2, and Gn = CM(Dn).
Let 4n denote the number of triangles in in Gn. Then, for any ε > 0,

lim
n→∞

Pn (|4n − En [4n]| > εEn [4n]) = 0.

Proof. Fix 0 < δ < ( 2
γ − 1)/6. Define the event

Bn =
{ n∑
i=1

D2
i ≥ Kn2/γ−δ,

n∑
i=1

D3
i ≤ Kn3/γ+δ

}
. (56)

Let An be the event defined in (42), and let Λn = Bn ∩ An. We have
limn→∞ Pn (Λn) = 1, thus, we only need to prove the result on the event Λn.
The proof is similar to the proof of [13, Proposition 7.13].

Define

I = {(s1t1, s2u1, u2t2, i, j, k) : 1 ≤ i < j < k ≤ n, 1 ≤ s1 < s2 ≤ Di, 1 ≤ t1 6= t2 ≤ Dj ,

1 ≤ u1 6= u2 ≤ Dk}.

This is the set of combinations of six distinct half-edges that could possibly
form a triangle on three distinct vertices. Thus,

|I| =
∑

1≤i<j<k≤n
Di(Di − 1)Dj(Dj − 1)Dk(Dk − 1) (57)
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denotes the number of ways six half-edges could form a triangle. For m ∈ I,
let 1m denote the indicator variable that the six half-edges of m form a
triangle in the way specified by m. Then,

4n =
∑
m∈I

1m.

The probability that the half-edges in m form a triangle can be written as

Pn (1m = 1) =

3∏
j=1

(Ln + 1− 2j)−1.

This results in

En [4n] =
∑
m∈I

Pn (1m = 1) =
|I|∏3

j=1(Ln + 1− 2j)
. (58)

Furthermore, by [13, Theorem 2.5],

En [4n(4n − 1)] =
∑

m1 6=m2∈I
Pn (1m1 = 1m2 = 1) .

When all six pairs of half-edges involved in m1 and m2 are distinct, the
probability that these pairs of half-edges that form m1 and m2 are paired
in the correct way is

Pn (1m1 = 1m2 = 1) =
6∏
j=1

(Ln + 1− 2j)−1,

If m1 and m2 contain one pair of half-edges that is the same (so that m1

and m2 form two triangles merged on one edge),

Pn (1m1 = 1m2 = 1) =

5∏
j=1

(Ln + 1− 2j)−1.

Let I2 denote the set of combinations of 10 half-edges that could possibly
form two triangles merged by one edge. Then, similarly to (57),

|I2| =
∑

1≤i<j≤n
Di(Di − 1)(Di − 2)Dj(Dj − 1)(Dj − 2)

∑
1≤k<l≤n

Dk(Dk − 1)Dl(Dl − 1)

≤
(∑
i∈[n]

D3
i

)2(∑
i∈[n]

D2
i

)2
. (59)

Similarly, when m1 and m2 overlap at two pairs of half-edges (so that m1

and m2 form two triangles merged by two edges)

Pn (1m1 = 1m2 = 1) =

4∏
j=1

(Ln + 1− 2j)−1.
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Let I3 denote the set of combinations of 8 half-edges that could possibly
form two triangles merged by two edges. Then, similarly to (57),

|I3| =
∑

1≤i<j≤n
Di(Di − 1)(Di − 2)Dj(Dj − 1)(Dj − 2)

∑
1≤k≤n

Dk(Dk − 1)

≤
(∑
i∈[n]

D3
i

)2 ∑
i∈[n]

D2
i . (60)

In all other cases the probability of the event 1m1 = 1m2 = 1 then equals
zero. These are cases where m1 prescribes some half-edge to be merged to
half-edge j1, whereas m2 prescribes it to be merged to some other half-edge
j2. Therefore,

En [4n(4n − 1)] ≤ |I|2∏6
j=1(Ln + 1− 2j)

+
|I2|∏5

j=1(Ln + 1− 2j)
+

|I3|∏4
j=1(Ln + 1− 2j)

.

(61)

On the event Bn defined in (56),

|I2|∏5
j=1(Ln + 1− 2j)

/ |I|2∏6
j=1(Ln + 1− 2j)

= O

((∑
i∈[n]D

3
i

)2
/
(∑

i∈[n]D
2
i

)4

(Ln + 1− 12)−1

)
= O

(
n · n6/γ+2δ−8/γ+4δ

)
= O

(
n1−2/γ+6δ

)
= o(1),

by the choice of δ. In a similar way, we can show that the third term is
small compared to the first term of (61). Therefore,

En [4n(4n − 1)] ≤ |I|2∏6
j=1(Ln + 1− 2j)

(1 + o(1)).

Finally, on the event Bn we have,

|I| = Θ
((∑

i

D2
i

)3)
= Ω(n6/γ−3δ).

Using that Ln = µn(1 + o(1)) on the event An results in

Varn (4n)

(En [4n])2
=

En [4n(4n − 1)]

(En [4n])2
− 1 +

En [4n]

(En [4n])2

≤ (Ln − 1)(Ln − 3)(Ln − 5)

(Ln − 7)(Ln − 9)(Ln − 11)
(1 + o(1))− 1 +

∏3
j=1(Ln + 1− 2j)

|I|
= 1 + o(1)− 1 +O(n

3+3δ− 6
γ ) = o(1),

for γ ∈ (1, 2). Then by Chebyshev’s inequality, on the event Λn

Pn (|4n − En [4n]| > εEn [4n]) ≤ Varn (4n)

(En [4n])2ε2
= o(1),

which gives the result.
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4.1.2 Proof of Theorem 1.5

Proof of Theorem 1.5. We again prove the result under the event Λn = Bn∩
An, where Bn and An are given respectively in (56) and (42).

By (57) and (58)

En [4n] =
1

µ3n3

∑
1≤i<j<k≤n

Di(Di − 1)Dj(Dj − 1)Dk(Dk − 1)(1 + oP(1))

=
1

µ3n3

(1

6

( n∑
i=1

Di(Di − 1)
)3
− 1

2

n∑
i=1

Di(Di − 1)

n∑
j=1

D2
j (Dj − 1)2

+
1

3

n∑
i=1

D3
i (Di − 1)3

)
(1 + oP(1))

Then, the definition of the clustering coefficient in (4) yields

En [Cn] =
1

µ3n3

(( n∑
i=1

Di(Di − 1)
)2
− 3

n∑
i=1

D2
i (Di − 1)2

+ 2

∑n
i=1D

3
i (Di − 1)3∑n

i=1Di(Di − 1)

)
(1 + oP(1))

=
1

µ3n3

(( n∑
i=1

D2
i

)2
− 3

n∑
i=1

D4
i + 2

n∑
i=1

D6
i /

n∑
i=1

D2
i

)
(1 + oP(1)),

(62)
Lemma 4.1 then gives that conditioned on the degree sequence

Cn =
1

µ3n3

(( n∑
i=1

D2
i

)2
− 3

n∑
i=1

D4
i + 2

n∑
i=1

D6
i /

n∑
i=1

D2
i

)
(1 + oP(1)).

By (24), there exist a slowly-varying functions L1(n),L2(n) and L3(n)
such that(
n−2/γ

∑n
i=1D

2
i

L1(n)
, n−4/γ

∑n
i=1D

4
i

L2(n)
, n−6/γ

∑n
i=1D

6
i

L3(n)

)
d−→
(
Sγ/2,Sγ/4,Sγ/6

)
,

(63)

where

Sγ/2 =

∞∑
i=1

Γ
−2/γ
i , Sγ/4 =

∞∑
i=1

Γ
−4/γ
i , Sγ/6 =

∞∑
i=1

Γ
−6/γ
i ,

for the same random variables Γi. Furthermore, by [42, Eq (5.23)], the
slowly-varying functions in (63) satisfy for some slowly-varying function
L0(n),

L1(n) =
√
L0(n)(Ĉγ/2)2/γ , L2(n) = L0(n)(Ĉγ/4)4/γ , L3(n) = L0(n)3/2(Ĉγ/6)6/γ ,
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where

Ĉα =
1− α

Γ(2− α) cos(πα/2)
,

with Γ the Gamma-function. Therefore,

n−4/γ

L0(n)

(
(

n∑
i=1

D2
i )

2,

n∑
i=1

D4
i ,

∑n
i=1D

6
i∑n

i=1D
2
i

)
d−→
(

(Ĉγ/2)γ/4S2
γ/2, (Ĉγ/4)γ/4Sγ/4,

(Ĉγ/6)γ/6Sγ/6
(Ĉγ/2)γ/2Sγ/2

)
,

Combining this with (62) results in (9).

4.2 Clustering coefficient in the erased configuration model

In this section, we study the clustering coefficient in the ECM. Again, we start
with the expectation and the variance of the clustering coefficient condi-
tioned on the sampled degree sequence, i.e the sequence Dn = {D1, D2, . . . , Dn}
sampled from the distribution (1). Note that this is not the eventual degree
sequence of the graph constructed by the erased configuration model.

Structure of the proof of Theorem 1.6. We prove Theorem 1.6 in four
steps:

Step 1. We show in Lemma 4.2 that the expected contribution to the
number of triangles from vertices with sampled degrees larger than

√
n/ε

and smaller than ε
√
n is small for fixed 0 < ε < 1. Therefore, in the rest

of the proof we focus on only counting triangles between vertices of degrees
[ε
√
n,
√
n/ε].

Step 2. We calculate the expected number of triangles between vertices
of sampled degrees proportional to

√
n, conditioned on the degree sequence.

In Lemma 4.3, we show that this expectation can be written as the sum of
a function of the degrees.

Step 3. We show that the variance of the number of triangles between
vertices of sampled degree proportional to

√
n is small in Lemma 4.6. Thus,

we can replace the number of triangles conditioned on the degrees by its
expected value, which we computed in Step 2.

Step 4. We show that the expected number of triangles conditioned on
the sampled degrees converges to the value given in Theorem 1.6, when
taking the random degrees into account.

We will start by proving the three lemma’s described above. Let Bn(ε)
denote the interval [ε

√
µn,
√
µn/ε] for some ε > 0. Furthermore, let X̂ij de-

note the number of edges between vertex i and j in the erased configuration
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model. Then, we can write the number of triangles as

4n =
∑

1≤i<j<k≤n
X̂ijX̂jkX̂ik1{Di,Dj ,Dk∈Bn(ε)} +

∑
1≤i<j<k≤n

X̂ijX̂jkX̂ik1{Di,Dj or Dk /∈Bn(ε)}

=: 4n(Bn(ε)) +4n(B̄n(ε)) (64)

We want to show that the major contribution to 4n comes from 4n(Bn(ε)).
The following lemma shows that the expected contribution of 4n(B̄n(ε)) to
the number of triangles is small.

Lemma 4.2. Let Dn be sampled from D with 1 < γ < 2 and Ĝn = ECM(Dn).
Let 4n(B̄n(ε)) denote the number of triangles in Ĝn with at least one of the
sampled degrees not in Bn(ε). Then,

lim sup
n→∞

E
[
4n(B̄n(ε))

]
L(
√
µn)3n

3
2

(2−γ)
= O (E1(ε))

for some function E1(ε) not depending on n such that E1(ε)→ 0 as ε→ 0.

Proof. Let 4i,j,k denote the event that a triangle is present on vertices i, j
and k. By [18, Lemma 4.1],

Pn (4i,j,k) = Θ
( ∏

(u,v)∈{(i,j),(j,k),(i,k)}

(1− e−DuDv/Ln)1{DuDv<Ln}

)

= Θ

((
DiDj

Ln
∧ 1

)(
DiDk

Ln
∧ 1

)(
DjDk

Ln
∧ 1

))
.

Therefore, for some K̃ > 0

En
[
4n(B̄n(ε))

]
≤ K̃

∑
1≤i<j<k≤n

(
DiDj

Ln
∧ 1

)(
DiDk

Ln
∧ 1

)(
DjDk

Ln
∧ 1

)
1{Di,Dj , or Dk∈B̄n(ε)}.

Thus,

E
[
4n(B̄n(ε))

]
≤ K̃ 1

2n
3E
[(

D1D2

µn
∧ 1

)(
D1D3

µn
∧ 1

)(
D2D3

µn
∧ 1

)
1{D1∈B̄n(ε)}

]
. (65)

We now show that the contribution to (65) where D1 < ε
√
µn is small. We

40



write

E
[(

D1D2

µn
∧ 1

)(
D1D3

µn
∧ 1

)(
D2D3

µn
∧ 1

)
1{D1<ε

√
µn}
]

≤ K̃
ε
√
µn∑

t1=1

n∑
t2=1

n∑
t3=1

P (D1 = t1, D2 = t2, D3 = t3)

(
t1t2
µn
∧ 1

)(
t1t3
µn
∧ 1

)(
t2t3
µn
∧ 1

)

≤ K̃K3

ε
√
µn∑

t1=1

n∑
t2,t3=1

L(t1)L(t2)L(t3)(t1t2t3)−γ−1

(
t1t2
µn
∧ 1

)(
t1t3
µn
∧ 1

)(
t2t3
µn
∧ 1

)
(66)

where we used Assumption 1.1 and the fact that D1, D2 and D3 are inde-
pendent. By [18, Lemma 4.1(ii)],∫ ∞

0

∫ ∞
0

∫ ∞
0

(xyz)−γ−1 (xy ∧ 1) (xz ∧ 1) (yz ∧ 1) dx dy dz <∞, (67)

for all γ ∈ (1, 2). Therefore, by [28, Theorem 2],∫ ε
√
µn

0

∫ ∞
0

∫ ∞
0
L(t1)L(t2)L(t3)(t1t2t3)−γ−1

(
t1t2
µn
∧ 1

)(
t1t3
µn
∧ 1

)(
t2t3
µn
∧ 1

)
dt3 dt2 dt1

= (µn)−
3
2
γ

∫ ε

0

∫ ∞
0

∫ ∞
0
L(x
√
µn)L(y

√
µn)L(z

√
µn)(xyz)−γ−1 (xy ∧ 1)(xz ∧ 1)(yz ∧ 1)dx dy dz

= (1 + o(1))L(
√
µn)3

∫ ε

0

∫ ∞
0

∫ ∞
0

(xyz)−γ−1 (xy ∧ 1)(xz ∧ 1)(yz ∧ 1)dx dy dz

We then bound the sum in (66) as

ε
√
µn∑

t1=1

n∑
t2=1

n∑
t3=1

L(t1)L(t2)L(t3)(t1t2t3)−γ−1

(
t1t2
µn
∧ 1

)(
t1t3
µn
∧ 1

)(
t2t3
µn
∧ 1

)

≤ 2

∫ ε
√
µn+1

0

∫ ∞
0

∫ ∞
0
L(t1)L(t2)L(t3)(t1t2t3)−γ−1

×
(
t1t2
µn
∧ 1

)(
t1t3
µn
∧ 1

)(
t2t3
µn
∧ 1

)
dt3 dt2 dt1

= 2(1 + o(1))(µn)−
3
2
γL(
√
µn)3

∫ ε

0

∫ ∞
0

∫ ∞
0

(xyz)−γ−1 (xy ∧ 1) (xz ∧ 1) (yz ∧ 1) dx dy dz.

Therefore,

E
[(

D1D2

µn
∧ 1

)(
D1D3

µn
∧ 1

)(
D2D3

µn
∧ 1

)
1{D1<ε

√
µn}
]

≤ K2n
3
2

(1−γ)L(
√
µn)3

∫ ε

0

∫ ∞
0

∫ ∞
0

(xyz)−γ−1 (xy ∧ 1) (xz ∧ 1) (yz ∧ 1) dx dy dz,

(68)
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for some constant K2. Thus, we only need to prove that the last triple
integral in (68) tends to zero as ε→ 0. Using (67), we obtain∫ ε

0

∫ ∞
0

∫ ∞
0

(xyz)−γ−1 (xy ∧ 1) (xz ∧ 1) (yz ∧ 1) dx dy dz := E0(ε)

where E0(ε) is such that E0(ε) → 0 as ε → 0. Thus, by (65) and (66), the
contribution to the expectation where one of the degrees is smaller than

ε
√
µn is bounded by OP

(
L(
√
µn)3n3− 3

2
γE0(ε)

)
. Similarly,∫ ∞

1/ε

∫ ∞
0

∫ ∞
0

(xyz)−γ−1 (xy ∧ 1) (xz ∧ 1) (yz ∧ 1) dx dy dz := E ′0(ε)

where again E ′0(ε) satisfies E ′0(ε)→ 0 as ε→ 0. Therefore, we can show in a
similar way that the contribution to the expected number of triangles where

one of the degrees is larger than
√
µn/ε is OP

(
L(
√
µn)3n3− 3

2
γE ′0(ε)

)
. Then,

taking E1(ε) = max(E0(ε), E ′0(ε)) proves the lemma.

The next lemma computes the expected contribution of the vertices of
sampled degree proportional to

√
n to the number of triangles. Define

gn,ε(Di, Dj , Dk) :=

(
1− e−

DiDj
Ln

)(
1− e−

DiDk
Ln

)(
1− e−

DkDj
Ln

)
1{(Di,Dj ,Dk)∈Bn(ε)},

(69)
and let

∑′ denote a sum over distinct indices, such that i < j < k.

Lemma 4.3. Let Dn be sampled from D with 1 < γ < 2, and Ĝn =
ECM(Dn). Let 4n(Bn(ε)) denote the number of triangles in Ĝn with sampled
degrees in Bn(ε). Then, on the event An as defined in (42),

En [4n(Bn(ε))] = (1 + o(1))
∑′

i,j,k

gn,ε(Di, Dj , Dk).

Proof. We can write the expectation as

En [4n(Bn(ε))] =
∑′

i,j,k

Pn (4i,j,k)1{(Di,Dj ,Dk)∈Bn(ε)}, (70)

where Pn (4i,j,k) denotes the probability of a triangle between vertices i, j, k
being present. This probability can be written as

Pn (4i,j,k) = 1− Pn (Xij = 0)− Pn (Xik = 0)− Pn (Xjk = 0) + Pn (Xij = Xik = 0)

+ Pn (Xij = Xjk = 0) + Pn (Xik = Xjk = 0)

− Pn (Xij = Xik = Xjk = 0) .
(71)
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Because Di, Dj , Dk ≤
√
n/ε and Ln = µn(1 + o(1)) under the event An, we

can use [18, Lemma 3.1], which calculates the probability that an edge is
present conditionally on the presence of other edges in configuration models
with arbitrary degree distributions. This results in

Pn (Xij = Xik = Xjk = 0)

= Pn (Xij = 0)Pn (Xjk = 0 | Xij = 0)Pn (Xik = 0 | Xij = Xjk = 0)

= e−
DiDj
Ln e−

DjDk
Ln e−

DiDk
Ln (1 + o(1)),

and similarly

Pn (Xij = Xjk = 0) = e−
DiDj
Ln e−

DjDk
Ln (1 + o(1)).

Combining this with (71) yields

Pn (4i,j,k) = 1−
(

e−
DiDj
Ln + e−

DiDj
Ln + e−

DjDk
Ln

)
(1 + o(1))

+
(

e−
DiDj
Ln e−

DjDk
Ln + e−

DiDj
Ln e−

DiDk
Ln + e−

DiDk
Ln e−

DjDk
Ln

)
(1 + o(1))

− e−
DiDj
Ln e−

DjDk
Ln e−

DiDk
Ln (1 + oP(1))

= (1 + o(1))

(
1− e−

DiDj
Ln

)(
1− e−

DjDk
Ln

)(
1− e−

DjDk
Ln

)
, (72)

where the second equality follows because ε
√
n < Di, Dj , Dk <

√
n/ε and

Ln = µn(1 + o(1)) under An. For Di, Dj , Dk ∈ [ε
√
n, 1/ε

√
n], the main

term in (72) can be uniformly bounded from above and from below by some
functions f1(ε) and f2(ε) not depending on n. Combining this with (70)
shows that

En [4n(Bn(ε))] = (1 + o(1))
∑′

i,j,k

gn,ε(Di, Dj , Dk), (73)

on the event An, which proves the lemma.

We now replace the Ln inside the definition of gn,ε by µn. In particular,
define

fn,ε(x, y, z) = (1− e
− xy
µn )(1− e

− yz
µn )(1− e

− zx
µn )1{x,y,z∈Bn(ε)}, (74)

then we have the following result:

Lemma 4.4. Let Dn be sampled from D with 1 < γ < 2 and κ = (γ −
1)/(1 + γ) > 0. Then, for all ε > 0 and δ < κ,

n
3γ
2
−3+δ

∣∣∣∣∣∣
∑

1≤i<j<k≤n
gn,ε(Di, Dj , Dk)− fn,ε(Di, Dj , Dk)

∣∣∣∣∣∣ P−→ 0.
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Proof. Let An be as in (42) and note that κ is the same as in the statement
of the lemma. Then, since P (An)→ 1, it is enough to prove that the result
conditioned on An. Next, note that 1 − e−a ≤ 1 for all a ≥ 0. Hence, due
to symmetry it suffices to prove

n
3γ
2
−3+δ

∑
1≤i<j<k≤n

∣∣∣∣e−DiDjLn − e
−
DiDj
µn

∣∣∣∣1{Di,Dj ,Dk∈Bn(ε)}
P−→ 0.

For this we compute that, on the event An,∣∣∣∣e−DiDjLn − e
−
DiDj
µn

∣∣∣∣ ≤ DiDj
|Ln − µn|
µnLn

≤ DiDj
n−1−κ

(µ2 − n−κ)
= DiDjO

(
n−1−κ) .

We recall that by Karamata’s Theorem [4, Theorem 1.5.11] it follows that,
as n→∞,

E
[
D11{D1∈Bn(ε)}

]
≤ E

[
D11{D1>ε

√
µn}
]
∼ L

(
ε
√
µn
)
ε1−γ(µn)

1−γ
2

γ − 1

= O
(
L (ε
√
µn)n

1−γ
2

)
,

where an ∼ bn as n→∞ means limn→∞ an/bn = 1.
Therefore, using Lemma 6.1,

E
[∣∣∣∣e−D1D2

Ln − e
−D1D2

µn

∣∣∣∣1{D1,D2,D3∈Bn(ε)}

]
≤ O

(
n−1−κ)E [D11{D1∈Bn(ε)}

]2 P (D3 ∈ Bn(ε))

= O
(
L (ε
√
µn)2 L(

√
µn)n−(κ+ 3γ

2
)
)
,

so that by Markov’s inequality, we obtain that for any K > 0 and ε > 0,

P

n 3γ
2
−3+δ

∑
1≤i<j<k≤n

∣∣∣∣e−DiDjLn − e
−
DiDj
µn

∣∣∣∣1{Di,Dj ,Dk∈Bn(ε)} > K,An


≤
(
n
3

)
n

3γ
2
−3+δ

K
E
[∣∣∣∣e−D1D2

Ln − e
−D1D2

µn

∣∣∣∣1An1{D1,D2,D3∈Bn(ε)}

]
= O

(
L (ε
√
µn)2 L(

√
µn)nδ−κ

)
= o(1).

We now again study the expected number of triangles of vertices with
sampled degrees in Bn(ε), and investigate the behavior of the expression of
Lemma 4.3.
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Lemma 4.5. Let Dn be sampled from D with 1 < γ < 2, and Ĝn =
ECM(Dn). Let 4n(Bn(ε)) denote the number of triangles in Ĝn with sampled
degrees in Bn(ε). Then, as n→∞,

En [4n(Bn(ε))]

L(
√
µn)3n

3
2

(2−γ)µ−
3
2
γ

= (1 + oP(1))
1

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

γ3

(t1t2t3)γ+1
h(t1, t2, t3) dt1 dt2 dt3 +OP (ε) ,

(75)
where h(x, y, z) := (1− e−xy)(1− e−xz)(1− e−yz).

Proof. Combining Lemmas 4.3 and 4.4 yields that conditionally on the sam-
pled degrees (Di)i∈[n],

En [4n(Bn(ε))] = (1+oP(1))
∑

1≤i<j<k≤n
fn,ε(Di, Dj , Dk)+oP

(
L(
√
µn)3n

3
2

(2−γ)
)

(76)
where fn,ε(Di, Dj , Dk) is as in (74). To investigate the convergence of (81)
when taking the random degrees into account, define for b > a ≥ 0 the
random measure

N (n)

1 ([a, b]) =
(µn)

γ
2

L(
√
µn)

1

n

n∑
i=1

1{Di∈[a
√
µn,b
√
µn]},

so that N (n)

1 counts the number of vertices with degrees in the interval
[a
√
µn, b

√
µn]. Since every Di is drawn i.i.d. from (1), the number of ver-

tices with degrees between a
√
µn and b

√
µn is binomially distributed and

therefore this number concentrates around its mean value, which is large.
Combining this with Lemma 6.1 yields

N (n)

1 ([a, b]) =
(µn)

γ
2

L(
√
µn)

1

n

n∑
i=1

1{Di∈[a
√
µn,b
√
µn]}

=
(µn)

γ
2

L(
√
µn)

P (Di ∈ [a
√
µn, b

√
µn]) (1 + oP(1))

= (1 + oP(1))γ

∫ b

a
t−γ−1 dt = (1 + oP(1))(a−γ − b−γ).

Therefore,

N (n)

1 ([a, b])
P−→
∫ b

a
t−γ−1 dt = (a−γ − b−γ) =: λ([a, b]). (77)

Let N (n) be the product measure N (n)

1 × N (n)

1 × N (n)

1 and F = [ε, 1/ε]3.
Thus, N (n) counts the number of triples with all three degrees proportional
to
√
µn.
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By (74),∑
1≤i<j<k≤n

fn,ε(Di, Dj , Dk)

=
∑

1≤i<j<k≤n
(1− e

−
DiDj
µn )(1− e

−DiDk
µn )(1− e

−
DjDk
µn )1{Di,Dj ,Dk∈Bn(ε)}

=
1

6
L(
√
µn)3n

3
2

(2−γ)µ−
3
2
γ

∫
F

(1− e−t1t2)(1− e−t1t3)(1− e−t2t3) dN (n)(t1, t2, t3).

The function h(x, y, z) is bounded and continuous on F = [ε, 1/ε]3.
Therefore, writing the Taylor expansion of e−x yields

(1− e−xy) =
k∑
i=1

(xy)i

i!
(−1)i +O

(
ε−2k

(k + 1)!

)
,

on x, y ∈ [ε, 1/ε], where the error term goes to zero as k → ∞. Therefore
for any δ > 0, we can choose k1, k2, k3 such that

h(x, y, z) =

k1∑
l1=1

k2∑
l2=1

k3∑
l3=1

(
(xy)l1

l1!
(−1)l1

(yz)l2

l2!
(−1)l2

(xz)l3

l3!
(−1)l3

)
+O (δ)

=

k1∑
l1=1

k2∑
l2=1

k3∑
l3=1

(
xl1+l3yl1+l2zl2+l3

l1!l2!l3!
(−1)l1+l2+l3

)
+O (δ) .

Choosing δ = ε3γ+1 gives∑
1≤i<j<k≤n fn,ε(Di, Dj , Dk)

L(
√
µn)3n

3
2

(2−γ)µ−
3
2
γ

=
1

6

∫
F
h(t1, t2, t3) dN (n)(t)

=
1

6

∫
F

k1∑
l1=1

k2∑
l2=1

k3∑
l3=1

(
xl1+l3yl1+l2zl2+l3

l1!l2!l3!
(−1)l1+l2+l3

)
+O

(
ε3γ+1

)
dN (n)(t)

=
1

6

∫
F

k1∑
l1=1

k2∑
l2=1

k3∑
l3=1

xl1+l3yl1+l2zl2+l3

l1!l2!l3!
(−1)l1+l2+l3 dN (n)(t) +OP (ε)

=
1

6

k1∑
l1=1

k2∑
l2=1

k3∑
l3=1

(−1)l1+l2+l3

l1!l2!l3!

∫ 1/ε

ε
xl1+l3 dN (n)

1 (x)

∫ 1/ε

ε
yl1+l2 dN (n)

1 (y)

·
∫ 1/ε

ε
zl2+l3 dN (n)

1 (z) +OP (ε) .

Here we used that because N (n)

1 [a, b]
P−→ λ[a, b],∫

F

k1∑
l1=1

k2∑
l2=1

k3∑
l3=1

ε4 dN (n)(t) = k1k2k3ε
3γ+1(N (n)

1 ([ε, 1/ε]))3

= ε3γ+1OP

(
λ([ε, 1/ε])3

)
= ε3γ+1OP

(
(ε−γ − εγ)3

)
= OP (ε) .
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Since xt is bounded and continuous on [ε, 1/ε], we may use [19, Lemma 5]
to conclude that∫ 1/ε

ε
xt dN (n)

1 (x)
P−→
∫ 1/ε

ε
xt dλ(x) := ϕε(t).

Thus,∑
1≤i<j<k≤n fn,ε(Di, Dj , Dk)

L(
√
µn)3n

3
2

(2−γ)µ−
3
2
γ

= (1 + oP(1))
1

6

k1∑
l1=1

k2∑
l2=1

k3∑
l3=1

(−1)l1+l2+l3

l1!l2!l3!
ϕε(l1 + l3)ϕε(l1 + l2)ϕε(l2 + l3) +OP (ε)

= (1 + oP(1))
1

6

∫
F

k1∑
l1=1

k2∑
l2=1

k3∑
l3=1

xl1+l3yl1+l2zl2+l3(−1)l1+l2+l3

l1!l2!l3!
dλ(x) dλ(y) dλ(z) +OP (ε)

= (1 + oP(1))
1

6

∫
F
h(x, y, z) dλ(x) dλ(y) dλ(z) +OP (ε) ,

which concludes the proof together with (76).

The following lemma bounds the variance of the number of triangles
between vertices of sampled degrees proportional to

√
n.

Lemma 4.6. Let Dn be sampled from D with 1 < γ < 2, and Ĝn =
ECM(Dn). Let 4n(Bn(ε)) denote the number of triangles in Ĝn with sampled
degrees in Bn(ε). Then, as n→∞,

Varn (4n(Bn(ε)))

En [4n(Bn(ε))]2
P−→ 0.

Proof. Choose 0 < δ < 1
5(1− 1

2γ). Denote

Bn =
{ n∑
i=1

1{Di>ε√µn} < n
1
2

(2−γ)+δ
}
,

let An be as defined in (42), and set Λn = An ∩ Bn. Because the sampled
degrees are i.i.d. samples from (1), P (Λn) → 1. Therefore, we work on
the event Λn in the rest of the proof. By Lemma 4.5, En [4n(Bn(ε))] =

ΘP(n
3− 3

2
γL(
√
n))3. Thus, we need to prove that

Varn (4n(Bn(ε))) = oP
(
n6−3γL(

√
n)6
)
.

We can write the variance Varn (4n(Bn(ε))) as∑
(i,j,k),(s,t,u)

(Pn (4i,j,k,4s,t,u)− Pn (4i,j,k)Pn (4s,t,u))1{Di,Dj ,Dj ,Ds,Dt,Du∈Bn(ε)},

(78)
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where 4i,j,k denotes the event that there is a triangle between vertices i, j
and k. This splits into several cases, depending on |{i, j, k, s, t, u}|. Let the
part of the variance where |{i, j, k, s, t, u}| = m be denoted by V (m). so that

Varn (4n(Bn(ε))) = V (6) + V (5) + V (4) + V (3)

Let Mn(ε) =
∑

i 1{Di∈Bn(ε)}. Then

V (m) ≤
∑

i,j,k,s,t:|{i,j,k,s,t}|=m

1{Di,Dj ,Dj ,Ds,Dt∈Bn(ε)} = Mn(ε)m, m = 3, 4, 5.

Under Bn,

Mn(ε) ≤
n∑
i=1

1{Di>ε√µn} < n
1
2

(2−γ)+δ.

Thus, by the choice of δ,

V (5) ≤Mn(ε)5 = O
(
n5−5γ/2+5δ

)
= o(n6−3γ),

as required. Similar bounds show that V (4) and V (3) are o(n6−3γ). Thus,
the contributions V (m), m = 3, 4, 5, to the variance are sufficiently small.

Now we investigate the case where 6 different indices are involved and
show that V (6) = oP(n

6−3γL(
√
n)6). Equation (73) computes the second

term inside the brackets in (78). To compute the first term inside the brack-
ets, we make a very similar computation that leads to (73). A similar
computation as in (72) yields that on the event An

Pn (4i,j,k,4s,t,u) = (1 + oP(1))gn,ε(Di, Dj , Dk)gn,ε(Ds, Dt, Du).

Hence,

Pn (4i,j,k,4s,t,u)−Pn (4i,j,k)Pn (4s,t,u) = oP(1)gn,ε(Di, Dj , Dk)gn,ε(Ds, Dt, Du).

When Di, Dj , Dk ∈ [ε, 1/ε]
√
n, gn,ε(Di, Dj , Dk) ∈ [f1(ε), f2(ε)], uniformly

in i, j, k. Therefore, by Lemma 4.3,

V (6) =
∑

(i,j,k),(s,t,u)

o(1)gn,ε(Di, Dj , Dk)gn,ε(Ds, Dt, Du)

= oP

(
En [4n(Bn(ε))]2

)
= oP

(
n6−3γL(

√
n)6
)
,

and therefore also the contribution to the variance where |{i, j, k, s, t, u}| = 6
is small enough.

Proof of Theorem 1.6. First, we look at the denominator of the clustering
coefficient in (4). By (15) and the Stable Law Central Limit Theorem [42,
Theorem 4.5.2], there exists a slowly-varying function L0 such that∑n

i=1 D̂i(D̂i − 1)

L0(n)n2/γ
=

∑n
i=1D

2
i

L0(n)n2/γ
(1 + oP(1))

d−→ Sγ/2, (79)

48



where Sγ/2 is a stable distribution.
Now we consider the numerator of the clustering coefficient. We prove

the convergence of the number of triangles in several steps. First, we show
that the major contribution to the number of triangles comes from the tri-
angles between vertices with degrees proportional to

√
n. Fix ε > 0. We

use (64), where we want to show that the contribution of 4n(B̄n(ε)) is neg-
ligible. Applying Lemma 4.2 with the Markov inequality yields, for every
δ > 0,

lim sup
n→∞

P
(
4n(B̄n(ε)) > δL(

√
µn)3n

3
2

(2−γ)
)

= O

(E1(ε)

δ

)
.

Therefore,

4n(B̄n(ε)) = OP

(
E1(ε)L(

√
µn)3n

3
2

(2−γ)
)
. (80)

Because E1(ε) tends to zero as ε→ 0, we now focus on4n(Bn(ε)). The num-
ber of triangles consists of two sources of randomness: the random pairing
of the edges, and the random degrees. First we show that 4n(Bn(ε)) con-
centrates around its mean when conditioned on the degrees. By Lemma 4.6
and Chebyshev’s inequality,

4n(Bn(ε))

En [4n(Bn(ε))]

P−→ 1,

conditionally on the degree sequence (Di)i∈[n]. Combining this with Lemma 4.5
yields that conditionally on (Di)i∈[n],

4n(Bn(ε)) = L(
√
µn)3n

3
2

(2−γ)µ−
3
2
γ×(

(1 + oP(1))
1

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

γ3

(t1t2t3)γ+1
h(t1, t2, t3) dt1 dt2 dt3 +OP (ε)

)
,

(81)
where h(x, y, z) := (1−e−xy)(1−e−xz)(1−e−yz) and ε is the same as in (80).

Combining (80) and (81) gives

4n

L(
√
µn)3n

3
2

(2−γ)
=
4n(Bn(ε)) +4n(B̄n(ε))

L(
√
µn)3n

3
2

(2−γ)

= (1 + oP(1))

∑
1≤i<j<k≤n fn,ε(Di, Dj , Dk)

L(
√
µn)3n

3
2

(2−γ)
+ oP(1) +OP (E1(ε))

= (1 + oP(1))µ−
3
2
γ 1

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

γ3

(t1t2t3)γ+1
h(t1, t2, t3) dt1 dt2 dt3

+O(E1(ε)) +OP (ε) .
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Taking the limit of n → ∞ and then ε → 0 combined with (79) and the
definition of the clustering coefficient in (4) then results in

ĈnL0(n)

L(
√
µn)3n(−3γ2+6γ−4)/(2γ)

= 6
L0(n)n2/γ∑

i∈[n] D̂i(D̂i − 1)

4n

L(
√
µn)3n

3
2

(2−γ)

d−→ µ−
3
2
γ

∫∞
0

∫∞
0

∫∞
0

γ3

(t1t2t3)γ+1h(t1, t2, t3) dt1 dt2 dt3

Sγ/2
which proves Theorem 1.6.

5 Proofs of Theorem 1.2 and 1.7

We now show how the proofs of Theorems 1.1 and 1.6 can be adapted to
prove similar results for the class of rank-1 inhomogeneous random graphs.
We remind the reader that in this setting the degrees Di are no longer an
i.i.d. sample from (1).

Let κ ≤ (γ − 1)/(1 + γ), 0 < δ < 1− 1/γ and define the events

An =

∣∣∑
i∈[n]

wi − µn
∣∣ ≤ n1−κ

 , Bn =

{∣∣ n∑
i=1

wi1{wi<nδ} − µn
∣∣ ≤ n

log(n)

∣∣∣}

Let Λn = An ∩ Bn. Because P (Λn) → 0, we condition on the event Λn.
For the erased configuration model, we used that the degrees and the erased
degrees are close to prove Theorems 1.1 and 1.6. Similarly, for the inhomo-
geneous random graphs we now show that the weights and the degrees are
close. By Condition 1.1(i)

En [Di] =
∑
j 6=i

wiwj
µn

h

(
wiwj
µn

)
≤
∑
j∈[n]

wiwj
µn

= wi(1 + o(1)), (82)

where En now denotes expectation conditioned on the weight sequence. Fur-
thermore, for wi = O(n1/γ), on the event Bn, by Condition 1.1(ii) and (iii)

En [Di] ≥
∑

j:wj<n
γ−1
2γ

wjwi
µn

h

(
wiwj
µn

)
=

∑
j:wj<n

γ−1
2γ

wjwi
µn

(
1 +O

(
wiwj
µn

))

= (1 + o(1))
∑

j:wj<n
γ−1
2γ

wjwi
µn

= wi(1 + o(1)),

(83)
where the first equality follows from a first order Taylor expansion of h(x).
Combining (82) and (83) yields En [Di] = wi(1 + o(1)).

Let Xij again denote the indicator that edge {i, j} is present. Note that
Varn (Xij) = p(wi, wj)(1 − p(wi, wj)) ≤ p(wi, wj). Because conditioned on
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the weights, the degree of a vertex Di =
∑

i 6=j Xij is the sum of independent
indicators with success probability p(wi, wj), Varn (Di) ≤

∑
i 6=j p(wi, wj) ≤

2wi for n large enough. Then, Bernsteins inequality yields that for t > 0

Pn (|Di − wi| > t) ≤ exp

(
− t2/2

2wi + t/3

)
.

Thus, for wi > log(n),
Di = wi(1 + oP(1)).

Therefore,∑
i∈[n]

|D2
i − w2

i | =
∑

i:wi≤log(n)

|D2
i − w2

i |+
∑

i:wi>log(n)

|D2
i − w2

i |

= OP

(
n log2(n)

)
+ oP

( ∑
i:wi>log(n)

w2
i

)
= oP

(∑
i∈[n]

w2
i

)
,

and a similar result holds for the third moment of the degrees. In particular,
this implies that (27) and (12) also hold for the inhomogeneous random
graph under Condition 1.1.

5.1 Pearson in the rank-1 inhomogeneous random graph

The analysis of the term r−n in (11) is the same as in the erased configura-
tion model, since it only depends on the degrees, and (27) also holds for the
inhomogeneous random graph. We therefore only need to show that Propo-
sition 3.6 also holds for the rank-1 inhomogeneous random graph. This
means that we need to show that (41) also holds for the rank-1 inhomoge-
neous random graph. For all models satisfying Condition 1.1, p(wi, wj) ≤
(wiwj/(µn)∧1). Because En [Di] = wi(1+o(1)), Di = OP (wi), by Markov’s
inequality. Thus,

∑
1≤i<j≤n

DiDjXij = OP

 ∑
1≤i<j≤n

wiwjXij

 = OP

 ∑
1≤i<j≤n

wiwj

(
wiwj
µn

∧ 1

)
Because the weights are sampled from (1), this is the exact same bound
as in (45), so that from there we can follow the same lines as the proof of
Proposition 3.6. Thus, Proposition 3.6 also holds for rank-1 inhomogeneous
random graphs satisfying Condition 1.1. Then we can follow the same lines
as the proof of Theorem 1.1 to prove Theorem 1.2.

5.2 Clustering in the rank-1 inhomogeneous random graph

For the clustering coefficient, note that conditioned on the weights, Pn (4i,j,k) =
p(wi, wj)p(wj , wk)p(wi, wk). Furthermore, Lemma 4.2 only requires the
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bound p(wi, wj)
≤ (wiwj/(µn) ∧ 1), which also holds for all rank-1 inhomogeneous random
graphs satisfying Condition 1.1, so that Lemma 4.2 also holds for these rank-
1 inhomogeneous random graphs. Furthermore, conditioned on the weights,
the probabilities of distinct edges being present are independent, so that

En [4n(Bn(ε))] =
∑

1≤i<j<k≤n
q

(
wiwj
µn

)
q

(
wiwk
µn

)
q

(
wjwk
µn

)
1{(wi,wj ,wk)∈Bn(ε)}

similarly to Lemma 4.3, with q as defined in Condition 1.1. Furthermore, the
bound on the variance of the number of triangles in the erased configuration
model in Lemma 4.6 for 3,4 or 5 contributing vertices only depends on
the degrees, so that it also holds for the rank-1 inhomogeneous random
graph satisfying Condition 1.1 since the weights are also sampled form (1).
The contribution of 6 different vertices to the variance is zero, because the
presence of distinct edges is independent. Thus, Lemma 4.6 also holds for
the rank-1 inhomogeneous random graph. Thus, we can follow the lines of
the proof of Theorem 1.6 until equation (77). From there, note that∑

1≤i<j<k≤n q
(
wiwj
µn

)
q
(
wiwk
µn

)
q
(
wjwk
µn

)
1{(wi,wj ,wk)∈Bn(ε)}

L(
√
µn)3n

3
2

(2−γ)µ−
3
2γ

=
1

6

∫
F
q(t1t2)q(t1t3)q(t2t3) dN (n)

1 (t1) dN (n)

1 (t2) dN (n)

1 (t3).

Then we use that the function q(t1t2)q(t1t3)q(t2t3) is a bounded, continuous
function by Condition 1.1, so that by [19, Lemma 5],∫

F
q(t1t2)q(t1t3)q(t2t3) dN (n)

1 (t1) dN (n)

1 (t2) dN (n)

1 (t3)

P−→
∫
F
q(t1t2)q(t1t3)q(t2t3) dλ(t1) dλ(t2) dλ(t3).

Thus, we can follow the exact same lines of the proof of the clustering coef-
ficient in the erased configuration model, replacing the term (1− e−t1t2)(1−
e−t1t3)(1− e−t2t3) by q(t1t2)q(t1t3)q(t2t3), which them proves Theorem 1.7.
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6 Appendix

In this section we prove some technical results used in the preceding proofs.

6.1 Erased edges

We start with the proof for the scaling of the number of erased edges.

Proof of Theorem 2.1. Let K, δ > 0, κ ≤ (γ − 1)/(1 + γ) and define the
events

An =
{
|Ln − µn| ≤ n1−κ} , Bn =

{
max

1≤i≤n
Di ≤ n

1
γ

+ δ
2

}
, Cn =

{
n∑
i=1

D2
i ≤ n

2
γ

+ δ
2

}

and set Λn = An ∩ Bn ∩ Cn. Then by Lemma 2.3 and Proposition 2.4,
P (Λn) → 1, and hence we only need to proof the result conditioned on the
event Λn.

First recall that

Zn =

n∑
i=1

Xii +
∑

1≤i<j≤n

(
Xij − 1{Xij>0}

)
.

We first consider the conditional expectation of last term En
[
1{Xij>0}

]
=

1− Pn (Xij = 0). It follows from [14, equation 4.9] that

Pn (Xij = 0) ≤
Di−1∏
t=0

(
1− Dj

Ln − 2Di − 1

)
+

D2
iDj

(Ln − 2Di)2

≤
(

1− Dj

Ln − 1

)Di
+

D2
iDj

(Ln − 2Di)2

≤ e−
DiDj
Ln−1 +

D2
iDj

(Ln − 2Di)2
.

The additional term essentially comes from the fact that we need to consider
the cases were a stub of node i connects to another stub of node i.

Next, since E [Xii] = Di(Di − 1)/(Ln − 1) and E [Xij ] = DiDj/(Ln − 1)
we have

En [Zn] ≤
∑

1≤i<j≤n
φ

(
DiDj

Ln − 1

)
+

n∑
i=1

D2
i −Di

Ln − 1
+

∑
1≤i<j≤n

D2
iDj

(Ln − 2Di)2
,

where φ(x) = x− 1 + e−x. Define

Mn =

n∑
i=1

D2
i −Di

Ln − 1
+

∑
1≤i<j≤n

D2
iDj

(Ln − 2Di)2
.
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Then, on the event Λn,

Mn ≤
n

2
γ

+ δ
2

µn− n1−κ − 1
+

(µn− n1−κ)n
2
γ

+ δ
2(

µn− n1−κ − 2n
1
γ

+ δ
2

)2

= O
(
n

2
γ
−1+ δ

2

)
.

Note that Λn is completely determined by the degree sequence. Hence, by
Markov’s inequality, we get

P
(
Zn > n2−γ+δ,Λn

)
≤ nγ−2−δE [Zn1Λn ] = nγ−2−δE [En [Zn]1Λn ]

≤ nγ−2−δE

 ∑
1≤i<j≤n

φ

(
DiDj

Ln − 1

)
1{Λn}

+ nγ−2−δE [Mn1Λn ]

≤ nγ−2−δE

 ∑
1≤i<j≤n

φ

(
DiDj

µn− 1− n1−κ

)+O
(
n
γ+ 2

γ
−3− δ

2

)
≤ nγ−δE

[
φ

(
D1D2

µn− 1− n1−κ

)]
+O

(
n
γ+ 2

γ
−3− δ

2

)
,

as n→∞. Since

γ +
2

γ
− 3 < 0,

for all 1 < γ < 2 the last term goes to zero as n → ∞. For the other term
we note that D1 and D2 are independent regularly-varying random variables
with exponent 1 < γ < 2 and therefore so is D1D2. It then follows from [3]
that for any δ > 0

lim
t→∞

E
[
φ
(
D1D2
t

)]
t−γ+δ

= 0.

Taking t = µn− 1− n1−κ we obtain that

lim
n→∞

nγE
[
φ

(
D1D2

µn− 1− n1−κ

)]
= 0,

from which it follows that

lim
n→∞

P
(
En > n2−γ+δ,Λn

)
= 0.

We proceed with the proof of the corollary.

Proof of Corollary 2.2. For the first part we write

n∑
i=1

Dp
i Yi ≤ max

1≤j≤n
Dp
j

n∑
i=1

Yi ≤ 2Zn max
1≤j≤n

Dp
j ,
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and hence, using Theorem 2.1 and Proposition 2.4,∑n
i=1D

p
i Yi

n
p
γ

+2−γ+δ
≤
(

2Zn

n2−γ+ δ
2

)(
max1≤j≤nD

p
j

n
p
γ

+ δ
2

)
P−→ 0.

For the second part we bound the main term by

∑
1≤i<j≤n

XijDiDj ≤ max
1≤j≤n

Dj

∑
1≤i<j≤n

XijDi ≤
1

2
max

1≤j≤n
Dj

n∑
i=1

DiYi.

Hence, using the first part of the corollary and Proposition 2.4, it follows
that ∑

1≤i<j≤nXijDiDj

n
2
γ

+2−γ+δ
≤
(

max1≤j≤nDj

2n
1
γ

+ δ
2

)(∑n
i=1DiYi

n
1
γ

+2−γ+ δ
2

)
P−→ 0.

6.2 Technical results for clustering

The following result is needed for the proof of Lemma 4.2.

Lemma 6.1. Let X be a non-negative regularly-varying random variable
with distribution (1). Then, for any 0 ≤ a < b,

P
(
X ∈ [a, b]

√
n
)

= L(
√
µn)n−γ/2γ

∫ b

a
x−γ−1 dx(1 + o(1)).

Proof. Because L is a slowly varying function,

L(c
√
n) = L(

√
µn)(1 + o(1)),

for any c ∈ (0,∞). Furthermore, using the Taylor expansion of (a
√
n−x)−γ

at x = 0 yields

(b
√
n+ 1)−γ = (b

√
n)−γ + γ(b

√
n)−γ−1 +O(γ(γ − 1)(b

√
n)−γ−2).

Because L is a slowly-varying function, for every constant t, limn→∞ L(t
√
n)/L(

√
n) =

1. Thus, we obtain

P
(
X ∈ [a, b]

√
n
)

= L(a
√
n)(a
√
n)−γ − L(b

√
n+ 1)(b

√
n)−γ

= L(
√
µn)(1 + o(1))(a

√
n)−γ − L(

√
µn)(1 + o(1))(b

√
n)−γ

= (1 + o(1))L(
√
µn)

(
(a
√
n)−γ − (b

√
n)−γ

)
= (1 + o(1))L(

√
µn)n−γ/2γ

∫ b

a
x−γ−1 dx.
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