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Abstract

Inferring microbial interaction networks from abundance patterns is an
important approach to advance our understanding of microbial communi-
ties in general and the human microbiome in particular. Here we suggest
discriminating two levels of information contained in microbial abundance
data: (1) the quantitative abundance values and (2) the pattern of presences
and absences of microbial organisms. The latter allows for a binary view on
microbiome data and a novel interpretation of microbial data as attractors,
or more precisely as fixed points, of a Boolean network.

Starting from these attractors, our aim is to infer an interaction net-
work between the species present in the microbiome samples. To accom-
plish this task, we introduce a novel inference method that combines the
previously published ESABO (Entropy Shifts of Abundance vectors under
Boolean Operations) method with an evolutionary algorithm. The key idea
of our approach is that the inferred network should reproduce the original
set of (observed) binary abundance patterns as attractors.

We study the accuracy and runtime properties of this evolutionary method,
as well as its behavior under incomplete knowledge of the attractor sets.
Based on this theoretical understanding of the method we then show an
application to empirical data.
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1. Introduction

Microorganisms such as bacteria do not live in isolation, but form com-
plex communities [1]. Species that are part of such a microbial community
participate in mutualistic and antagonistic interactions, for instance by co-
operating to form a biofilm, or by competing for nutrients.

Since microbiota and the interactions between their members play a cru-
cial role in the health of their host, analyzing microbial abundances has re-
ceived widespread attention during the last decade [2]. For various types of
microbial communities, ranging from soil samples to the human skin, mouth
or gut, sequencing-based abundance estimation of microbial taxa has become
a widespread tool to gather information on the underlying ecosystem. The
immense medical relevance and clinical potential of microbiome analysis is
becoming more and more apparent [3, 4, 5, 6].

In spite of this relevance, we are still lacking a deep theoretical under-
standing of microbiome patterns. An early – and strongly criticized – at-
tempt has been the hypothesis of distinct microbiome states, the so-called
enterotypes [7]. However, the definition of a microbiome state itself is a
challenging problem [8].

An important step towards a theoretical understanding of microbiome
patterns consists in estimating the underlying microbial interaction networks
from abundance patterns. The challenges of extracting reliable microbial in-
teraction networks from abundance patterns have been summarized in Röt-
tjers and Faust [9], and more recently by Matchado et al. [10].

There is a sharp difference in the type of systemic insight provided by
(continuous) abundance patterns and (binary) patterns of presences and ab-
sences. When one analyzes a career fair at a university, the companies present
or absent reveal information about the ties in education and research this uni-
versity has to companies, while the number of people the company has sent
to the career fair (the ’abundance’) is rather informative about the size of
the company itself or their future hiring ambitions.

Similarly, in a transcriptomic data set, the absolute expression level of a
gene is often indicative of the gene product’s function: Typically the expres-
sion levels of (genes encoding) transcription factors are much smaller than
those of metabolic enzymes, while the "on" and "off" pattern of genes ex-
pression is in many cases rather informative about the underlying regulatory
networks [11, 12].
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The challenge of evaluating both types of information simultaneously has
been addressed for example in Prost et al. [13], where the statistical model
accounts for extremely sparse abundance data with furthermore broad dis-
tributions of the non-zero values.

Looking at the microbiome from a binary perspective, in addition to the
standard ’abundance pattern’ approach, has the advantage of differentiat-
ing between these distinct types of information. Additionally, it paves the
way towards new mathematical approaches of studying the microbiome by
viewing microbiome data as attractors of Boolean networks.

In fact, most inference methods consider only structural network proper-
ties [see, e.g., 14, 15]. Only a few recent approaches have taken into account
that the microbiome is a dynamical network and that the measured data
should represent steady states of such a network [16, 17].

In an earlier investigation [17] we adapted a presence/absence analysis to
the phenomenon of microbiome variability. One of the surprising findings was
the large number of systematic and positive interactions, which complement
the dominant negative interactions reported in the literature before. This
systematic contribution of low-abundance taxa (the ’rare biosphere’ [18]) to
the interaction pattern of microbial organisms in the human gut emphasizes
their relevance to the metabolic function of the whole system.

Currently the vast majority of available data sets is still of the type of
abundance ’snapshots’. With the availability of more and more longitudi-
nal data (i.e., time series of such abundance patterns), more sophisticated
network inference methods can be developed (e.g., dynamic or time-varying
network modeling; see Garcia and Kao-Kniffin [19]). Methods solely based
on correlations and other simple statistical associations have been criticized
recently [20].

The original ESABO method [17] also essentially relied on co-occurrence
patterns. Here we go one step further and use the ESABO network only
as a starting point for the network inference process and then – via sim-
ulated evolution – require the network also to reproduce the original set
of (observed) binary abundance patterns as attractors. We show that this
evolution-enhanced ESABO method produces reconstructed networks that
have a high resemblance with the original ones. By investigating the method
in situations where data do not show all attractors, we find a relationship be-
tween the percentage of known attractors and the average accuracy achieved
by the reconstruction method.
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2. Methods

2.1. Entropy Shifts of Abundance vectors under Boolean Operations (ESABO)
The Entropy Shifts of Abundance vectors under Boolean Operations

(ESABO) method is a method for the inference of microbial interaction net-
works from microbial abundance data. It was originally introduced in 2017
by Claussen et al. [17]. The special feature of this method is that only bi-
nary abundance vectors (i.e. the presence or absence of a microbial species
in microbiome samples) are considered, which makes it particularly suitable
for the investigation of the low-abundance segment of the microbiome. In
general, the ESABO method evaluates the information content of pairs of
binary abundance vectors, when combined via Boolean operations.

The ESABO method starts from a Boolean data matrix A ∈ BNA×N with
B = {0; 1}, where each row vector of the matrix represents a sample and each
column vector contains the abundances of a certain species in the different
samples.

The ESABO score for two species i and j is calculated by taking their
abundance vectors b⃗i and b⃗j and performing the following four steps [17]:

(1) The logical AND operation is applied component-wise to the two abun-
dance vectors b⃗i and b⃗j, i.e.(

x⃗AND
ij

)
k
=

(⃗
bi

)
k
AND

(⃗
bj

)
k
.

(2) The entropy of the resulting vector x⃗AND
ij is calculated by

H(x⃗AND
ij ) = −

∑
l∈{0,1}

pl
(
x⃗AND
ij

)
log

(
pl
(
x⃗AND
ij

))
,

with pl
(
x⃗AND
ij

)
being the relative frequency of the entry l ∈ {0, 1} in the

vector x⃗AND
ij .

(3) The entries of the abundance vector b⃗j are randomly permuted, leading
to a new vector b⃗∗j . Then, the AND operation between the vectors b⃗i and

b⃗∗j is performed and the entropy H(x⃗AND
ij∗ ) of

(
x⃗AND
ij∗

)
k
=

(⃗
bi

)
k
AND

(⃗
b∗j

)
k

is calculated.
This step is repeated R = 1000 times, in order to obtain a distribution
of entropy values (from shuffled versions of b⃗j), which serves as a null
model.

4



(4) The obtained entropy mean µ and standard deviation σ are used to
calculate the z-score

Zij =
H(x⃗AND

ij )− µ

σ
, (1)

which corresponds to the so-called ESABO score for the two species i
and j.

For a positive interaction between species i and j we expect the ESABO
score to be positive, and for a negative interaction between i and j we antic-
ipate a negative ESABO score.

In order to obtain the reconstructed network, an ESABO-score threshold
Θ needs to be chosen, which determines beyond which absolute z-score value
a link is included in the network. In [17] it was suggested that links with
|Zij| > 1 should be set.

For the present work, we made two changes to the ESABO method. First,
we sped up the computation of the ESABO scores Z and reduced the ran-
domness of the obtained results by replacing step (3) by an analytical formula
for the mean µ and the standard deviation σ of the entropy distribution. This
formula is obtained by calculating the entropy for all NA! possible permuta-
tions of the entries of b⃗j (see Appendix A). Second, we improved the ESABO
method by interchanging the 0s and 1s in a pair of abundance vectors be-
fore performing the logical AND operation if the relative frequency of 1s was
higher than 50% in either of the two considered abundance vectors, i.e., if
p1

(⃗
bi

)
> 0.5 or p1

(⃗
bj

)
> 0.5. In this way, we avoided the rare occurrence

of large negative z-scores for synergistic interactions, which was an issue in
the original version of the ESABO method.

A schematic illustration of this refined version of the ESABO method is
shown in Figure 1.
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Figure 1: Schematic illustration of the refined ESABO method
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2.2. Generation of simulated data
An advantage of the ESABO method is that it can be easily tested by

applying it to artificially generated data. To this purpose, we first generated
a random undirected Boolean network with N nodes, representing N micro-
bial species, connected by L+ positive and L− negative links, respectively
interactions. The nodes in a Boolean network can only assume two different
values, namely 1, which means that the considered species is present, or 0,
which signifies the absence of the species. The change in time of the state of
each node is determined by its Boolean update function. We used threshold
functions, where the value si of each node or species i depends only on the
sum of its input signals and is updated at each time step according to

si(t+ 1) =


1,

∑N
j=1Gijsj(t) > 0

si(t),
∑N

j=1Gijsj(t) = 0

0,
∑N

j=1Gijsj(t) < 0

. (2)

G is the generalized adjacency matrix of the interaction graph with

Gij =


+1, for a positive interaction between i and j

−1, for a negative interaction between i and j

0, if there is no interaction between i and j.

Since we considered undirected networks, G is symmetric (Gij = Gji) and
we assumed that Gii = 0 ∀i, i.e., we did not consider self-inputs. Further-
more, all the nodes of the network were updated synchronously.

After the generation of the network, we determined its attractors, using
the algorithm described in [21]. To ensure that all attractors of the network
are found, we updated the network from each of its 2N possible states. In
the rare case where the attractor of the network is not a fixed point but a
cyclic attractor, we chose the first encountered state from the cycle as the
recorded steady-state.

The attractors are interpreted within the framework of the ESABO method
as steady-state microbiome compositions. All or part of these attractors are
chosen to represent the ’samples’, from which the network is reconstructed
by the ESABO method.
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Networks that were reconstructed with the ESABO method usually dis-
play only part of the attractors that were used to perform the network infer-
ence (cf. Fig. 3 left).

For this reason, we subjected the reconstructed networks to a simple
evolutionary algorithm, which is based on mutation and selection, in order
to improve their ability to reproduce the attractors of the original network.
The resulting ESABO enhanced evolutionary algorithm is described in the
following section.

2.3. ESABO enhanced evolution of reconstructed networks
The evolutionary algorithm is shown schematically in Figure 2. It con-

sists of the following four key elements: The generation of a population of
M networks using the ESABO method, the determination of the fitness of
all networks in the population, the fitness proportionate selection of M net-
works, and the mutation of the selected networks, in order to create the next
generation. The implementation of these four elements is described in the
following.

Generation of a population of M 
networks using the ESABO method

Evaluation of the fitness of each 
network

Fitness proportionate selection 
of M networks

Mutation of the selected networks with a 
probability ν, in order to create a 

daughter population

Abort when 
a certain 
number of 
generations 
or a fitness 
of F=1 is 
reached

Figure 2: Schematic illustration of the ESABO enhanced evolutionary algorithm.
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Generation of a population of M networks using the ESABO
method: In order to generate the initial population of M networks, we first
calculate the ESABO scores for all N ·(N−1)

2
possible links in the network.

Then, we construct M networks with an increasing number of links by start-
ing from the network that contains the Lmin = 10 links that have the highest
absolute z-score values. We add successively further links according to their
z score, until networks with Lmin +M − 1 links are obtained.

Evaluation of the fitness of each network: If all attractors of the
original network are used for its inference, the fitness of a network corresponds
to the Jaccard index

F =
|Aori ∩ A|
|Aori ∪ A|

(3)

between its attractors A and the attractors Aori of the original network,
respectively the original samples. The advantage of this performance measure
is that it can also be evaluated for biological data, where the real interaction
network is unknown.

In the case of real microbiomes, we cannot assume that all the attractors
of the underlying interaction network are present in the available samples.
Especially attractors with small basin sizes might not be represented in the
data. Therefore, we investigate what happens if some attractors, particularly
those with small basin sizes, are not considered during the network inference.
We generated the desired sample size NA (taken to be a fixed proportion of
the total attractor number) by picking from the original network the NA

attractors with the largest basin sizes.
To assess the fitness of a reconstructed network, we initialized it from

up to Nini = 1000 random initial states and iterated the dynamics until an
attractor was reached. Whenever we obtained as many attractors as the
number of samples, we stopped the search. Since the Jaccard index (3) of
such a reconstructed attractor set varies with each evaluation of the attrac-
tors, we averaged it over r = 100 runs (unless stated otherwise). This mean
Jaccard index was used as the fitness of the network.
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Fitness proportionate selection of M networks: In order to create
a daughter population, we selected networks with a probability proportional
to their relative fitness, i.e., the weight Wi with which individual i was chosen
to be the parent of a given individual of the next generation is

Wi =
Fi∑M
j=1 Fj

.

Mutation of the selected networks: The daughter network was cre-
ated from the selected parent by making a copy of the parent and applying to
it a mutation with the probability ν. The following three types of mutations,
all of which occur with the same probability, were performed:

(1) Deletion of a randomly selected link.

(2) Addition of a new link to the network (according to its ESABO score):
First, we decided with equal probability whether a positive or a negative
link should be added. The sign of a link was determined by the sign of
its ESABO score Z. Then, within the chosen set, we randomly drew a
link linearly weighted by its ESABO score.

(3) Change of a link: This is a combination of mutation (1) and (2).

Using such an evolutionary algorithm has the great advantage that it is
not necessary to (manually) select a certain threshold that defines how many
links should be included in the network. This is a crucial task in many other
network inference methods like e.g. SparCC [22] or SPIEC-EASI [23] and
can here be avoided.
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3. Results

3.1. Analysis of simulated data under the assumption that all attractors of a
network are known

First, we tested our method using simulated data, as described in section
2.2. For this purpose, we considered 40 random networks with N = 15 nodes
and L+ = L− = 10 positive and negative links. All these networks had more
than 200 distinct attractors and were connected.

We reconstructed these networks using the ESABO enhanced evolution-
ary algorithm with a population size of M = 50 and a mutation probability
of ν = 0.25. In the initial population the network with the fewest links had
Lmin = 10 links and the network with the most links had Lmin +M − 1 = 59
of them.

We evaluated the performance of our method according to two different
measures.

First, we evaluated the fitness (3) of the evolved networks. The fitness of
a network measures to what extent its attractors match those of the original
network.

Second, we checked how well the network topologies, i.e., the links of
the inferred network and those of the original network, agreed. This was
quantified via the Jaccard index

J =
|Lori ∩ L|
|Lori ∪ L|

between the links L of the fittest evolved network and the links Lori of the
original network.

Moreover, we compared the ESABO enhanced evolution to two different
types of a random evolution, where a completely random link is set during
mutation (2), regardless of its ESABO score or expected sign. While the
first type of random evolution is starting from networks that were recon-
structed with the ESABO method (like in the ESABO enhanced evolution),
the second type of random evolution is starting from a population of random
networks.
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Figure 3: Box plots showing the Jaccard index between the attractors of the original
network and the attractors of the inferred or fittest evolved network that was found at
some point during evolution. 40 networks with N = 15 nodes and L+ = L− = 10
positive and negative links were investigated. The evolution was performed for 10000
generations with M = 50, ν = 0.25 and Lmin = 10. For the network inference with the
ESABO method the 20 links with the highest absolute ESABO scores were set.

In general, we obtained with the ESABO enhanced evolutionary algo-
rithm networks that display the same attractors as the original networks, i.e.
that have a fitness of F = 1. This can be seen in Figure 3, which shows
the maximum fitness value that was obtained for each of the 40 investigated
networks at some point during an evolution of 10000 generations. While net-
works that were solely reconstructed with the ESABO method only have a
median fitness of F = 0.3, networks that were subjected to an ESABO en-
hanced evolution have a median fitness of F = 1. The other two evolutionary
algorithms perform better than the ESABO method without evolution, but
show a broader distribution and a significantly lower median fitness value
than the ESABO enhanced evolution.

The main reason for this is that the ESABO enhanced evolution is much
faster than a random evolution. This is shown in Figure 4, where the evo-
lution of the maximum fitness in the population is displayed for the three
different versions of the evolutionary algorithm. While Fig. 4 (a) shows the
evolution of the maximum fitness for two exemplary networks, Fig. 4 (b)
displays the median of the maximum fitness for the 40 investigated networks
and Fig. 4 (c) shows the fitness distributions in form of box plots.
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Figure 4: Evolution of the maximum fitness in the population for the three different
versions of the evolutionary algorithm.
(a) Fitness increase in course of the evolution for two exemplary networks.
(b) Median of the maximum fitness for the 40 investigated networks in the course of
evolution.
(c) Fitness distribution for the 40 investigated networks in form of box plots.
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Networks that were evolved using the ESABO enhanced evolution usu-
ally show a steep fitness increase (Fig. 4 (a)) and reach a median fitness of
F = 1 in less than 500 generations (Fig. 4 (b), (c)), while the fitness increase
is considerably slower for both types of the random evolution. Randomly
evolved networks, where the evolution starts from a population of random
networks, have even after 10000 generations a significantly lower median fit-
ness of F ≈ 0.5.

Furthermore, the networks that were evolved using the ESABO enhanced
evolution do not only have a similar dynamics to the original networks, but
they are also topologically very similar to them. This can be seen in Figure
5, where the Jaccard index between the links of the original network and
the links of the fittest inferred network that was found at some point during
evolution is shown for the 40 investigated networks. If we compare the recon-
struction quality, we find that networks that were inferred with the ESABO
method have a median Jaccard index of J = 0.74, whereas networks that
were subjected to the ESABO enhanced evolution have a significantly higher
median Jaccard index of J = 1.
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Figure 5: Box plots showing the Jaccard index between the links of the original network
and the links of the inferred or fittest evolved network that was found at some point
during evolution (same networks as in Fig. 3). 40 networks with N = 15 nodes and
L+ = L− = 10 positive and negative links were investigated. The evolution was
performed for 10000 generations with M = 50, ν = 0.25 and Lmin = 10. For the network
inference with the ESABO method the 20 links with the highest absolute ESABO scores
were set.
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3.2. Analysis of simulated data under the assumption that only a part of the
attractors is known
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Figure 6: Box plots showing the Jaccard index between the links of the original network
and the links of the inferred or fittest evolved network. 40 networks with N = 15 nodes
and L+ = L− = 10 positive and negative links were investigated. The evolution was
performed for 10000 generations with M = 50, ν = 0.25 and Lmin = 10.

We consider again the 40 random networks from the previous section
and only use a certain percentage of their attractors (always those with the
largest basin sizes) to reconstruct the networks with the ESABO enhanced
evolutionary algorithm.

Figure 6 shows the reconstruction quality, in terms of the Jaccard in-
dex between the links of the original network and those of the reconstructed
network, if either all attractors, 75%, 50% or 25% of them were used for
the network inference. As we can see, the ESABO enhanced evolution is
always superior to the simple ESABO method as well as to the other evo-
lution types. It still works very well if only 50% of the attractors are used
as an input for the network inference. In this case, the ESABO enhanced
evolution achieves a median reconstruction quality of J = 0.87. In the case
where only 25% of the attractors are considered for the reconstruction of
the network, the ESABO enhanced evolution shows a large drop in the in-
ference performance and only reaches a median inference quality of J = 0.52.
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Figure 7: Box plots showing the Jaccard index between the links of the original network
and the links of the inferred or fittest evolved network. 25 random networks with N = 22
nodes and L+ = L− = 22 positive and negative links were investigated. The evolution
was performed for 2000 generations with M = 50, Lmin = 10, ν = 0.25, Nini = 100000
and r = 10.

Before applying our inference method to real biological abundance data,
we expanded our investigation to larger random networks with N = 22 nodes,
in order to test our algorithm for the same number of nodes, respectively
classes, as present in the investigated abundance data (see section 3.3). Since
these networks have a much larger state space (2N = 222 = 4194304) than
networks with 15 nodes (215 = 32768), we increased the maximum number
of initial states that were used to find the attractors of a network during the
evolutionary process to Nini = 100000. To keep computation times within
reasonable limits, we reduced the repetitions of the Jaccard-index calculation
to r = 10, and we modified the evolutionary algorithm such that we always
kept the fittest network, i.e., we copied it to the next generation without
a mutation. Fitness-proportionate selection with a (possible) subsequent
mutation was only applied to the other M − 1 networks in the population.

As shown in Fig. 7, the ESABO enhanced evolution yields better re-
sults than the simple ESABO method also for these larger networks. Even
after a short evolution of only 2000 generations it results in higher mean
Jaccard-index values, i.e., in networks that are topologically more similar to
the original networks than the networks that were inferred with the simple
ESABO method. A longer evolution time would most likely improve the re-
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sults, but is associated with long computation times, especially for the case
where all attractors are taken into account.

The superiority of the ESABO enhanced evolution over the simple ESABO
method is also confirmed by examining the true positive rate (TPR) and
the false positive rate (FPR) of the evolved or inferred networks as well as
the receiver operating characteristics (ROC) graph of the simple ESABO
method (see Fig. 8 and Appendix B). As we can see, the simple ESABO
method already provides a good inference quality with area under the ROC
curve (AUC) values of 0.95, respectively 0.93 for the recognition of positive,
respectively negative links. However, it is less successful in distinguishing
whether a link is present or not, regardless of its sign (AUC value of 0.89 for
the recognition of links in general). This is also reflected by the fact, that
networks which were inferred with the simple ESABO method setting all the
links with an ESABO score |Z| > 1 as suggested in [17], usually have a TPR
close to 1, but a relatively high FPR (> 0.5 for the recognition of links). If
we only set the 44 links with the highest absolute ESABO-score values, the
FPR decreases considerably, but the TPR decreases as well and, most im-
portantly, we used our prior knowledge of the number of links present in the
original network. The ESABO enhanced evolution generally yields higher
true positive rates at comparable false positive rates as the simple ESABO
method, where the 44 links with the highest absolute ESABO-score values
were set. Moreover, it achieves this result without any prior knowledge on
the number of edges present in the original network.

Figure 9 shows the fitness of the evolved networks in comparison to the
fitness of randomly assembled attractors that do not belong to an actual
Boolean network. Although, as expected, the maximum fitness achieved
during evolution decreases with decreasing percentage of attractors used for
the reconstruction, even in the case where only 25% of the original attractors
were used as an input to the inference method, the reached fitness values
(Fmedian ≈ 0.33) are at least an order of magnitude larger than those of
randomly assembled attractors (Fmedian ≈ 0.02).
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Figure 8: Comparison of inference quality between the ESABO enhanced evolution and
the original ESABO method using receiver operating characteristics (ROC) curves. In
order to create the ROC curves for the ESABO method, we merged the link predictions
of all the 25 investigated networks from Fig. 7 into one large set and ranked them
according to their ESABO score. Furthermore, we evaluated the true positive and the
false positive rate for networks that were either inferred with the ESABO enhanced
evolution or the simple ESABO method. For networks that were inferred with the simple
ESABO method, we either chose to set the 44 links with the highest absolute
ESABO-score values or all the links with an ESABO score |Z| > 1. For more details, see
Appendix B. The AUC value indicates the area under the ROC curve.
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Figure 9: Box plots showing the fitness of the evolved networks from Fig. 7 compared to
the fitness of 25 networks which were inferred from 138 different random attractors. To
generate a random attractor, we randomly chose for each of its 22 entries the value 1 or 0
with equal probability.
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3.3. Analysis of the human salivary microbiome composition
Finally, we applied the ESABO method to biological abundance data that

was derived from 16S ribosomal RNA gene sequences as part of the Human
Microbiome Project (HMP). This data was processed by the software package
QIIME (Quantitative Insights Into Microbial Ecology), and the resulting
operational taxonomic unit (OTU) or phylotype counts were made available
at https://www.hmpdacc.org/hmp/HMQCP/.

In the following, we only consider the data obtained from the 16S variable
region 3-5 (V35). We chose to base our analysis on saliva samples since the
salivary microbiome of an adult human is rather stable over time [24, 25] and
therefore can be considered to be an attractor state.

Co-occurrences were analyzed on the class level, and a binarization thresh-
old of 1 was used. Classes that occurred in each of the samples were not con-
sidered, since our method requires variation in the presence of a species to
predict its interactions. The results of our investigation are shown in Figure
10.

As we can see, the ESABO enhanced evolution leads to a relatively large
increase in fitness (Fig. 10 (a)). While the fittest network that was inferred
with the simple ESABO method (generation 0 of the evolution) has only a
fitness of F ≈ 0.01, the evolved network has a fitness of F ≈ 0.27 (after
an evolution period of 3000 generations). Furthermore, the fitness of the
evolved network, which was inferred from real biological data (138 different
Boolean samples), is significantly higher than the fitness of networks that
were inferred from randomly chosen attractors (not belonging to an actual
Boolean network). These networks only reach a median fitness of F ≈ 0.02
after an evolution of 3000 generations. This means that our evolutionary
inference method recognizes that the biological samples are not random, but
do in fact belong to an underlying network.

The largest connected component of the presumed underlying saliva net-
work that was found after an evolution of 3000 generations is shown in Fig. 10
(b). The complete inferred network (with 5 completely unconnected nodes)
can be seen in the supplement. We observe that the inferred network, re-
spectively its largest connected component, has considerably more negative
links (34 negative links) than positive ones (9 positive links). Although it
seems interesting to compare this network to other inferred interaction net-
works for the salivary microbiome, such a comparison is not very useful, since
our analysis focuses on the lowly abundant species (we did not consider the
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classes Bacilli, Bacteroidia, Betaproteobacteria, Clostridia and Gammapro-
teobacteria, which occurred in each of the samples), while many other studies
(like e.g. [1]) mainly predict interactions between highly abundant phyla or
classes (see also the discussion in [17]).

Instead, we take a closer look at the dynamic properties, respectively the
attractors, of the resulting network. If we compare the original attractors,
i.e., the binarized samples, to the attractors of the reconstructed network, we
find that they are very similar. Both sets have 13 attractors in common and
the remaining 30 samples have a very small Hamming distance of h ≤ 3 to the
attractors of the reconstructed network (see Fig. 10(c)-(d)). Furthermore, a
comparison of Figure 10(a) with Figure 9 suggests that the currently available
data cover less than 50 percent of the attractors of the system.
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Figure 10: Analysis of the human salivary microbiome
(a) Evolution of the maximum fitness for the reconstructed biological network in
comparison to the evolution of the median fitness of 25 networks which were inferred
from 138 random attractors that do not belong to an actual Boolean network (cf. Fig.
9). The shaded area indicates the area between the 10% and 90% quantile.
(b) Largest connected component of the reconstructed saliva network (fittest network
that was found after an evolution of 3000 generations). The other 5 nodes that are not
part of this component, were not connected at all, i.e. they do not have any links to
other nodes. Abbreviations: Fla: Flavobacteria, Sph: Sphingobacteria, Act:
Actinobacteria, CH2: CH21, Eps: Epsilonproteobacteria, Spi: Spirochaetes, Dei:
Deinococci, Osc: Oscillatoriophycideae, 4C0: 4C0d-2, Syn: Synergistia, Opi: Opitutae,
Ver: Verrucomicrobiae, Len: Lentisphaerae, Del: Deltaproteobacteria, Fus: Fusobacteria,
ML6: ML615J-28, Mol: Mollicutes.
(c) Comparison of the original attractors (derived from observed abundance patterns) to
the attractors of the reconstructed network. In both cases, we only considered the classes
that were present in the largest connected component of the reconstructed network. For
each sample, the minimum Hamming distance to an attractor of the reconstructed
network is indicated by its color. Samples colored in green are reproduced as attractors
of the reconstructed network.
(d) Histogram showing the minimum Hamming distances of the original attractors
(samples) or randomized versions of these attractors to the attractors of the
reconstructed network. The randomization of an attractors was performed by a
permutation of its entries. J indicates the Jaccard index between the attractors of the
reconstructed network and the original samples from (c).
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4. Discussion

Based on a previously introduced network inference method [17], which
evaluates the co-occurrences of zeros and ones at pairs of nodes, we formu-
late here a novel approach by evolving the inferred network such that the
overlap of attractor sets with respect to the original attractor set (the mi-
crobiome data) is maximized. In this way we achieve two goals that are of
fundamental importance to a formal description of the microbiome: (1) We
infer networks that are by design capable of reproducing the experimental
data on a binarized level. (2) We study in detail how this evolutionary infer-
ence method is affected by incomplete information on all possible dynamical
states (i.e., when only a certain percentage of available attractors have been
experimentally observed).

The original ESABO method feeds in two ways into the evolutionary
approach implemented here. The ESABO network serves as a starting point
for the evolution, and in addition, the ESABO scores permit prioritizing the
edges in the network during the evolution. This dramatically accelerates the
simulated evolution.

The focus on the information contained in the presence/absence patterns
of microbial species is not intended as an alternative, but rather as a comple-
ment, to abundance-based inference methods: As outlined in the introduc-
tion, these two levels of information contained in a microbiome dataset reveal
markedly different systemic properties. Based on the numerical experiments
performed in our investigation and the discussion of the ESABO method in
Claussen et al. [17], we believe that the Boolean perspective emphasizes rare
microorganisms and their contribution to the microbial community, as well
as the intrinsic interactions among microorganisms, while the abundance
perspective puts a stronger emphasis on the dominant microorganisms (with
Firmicutes and Bacteroidetes being prominent examples; see Mariat et al.
[26]) and is a more reliable indicator of external stimuli affecting large parts
of the community.

Focusing on the binary level of information in microbiome compositions
(i.e., the presence/absence view on microbial abundance patterns) allows us –
under the assumption that these binary states represent stable attractors – to
relate the microbial interaction network with microbiome states (attractors)
in an essentially parameter-free way.
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Although we obtained our results using a specific set of Boolean update
functions (eq. 2), other Boolean threshold functions which explicitly include
the current node value (si(t)), e.g.

si(t+ 1) =

{
1,

∑N
j=1Gijsj(t) > 0

si(t),
∑N

j=1Gijsj(t) ≤ 0

can be chosen and yield similar results (data not shown).
Most real-life datasets are incomplete (i.e., they do not show all possible

attractors). The challenge is that the percentage of available attractors is
unknown. Here we find a relationship between the percentage of known
attractors and the average accuracy achieved in this evolutionary ESABO
(Figure 9 and S2). This suggests the possibility to estimate the completeness
of a set of microbiome abundance patterns. With more and more abundance
patterns becoming available, this limitation will become less severe, but even
now, as we have illustrated, our method can provide a rough estimate of how
comprehensive the current data are.

Our findings prompt further research to understand in more detail the
change of attractors under small variation of the underlying regulatory net-
work, as a deeper understanding of this relationship has the potential of
contributing better algorithms for the inference of microbial interaction net-
works.
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Appendix A. Analytical formula for the calculation of µ and σ

In order to speed up the computation of the ESABO scores Z and to
reduce the randomness of the obtained results, we introduce an analytical
formula for the calculation of the mean µ and the standard deviation σ of
the entropy distribution, which is obtained if we calculate the entropy for all
possible permutations π(j) of the entries of b⃗j.

The standard deviation can be calculated by

σ = ⟨H2⟩ − µ2 (A.1)

with the mean

µ =
1

NA!

∑
π∈P

H
(
x⃗AND
iπ(j)

)
=

1

NA!

∑
z

Hz w(z)

(A.2)

and
⟨H2⟩ = 1

NA!

∑
z

H2
z w(z). (A.3)

NA is the number of samples, respectively attractors, π(j) is a permuta-
tion of the entries of b⃗j and P is the set of all possible permutations of the
entries of b⃗j.
z(π(j)) is the number of ones in x⃗AND

iπ(j) and w(z0) is the number of permuta-
tions π that result in z(π) = z0.

The number w(z) of permutations that result in z ones in x⃗AND
iπ(j) can be

calculated by

w(z) =
n!

(n− z)!

(NA − n)!

(NA + z − n−m)!

(
m

z

)
(NA −m)!, (A.4)

if z ∈ [Max(0, n+m−NA),Min(n,m)].
Otherwise w(z) = 0.

n = p1(⃗bi) · NA is the number of ones in b⃗i and m = p1(⃗bj) · NA is the
number of ones in b⃗j .
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Appendix B. Generation of ROC curves for the ESABO method
and calculation of true positive and false positive
rates for inferred or evolved networks

In order to create ROC curves for the ESABO method, we merge the
link predictions for all the investigated networks into one large set and rank
them according to their ESABO score. For the recognition of positive links,
the link predictions are sorted by descending ESABO score Z and we only
set positive links. For the recognition of negative links, the link predictions
are sorted by ascending ESABO score and we only set negative links. For
the recognition of links in general (regardless of their correct sign), the link
predictions are sorted by descending absolute ESABO-score value |Z|.

The true positive rate (TPR) and false positive rate (FPR) of each evolved
or inferred network is calculated by

TPR+ =
n++

L+

, FPR+ =
n+− + n+0

N ·(N−1)
2

− L+

(B.1)

for the recognition of positive links, by

TPR− =
n−−

L−
, FPR− =

n−+ + n+0

N ·(N−1)
2

− L−
(B.2)

for recognition of negative links, and by

TPRedge =
n++ + n−− + n+− + n−+

L+ + L−
,

FPRedge =
n+0 + n−0

N ·(N−1)
2

− (L+ + L−)
(B.3)

for the recognition of edges in general.
L+ is the number of positive edges and L− the number of negative edges in the
original network. N is the number of nodes. In the abbreviation nxy, y stands
for the actual type of edge (positive (+), negative (-) or none (0)) and x for
the predicted relationship. Hence, n++ (respectively n−−) is the number of
positive (resp. negative) edges that were correctly classified as positive (resp.
negative). n+− (resp. n−+) refers to the number of negative (resp. positive)
edges that were wrongly classified as positive (resp. negative) and n+0 (resp.
n−0) is the number of positive (resp. negative) edges that were present in
the evolved or inferred network although there was no corresponding edge in
the original network.
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