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Learning Graphical Models From
the Glauber Dynamics

Guy Bresler, David Gamarnik, and Devavrat Shah

Abstract— In this paper, we consider the problem of learning
undirected graphical models from data generated according
to the Glauber dynamics (also known as the Gibbs sampler).
The Glauber dynamics is a Markov chain that sequentially
updates individual nodes (variables) in a graphical model and
it is frequently used to sample from the stationary distribution
(to which it converges given sufficient time). Additionally, the
Glauber dynamics is a natural dynamical model in a variety of
settings. This paper deviates from the standard formulation of
graphical model learning in the literature, where one assumes
access to independent identically distributed samples from the
distribution. Much of the research on graphical model learning
has been directed toward finding algorithms with low compu-
tational cost. As the main result of this paper, we establish
that the problem of reconstructing binary pairwise graphical
models is computationally tractable when we observe the Glauber
dynamics. Specifically, we show that a binary pairwise graphical
model on p nodes with maximum degree d can be learned in
time f (d) p2 log p, for a function f (d) defined explicitly in this
paper, using nearly the information-theoretic minimum number
of samples.

Index Terms— Graphical models, Markov random fields,
learning, structure estimation, Glauber dynamics.

I. INTRODUCTION

EXAMPLES of data one might usefully model as being
generated according to a Markov process include the

dynamics of agents in a coordination game, the fluctuations
of stocks or other financial data, behavior of users in a social
network, and spike patterns in neural networks.

The focus of this paper is on learning the nature of
Markovian dynamics from observed data governed by local
interactions. Concretely, we suppose that such local inter-
actions are represented by a graphical model. We observe
a single-site dynamics, specifically the so-called Glauber
dynamics, and wish to learn the graph underlying the model.

This work fits within a broader theme of learning graphical
models from data, a problem traditionally posed assuming
access to i.i.d. samples from the model. While the assumption
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of i.i.d. samples makes sense as an abstraction (as well as
in some practical scenarios), observations in many settings
are correlated over time and in this case it is more natural
to assume that samples are generated according to a Markov
process. In general the distribution of such samples can be far
from i.i.d.

The problems of learning and of generating samples are
known to be related. On one hand, learning graphical models
from i.i.d. samples is algorithmically challenging [1]–[3],
and on the other hand, generating samples from distribu-
tions represented by graphical models is hard in general [4].
In the literature, much work has focused on trying to find
low-complexity algorithms, both for learning as well as for
generating samples, under various restrictions to the graphical
model. Interestingly, related conditions (such as spatial and
temporal mixing) have turned out to be central to most
approaches.

Learning graphical models from i.i.d. samples appears to
be challenging when there are correlations between variables
on a global scale, as this seems to require a global procedure.
Our results show that observing a local process allows to learn
distributions with global correlations by temporally isolating
the local structure.

A. Complexity of Graphical Model Learning

A number of papers, including [5]–[7] have suggested
finding each node’s neighborhood by exhaustively searching
over candidate neighborhoods and checking conditional inde-
pendence. For graphical models on p nodes of maximum
degree d , such a search takes time (at least) on the order of pd .
As d grows, the computational cost becomes prohibitive, and
much effort by the community has focused on trying to find
algorithms with lower complexity.

Writing algorithm runtime in the form f (d)pc(d), for high-
dimensional (large p) models the exponent c(d) is of primary
importance, and we will think of low-complexity algorithms
as having an exponent c(d) that is bounded by a constant
independent of d .

Previous works proposing low-complexity algorithms either
restrict the graph structure or the nature of the interactions
between variables. The seminal paper of Chow and Liu [8]
makes a model restriction of the first type, assuming that
the graph is a tree; generalizations include to polytrees [9],
hypertrees [10], tree mixtures [11], and others. Among the
many possible assumptions of the second type, the correlation
decay property (CDP) is distinguished: nearly all existing
low-complexity algorithms require the CDP [3]. An exception
is [12], which shows a family of antiferromagnetic models that
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can be learned with low complexity despite strongly violating
the CDP.1

Informally, a graphical model is said to have the correlation
decay property (CDP) if any two variables σs and σt are
asymptotically independent as the graph distance between s
and t increases. The CDP is known to hold for a number of
pairwise graphical models in the so-called high-temperature
regime, including Ising, hard-core lattice gas, Potts (multino-
mial), and others (see the survey article [16] as well as,
e.g., [17]–[23]).

It was first observed in [6] that it is possible to efficiently
learn models with (exponential) decay of correlations, under
the additional assumption that neighboring variables have
correlation bounded away from zero. A variety of other
papers including [24]–[27] give alternative low-complexity
algorithms, but also require the CDP. A number of structure
learning algorithms are based on convex optimization, such
as Ravikumar et al.’s [28] approach using regularized node-
wise logistic regression. While this algorithm is shown to work
under certain incoherence conditions and does not explicitly
require the CDP, Bento and Montanari [3] showed through
a careful analysis that the algorithm provably fails to learn
ferromagnetic Ising models on simple families of graphs
without the CDP. Other convex optimization-based algorithms
such as [29]–[31] require similar incoherence or restricted
isometry-type conditions that are difficult to interpret in terms
of model parameters, and likely also require the CDP.

Most computationally efficient sampling algorithms (which
happen to be based on the Markov Chain Monte Carlo method)
require a notion of temporal mixing and this is closely related
to spatial mixing or a version of the CDP (see, e.g., [32]–[34]).
Thus, under a class of “mixing conditions”, we can both
generate (i.i.d.) samples efficiently as well as learn graphical
models efficiently from such i.i.d. samples.

B. Main Results

We give an algorithm that learns the graph structure under-
lying an arbitrary undirected binary pairwise graphical model
from the Glauber dynamics, even without any mixing or
correlation decay property. Concretely, in Theorem 1 we show
that the algorithm learns the graph underlying any undirected
binary pairwise graphical model over p nodes with maximum
vertex degree d , given n = �(ecβdα−4 log p) updates of
the Glauber dynamics per node, starting from any initial
state, with runtime np2 log p. Here α and β are lower and
upper bounds on the coupling parameters (see Section II-A).
The number of samples required by the algorithm is nearly
information-theoretically optimal, as shown in the lower bound
of Theorem 4 in Section V.

C. Other Related Work

Several works have studied the problem of learning
the graph underlying a random process for various processes.

1Since appearance of the conference version of the present paper [13],
significant progress has been made on structure learning from i.i.d. samples:
[14] showed that it is possible to learn bounded-degree graphs in quadratic
time (with suboptimal sample complexity), and [15] introduced an efficient
algorithm with near-optimal sample complexity.

These include learning from epidemic cascades [35]–[37]
and learning from delay measurements [38]. Another line
of research asks to find the source of infection of an epi-
demic by observing the current state, where the graph is
known [39], [40].

More broadly, a number of papers in the learning
theory community have considered learning functions (or
concepts) from examples generated by Markov chains,
including [41]–[44]. The present paper is similar in spirit to
that of Bshouty et al. [43] showing that it is relatively easy to
learn DNF formulas from examples generated according to a
random walk as compared to i.i.d. samples.

The literature on the Glauber dynamics is enormous and
we do not attempt to summarize it here. However, we remark
that the Glauber dynamics is equivalent to a model of noisy
coordination games and has been studied in that context
by various authors: Montanari and Saberi [45] studied the
impact of graph structure on rate of adoption of innovations,
Berry and Subramanian [46] studied the problem of inferring
the early adopters from an observation at a later time.

D. Outline

The rest of the paper is organized as follows. In Section II
we define the model and formulate the learning problem.
In Section III we present our structure learning algorithm and
analysis. Then in Section V we give an information-theoretic
lower bound on the number of samples necessary in order to
reconstruct with high probability.

II. PROBLEM STATEMENT

A. Ising Model

We consider the Ising model on a graph G = (V , E) with
|V | = p. The notation ∂i is used to denote the set of neighbors
of node i , and the degree |∂i | of each node i is assumed
to be bounded by d . To each node i ∈ V is associated a
binary random variable (spin) σi . Each configuration of spins
σ ∈ {−1,+1}V is assigned probability according to the Gibbs
distribution

P(σ ) = 1

Z
exp

( ∑
{i, j }∈E

θi j σiσ j

)
. (1)

Here Z is the partition function and serves to normalize the
distribution. The distribution is parameterized by the vector of
edge couplings (θi j ) ∈ R

E , assumed to satisfy

α ≤ |θi j | ≤ β for {i, j} ∈ E

for some constants 0 < α ≤ β. We can alternatively think of
θ ∈ R(p

2), with θi j = 0 if {i, j} /∈ E . For a graph G, let

�α,β(G) = {θ ∈ R
(p

2) : α ≤ |θi j | ≤ β if {i, j} ∈ E,

and θi j = 0otherwise}
be the set of parameter vectors corresponding to G.

The model (1) does not have node-wise parameters (that
is, the external field is zero); while we restrict to this case for
simplicity, similar results to those presented hold with suitable
minor modifications to accommodate nonzero external fields.
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The distribution specified in (1) is a Markov random field,
and an implication is that each node is conditionally indepen-
dent of all other nodes given the values of its neighbors. This
allows to define a natural Markov chain known as the Glauber
dynamics.

B. The Glauber Dynamics

The Glauber dynamics (also sometimes called the Gibbs
Sampler) is a natural and well-studied reversible Markov
chain defined for any Markov random field. For mathematical
convenience we use both the continuous-time and discrete-
time versions. We describe here the continuous-time dynamics,
writing σ t for the configuration at time t ≥ 0. The process is
started at some arbitrary (possibly random) initial configura-
tion σ 0 ∈ {−1,+1}p, and each node is updated at times given
by an independent Poisson process of rate one. If spin σi is
updated at time t , it takes on value +1 with probability

P(σi = +1 |σ t
V \{i}) = exp

(
2
∑

j∈∂i θi j σ
t
j

)
1 + exp

(
2

∑
j∈∂i θi j σ

t
j

) , (2)

and is −1 otherwise. Notably, each spin update depends only
on neighboring spins. Equation (2) and the bounded coupling
assumption |θi j | ≤ β implies that for any x ∈ {−1,+1}∂i ,

min{P(σi =+1 |σ t
∂i = x), P(σi =−1 |σ t

∂i = x)} ≥ 1
2 e−2βd .

(3)

This is a lower bound on the randomness in each spin update
and will be used later.

The Glauber dynamics can be simulated efficiently for
any bounded-degree undirected graphical model, and it is a
plausible generating process for observed samples in various
settings. One can check that the Gibbs distribution (1) is
stationary for the Glauber dynamics. If the dynamics quickly
approaches stationarity (that is, the mixing time is small), then
it can be used to simulate i.i.d. samples from (1). But there are
families of graphs for which any local Markov chain, including
the Glauber dynamics, is known to converge exponentially
slowly (see, e.g., [4]), and moreover the availability of i.i.d.
samples violates conjectures in complexity theory in that it
allows to approximate the partition function [47]. While it is
difficult to imagine nature producing i.i.d. samples from such
models, there is no such issue with the Glauber dynamics (or
any other local Markov chain).

C. Graphical Model Learning

Our goal is to learn the graph G = (V , E) underlying a
graphical model of the form (1), given access to observations
from the Glauber dynamics. We assume that the identity of
nodes being updated is known; learning without this data
is potentially much more challenging, because in that case
information is obtained only when a spin flips sign, which
may occur only in a small fraction of the updates. More to
the point, when a spin does not flip sign it is not clear if it
even had an opportunity to update.

For the purposes of recording the node update sequence it
is more convenient to work with a discrete time (heat-bath)

version of the chain, where each sample is taken immediately
after a node is updated. In this case we denote the sequence
of n samples by σ (1), σ (2), . . . , σ (n) and the corresponding
node identities at which updates occur by I (1), I (2), . . . , I (n).
The value of I (1) is arbitrarily set to (say) one since the first
configuration does not arise from a node update. The sequence
of n samples is denoted by

X = (σ (l), I (l))1≤l≤n (4)

and is therefore an element of the product space

X = ({−1,+1}p)n × [p]n.

We suppose that the initial configuration σ (1) is chosen arbi-
trarily. The continuous-time chain is then observed for T units
of time, so there are in expectation T p spin updates. This
number is tightly concentrated around the mean, and our argu-
ments are not sensitive to a small amount of randomness in the
number of samples n, so for convenience we deterministically
set n = T p.

As mentioned before, the underlying graph G is assumed
to have maximum node degree bounded by d , and we denote
the set of all such graphs on p nodes by Gp,d . A structure
learning algorithm is a (possibly randomized) map

φ : ({−1,+1}p)n × [p]n → Gp,d .

The performance of a structure learning algorithm is measured
using the zero-one loss, and the risk for a starting configura-
tion σ (1) and vector θ ∈ �(G) of parameters corresponding
to a graph G ∈ Gp,d is given by

Pθ,σ (1) (φ(X) �= G).

The minimax risk is the best algorithm’s worst-case risk
(probability of error) over initial configurations, graphs and
corresponding parameter vectors, namely

Rp,d,n � min
φ

max
G∈Gp,d
θ∈�(G)

σ (1)∈{−1,+1}p

Pθ,σ (1) (φ(X) �= G).

The basic questions we seek to address are 1) which triples
(p, n, d) result in the minimax risk Rp,d,n tending to zero as
these parameters tend to infinity? and 2) is there an efficient
algorithm that is nearly optimal?

III. STRUCTURE LEARNING ALGORITHM

A. Idealized Test

We determine the presence of edges in a decoupled manner,
focusing on a single pair of nodes i and j . Our test is based
on the identity (derived via Eq. (2))

e4θi j = p+(1 − p−)

p−(1 − p+)
, (5)

where for an arbitrary assignment x∂i\{ j } we define

p+(x∂i\{ j }) = P(σi = +1|σ∂i\{ j } = x∂i\{ j }, σ j = +1)

p−(x∂i\{ j }) = P(σi = +1|σ∂i\{ j } = x∂i\{ j }, σ j = −1)

We will often leave implicit the dependence of p+ and p− on
x∂i\{ j }. The identity (5) holds whether or not the edge {i, j}
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is present, since {i, j} /∈ E implies θi j = 0, and this agrees
with σi and σ j being conditionally independent given σ∂i (in
which case p+ = p−).

Instead of attempting to estimate the right-hand side of (5)
from samples, we claim that if our goal is merely to decide
between θi j = 0 and |θi j | ≥ α, it suffices to estimate the much
simpler quantity p+ − p−. Observe that

e4θi j − 1 = p+(1 − p−)

p−(1 − p+)
− 1 = p+ − p−

p−(1 − p+)
,

and hence by (3) we have that for θi j ≥ 0 (or equivalently,
p+ ≥ p−),

p+ − p− ≤ e4θi j − 1 ≤ 4e4βd(p+ − p−).

Similarly, when θ ≤ 0,

p− − p+ ≤ e−4θi j − 1 ≤ 4e4βd(p− − p+).

The last two equations can be combined to give

sign(θi j )(p+ − p−) ≤ e4|θi j |−1 ≤ sign(θi j )4e4βd(p+− p−).

(6)

We emphasize that this inequality holds for any
assignment x∂i\{ j }.

It turns out to be possible to crudely estimate the quantity
p+ − p− in (6) to determine if it is equal to zero. It is
important that the sign of p+ − p− does not depend on
the configuration x∂i\{ j }, as this allows to accumulate con-
tributions from many samples. The following scenario gives
intuition for why sequential updates allow to do this. Suppose
that σi is updated, followed by σ j flipping sign, followed
by yet another update of σi , with no other spins updated.
Since only σ j has changed in between updates to σi , we can
hope to get an estimate of the effect of σ j on σi . To produce
the sequence of events just described requires observing the
process for �(p2) time, since any particular spin is the next
to be updated with probability 1/p. We next show how to
achieve a similar outcome sufficient for learning the structure,
in time only O(log p).

B. Estimating Edges

We define a few events to be used towards estimating the
effect of an edge, as captured by |p+ − p−|. To this end,
consider restriction of the process (σ t : t ≥ 0) to an interval,
written as

σ [t1,t2) = (σ t )t1≤t<t2 .

For a positive number L, let Aij (σ
[0,L)) be the event that

node i is selected at least once in the first L/3 time-units but
not node j , node j is selected at least once in the second L/3
time-units but not node i , and node i is selected at least once
in the final L/3 time-units but not node j . It is immediate
from the Poisson update times that

P(Aij (σ
[0,L))) = [(1 − e−L/3)e−L/3)]3 := q. (7)

(We denote this quantity by q since it will be used often.) Next,
define the event that σ j is opposite at time L/3 versus 2L/3,

Bij (σ
[0,L)) = {σ L/3

j �= σ
2L/3
j },

and take the intersection of the two events,

Cij (σ
[0,L)) = Aij (σ

[0,L)) ∩ Bij (σ
[0,L)).

Whenever σ j is updated, by Equation (3) both the probabilities
of flipping or staying the same are at least 1

2 e−2dβ , regardless
of the states of its neighbors. It follows that the last update
of σ j in the interval [ L

3 , 2L
3 ] has at least probability 1

2 e−2dβ

of being opposite to σ
L/3
j , so

P(Cij ) = P(Aij ) · P(Bij |Aij ) ≥ 1
2P(Aij )e

−2dβ. (8)

Note that determining the occurrence of Cij does not require
knowing anything about the graph.

We now define the statistic that will be used to estimate
presence of a given edge: For each k ≥ 1 and 1 ≤ i < j ≤ p,
let

X (k)
i j = Xij (σ

[(k−1)L ,kL))

= �Cij (σ [(k−1)L,kL))(−1)
�{σ L/3

j =+1}
(σ

L/3
i − σ L

i ).

The value X (k)
i j ∈ {−2, 0,+2} can be computed by an

algorithm with access to the process σ [(k−1)L ,kL). The idea
is that EX (k)

i j gives a rough estimate of the effect of spin j
on spin i by counting the number of times σi has differing
updates when σ j has changed. It is necessary that few or no
neighbors of i are updated during the time-interval, as these
changes could overwhelm the effect due to σ j . We will see
later that choosing L sufficiently small ensures this is usually
the case.

C. Structure Learning Algorithm

We now present the structure learning algorithm. In order to
determine presence of edge {i, j} the algorithm divides up time
into intervals of length L, estimates |EXij | from the intervals,
and compares to a threshold τ .

Algorithm 1 GlauberLearn (σ [0,T ), L, τ )

1: Let Ê = ∅ and kmax = �T/L	.
2: For 1 ≤ i < j ≤ p
3: If | 1

kmax

∑kmax
k=1 X (k)

i j | ≥ τ

4: Then add edge {i, j} to Ê.
5: Output Ê.

Theorem 1: Consider the Ising model (1) on a graph G with
maximum degree d and couplings bounded as α ≤ |θi j | ≤ β.
Let σ [0,T ) denote the continuous-time Glauber dynamics
started from any configuration σ 0. If

L = α

16d
e−10dβ, τ = 3Ldq, T ≥ 228

α4 e40dβ log p,

where q = P(Aij ) = [(1 − e−L/3)e−L/3)]3, then GLAUBER-
LEARN outputs the correct edge set with probability 1 − 1

p
with runtime O(p2 log p).

We bound the runtime of algorithm GLAUBERLEARN and
prove correctness in the next section. To bound the runtime,
suppose that when the samples are collected, they are stored
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as a list for each node giving the times the node is updated
and the new value. Each computation in Line 3 takes time
O(log p), and this is done for O(p2) pairs i, j , which gives
the stated runtime.

IV. PROOF OF THEOREM 1

In this section we prove Theorem 1. Since the
Glauber dynamics is time-homogeneous (and Markov),

E(X (k)
i j |σ (k−1)L = x) = E(X (1)

i j |σ 0 = x) does not
depend on the index k. Hence, we use the shorthand Ex Xi j

for E(X (k)
i j |σ (k−1)L = x) and similarly for Px ( · ) =

P( · |σ (k−1)L = x). In the same way, we will use com-
pact notation for events, writing for example Dij in place
of D[0,L)

i j .
Let Dij (σ

[t1,t2)) be the event that none of the neighbors of i ,
aside from possibly j , are selected in time-interval [t1, t2).
Since Dij depends on disjoint Poisson clocks from those
determining Aij , the two events are independent (however,
Dij is not necessarily independent of Bij ). It is immediate,
again from the Poisson times of updates, that

P(Dij (σ
[(k−1)L ,kL))) = 7P(Dij (σ

[0,L)))

= (
e−L)|∂i\{ j }| ≥ (

e−L)d
. (9)

At this point it is possible to make a connection to the
idealized edge test formula (6). Conditioning on Dij , our edge
statistic has expectation

Ex (Xij |Dij )

= Ex (Xij |Cij , Dij ) · Px (Cij |Dij )

= Ex
(
(−1)

�{σ L/3
j =+1}

(σ
L/3
i − σ L

i )|Cij , Dij
) · Px (Cij |Dij )

= 2
(
P(σi = +1|σ∂i\{ j } = x∂i\{ j }, σ j = +1)

− P(σi = +1|σ∂i\{ j } = x∂i\{ j }, σ j = −1)
) · Px (Cij |Dij )

= 2
(

p+(x∂i\{ j }) − p−(x∂i\{ j })
)
Px (Cij |Dij ). (10)

Of course, without knowing the neighbors of i it is not clear
whether or not event Dij has occurred. Nevertheless, as shown
next in Lemma 2, if L is small enough, then Dij occurs
frequently enough to create a separation in |EXij | between
the case of edge versus no edge.

Lemma 2: We have the following estimates:

(i) If {i, j} ∈ E , then for any x ∈ {−1,+1}p,

sign(θi j ) · Ex Xi j ≥ 2q
(
|θi j | · 1

4 e−10dβe−Ld − Ld
)

(ii) If {i, j} /∈ E , then for any x ∈ {−1,+1}p,

|Ex Xi j | ≤ 2q Ld.

Proof: To begin, conditioning on Dij gives

Ex Xi j = Ex (Xij |Dij )Px (Dij ) + Ex (Xij |Dc
i j )Px(Dc

i j ). (11)

In both cases (i) and (ii) we have

|Ex (Xij |Dc
i j )Px(Dc

i j )|
(a)≤ 2Px(Cij |Dc

i j )Px (Dc
i j )

(b)≤ 2Px(Aij |Dc
i j )Px (Dc

i j )

(c)= 2Px (Aij )Px (Dc
i j )

(d)≤ 2q(1 − e−Ld)
(e)≤ 2q Ld. (12)

Inequality (a) is by the crude estimate |(−1)�{σ j (L/3)=+1}
(σi (L/3) − σi (L))| ≤ 2, (b) follows from the containment
Cij ⊆ Aij , (c) is by independence of Aij and Dij , (d) is
obtained by plugging in (7) and (9), and (e) follows from the
inequality e−t ≥ 1 − t .

We first prove case (ii). If edge {i, j} is not in the graph,
then flipping only spin σ j does not change the conditional
distribution of spin σi , assuming the neighbors of i remain
unchanged, and it follows from (10) that

Ex (Xij |Dij ) = 0.

Plugging (12) into (11) proves case (ii).
We now turn to case (i). Suppose {i, j} ∈ E . Eq. (11)

implies

sign(θi j ) · Ex (Xij ) ≥ sign(θi j ) · Ex (Xij |Dij )P(Dij )

− |Ex(Xij |Dc
i j )P(Dc

i j )|. (13)

The second term has already been bounded in (12).
We estimate the first term on the right-hand side of (13):

sign(θi j ) · Ex (Xij |Dij )P(Dij )

(a)= 2 sign(θi j )
(

p+(x∂i\{ j }) − p−(x∂i\{ j })
)
Px (Cij |Dij )P(Dij )

(b)≥ 2
(
e4|θi j | − 1

) · 1
16 e−10dβP(Aij )P(Dij )

(c)≥ 2 · 4|θi j | 1
16 e−10dβqe−Ld .

Here (a) uses (10), (b) is by (6) and because the reasoning
from (8) applies also conditioned on Dij and using the fact
that Aij and Dij are independent, and (c) follows from the
inequality ex ≥ 1 + x , the definition q = P(Aij ), and (9).
This proves part (i).

We will use the following Bernstein-type submartingale
concentration inequality, which can be found for example as
an implication of [48, Th. 27].

Lemma 3: Let Z1, Z2, . . . be a submartingale adapted to
the filtration (Fk)k≥0 with |Zk − Zk−1| ≤ c almost surely and
Var(Zk |Fk−1) ≤ s2. Then for all n ≥ 0 and real t ,

P(Zn − Z0 ≤ −t) ≤ exp

(
− t2

2ns2 + ct/3

)
.

We now prove Theorem 1, which amounts to just show-
ing that EXij can be estimated sufficiently accurately from
samples.

Proof of Theorem 1: Recall that q = [(1 − e−L/3)e−L/3)]3.
Suppose that {i, j} ∈ E . Let ρ denote the lower bound quantity
in case (i) of Lemma 2. The inequality e−t ≥ 1 − t implies
that

ρ = 2q
(
|θi j | · 1

4 e−10dβe−Ld − Ld
)

≥ 2q
(α

4
e−10dβe−Ld − Ld

)

≥ 2q(4Lde−Ld − Ld) ≥ 4q Ld.
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The last step follows since L = α
16d e−10dβ ≤ β

16d e−10β ≤
1/160d so e−Ld ≥ e−1/160 ≥ 3/4.

The sequence Zk = ∑k
�=1 sign(θi j )X (�)

i j − kρ, k ≥ 1, is a
submartingale adapted to the filtration (Fk)k≥1 = (σ [0,kL))k≥1,
since by Lemma 2,

E(sign(θi j )X (k)
i j |σ ((k−1)L)) ≥ min

x
{sign(θi j )Ex Xi j } ≥ ρ.

Let X ij = 1
kmax

∑kmax
k=1 X (k)

i j . Suppose that s2 is an upper

bound on Var(Zk |Fk−1), and note that |Zk − Zk−1| ≤ 2 +
ρ ≤ 3. Recalling the choice τ = 3Ldq , by Lemma 3

P(sign(θi j )Xij < τ) = P(Zkmax < kmax(τ − ρ))

≤ P(Zkmax < −kmaxLdq)

≤ exp

(
− kmax(Ldq)2

2s2 + Ldq

)
.

It remains to bound Var(Zk |Fk−1). For this, we observe that

Var(Zk |Fk−1) ≤ 4 · P(X (k)
i j �= 0) (since X (k)

i j ∈ {−2, 0, 2}).
Now, P(X (k)

i j �= 0) ≤ P(Cij ) ≤ q , so s2 ≤ 4q . We therefore
obtain

P(sign(θi j )Xij < τ) ≤ exp(−kmaxL2d2q/9),

where we used the crude bound Ld ≤ 1.
If kmax = 27(L2d2q)−1 log p then we can take a union

bound over the at most pd/2 ≤ p2 edges to see that with
probability at least 1 − 1

p we have E ⊆ Ê . We can translate
this value for kmax to the time T stated in the theorem by
taking T larger than

228

α4 e40dβ log p = 3 · 272

L4d2 log p ≥ 27

Ld2q
log p = Lkmax.

The inequality used the estimate 1−e−x ≥ xe−a for x ∈ [0, a],
which implies that for L ≤ 1/2, q ≥ L3e−L−1/2/27.

Next, suppose that {i, j} /∈ E . Lemma 2 states that
|Ex Xi j | ≤ 2q(1−e−Ld) ≤ 2Ldq := ρ′. As before this implies
that Zk = ∑k

�=1 X (�)
i j − kρ′, k ≥ 1, is a supermartingale and

Z̃k = ∑k
�=1 X (�)

i j + kρ′, k ≥ 1, is a submartingale. Lemma 3
gives

P(|X ij | ≥ τ ) ≤ P(Zkmax ≥ kmax(τ − ρ′))
+ P(Z̃kmax ≤ kmax(ρ

′ − τ ))

≤ 2 exp

(
− kmax(Ldq)2

2s2 + Ldq

)
.

The same bound on s2 applies as before, and a union bound
over at most

(p
2

)
non-edges shows that the same kmax (and

hence T ) specified earlier suffices in order that Ê ⊆ E with
probability 1 − 1

p . �

V. A LOWER BOUND ON THE OBSERVATION TIME

Our lower bound derivation is a modification of the proof
of Santhanam and Wainwright [49] for the i.i.d. setting. Their
construction was based on cliques of size d + 1, with a
single edge removed. When the interaction is ferromagnetic
(i.e., θi j ≥ 0), at low temperatures (α, β large enough) the
removal of a single edge is difficult to detect and leads to a
lower bound.

We use a similar (but not identical) family of models as
in [49] to lower bound the observation time required. Start
with a graph G0 consisting of �p/(d + 1)	 cliques of size
d + 1. Suppose that d is odd, and fix a perfect matching on
each of the cliques (each matching has cardinality (d + 1)/2).
The vector of parameters θ0 corresponding to G0 is obtained
by setting θ0

i j = α for edges in the matchings, and θ0
i j = β for

edges not in the matchings.
Now for each {u, v} in a matching (where θ0

uv = α) we
form the graph Guv by removing the edge {u, v} from G0.
There are

M =
⌊

p

d + 1

⌋ (
d + 1

2

)
≥ p

4

graphs Guv with one edge removed. The corresponding vector
of parameters is denoted by θuv (note that uv appears in
superscript).

This construction is a refinement of the one in [49]: their
construction had all edge parameters equal to a single value β,
and therefore did not fully capture the effect of some edges
being dramatically weaker.

Theorem 4 (Sample Complexity Lower Bound): Suppose
the minimax risk is Rp,d,n ≤ 1/2. Then T = n/p satisfies

T ≥ e2βd/3

32e6ded+3βα
log p.

In the remainder of this section we prove Theorem 4. We use
the following version of Fano’s inequality, which can be found,
for example, as [50, Corollary 2.6]. It gives a lower bound on
the error probability (minimax risk in our case) in terms of
the KL-divergence between pairs of points in the parameter
space, where KL-divergence between two distributions P and
Q on a space X is defined as

D(P‖Q) =
∑
x∈X

P(x) log
P(x)

Q(x)
.

Lemma 5 (Fano’s Inequality): Assume that M ≥ 2 and
that � contains elements θ0, θ1, . . . , θM . Let Qθ j denote the
probability law of the observation X under model θ j . If

1

M + 1

M∑
j=1

D(Qθ j ‖Qθ0) ≤ γ log M (14)

for 0 < γ < 1/8, then the minimax risk for the zero-one loss
is bounded as

pe ≥ log (M + 1) − 1

log M
− γ.

A. Bound on KL Divergence

We now upper bound the KL divergence between the
sequences of observations generated according to models para-
meterized by θ0 and any θuv (by symmetry of the construction
this is the same for every θuv ). It suffices to consider the pro-
jection (i.e., marginal) onto the size d + 1 clique containing u
and v, since by tensorization of KL divergence, the divergence
between these projections is equal to the entire KL divergence.
We therefore abuse notation slightly and write Pθ0 and Pθuv

for the Gibbs distributions after projecting onto the relevant
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clique. Similarly, using θ as a placeholder for either θ0 or
θuv , we let Qθ represent the distribution of the observation X ,
which now consists of samples σ (1), . . . , σ (n) ∈ {−1,+1}d+1

as well as node update indices I (2), . . . , I (n) ∈ [p]. (We only
project the Gibbs measure to the clique, keeping node update
indices over the entire original graph.) The initial configuration
σ (1) is drawn according to the stationary measure Pθ for each
model Qθ . Concretely, with θ representing either θ0 or θuv ,

Qθ (σ
(1), . . . , σ (n), I (2), . . . , I (n))

= 1

pn−1 · Pθ (σ
(1))

n∏
l=2

Pθ (σ
(l)|σ (l−1), I (l)). (15)

Here the factor 1/pn−1 is due to updated node indices being
uniformly random at each step i ≥ 2. Implicit in the notation
is the understanding that Pθ (σ

(l)|σ (l−1), I (l)) = 0 if σ (l−1)

and σ (l) differ in any spin other than I (l).
We have the following bound for each of the KL divergence

terms in (14). Theorem 4 follows immediately by applying
Lemma 5.

Lemma 6: For each model Qθuv on graph Guv ,

D(Qθuv ‖Qθ0) ≤ 4α + n

p
18αdede−2βd/3.

Proof: Using (15) we write

D(Qθuv ‖Qθ0) = EX∼Qθuv log
Qθuv (X)

Qθ0(X)

:= C1 +
n∑

l=2

Cl , (16)

where

C1 = Eσ∼Pθuv log
Pθuv (σ )

Pθ0(σ )
(17)

and for l ≥ 2

Cl = E
(σ (l),σ (l−1),I (l) )∼Qθuv

log
Pθuv (σ (l)|σ (l−1), I (l))

Pθ0(σ (l)|σ (l−1), I (l))
. (18)

Note that from any configuration σ (l−1), an update to node k
other than u or v has ratio of conditional probabilities equal
to one (since the neighborhood of k is the same under both
models), so each term in (18) is nonzero only if one of the
nodes u or v is updated. This introduces a factor 2/p for the
probability of selecting u or v to update, and by symmetry we
can condition on u updating. Thus,

Cl = 2

p
Eσ (l)σ (l−1)∼Qθuv

×
[

log
Pθuv (σ

(l)
u |σ (l−1), I (l))

Pθ0(σ
(l)
u |σ (l−1), I (l))

∣∣∣∣I (l) = u

]
. (19)

When updating node u we have by (2)

Pθuv (σ
(l)
u = +1|σ (l−1), I (l) = u)

Pθ0(σ
(l)
u = +1|σ (l−1), I (l) = u)

= 1 + exp(−2ασ
(l−1)
v − 2β

∑
j /∈{u,v} σ

(l−1)
j )

1 + exp(−2β
∑

j /∈{u,v} σ
(l−1)
j )

= exp(2β
∑

j /∈{u,v} σ
(l−1)
j ) + exp(−2ασ

(l−1)
v )

exp(2β
∑

j /∈{u,v} σ
(l−1)
j ) + 1

(20)

≤ e2α. (21)

The summations indexed by j /∈ {u, v} are over nodes in the
size d + 1 clique under consideration. The last inequality
follows by observing that the largest value is achieved in (20)
when σ

(l−1)
v = −1 and

∑
j /∈{u,v} σ

(l−1)
j → −∞. By symmetry

the same bound holds for the ratio of conditional probabilities
of σu = −1.

Equation (21) shows that the log-likelihood ratio is always
at most 2α. However, it is typically roughly e−cdβ , where
c > 0 is a constant, because the effective magnetic field
β

∑
j /∈{u,v} σ j typically has magnitude on the order βd , as

shown in Lemma 7 later in this section. Consider the event
Ul = {∑ σ

(l−1)
i ≥ d/3+2}. Applying the inequality e2z −1 ≤

7z for 0 ≤ z ≤ 1 to (20) gives

Pθuv (σ
(l)
u = +1|Ul, I (l) = u)

Pθ0(σ
(l)
u = +1|Ul, I (l) = u)

≤ 1 + e2α − 1

1 + exp(2βd/3)

≤ 1 + 7αe−2βd/3, (22)

and also from (2)

Pθuv (σ (l)
u = −1|Ul, I (l) = u) ≤ e−2βd/3. (23)

We now bound each term Cl in (19). Let Ul denote the
event that

∣∣ ∑
i σ (l−1)

∣∣ ≥ d/3 + 2. Conditioning on Ul gives

p

2
· Cl (24)

= EQθuv log
Pθuv (σ

(l)
u |σ (l−1), I (l) = u)

Pθ0(σ
(l)
u |σ (l−1), I (l) = u)

= EQθuv

[
log

Pθuv (σ
(l)
u |σ (l−1), I (l) = u)

Pθ0(σ
(l)
u |σ (l−1), I (l) = u)

∣∣∣∣Ul

]
Pθuv (Ul)

+ EQθuv

[
log

Pθuv (σ
(l)
u |σ (l−1), I (l) = u)

Pθ0(σ
(l)
u |σ (l−1), I (l) = u)

∣∣∣∣Uc
l

]
Pθuv (Uc

l )

= EQθuv

[
log

Pθuv (σ
(l)
u |σ (l−1), I (l) = u)

Pθ0(σ
(l)
u |σ (l−1), I (l) = u)

∣∣∣∣Ul

]
Pθuv (Ul)

+ EQθuv

[
log

Pθuv (σ
(l)
u |σ (l−1), I (l) = u)

Pθ0(σ
(l)
u |σ (l−1), I (l) = u)

∣∣∣∣Uc
l

]
Pθuv (Uc

l )

(25)

The only change in the last equality is replacing Ul by
Ul in the first conditional expectation, which is justified by
symmetry of both models θuv and θ0 to flipping all the spins.
Using (21),(22), (23), log(1 + x) ≤ x , and Pθuv (Ul) ≤ 1, the
first term in (25) is bounded by

2αe−2βd/3 + 7αe−2βd/3 ≤ 9αe−2βd/3.

Using (21) and Lemma 7 below, the second term in (25) is
bounded by

2αPθuv (Uc
l ) ≤ 2αd(3e)

d
3 +1 exp

(
− β

6
((d − 3)2 − 18)

)
.
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Combining the last two displays gives
p

2
· Cl ≤ 9αded+3βe−2βd/3

and adding this quantity n − 1 times and multiplying by the
factor 2/p, we get

D(Qθuv ‖Qθ0) ≤ C1 + n − 1

p
18αded+3βe−2βd/3.

Now, to bound C1, it suffices to bound Pθuv (σ )/Pθ0(σ ). Let
guv(σ ) = ZuvPθuv (σ ) and g0(σ ) = Z0Pθ0(σ ), where Zuv =∑

σ guv(σ ) and Z0 = ∑
σ g0(σ ) are the partition functions

for the two models. An argument similar to (21) shows that
e−2αguv (σ ) ≤ g0(σ ) ≤ e2αguv(σ ) for any σ , hence

C1 ≤ log
Pθuv (σ )

Pθ0(σ )
= log

Z0 · guv(σ )

Zuv · g0(σ )
≤ 4α.

Plugging this quantity into the previous displayed equation
completes the proof.

Lemma 7: The magnetization
∑

i σi satisfies

Pθuv (|
∑

i
σi | ≤ d/3+1) ≤ d(3e)

d
3 +1 exp(−β

6
((d−3)2−18)).

Proof: Note that Pθuv is the stationary measure for the
Glauber dynamics governing Qθuv , so the marginal distribution
of each σ (l) in the sample X ∼ Qθuv is Pθuv .

We first lower bound Pθuv (| ∑i σi | > d/3 + 1) by the prob-
ability of the all +1 or all −1 configuration,

Pθuv

(∣∣∣ ∑
i

σi

∣∣∣ >
d

3
+ 1

)

≥ 2

Z
exp

(
β

(d − 1)(d + 1)

2
+ α

d − 1

2

)

≥ 2

Z
exp

(
β · d2 − 1

2

)
.

Next, we can get an upper bound by supposing all edges in the
clique have parameter β and noting that the probability of any
particular configuration σ is increasing in | ∑i σi |. Counting
the number of pairs of agreeing spins minus disagreeing spins
in a configuration with 2d/3 + 1 positive spins and d/3
negative spins, we obtain

Pθuv

(∣∣∑
i

σi
∣∣ ≤ d

3
+ 1

)

≤ 2d

Z

(
d

d
3 + 1

)
exp

(
β
(2d

3
+ 1

)2 + β
(d

3

)2 − β
(2d

3
+1

)d

3

)

≤ (3e)
d
3 +1 2d

Z
exp(β(d2/3 + d + 1)),

where the second inequality follows from
(n

k

) ≤ ( n·e
k

)k
and

(3e)d/3 ≤ ed . Taking the ratio of the last two displayed
quantities gives the desired inequality.

VI. DISCUSSION

The main message of this paper is that observing dynamics
over time is quite natural in many settings, and that access to
such observations leads to a simple algorithm for estimating
the graph underlying an Ising model. We expect that similar

results can be derived (with suitable modifications) for samples
generated from local Markov chains other than the Glauber
dynamics, and for non-binary pairwise graphical models.
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