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To elucidate cellular machinery on a global scale, we performed a
multiple comparison of the recently available protein–protein
interaction networks of Caenorhabditis elegans, Drosophila mela-
nogaster, and Saccharomyces cerevisiae. This comparison inte-
grated protein interaction and sequence information to reveal 71
network regions that were conserved across all three species and
many exclusive to the metazoans. We used this conservation, and
found statistically significant support for 4,645 previously unde-
scribed protein functions and 2,609 previously undescribed protein
interactions. We tested 60 interaction predictions for yeast by
two-hybrid analysis, confirming approximately half of these. Sig-
nificantly, many of the predicted functions and interactions would
not have been identified from sequence similarity alone, demon-
strating that network comparisons provide essential biological
information beyond what is gleaned from the genome.

comparative analysis � multiple alignment � protein network �
yeast two-hybrid

A major challenge of postgenomic biology is to understand the
complex networks of interacting genes, proteins, and small

molecules that give rise to biological form and function. Advances
in whole-genome approaches are now enabling us to characterize
these networks systematically, by using procedures such as the
two-hybrid assay (1) and protein coimmunoprecipitation (2) to
screen for protein–protein interactions. To date, these technologies
have generated large interaction networks for bacteria (3), yeast
(4–7), and, recently, fruit fly (8) and nematode worm (9).

The large amount of protein interaction data now available
presents opportunities and challenges in understanding evolution
and function. Such challenges involve assigning functional roles to
interactions (10), separating true protein–protein interactions from
false positives (11), and, ultimately, organizing large-scale interac-
tion data into models of cellular signaling and regulatory machin-
ery. As is often the case in biology, an approach based on evolu-
tionary cross-species comparisons provides a valuable framework
for addressing these challenges. However, although methods for
comparing DNA and protein sequences have been a mainstay of
bioinformatics over the past 30 years, development of similar tools
at other levels of biological information, including protein interac-
tions (12–14), metabolic networks (15–17), or gene expression data
(18–20), is just beginning.

Recently, we devised a method called PATHBLAST (13) for
comparing the protein interaction networks of two species. Just as
BLAST performs rapid pairwise alignment of protein sequences (21),
PATHBLAST is based on efficient alignment of two protein networks
to identify conserved network regions. Here, we extend this ap-
proach to present a computational framework for alignment and
comparison of more than two protein networks. We apply this
multiple network alignment strategy to compare the recently avail-
able protein networks for worm, fly, and yeast, and show that
although any single network contains false-positive interactions,
embedded beneath this noise are a repertoire of protein interaction
complexes and pathways conserved across all three species.

Methods
We developed a general framework for comparison and analysis
of multiple protein networks. Full details are provided in
Supporting Text, Figs. 5–11, and Tables 3–6, which are published
as supporting information on the PNAS web site. Briefly, this
process integrates interactions with sequence information to
generate a network alignment graph. Each node in the graph
consists of a group of sequence-similar proteins, one from each
species; each link between a pair of nodes represents conserved
protein interactions between the corresponding protein groups
(Fig. 1). A search over the network alignment is performed to
identify two types of conserved subnetwork structures: short
linear paths of interacting proteins, which model signal trans-
duction pathways, and dense clusters of interactions, which
model protein complexes.

The search is guided by reliability estimates for each protein
interaction (computed based on a method by Bader et al., ref. 22),
which are combined into a probabilistic model for scoring candidate
subnetworks. Under the model, a log likelihood ratio score is used
to compare the fit of a subnetwork to the desired structure (path or
cluster) versus its likelihood given that each species’ interaction map
was randomly constructed. The underlying model assumptions are
that (i) in a real subnetwork, each interaction should be present
independently with high probability, and (ii) in a random subnet-
work, the probability of an interaction between any two proteins
depends on their total number of connections in the network.

The search algorithm exhaustively identifies high-scoring sub-
network seeds and expands them in a greedy fashion. The signif-
icance of the identified subnetworks is evaluated by comparing their
scores to those obtained on randomized data sets, in which each of
the interaction networks is shuffled along with the protein similarity
relationships between them.

Results
We applied the multiple network alignment framework (Fig. 1)
to perform a three-way alignment of the protein–protein inter-
action networks of Caenorhabditis elegans, Drosophila melano-
gaster, and Saccharomyces cerevisiae. These species span the
largest sets of protein interactions in the public databases to-date
and, along with mouse, comprise the major model organisms
used to study cellular physiology, development, and disease.
Protein interaction data were obtained from the Database of
Interacting Proteins (23) (February 2004 download) and con-
tained 14,319 interactions among 4,389 proteins in yeast, 3,926
interactions among 2,718 proteins in worm, and 20,720 interac-
tions among 7,038 proteins in fly. Protein sequences obtained
from the Saccharomyces Genome Database (24), WormBase
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(25), and FlyBase (26) were combined with the protein inter-
action data to generate a network alignment of 9,011 protein
similarity groups and 49,688 conserved interactions for the three
networks.

A search over the network alignment identified 183 protein
clusters and 240 paths conserved at a significance level of P � 0.01.
These covered a total of 649 proteins among yeast, worm, and fly.
Representative examples of conserved clusters and paths are shown
in Fig. 2. The identified conserved clusters and paths, along with
their graphical layouts, are available from the authors upon request.

Fig. 3 shows a global map of all clusters and paths conserved
among the yeast, worm, and fly protein networks. The map shows
evidence of modular structure, groups of conserved clusters overlap
to define 71 distinct network regions, most enriched for one or more
well defined biological functions. The largest numbers of conserved
clusters were involved in protein degradation (green boxes at lower
right), RNA polyadenylation and splicing (blue boxes at lower left),
and protein phosphorylation and signal transduction (red boxes at
upper right). Other significant conserved clusters were involved in
DNA synthesis, nuclear-cytoplasmic transport, and protein folding.
The map also reveals conserved links between different biological
processes, for instance linking kinase signaling (red) to protein
catabolism (green; lower right) or to regulation of transcription
(yellow; upper middle).

To validate our results, we compared these conserved clusters to
known complexes in yeast as annotated by the Munich Information
Center for Protein Sequences (MIPS) (27). We only considered
MIPS complexes that were manually annotated independently from
the Database of Interacting Proteins interaction data (i.e., excluding
complexes in MIPS category 550 that are based on high-throughput
experiments). Overall, the network alignment contained 486 an-
notated yeast proteins spanning 57 categories at level 3 of the MIPS
hierarchy. We defined a cluster to be pure if it contained three or
more annotated proteins and at least half of these shared the same
annotation. Ninety-four percent of the conserved clusters were
pure, indicating the high specificity of our approach, compared to
a lower percentage of 83% when applying a noncomparative variant
of our method to data from yeast only (i.e., applying the same
methodology to search for high-scoring clusters within the yeast
network only).

We further checked whether the conserved clusters were biased
by spurious interactions, resulting from ‘‘sticky’’ proteins that lead
to positive two-hybrid tests without interaction. Of 39 proteins with
�50 network neighbors, only 10 were included in conserved
clusters. These 10 proteins were involved in 60 intracluster inter-
actions, 85% of which were supported by coimmunoprecipitation
experiments. This finding indicates that the clusters were not biased
because of artifacts of the yeast two-hybrid assays.

Three-Way Versus Two-Way Network Alignments. In addition to the
three-way comparison, we also performed all possible pairwise
network alignments: yeast�worm, yeast�f ly, and worm�f ly.
This process identified 220 significant conserved clusters for
yeast�worm, 835 for yeast�f ly, and 132 for worm�f ly. Several
examples of these are shown in Fig. 9. Global overviews of the
pairwise conserved clusters (similar to Fig. 3) are provided in
Figs. 6–8.

Analysis of the proteins shared among the different pairwise and
three-way network comparisons led to two general findings. First,
the density and number of conserved clusters found in the yeast�fly
comparison were considerably greater than for the other compar-
isons, because of the large amounts of interaction data for these
species relative to worm (see Table 6 and Fig. 11). Second, the
worm�fly conserved clusters were largely distinct from the clusters
arising from the other analyses. For example, only 29% of the
proteins in the worm�fly clusters were assigned to conserved
clusters in the three-way analysis (135 of 462). This observation is
consistent with the closer taxonomic relationship of worm and fly
compared to yeast and the particular selection of protein ‘‘baits’’ for
the C. elegans protein-protein interaction screen: roughly one-
quarter were specifically chosen to be metazoan specific, and almost
two-thirds had no clear yeast ortholog (9).

Prediction of Protein Functions. Conserved subnetworks that contain
many proteins of the same known function suggest that their
remaining proteins also have that function. Based on this concept,
we predicted protein functions whenever the set of proteins in a
conserved cluster or path (combined over all species) was signifi-
cantly enriched for a particular Gene Ontology (GO) (28) anno-
tation (P � 0.01) and at least half of the annotated proteins in the
cluster or path had that annotation. When these criteria were met,
all remaining proteins in the subnetwork were predicted to have the
enriched GO annotation (see Supporting Text).

This process resulted in 4,669 predictions of previously unde-
scribed GO Biological Process annotations spanning 1,442 distinct
proteins in yeast, worm, and fly; and 3,221 predictions of GO
Molecular Function annotations spanning 1,120 proteins. We es-
timated the specificity of these predictions by using cross validation,
in which one hides part of the data, uses the rest of the data for
prediction, and tests the prediction success by using the held-out
data (see Supporting Text). As shown in Table 1, depending on the
species, 58–63% of our predictions of GO Processes agreed with
the known annotations (see also Tables 3 and 4). This analysis
outperformed a sequence-based method of annotating proteins
based on the known functions of their best sequence matches, for
which the accuracy ranged between 37% and 53% (see Supporting
Text). The complete list of protein function predictions is provided
in Table 7, which is published as supporting information on the
PNAS web site.

Fig. 1. Schematic of the multiple network comparison pipeline. Raw data are preprocessed to estimate the reliability of the available protein interactions and
identify groups of sequence-similar proteins. A protein group contains one protein from each species and requires that each protein has a significant sequence
match to at least one other protein in the group (BLAST E value � 10�7; considering the 10 best matches only). Next, protein networks are combined to produce
a network alignment that connects protein similarity groups whenever the two proteins within each species directly interact or are connected by a common
network neighbor. Conserved paths and clusters identified within the network alignment are compared to those computed from randomized data, and those
at a significance level of P � 0.01 are retained. A final filtering step removes paths and clusters with �80% overlap.

Sharan et al. PNAS � February 8, 2005 � vol. 102 � no. 6 � 1975

EV
O

LU
TI

O
N

D
ow

nl
oa

de
d 

at
 S

ta
at

s-
 u

nd
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

 B
re

m
en

 o
n 

Ja
nu

ar
y 

24
, 2

02
2 



Prediction of Protein Interactions. We also used the multiple network
alignment to predict protein–protein physical interactions. We
predicted an interaction between a pair of proteins based on (i)

evidence that proteins with similar sequences interact within other
species (directly or by a common network neighbor) and, optionally,
(ii) cooccurrence of these proteins in the same conserved cluster or

Fig. 2. Representative conserved network regions. Shown are conserved clusters (a–k) and paths (l and m) identified within the networks of yeast, worm, and
fly. Each region contains one or more overlapping clusters or paths (see Fig. 3). Proteins from yeast (orange ovals), worm (green rectangles), or fly (blue hexagons)
are connected by direct (thick line) or indirect (connection via a common network neighbor; thin line) protein interactions. Horizontal dotted gray links indicate
cross-species sequence similarity between proteins (similar proteins are typically placed on the same row of the alignment). Automated layout of network
alignments was performed by using a specialized plug-in to the CYTOSCAPE software (34) as described in Supporting Text.

1976 � www.pnas.org�cgi�doi�10.1073�pnas.0409522102 Sharan et al.
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path. The accuracy of these predictions was evaluated by using
5-fold cross validation, as described in Supporting Text. In cross
validation, strategy i achieved 77–84% specificity and 23–50%
sensitivity, depending on the species for which the predictions were
made (see Tables 2 and 5). These results were highly significant for
the three species. Combining both strategies resulted in eliminating
virtually all false positive predictions (specificity, �99%), while
greatly reducing the number of true positives, yielding sensitivities
of 10% and lower (see Table 2). Given the elevated specificity of the
combined strategies, we were able to predict 176 previously unde-
scribed interactions for yeast, 1,139 for worm, and 1,294 for fly with

high confidence. Thus, although protein interactions have been
used previously to predict interactions among the orthologous
proteins of other species (9, 29), screening these against conserved
paths and clusters markedly improves the specificity of prediction.
The complete list of predicted protein interactions is provided in
Table 8, which is published as supporting information on the PNAS
web site.

Fig. 3. Modular structure of conserved clusters among yeast, worm, and fly. Multiple network alignment revealed 183 conserved clusters, organized into 71
network regions represented by colored squares. Regions group together clusters that share �15% overlap with at least one other cluster in the group and are
all enriched for the same GO cellular process (P � 0.05 with the enriched processes indicated by color). Cluster ID numbers are given within each square; numbers
are not sequential because of filtering. Solid links indicate overlaps between different regions, where thickness is proportional to the percentage of shared
proteins (intersection�union). Hashed links indicate conserved paths that connect clusters together. Labels a–k and m mark the network regions exemplified in
Fig. 2.

Table 1. Cross-validation results for protein cellular
process prediction

Species
No.

correct
No. of

predictions
Success
rate, %

Yeast 114 198 58
Worm 57 95 60
Fly 115 184 63

For each species, the number of correct predictions, the total number of
predictions, and the success rate in 10-fold cross-validation are listed.

Table 2. Cross-validation results for protein
interaction prediction

Species
Sensitivity,

%
Specificity,

% P value Strategy

Yeast 50 77 1.1e-25 i
Worm 43 82 1e-13 i
Fly 23 84 5.3e-5 i
Yeast 9 99 1.2e-6 i � ii
Worm 10 100 6e-4 i � ii
Fly 0.4 100 0.5 i � ii

For each species, the specificity and sensitivity of the predictions in 5-fold
cross-validation, the significance of the results, and the prediction strategy
(see text) are listed.
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To further evaluate the utility of protein interaction prediction
based on network conservation, we tested experimentally 65 of the
interactions that were predicted for yeast by using the combined
strategies i and ii above (Fig. 4a). The tests were performed by using
two-hybrid assays (1, 4), which are based on a reporter gene that is
transcriptionally activated if the two tested proteins (bait and prey)
can physically interact (see Supporting Text and Fig. 4b). Five of the
tests involved baits that induced reporter activity in the absence of
any prey (Fig. 4c). Of the remaining 60 putative interactions, 31
tested positive (more conservatively, 19 of 48, see Fig. 4), yielding
an overall success rate in the range of 40–52%.

Discussion
Comparison to Existing Methods. We have developed pairwise
network alignment algorithms that were used to detect linear paths
(13) or dense clusters (14) that are conserved between yeast and the
bacteria Helicobacter pylori. The multiple network alignment
scheme that we have presented here is an extension of our earlier
approaches to handle more than two species. Additional advantages
of the current approach over the previous approaches are: (i) it is
a unified method to detect both paths and clusters, which gener-
alizes to other network structures; (ii) this approach incorporates a
refined probabilistic model for protein interaction data; and (iii) it
includes an automatic system for laying out and visualizing the
resulting conserved subnetworks.

A related method that uses cross-species data for predicting
protein interactions is the interolog approach (12, 18): a pair of
proteins in one species is predicted to interact if their best sequence
matches in another species were reported to interact. In compar-
ison, our proposed scheme can associate proteins that are not
necessarily each other’s best sequence match. This advantage
confers increased flexibility in detecting conserved function by
allowing for paralogous family expansion and contraction or gene
loss. Because conservation is evaluated in the context of a protein
interaction subnetwork and not independently for each interaction,

the high specificity of the resulting predictions can be maintained
(see below).

Best BLAST Hits May Not Imply Functional Conservation. Frequently,
the network alignment associates sequence-similar proteins be-
tween species even though they are not each other’s best
sequence match. For instance, the conserved network region in
Fig. 2h suggests that the worm protein exc-7 plays the same
functional role as yeast Pab1 and fly CG33070 (BLAST E-value �
10�42) based on the conserved interactions with Asc1�
F08G12.2�Rack1 (yeast�worm�f ly), Rna15�Unc-75 (yeast�
worm), and T01D1.2�Tbph (worm�f ly). However, CG33070 is
only the fifth best BLAST match in fly overall (the best being
CG3151 at E value � 10�70).

Overall, of the 679 protein triples aligned at the same position
within a three-way conserved cluster, only 177 contained at least
one pair of best sequence matches; of the 129 additional triples in
conserved paths, only 31 contained best sequence matches. Clearly,
in some cases, the best matches are not present within conserved
clusters because of missing interactions in the protein networks of
one or more species. However, it is unlikely that true interactions
with the best-matching proteins would be missed repeatedly across
multiple proteins in a cluster and across multiple species. These
observations suggest that protein network comparisons provide
essential information about function conservation.

Functional Links Within Conserved Networks. Conserved network
regions enriched for several functions point to cellular processes
that may work together in a coordinated fashion. Because of the
appreciable error rates inherent in measurements of protein–
protein interactions, an interaction in a single species linking two
previously unrelated processes would typically be ignored as a
false positive. However, an observation that two or three net-
works reinforce this interaction is considerably more compelling,
especially when the interaction is embedded in a densely con-
nected conserved network region. For example, Fig. 2h links

Fig. 4. Verification of predicted interactions by two-hybrid testing. (a) Sixty-five pairs of yeast proteins were tested for physical interaction based on their
cooccurrence within the same conserved cluster and the presence of orthologous interactions in worm and fly. Each protein pair is listed along with its position
on the agar plates shown in b and c and the outcome of the two-hybrid test. (b) Raw test results are shown, with each protein pair tested in quadruplicate to
ensure reproducibility. Protein 1 vs. 2 of each pair was used as prey vs. bait, respectively. (c) This negative control reveals activating baits, which can lead to positive
tests without interaction. Protein 2 of each pair was used as bait, and an empty pOAD vector was used as prey. Activating baits are denoted by ‘‘a’’ in the list
of predictions shown in a. Positive tests with weak signal (e.g., A1) and control colonies with marginal activation are denoted by ‘‘?’’ in a; colonies D4, E2, and
E5 show evidence of possible contamination and are also marked by a ‘‘?’’. Discarding the activating baits, 31 of 60 predictions tested positive overall. A more
conservative tally, disregarding all results marked by a ‘‘?,’’ yields 19 of 48 positive predictions.

1978 � www.pnas.org�cgi�doi�10.1073�pnas.0409522102 Sharan et al.
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protein degradation to the process of poly(A) RNA elongation.
Although these two processes are not connected in this region of
the yeast network, several protein interactions link them in the
networks of worm and fly (e.g., Pros25-Rack1-Msi or Pros25-
Rack1-Tbph). These findings are consistent with previously
documented association of proteasomes with mRNA-binding
proteins, although the exact nature of this association has been
controversial (30, 31). A related functional link between the
proteasome and nucleic acid synthesis was detected in our earlier
network comparison of yeast and the bacteria H. pylori (13).

As another example, Fig. 9l shows a worm�f ly conserved
cluster for which �40% of the proteins have no significant yeast
ortholog (BLAST E value � 0.01). The cluster links functions such
as proteolysis (Pros25, Pros28.1, Pas-1–7), actin binding
(Cher,W04D2.1), ion transport (CG32810, C40A11.7,
C52B11.2), and axon guidance (Fra). Taken together, these
functions suggest a role for this cluster in growth cone formation
during axon guidance. Guidance of axons to their synaptic
targets is an initial step in the development of the central nervous
system (32) and is mediated by special compartments called
growth cones at the tips of the extending neurites. Formation of
growth cones is induced by elevated levels of Ca2� ions, which
trigger local proteolysis and restructuring of the actin cytoskel-
eton (33). Thus, as implicated by our findings, axon guidance
requires synergy between proteolysis, actin binding, and ion
transport within an intricate network of protein interactions.

Validation of Predicted Interactions. Our two-hybrid tests of pre-
dicted interactions yielded a success rate in the range of 40–52%.
These results are satisfactory for three reasons. First, the per-
formance is clearly significant compared to the chance of
identifying protein interactions at random (0.024%, estimated
from an earlier two-hybrid screen (4) of 192 baits � 6,000 preys
that yielded 281 interacting pairs). Second, two-hybrid analysis
is known to miss a substantial portion of true interactions (11);
this is particularly likely in our case where protein pairs were
checked in only one orientation of bait and prey. For instance,
two of the pairs that tested negative (YJR068W-YOR217W and
YBL105C-YHR030C) have been shown to interact genetically in
synthetic-lethal screens (27), suggesting a possible physical in-

teraction. Third, predicting interactions by using a multiple
network alignment approach compares favorably to previous
approaches based on conservation of individual protein inter-
actions. For instance, in ref. 12, the interolog approach was
applied to a set of 72 reported interactions in yeast, predicting
71 previously undescribed interactions in worm. Seven of the
predicted worm interactions tested positive by using a two-hybrid
assay (10%), whereas 19 of the previously reported yeast inter-
actions (26%) retested positive. Considering only the worm
interactions that were predicted based on the 19 confirmed
interactions in yeast, six of these tested positive, upper bounding
the prediction accuracy at 31%. In tests of 145 additional
predictions, 28 were confirmed, obtaining an overall accuracy of
16%. Similar results were obtained in a subsequent study by Yu
et al. (29), where the accuracies of the interolog approach and an
extension of it were estimated at 30–31%.

Conclusion
Nearly all comparative genomic studies of multiple species have
been based on DNA and protein sequence analysis. Here, we
transcend that framework by presenting a comparative study of
the protein–protein interaction networks of three model eu-
karyotes. These comparisons show that many circuits embedded
within the protein networks are conserved over evolution, and
that these circuits cover a variety of well defined functional
categories. Because measurements of protein interactions tend
to be noisy and incomplete, it would have been difficult, if not
impossible, to find these mechanisms by looking at only a single
species. Moreover, many of these similarities and the network
connections they imply would not have been suggested by
sequence similarity alone, as the proteins involved are frequently
not best sequence matches. The multiple network alignment also
allows us to ascribe unique functions to many proteins and
predict previously unobserved protein–protein interactions.
Therefore, comparative network analysis is a powerful approach
for elucidating network organization and function.
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