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Abstract—Clustering ensembles have emerged as a powerful method for improving both the robustness as well as the stability of

unsupervised classification solutions. However, finding a consensus clustering from multiple partitions is a difficult problem that can be

approached from graph-based, combinatorial, or statistical perspectives. This study extends previous research on clustering ensembles

in several respects. First, we introduce a unified representation for multiple clusterings and formulate the corresponding categorical

clustering problem. Second, we propose a probabilisticmodel of consensus using a finitemixture ofmultinomial distributions in a space of

clusterings. A combined partition is found as a solution to the correspondingmaximum-likelihood problem using the EM algorithm. Third,

we define a new consensus function that is related to the classical intraclass variance criterion using the generalized mutual information

definition. Finally, we demonstrate the efficacy of combining partitions generated by weak clustering algorithms that use data projections

and random data splits. A simple explanatory model is offered for the behavior of combinations of such weak clustering components.

Combination accuracy is analyzed as a function of several parameters that control the power and resolution of component partitions as

well as the number of partitions.Wealso analyze clustering ensembleswith incomplete information and the effect ofmissing cluster labels

on the quality of overall consensus. Experimental results demonstrate the effectiveness of the proposed methods on several real-world

data sets.

Index Terms—Clustering, ensembles, multiple classifier systems, consensus function, mutual information.
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1 INTRODUCTION

IN contrast to supervised classification, clustering is
inherently an ill-posed problem whose solution violates

at least one of the common assumptions about scale-
invariance, richness, and cluster consistency [33]. Different
clustering solutions may seem equally plausible without
a priori knowledge about the underlying data distributions.
Every clustering algorithm implicitly or explicitly assumes a
certain data model and it may produce erroneous or mean-
ingless results when these assumptions are not satisfied by
the sample data. Thus, the availability of prior information
about the data domain is crucial for successful clustering,
though such information can be hard to obtain, even from
experts. Identification of relevant subspaces [2] or visualiza-
tion [24]mayhelp to establish the sampledata’s conformity to
the underlyingdistributions or, at least, to the proper number
of clusters.

The exploratory nature of clustering tasks demands
efficient methods that would benefit from combining the
strengths of many individual clustering algorithms. This is
the focus of research on clustering ensembles, seeking a
combination of multiple partitions that provides improved
overall clustering of the given data. Clustering ensembles
can go beyond what is typically achieved by a single
clustering algorithm in several respects:

. Robustness. Better average performance across the
domains and data sets.

. Novelty. Finding a combined solution unattainable
by any single clustering algorithm.

. Stability and confidence estimation. Clustering solu-
tions with lower sensitivity to noise, outliers, or
sampling variations. Clustering uncertainty can be
assessed from ensemble distributions.

. Parallelization and Scalability. Parallel clustering of
data subsets with subsequent combination of results.
Ability to integrate solutions from multiple distrib-
uted sources of data or attributes (features).

Clustering ensembles can also be used in multiobjective

clustering as a compromise between individual clusterings

with conflicting objective functions. Fusion of clusterings

using multiple sources of data or features becomes

increasingly important in distributed data mining, e.g.,

see review in [41]. Several recent independent studies [10],

[12], [14], [15], [43], [47] have pioneered clustering

ensembles as a new branch in the conventional taxonomy

of clustering algorithms [26], [27]. Other related work

include [7], [11], [16], [19], [28], [31], [35].
The problem of clustering combination can be defined

generally as follows: Given multiple clusterings of the data

set, find a combined clustering with better quality. While

the problem of clustering combination bears some traits of a

classical clustering problem, it also has three major issues

which are specific to combination design:

1. Consensus function: How to combine different
clusterings? How to resolve the label correspon-
dence problem? How to ensure symmetrical and
unbiased consensus with respect to all the compo-
nent partitions?
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2. Diversity of clustering: How to generate different
partitions? What is the source of diversity in the
components?

3. Strength of constituents/components: How “weak”
could each input partition be? What is the minimal
complexity of component clusterings to ensure a
successful combination?

Similar questions have already been addressed in the frame-
work of multiple classifier systems. Combining results from
many supervised classifiers is an active research area ([44],
[6]) and it provides the main motivation for clusterings
combination. However, it is not possible to mechanically
apply the combination algorithms from classification (super-
vised) domain to clustering (unsupervised) domain. Indeed,
no labeled training data is available in clustering; therefore,
the ground truth feedback necessary for boosting the overall
accuracy cannot be used. In addition, different clusterings
may produce incompatible data labelings, resulting in
intractable correspondence problems, especially when the
numbers of clusters are different. Still, the supervised
classifier combination demonstrates, in principle, howmulti-
ple solutions reduce the variance component of the expected
error rate and increase the robustness of the solution.

From the supervised case, we also learn that the proper
combination of weak classifiers [32], [25], [18], [6] may
achieve arbitrarily low error rates on training data, as well
as reduce the predictive error. One can expect that using
many simple, but computationally inexpensive components
will be preferred to combining clusterings obtained by
sophisticated, but computationally involved algorithms.

This paper further advances ensemble methods in
several aspects, namely, design of new effective consensus
functions, development of new partition generation me-
chanisms, and study of the resulting clustering accuracy.

1.1 Our Contribution

We offer a representation of multiple clusterings as a set of
new attributes characterizing the data items. Such a view
directly leads to a formulation of the combination problem
as a categorical clustering problem in the space of these
attributes, or, in other terms, a median partition problem.
Median partition can be viewed as the best summary of the
given input partitions. As an optimization problem, median
partition is NP-complete [3], with a continuum of heuristics
for an approximate solution.

This work focuses on the primary problem of clustering
ensembles, namely the consensus function, which creates the
combined clustering. We show how median partition is
related to the classical intraclass variance criterion when
generalized mutual information is used as the evaluation
function. Consensus function based on quadratic mutual
information (QMI) is proposed and reduced to the k-means
clustering in the space of specially transformed cluster labels.

We also propose a new fusion method for unsupervised
decisions that is based on a probability model of the
consensus partition in the space of contributing clusters.
The consensus partition is found as a solution to the
maximum-likelihood problem for a given clustering ensem-
ble. The likelihood function of an ensemble is optimizedwith
respect to theparameters of a finitemixturedistribution. Each
component in this distribution corresponds to a cluster in the
target consensuspartition and is assumed to beamultivariate
multinomial distribution. Themaximum-likelihood problem
is solved using the EM algorithm [8].

There are several advantages to QMI and EM consensus
functions. These include: 1) complete avoidance of solving
the label correspondence problem, 2) low computational
complexity, and 3) ability to handlemissingdata, i.e.,missing
cluster labels for certain patterns in the ensemble (for
example, when bootstrap method is used to generate the
ensemble).

Another goal of our work is to adopt weak clustering
algorithms and combine their outputs. Vaguely defined, a
weak clustering algorithm produces a partition, which is
only slightly better than a random partition of the data. We
propose two different weak clustering algorithms as the
component generation mechanisms:

1. Clustering of random one-dimensional projections of
multidimensional data. This can be generalized to
clustering in any random subspace of the original
data space.

2. Clustering by splitting the data using a number of
random hyperplanes. For example, if only one hyper-
plane is used then data is split into two groups.

Finally, this paper compares the performance of different
consensus functions. We have investigated the performance
of a family of consensus functions based on categorical
clustering including the coassociation-based hierarchical
methods [15], [16], [17], hypergraph algorithms [47], [29],
[30], and our new consensus functions. Combination accu-
racy is analyzed as a function of the number and the
resolution of the clustering components. In addition, we
study clustering performance when some cluster labels are
missing,which is often encountered in the distributed data or
resampling scenarios.

2 REPRESENTATION OF MULTIPLE PARTITIONS

Combination of multiple partitions can be viewed as a
partitioning task itself. Typically, each partition in the
combination is represented as a set of labels assigned by a
clustering algorithm. The combined partition is obtained as a
result of yet another clustering algorithm whose inputs are
the cluster labels of the contributing partitions. We will
assume that the labels are nominal values. In general, the
clusterings can be “soft,” i.e., described by the real values
indicating thedegreeofpatternmembership ineachcluster in
apartition.We consider only “hard”partitions below, noting,
however, that combination of “soft” partitions can be solved
bynumerous clustering algorithms anddoes not appear to be
more complex.

Suppose we are given a set of N data points XXXX ¼
fx1; . . . ;xNg and a set of H partitions

Q
¼ f�1; . . . ; �Hg of

objects inXXXX. Different partitions ofXXXX return a set of labels for
each point xi; i ¼ 1; . . . ; N :

xi ! �1ðxiÞ; �2ðxiÞ; . . . ; �HðxiÞf g: ð1Þ

Here,H different clusterings are indicated and�jðxiÞdenotes
a label assigned to xi by the jth algorithm. No assumption is
made about the correspondence between the labels produced
by different clustering algorithms. Also, no assumptions are
needed at the moment about the data input: It could be
represented in anonmetric space or as anN �N dissimilarity
matrix. For simplicity, we use the notation yij ¼ �jðxiÞ or
yi ¼ ����ðxiÞ. The problem of clustering combination is to find a
new partition �C of dataXXXX that summarizes the information
from the gathered partitions

Q
. Ourmain goal is to construct
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a consensus partition without the assistance of the original
patterns in XXXX, but only from their labels YYYY delivered by the
contributing clustering algorithms. Thus, such potentially
important issues as the underlying structure of both the
partitions anddata are ignored for the sake of a solution to the
unsupervised consensusproblem.Weemphasize that a space
of new features is induced by the set

Q
. One can view each

component partition �i as a new feature with categorical
values, i.e., cluster labels. The values assumed by the ith new
feature are simply the cluster labels from partition �i.
Therefore, membership of an object x in different partitions
is treated as a new feature vector y ¼ ����ðxÞ, anH-tuple. In this
case, one can consider partition �jðxÞ as a feature extraction
function. Combination of clusterings becomes equivalent to
the problem of clustering of H-tuples if we use only the
existing clusterings f�1; . . . ; �Hg, without the original fea-
tures of data XXXX. Hence, the problem of combining partitions
canbe transformed toacategorical clusteringproblem.Sucha
view gives insight into the properties of the expected
combination, which can be inferred through various statis-
tical and information-theoretic techniques. In particular, one
can estimate the sensitivity of the combination to the
correlation of components (features) as well as analyze
various sample size issues. Perhaps, the main advantage of
this representation is that it facilitates the use of known
algorithms for categorical clustering [37], [48] and allows one
to design new consensus heuristics in a transparent way. The
extended representationofdataX canbe illustratedbya table
with N rows and ðdþHÞ columns:

The consensus clustering is found as a partition �C of a
set of vectors YYYY ¼ fyig that directly translates to the
partition of the underlying data points fxig.

3 A MIXTURE MODEL OF CONSENSUS

Our approach to the consensus problem is based on a finite
mixture model for the probability of the cluster labels y ¼
����ðxÞ of the pattern/object x. The main assumption is that
the labels yi are modeled as random variables drawn from a
probability distribution described as a mixture of multi-
variate component densities:

P ðyij�Þ ¼
XM
m¼1

�mPmðyi j ����mÞ; ð2Þ

where each component is parametrized by ����m. The
M components in the mixture are identified with the
clusters of the consensus partition �C . The mixing coeffi-
cients �m correspond to the prior probabilities of the
clusters. In this model, data points fyig are presumed to
be generated in two steps: First, by drawing a component
according to the probability mass function �m and then
sampling a point from the distribution Pmðyj�mÞ. All the
data YYYY ¼ fyigNi¼1 are assumed to be independent and
identically distributed. This allows one to represent the

log-likelihood function for the parameters � ¼ f�1; . . . ; �M;
����1; . . . ; ����Mg given the data set YYYY as:

log L ð�jYÞ ¼ log
YN
i¼1

P ðyij�Þ ¼
XN
i¼1

log
XM
m¼1

�mPmðyi j ����mÞ:

ð3Þ

The objective of consensus clustering is now formulated as a
maximum-likelihood estimation problem. To find the best
fittingmixture density for a given data YYYY , wemustmaximize
the likelihood function with respect to the unknown para-
meters �:

�� ¼ argmax
�

log L ð�jYÞ: ð4Þ

The next important step is to specify the model of
component-conditional densities Pmðyj�mÞ. Note, that the
original problem of clustering in the space of dataXXXX has been
transformed, with the help of multiple clustering algorithms,
to a space of newmultivariate featuresy ¼ ����ðxÞ. Tomake the
problemmore tractable, a conditional independence assump-
tion ismade for the components of vector yi, namely, that the
conditional probability of yi can be represented as the
following product:

Pmðyi j ����mÞ ¼
YH
j¼1

P ðjÞm ðyij j ����ðjÞm Þ: ð5Þ

To motivate this, one can note that even if the different
clustering algorithms (indexed by j) are not truly indepen-
dent, the approximation by product in (5) can be justified by
the excellent performance of naive Bayes classifiers in
discrete domains [34]. Our ultimate goal is to make a
discrete label assignment to the data in XXXX through an
indirect route of density estimation of YYYY . The assignments
of patterns to the clusters in �C are much less sensitive to
the conditional independence approximation than the
estimated values of probabilities P ðyij�Þ, as supported by
the analysis of naive Bayes classifier in [9].

The last ingredient of the mixture model is the choice of a
probability density P ðjÞm ðyij j ����ðjÞm Þ for the components of the
vectors yi. Since the variables yij take on nominal values
from a set of cluster labels in the partition �j, it is natural to
view them as the outcome of a multinomial trial:

P ðjÞm ðyij j ����ðjÞm Þ ¼
YKðjÞ
k¼1

#jmðkÞ�ðyij; kÞ: ð6Þ

Here, without the loss of generality, the labels of the
clusters in �j are chosen to be integers in f1; . . . ; KðjÞg. To
clarify the notation, note that the probabilities of the
outcomes are defined as #jmðkÞ and the product is over
all the possible values of yij labels of the partition �j.
Also, the probabilities sum up to one:

XKðjÞ
k¼1

#jmðkÞ ¼ 1; 8j 2 f1; . . . ; Hg; 8m 2 f1; . . . ;Mg: ð7Þ

For example, if the jth partition has only two clusters, and
possible labels are 0 and 1, then (5) can be simplified as:

P ðjÞm ðy j ����ðjÞm Þ ¼ #y
jmð1� #jmÞ1�y: ð8Þ
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The maximum-likelihood problem in (3) generally cannot
be solved in a closed form when all the parameters � ¼
f�1; . . . ; �M; ����1; . . . ; ����Mg are unknown. However, the like-
lihood function in (2) can be optimized using the
EM algorithm. In order to adopt the EM algorithm, we
hypothesize the existence of hidden data Z and the
likelihood of complete data ðYYYY ; ZZZZÞ. If the value of zi is
known then one could immediately tell which of the
M mixture components was used to generate the point yi.
The detailed derivation of the EM solution to the mixture
model with multivariate, multinomial components leads to
the equations for the E- and M-steps which are repeated at
each iteration of the algorithm:

E ½zim� ¼
�0m

QH
j¼1

QKðjÞ
k¼1

#0jmðkÞ
� ��ðyij;kÞ

PM
n¼1

�0n
QH
j¼1

QKðjÞ
k¼1

#0jnðkÞ
� ��ðyij;kÞ ; ð9Þ

�m ¼

PN
i¼1

E ½zim�

PN
i¼1

PM
m¼1

E ½zim�
; ð10Þ

#jmðkÞ ¼

PN
i¼1

�ðyij; kÞE ½zim�

PN
i¼1

PKðjÞ
k¼1

�ðyij; kÞE ½zim�
: ð11Þ

The solution to the consensus clustering problem is

obtained by a simple inspection of the expected values of

the variables E½zim�, due to the fact that E½zim� represents
the probability that the pattern yi was generated by the

mth mixture component. Once convergence is achieved, a

pattern yi is assigned to the component which has the

largest value E½zim� for the hidden label zi.
It is instructive to consider a simple example of an

ensemble. Fig. 1 shows four two-cluster partitions of 12 two-

dimensional data points. The correspondence problem is

emphasized by different label systems used by the partitions.

Table 1 shows the expected values of latent variables after six

iterations of the EM algorithm and the resulting consensus

clustering. In fact, a stable combination appears as early as the
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Fig. 1. Four possible partitions of 12 data points into two clusters. Different partitions use different sets of labels.

TABLE 1
Clustering Ensemble and Consensus Solution



third iteration and it corresponds to the true underlying
structure of the data.

Ourmixturemodel of consensus admits generalization for
clustering ensembles with incomplete partitions. Such parti-
tions can appear as a result of clustering of subsamples or
resampling of a data set. For example, a partition of a
bootstrap sample only provides labels for the selected points.
Therefore, the ensemble of such partitions is represented by a
set of vectors of cluster labels with potentially missing
components. Moreover, different vectors of cluster labels
are likely to miss different components. Incomplete informa-
tion can also arise when some clustering algorithms do not
assign outliers to any of the clusters. Different clusterings in
the diverse ensemble can consider the same point xi as an
outlier or otherwise, that results inmissing components in the
vector yi. Yet, another scenario leading to missing informa-
tion canoccur in clustering combinationofdistributeddataor
ensemble of clusterings of nonidentical replicas of a data set.

It is possible to apply the EM algorithm in the case of

missing data [20], namely, missing cluster labels for some of

the data points. In these situations, each vector yi in YYYY can be

split into observed andmissing components yi ¼ ðyobs
i ;ymis

i Þ.
Incorporation of a missing data leads to a slight modification

of the computationofEandMsteps. First, the expectedvalues

E½zimjyobs
i ;�0� are now inferred from the observed compo-

nents of vector yi, i.e., the products in (9) are taken over

known labels:
QH

j¼ 1 !
Q

j:yobs . Additionally, one must com-

pute the expected values E½zimymis
i jyobs

i ;�0� and substitute

them, aswell asE½zimjyobs
i ;�0�, in theM-step for re-estimation

of parameters #jmðkÞ. More details on handling missing data

can be found in [20].
Thoughdatawithmissing cluster labels can be obtained in

differentways,we analyze only the casewhen components of
yi are missing completely at random [46]. It means that the
probability of a component to bemissing does not depend on
other observed or unobserved variables. Note that the
outcome of clustering of data subsamples (e.g., bootstrap) is
different from clustering the entire data set and then deleting
a random subset of labels. However, our goal is to present a
consensus function for general settings. We expect that
experimental results for ensembles with missing labels are
applicable, at least qualitatively, even for a combination of
bootstrap clusterings.

The proposed ensemble clustering based on mixture
model consensus algorithm is summarized below. Note that
any clustering algorithm can be used to generate ensemble
instead of the k-means algorithm shown in this pseudocode:

begin
for i ¼ 1 to H==H - number of clusterings
cluster a data set XXXX : � k-meansðXXXXÞ
add partition � to the ensemble

Q
¼ f
Q
; �g

end
initialize model parameters � ¼ f�1; . . . ; �M; ����1; . . . ; ����Mg
do until convergence criterion is satisfied
compute expected values E½zim�; i ¼ 1::N;m ¼ 1::M
compute E½zimymis

i � for missing data (if any)
re-estimate parameters #jmðkÞ; j ¼ 1::H;m ¼ 1::M; 8k
end

�CðxiÞ ¼ index of component of zi with the largest
expected value, i ¼ 1::N
return �C== consensus partition

end

The value of M, number of components in the mixture,
deserves a separate discussion that is beyond the scope of this
paper. Here, we assume that the target number of clusters is
predetermined. It should be noted, however, that mixture
model in an unsupervised classification greatly facilitates the
estimation of the true number of clusters [13]. Maximum-
likelihood formulation of the problem specifically allows us
to estimateM by using additional objective functions during
the inference, such as the minimum description length of the
model. In addition, the proposed consensus algorithm can be
viewed as a version of Latent Class Analysis (e.g., see [4]),
which has rigorous statistical means for quantifying plausi-
bility of a candidate mixture model.

Whereas the finite mixture model may not be valid for the
patterns in the original space (the initial representation), this
model more naturally explains the separation of groups of
patterns in the space of “extracted” features (labels generated
by the partitions). It is somewhat reminiscent of classification
approaches based on kernel methods which rely on linear
discriminant functions in the transformed space. For exam-
ple, Support Vector Clustering [5] seeks spherical clusters
after the kernel transformation that corresponds to more
complex cluster shapes in the original pattern space.

4 INFORMATION-THEORETIC CONSENSUS OF

CLUSTERINGS

Another candidate consensus function is based on the notion
of median partition. A median partition � is the best
summary of existing partitions in

Q
. In contrast to the

coassociation approach, median partition is derived from
estimates of similarities between attributes1 (i.e., partitions
in
Q

), rather than from similarities between objects. A well-
known example of this approach is implemented in the
COBWEB algorithm in the context of conceptual clustering
[48]. COBWEB clustering criterion estimates the partition
utility, which is the sum of category utility functions
introduced by Gluck and Corter [21]. In our terms, the
category utility function Uð�; �iÞ evaluates the quality of a
candidate median partition �C ¼ fC1; . . . ; CKg against some
other partition �i ¼ fLi

1; . . . ; L
i
KðiÞg, with labels Li

j for
jth cluster:

Uð�C; �iÞ ¼
XK
r¼1

pðCrÞ
XKðiÞ
j¼1

pðLi
jjCrÞ2 �

XKðiÞ
j¼1

pðLi
jÞ

2 ð12Þ

with the following notations: pðCrÞ ¼ jCrj=N; pðLi
jÞ ¼ jLi

jj=N
and pðLi

jjCrÞ ¼ jLi
j \ Crj=jCrj.

The function Uð�C; �iÞ assesses the agreement between

two partitions as the difference between the expected

number of labels of partition �i that can be correctly

predicted both with the knowledge of clustering �C and

without it. The category utility function can also be written

as Goodman-Kruskal index for the contingency table

between two partitions [22], [39]. The overall utility of the

partition �C with respect to all the partitions in
Q

can be

measured as the sum of pair-wise agreements:
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Uð�C;�Þ ¼
XH
i¼1

Uð�C; �iÞ: ð13Þ

Therefore, the best median partition should maximize the
value of overall utility:

�best
C ¼ argmax

�C

Uð�C;�Þ: ð14Þ

Importantly, Mirkin [39] has proven that maximization of
partition utility in (13) is equivalent to minimization of the
square-error clustering criterion if thenumberof clustersK in
target partition �C is fixed. This is somewhat surprising in
that the partition utility function in (14) uses only the
between-attribute similarity measure of (12), while square-
error criterion makes use of distances between objects and
prototypes. Simple standardization of categorical labels in
f�1; . . . ; �Hg effectively transforms them to quantitative
features [39]. This allowsus to compute real-valueddistances
and cluster centers. This transformation replaces the
ithpartition �i assumingKðiÞ values byKðiÞ binary features,
and standardizes each binary feature to a zeromean. In other
words, for eachobjectxwecan compute the values of the new
features ~yyijðxÞ, as following:

~yyijðxÞ ¼ �ðLi
j; �iðxÞÞ � pðLi

jÞ; for j ¼ 1 . . .KðiÞ; i ¼ 1 . . .H:

ð15Þ

Hence, the solution of median partition problem in (4) can
be approached by k-means clustering algorithm operating in
the space of features ~yyij if the number of target clusters is
predetermined. We use this heuristic as a part of empirical
study of consensus functions.

Let us consider the information-theoretic approach to the
median partition problem. In this framework, the quality of
the consensus partition �C is determined by the amount of
information Ið�C;�Þ it shares with the given partitions inQ

. Strehl and Ghosh [47] suggest an objective function that
is based on the classical Shannon definition of mutual
information:

�bestC ¼ argmax
�C

Ið�C;�Þ; where Ið�C;�Þ ¼
XH
i¼1

Ið�C; �iÞ; ð16Þ

Ið�C; �iÞ ¼
XK
r¼1

XKðiÞ
j¼1

pðCr; L
i
jÞ log

pðCr; L
i
jÞ

pðCrÞpðLi
jÞ

 !
: ð17Þ

Again, an optimal median partition can be found by solving
this optimization problem. However, it is not clear how to
directly use these equations in a search for consensus.

We show that another information-theoretic definition of
entropy will reduce the mutual information criterion to the
category utility function discussed before. We proceed from
the generalized entropy of degree s for a discrete prob-
ability distribution P ¼ ðp1; . . . ; pnÞ [23]:

HsðP Þ ¼ ð21�s � 1Þ�1
Xn
i¼1

psi � 1

 !
; s > 0; s 6¼ 1: ð18Þ

Shannon’s entropy is the limit form of (18):

lim
s!1

HsðP Þ ¼ �
Xn
i¼1

pi log2 pi: ð19Þ

Generalized mutual information between � and � can be

defined as:

Isð�; �CÞ ¼ Hsð�Þ �Hsð�j�CÞ: ð20Þ

Quadratic entropy ðs ¼ 2Þ is of particular interest since it is
known to be closely related to classification error, when used
in the probabilistic measure of interclass distance. When
s ¼ 2, generalized mutual information Ið�C; �iÞ becomes:

I2ð�C; �iÞ ¼

� 2
XKðiÞ
j¼1

pðLi
jÞ

2 � 1

 !

þ 2
XK
r¼1

pðCrÞ
XKðiÞ
j¼1

pðLi
jjCrÞ2 � 1Þ

 !
¼2
XK
r¼1

pðCrÞ
XKðiÞ
j¼1

pðLi
jjCrÞ2

� 2
XKðiÞ
j¼1

pðLi
jÞ

2 ¼ 2Uð�C; �iÞ:

ð21Þ

Therefore, generalized mutual information gives the same
consensus clustering criterion as category utility function in
(13). Moreover, traditional Gini-index measure for attribute
selection also follows from (12) and (21). In light of Mirkin’s
result, all these criteria are equivalent to within-cluster
variance minimization, after simple label transformation.
Quadratic mutual information, mixture model, and other
interesting consensus functions have been used in our
comparative empirical study.

5 COMBINATION OF WEAK CLUSTERINGS

The previous sections addressed the problem of clusterings
combination, namely, how to formulate the consensus
function regardless of the nature of individual partitions in
the combination. We now turn to the issue of generating
different clusterings for the combination. There are several
principal questions. Do we use the partitions produced by
numerous clustering algorithms available in the literature?
Canwerelax therequirements for theclusteringcomponents?
There are several existing methods to provide diverse
partitions:

1. Use different clustering algorithms, e.g., k-means,
mixture of Gaussians, spectral, single-link, etc., [47].

2. Exploit built-in randomness or different parameters
of some algorithms, e.g., initializations and various
values of k in k-means algorithm [35], [15], [16].

3. Use many subsamples of the data set, such as
bootstrap samples [10], [38].

These methods rely on the clustering algorithms, which
are powerful on their own and as such are computationally
involved. We argue that it is possible to generate the
partitions using weak, but less expensive, clustering
algorithms and still achieve comparable or better perfor-
mance. Certainly, the key motivation is that the synergy of
many such components will compensate for their weak-
nesses. We consider two simple clustering algorithms:

1. Clustering of the data projected to a random
subspace. In the simplest case, the data is projected
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on one-dimensional subspace, a random line. The
k-means algorithm clusters the projected data and
gives a partition for the combination.

2. Random splitting of data by hyperplanes. For
example, a single random hyperplane would create
a rather trivial clustering of d-dimensional data by
cutting the hypervolume into two regions.

We will show that both approaches are capable of
producing high quality consensus clusterings in conjunc-
tion with a proper consensus function.

5.1 Splitting by Random Hyperplanes

Direct clustering by use of a random hyperplane illustrates
how a reliable consensus emerges from low-informative
components. The random splits approach pushes the notion
of weak clustering almost to an extreme. The data set is cut
by random hyperplanes dissecting the original volume of
d-dimensional space containing the points. Points separated
by the hyperplanes are declared to be in different clusters.
Hence, the output clusters are convex. In this situation, a
coassociation consensus function is appropriate since the
only information needed is whether the patterns are in the
same cluster or not. Thus, the contribution of a hyperplane
partition to the coassociation value for any pair of objects
can be either 0 or 1. Finer resolutions of distance are
possible by counting the number of hyperplanes separating
the objects, but, for simplicity, we do not use it here.
Consider a random line dissecting the classic 2-spiral data
shown in Fig. 2a. While any one such partition does little to
reveal the true underlying clusters, the analysis of the
hyperplane generating mechanism shows how multiple
such partitions can discover the true clusters.

Consider first the case of one-dimensional data. The
splitting of objects in one-dimensional space is done by a
random threshold in R1. In general, if r thresholds are
randomly selected, then ðrþ 1Þ clusters are formed. It is easy
to derive that, in one-dimensional space, the probability of
separating two objects, whose interpoint distance is x, is
exactly:

P ðsplitÞ ¼ 1� ð1� x=LÞr; ð22Þ

whereL is the lengthof the interval containing the objects and
r threshold points are drawn at random from uniform

distribution on this interval. Fig. 2b illustrates the depen-
dence for L ¼ 1 and r ¼ 1; 2; 3; 4. If a coassociation matrix is
used to combine H different partitions, then the expected
value of coassociation between two objects isHð1� P ðsplitÞÞ,
that follows from the binomial distribution of the number of
splits in H attempts. Therefore, the coassociation values
found after combining many random split partitions are
generally expected to be a nonlinear and a monotonic
function of respective distances. The situation is similar for
multidimensional data; however, the generation of random
hyperplanes is a bit more complex. To generate a random
hyperplane in d dimensions, we should first draw a random
point in themultidimensional region thatwill serve as a point
of origin. Then, we randomly choose a unit normal vector uuuu
that defines the hyperplane. The two objects characterized by
vectors pppp and qqqqwill be in the same cluster if ðupupupupÞðuquququqÞ > 0 and
will be separated otherwise (here, ababababdenotes a scalar product
of aaaa and bbbb). If r hyperplanes are generated, then the total
probability that two objects remain in the same cluster is just
the product of probabilities that each of the hyperplanes does
not split the objects. Thus, we can expect that the law
governing the coassociationvalues is close towhat is obtained
in one-dimensional space in (22).

Let us compare the actual dependence of coassociation
values with the function in (22). Fig. 3 shows the results of
experiments with 1,000 different partitions by random splits
of the Iris data set. The Iris data is four-dimensional and
contains 150 points. There are 11,175 pair-wise distances
between the data items. For all the possible pairs of points,
each plot in Fig. 3 shows the number of times a pair was split.
The observed dependence of the interpoint “distances”
derived from the coassociation values versus the true
Euclidean distance, indeed, can be described by the function
in (22).

Clearly, the interpoint distances dictate the behavior of
respective coassociation values. The probability of a cut
between any two given objects does not depend on the
other objects in the data set. Therefore, we can conclude that
any clustering algorithm that works well with the original
interpoint distances is also expected to work well with
coassociation values obtained from a combination of multi-
ple partitions by random splits. However, this result is more
of theoretical value when true distances are available since
they can be used directly instead of coassociation values. It
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Fig. 2. Clustering by a random hyperplane: (a) An example of splitting 2-spiral data set by a random line. Points on the same side of the line are in the
samecluster. (b)Probability of splitting twoone-dimensional objects for differentnumberof randomthresholdsasa functionof distancebetweenobjects.



illustrates the main idea of the approach, namely, that the
synergy of multiple weak clusterings can be very effective.
We present an empirical study of the clustering quality of
this algorithm in the experimental section.

5.2 Combination of Clusterings in Random
Subspaces

Random subspaces are an excellent source of clustering
diversity that provides different views of the data. Projective
clustering is an active topic in data mining. For example,
algorithms such as CLIQUE [2] and DOC [42] can discover
both useful projections as well as data clusters. Here,
however, we are only concerned with the use of random
projections for the purpose of clustering combination.

Each randomsubspace canbeofvery lowdimensionand it
is by itself somewhat uninformative. On the other hand,
clustering in one-dimensional space is computationally
cheap and can be effectively performed by k-means algo-
rithm. The main subroutine of k-means algorithm—distance
computation—becomes d times faster in one-dimensional
space. The cost of projection is linear with respect to the
sample size andnumberof dimensionsOðNdÞ and is less then
the cost of one k-means iteration.

The main idea of our approach is to generate multiple
partitions by projecting the data on a random line. A fast
and simple algorithm such as k-means clusters the projected
data, and the resulting partition becomes a component in
the combination. Afterwards, a chosen consensus function
is applied to the components. We discuss and compare
several consensus functions in the experimental section.

It is instructive to consider a simple two-dimensional data
and one of its projections, as illustrated in Fig. 4a. There are
two natural clusters in the data. This data looks the same in
any one-dimensional projection, but the actual distribution of

points is different in different clusters in the projected
subspace. For example, Fig. 4b shows one possible histogram
distribution of points in 1-dimensional projection of this data.
There are three identifiable modes, each having a clear
majority of points fromone of the two classes. One can expect
that clustering by k-means algorithm will reliably separate at
least a portion of the points from the outer ring cluster. It is
easy to imagine thatprojectionof thedata inFig. 4aonanother
random line would result in a different distribution of points
and different label assignments, but for this particular data
set, it will always appear as a mixture of three bell-shaped
components.Mostprobably, thesemodeswill be identifiedas
clusters by k-means algorithm. Thus, each new one-dimen-
sional view correctly helps to group some data points.
Accumulation of multiple views eventually should result in
a correct combined clustering.

The major steps for combining the clusterings using
random 1D projections are described by the following
procedure:

begin

for i ¼ 1 to H== H is the number of clusterings in
the combination
generate a random vector u, s.t. | u|=1

project all data points {xj}: {yj}  {uxj},
j=1... N

cluster projections {yj}: � (i) k-means

({yj})

end

combine clusterings via a consensus

function: �  {�(i)}, i=1... H
return � // consensus partition

end
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Fig. 3. Dependence of distances derived from the coassociation values versus the actual Euclidean distance x for each possible pair of objects in Iris

data. Coassociation matrices were computed for different numbers of hyperplanes r ¼ 1; 2; 3; 4.



The important parameter is the number of clusters in the
componentpartition�i returnedbyk-meansalgorithmat each
iteration, i.e., the value of k. If the value of k is too large then
the partitions f�igwill overfit the data set which in turn may
cause unreliability of the coassociation values. Too small a
number of clusters in f�igmay not be enough to capture the
true structure of data set. In addition, if the number of
clusterings in the combination is too small then the effective
sample size for the estimates of distances from coassociation
values is also insufficient, resulting in a larger variance of the
estimates. That is why the consensus functions based on the
coassociation values are more sensitive to the number of
partitions in the combination (value of H) than consensus
functions based on hypergraph algorithms.

6 EMPIRICAL STUDY

The experiments were conducted with artificial and real-
world data sets, where true natural clusters are known, to
validate both accuracy and robustness of consensus via the
mixture model. We explored the data sets using five
different consensus functions.

6.1 Data Sets

Table 2 summarizes the details of the data sets. Five data
sets of different nature have been used in the experiments.
“Biochemical” and “Galaxy” data sets are described in [1]
and [40], respectively.

We evaluated the performance of the evidence accumu-
lation clustering algorithms by matching the detected and
the known partitions of the data sets. The best possible

matching of clusters provides a measure of performance

expressed as the misassignment rate. To determine the

clustering error, one needs to solve the correspondence

problem between the labels of known and derived clusters.

The optimal correspondence can be obtained using the

Hungarian method for minimal weight bipartite matching

problem with Oðk3Þ complexity for k clusters.

6.2 Selection of Parameters and Algorithms

The accuracy of the QMI and EM consensus algorithms has

been compared to six other consensus functions:

1. CSPA for partitioning of hypergraphs induced from
the coassociation values. Its complexity is OðN2Þ that
leads to severe computational limitations. We did not
apply this algorithm to “Galaxy” [40] and “Biochem-
ical” [1] data. For the same reason, we did not use
other coassociation methods, such as single-link
clustering. The performance of these methods was
already analyzed in [14], [15].

2. HGPA for hypergraph partitioning.
3. MCLA, that modifies HGPA via an extended set of

hyperedge operations and additional heuristics.
4. Three consensus functions operated on the coasso-

ciation matrix, but with three different hierarchical
clustering algorithms for obtaining the final parti-
tion, namely, single-linkage, average-linkage, and
complete-linkage.

The first three methods (CSPA, HGPA, and MCLA) were

introduced in [47] and their code is available at http://

www.strehl.com.
Thek-means algorithmwasusedas amethodof generating

the partitions for the combination. The diversity of the

partitions is ensured by the solutions obtained after a random

initialization of the algorithm. The following parameters of

the clustering ensemble are especially important:

1. H: The number of combined clusterings. We varied
this value in the range [5..50].

2. k: The number of clusters in the component
clusterings f�1; . . . ; �Hg produced by k-means algo-
rithm was taken in the range [2..10].
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Fig. 4. Projecting data on a random line: (a) A sample data with two identifiable natural clusters and a line randomly selected for projection.
(b) Histogram of the distribution of points resulting from data projection onto a random line.

TABLE 2
Characteristics of the Data Sets



3. r: The number of hyperplanes used for obtain-
ing clusterings f�1; . . . ; �Hg by random splitting
algorithm.

Both the EM and QMI algorithms are susceptible to the
presence of local minima of the objective functions. To
reduce the risk of convergence to a lower quality solution,
we used a simple heuristic afforded by low-computational
complexities of these algorithms. The final partition was
picked from the results of three runs (with random
initializations) according to the value of objective function.
The highest value of the likelihood function served as a
criterion for the EM algorithm and within-cluster variance
is a criterion for the QMI algorithm.

6.3 Experiments with Complete Partitions

Only main results for each of the data sets are presented in
Tables 3, 4, 5, 6, and 7 due to space limitations. The tables

report the mean error rate (%) of clustering combination
from 10 independent runs for relatively large biochemical
and astronomical data sets and from 20 runs for the other
smaller data sets.

First observation is that none of the consensus functions is
the absolute winner. Good performance was achieved by
different combination algorithms across the values of para-
meters k andH. TheEMalgorithmslightly outperformsother
algorithms for ensembles of smaller size, while MCLA is
superiorwhen thenumberof clusterings isH > 20.However,
ensembles of very large size are less important in practice. All
coassociation methods are usually unreliable with the
number of clusterings H < 50 and this is where we position
the proposed EM algorithm. Both EM and QMI consensus
functions need to estimate at least kHM parameters. There-
fore, accuracy degradation will inevitably occur with an
increase in thenumberofpartitionswhensample size is fixed.
However, therewas no noticeable decrease in the accuracy of
the EM algorithm in current experiments. The EM algorithm
also should benefit from the data sets of large size due to the
improved reliability of model parameter estimation.
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TABLE 3
Mean Error Rate (%) for the “Galaxy” Data Set

TABLE 4
Mean Error Rate (%) for the ”Biochemistry” Data Set

TABLE 5
Mean Error Rate (%) for the ”Half-rings” Data Set

TABLE 6
Mean Error Rate (%) for the ”2-Spirals” Data Set

TABLE 7
Mean Error Rate (%) for the Iris Data Set



A valuable property of the EM consensus algorithm is its
fast convergence rate. Mixture model parameter estimates
nearly always converged in less than 10 iterations for all the
data sets. Moreover, pattern assignments were typically
settled in 4-6 iterations.

Clustering combination accuracy also depends on the
number of clusters M in the ensemble partitions, or more
precisely, on its ratio to the target number of clusters, i.e.,
k=M. For example, the EM algorithmworked best with k ¼ 3
for Iris data set, k ¼ 3; 4 for “Galaxy” data set and k ¼ 2 for
“Half-rings” data. These values of k are equal or slightly
greater than the number of clusters in the combinedpartition.
In contrast, accuracy of MCLA slightly improves with an
increase in the number of clusters in the ensemble. Fig. 7
shows the error as a function of k for different consensus
functions for the galaxy data.

It is also interesting to note that, as expected, the average
errorof consensusclusteringwas lower than theaverageerror
of the k-means clusterings in the ensemble (Table 2) when k is
chosen to be equal to the true number of clusters. Moreover,
the clustering error obtained by EM and MCLA algorithms
with k ¼ 4 for “Biochemistry” data [1] was the same as found
by supervised classifiers applied to this data set [45].

6.4 Experiments with Incomplete Partitions

This set of experiments focused on the dependence of
clustering accuracy on the number of patterns with missing
cluster labels. As before, an ensemble of partitions was
generated using the k-means algorithm. Then, we randomly
deleted cluster labels for a fixed number of patterns in each of
thepartitions. TheEMconsensus algorithmwasusedon such
an ensemble. The number of missing labels in each partition
was varied between 10 percent to 50 percent of the total
number of patterns. The main results that averaged over
10 independent runs are reported in Table 8 for “Galaxy” and
“Biochemistry”data sets for variousvaluesofH andk.Also, a
typical dependence of error on the number of patterns with
missing data is shown for Iris data on Fig. 6 ðH ¼ 5; k ¼ 3Þ.

One can note that combination accuracy decreases only
insignificantly for “Biochemistry”datawhenup to 50percent
of labels are missing. This can be explained by the low
inherent accuracy for this data, leaving little room for further
degradation. For the “Galaxy” data, the accuracy drops by
almost 10 percent when k ¼ 3; 4. However, when just
10-20 percent of the cluster labels are missing, then there is
just a small change in accuracy. Also, with different values of
k, we see different sensitivity of the results to the missing
labels. For example, with k ¼ 2, the accuracy drops by only
slightlymore than 1 percent. Ensembles of larger sizeH ¼ 10
suffered less frommissing data than ensembles of sizeH ¼ 5.

6.5 Results of Random Subspaces Algorithm

Let us start by demonstrating how the combination of
clusterings in projected one-dimensional subspaces outper-
forms the combination of clusterings in the original multi-
dimensional space. Fig. 8a shows the learning dynamics for
Iris data and k ¼ 4, using average-link consensus function
based on coassociation values. Note that the number of
clusters in each of the components f�1; . . . ; �Hg is set to k ¼ 4
and is different from the true number of clusters ð¼ 3Þ.
Clearly, each individual clustering in full multidimensional
space is much stronger than any one-dim partition and,
therefore, with only a small number of partitions ðH < 50Þ

the combination of weaker partitions is not yet effective.
However, for larger numbers of combined partitions
ðH > 50Þ, one-dimensional projections together better reveal
the true structure of the data. It is quite unexpected, since the
k-means algorithmwith k ¼ 3makes, on average, 19mistakes
in original four-dimensional space and 25 mistakes in one-
dimensional random subspace. Moreover, clustering in the
projected subspace is d times faster than inmultidimensional
space. Although, the cost of computing a consensus partition
� is the same in both cases.

The results regarding the impact of value of k are reported
in Fig. 8b,which shows that there is a critical value of k for the
Iris data set. This occurs when the average-linkage of
coassociation distances is used as a consensus function. In
this case, the value k ¼ 2 is not adequate to separate the true
clusters. The role of the consensus function is illustrated in
Fig. 9. Three consensus functions are compared on the Iris
data set. They all use similarities from the coassociation
matrix but cluster the objects using three different criterion
functions, namely, single link, average link, and complete
link. It is clear that the combination using single-link
performs significantly worse than the other two consensus
functions. This is expected since the three classes in Iris data
have hyperellipsoidal shape. More results were obtained on
“half-rings” and “2 spirals” data sets in Fig. 5, which are
traditionally difficult for any partitional centroid-based
algorithm. Table 9 reports the error rates for the “2 spirals”
data using seven different consensus functions, a different
number of component partitions H = [5..500], and a different
number of clusters in each component k = 2, 4, 10. We omit
similar results for “half-rings” data set under the same
experimental conditions and some intermediate values of k
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TABLE 8
Clustering Error Rate of EM Algorithm as a Function of the

Number of Missing Labels for the Large Data Sets



due to space limitations. Aswe see, the single-link consensus
function performed the best andwas able to identify both the
“half-rings” clusters as well as spirals. In contrast to the
results for Iris data, average-link and complete-link con-
sensus were not suitable for these data sets.

This observation supports the idea that the accuracy of
the consensus functions based on coassociation values is
sensitive to the choice of data set. In general, one can expect
that average-link (single-link) consensus will be appropriate
if standard average-link (single-link) agglomerative cluster-
ing works well for the data and vice versa. Moreover, none
of the three hypergraph consensus functions could find a
correct combined partition. This is somewhat surprising
given that the hypergraph algorithms performed well on
the Iris data. However, the Iris data is far less problematic
because one of the clusters is linearly separable and the
other classes are well described as a mixture of two
multivariate normal distributions.

Perfect separation of natural clusters was achieved with
a large number of partitions in clustering combination ðH >
200Þ and for values of k > 3 for “half-rings” and “2 spirals.”
Again, it indicates that for each problem there is a critical
value of resolution of component partitions that guarantees
good clustering combination. This further supports the
work of Fred and Jain [15], [16] who showed that a random
number of clusters in each partition ensures a greater
diversity of components. We see that the minimal required
value of resolution for the Iris data is k ¼ 3, for “half-rings”
it is k ¼ 2, and for “2 spirals” it is k ¼ 4. In general, the
value of k should be larger than the true number of clusters.

The number of partitions affects the relative performance
of the consensus functions. With large values of Hð> 100Þ,
coassociation consensus becomes stronger, while with small
values of H it is preferable to use hypergraph algorithms or
k-means median partition algorithm.

It is interesting to compare the combined clustering
accuracy with the accuracy of some of the classical clustering
algorithms. For example, for Iris data the EM algorithm has
the best average error rate of 6.17 percent. In our experiments,
the best performers for Iris data were the hypergraph
methods, with an accuracy as low as 3 percent, with H >
200 and k > 5. For the “half-rings” data, the best standard
result is 5.25 percent error by the average-link algorithm,
while the combined clustering using the single-link coasso-
ciation algorithm achieved a 0 percent error with H > 200.
Also, for the “2 spirals” data the clustering combination
achieves 0 percent error, the same as by regular single-link
clustering. Hence, with an appropriate choice of consensus
function, clustering combination outperforms many stan-
dard clustering algorithms. However, the choice of a good
consensus function is similar to the problem of the choice of a
good conventional clustering algorithm. Perhaps a good
alternative to guessing the right consensus function is simply
to run all the available consensus functions and then pick the
final consensus partition according to the partition utility
criteria in (4) or (6). We hope to address this in future
applications of the method.

Another set of experiments was performed on the
“Galaxy” data set which has a significantly larger number
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Fig. 5. “Two spirals” and “Half-rings” data sets are difficult for any centroid based clustering algorithms.

Fig. 6. Consensus clustering error rate as a function of the number of

missing labels in the ensemble for the Iris data set, H ¼ 5; k ¼ 3.
Fig. 7. Consensus error as a function of the number of clusters in the
contributing partitions for Galaxy data and ensemble size H ¼ 20.



of samplesN ¼ 4192 and number of features d ¼ 14. The task

is to separatepatternsofgalaxies fromstars.Weused themost

difficult set of “faint” objects from the original data [40]. True

labels for the objects were provided manually by experts.
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Fig. 8. Performance of random subspaces algorithm on Iris data. (a) Number of errors by the combination of k-means partitions ðk ¼ 4Þ in
multidimensional space and projected to 1D subspaces. Average-link consensus function was used. (b) Accuracy of projection algorithm as a
function of the number of components and the number of clusters k in each component.

Fig. 9. Dependence of accuracy of the projection algorithm on the type of consensus function for Iris data set. k ¼ 3.

TABLE 9
“2 Spirals” Data Experiments

Average error rate (% over 20 runs) of clustering combination using the random 1D projections algorithm with a different number of components, H,
in combination, different resolutions of components k, and seven types of consensus functions.



Even though computation of component partitions is d times

faster due to projection, the overall computational effort can

be dominated by the complexity of computing the consensus

partition. Quadratic computational complexity effectively

prohibits coassociation-based consensus functions from

being used on large data sets, due to OðN2Þ complexity of

building coassociation matrix for N objects. Therefore, for

large data setswedonot use three hierarchical agglomerative

methods aswell asCSPAhypergraphalgorithmbyStrehl and

Ghosh.Thek-meansalgorithmformedianpartitionviaQMI is

the most attractive in terms of speed with a complexity

OðkNHÞ. In addition, we also used two other hypergraph-

based consensus functions, since theyworked fast in practice.

Table 10 reports the achieved error rateusing these consensus

functions. We also limited the number of components in the

combination to H ¼ 20 because of the large data size. The

results show that k-means algorithm for median partition has

the best performance. HGPAdid notworkwell due to its bias

toward balanced cluster sizes, as it also happened in the case

of the “half-rings”data set.We see that the accuracy improves

when the number of partitions and clusters increases.
It is important to note that the average error rate of the

standard k-means algorithm for the “Galaxy” data is about

20 percent and the best known solution has an error rate of

18.6 percent. It is quite noticeable that k-means median

partition algorithm and MCLA obtained much better parti-

tion with an error rate of only around 13 percent for k > 3.

6.6 Results of Random Splitting Algorithm

The same set of experiments was performed with cluster-
ing combination via splits by random hyperplanes as in
Section 5.1. Here, we would like to emphasize only the
most interesting observations because the results in many
details are close to what have been obtained by using
random subspaces. There is a little difference in terms of
absolute performance: The random hyperplanes algorithm
is slightly better on “half-rings” data using single-link
consensus function, about the same on “2 spirals” and
worse on Iris data set.

It is important todistinguish thenumber of clusters k in the
component partition and the number of hyperplanes r
because hyperplanes intersect randomly and form varying
number of clusters. For example, three lines can create
anywhere between four and seven distinct regions in a plane.

The results for the “2 spirals” data set also demonstrate the
convergence of consensus clustering to a perfect solution
when H reaches 500 and for the values of r ¼ 2; . . . ; 5. See
Fig. 10a. A larger number of hyperplanes ðr ¼ 5Þ improves
the convergence. Fig. 10b illustrates that the choice of
consensus function is crucial for successful clustering. In
the case of “2-spirals” data, only single-link consensus is able
to find correct clusters.

7 CONCLUSION AND FUTURE WORK

This study extended previous research on clustering ensem-
bles in several respects. First, we have introduced a unified
representation for multiple clusterings and formulated the
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TABLE 10
Average Error Rate (in %, over 20 runs) of Combination Clustering Using Random Projections Algorithm on “Galaxy/Star” Data Set

Fig. 10. Number of misassigned points by random hyperplanes algorithm in clustering of “2 spiral” data: (a) for different number of hyperplanes and

(b) for different consensus functions.



corresponding categorical clustering problem. Second, we
have proposed a solution to the problem of clustering
combination. A consensus clustering is derived from a
solution of the maximum-likelihood problem for a finite
mixture model of the ensemble of partitions. Ensemble is
modeled as a mixture of multivariate multinomial distribu-
tions in the space of cluster labels. Maximum-likelihood
problem is effectively solved using the EM algorithm. The
EM-based consensus function is also capable of dealing with
incomplete contributing partitions. Third, it is shown that
another consensus function can be related to classical
intraclass variance criterion using the generalized mutual
information definition. Consensus solution based on quad-
ratic mutual information can be efficiently found by k-means
algorithm in the space of specially transformed labels.
Experimental results indicate good performance of the
approach for several data sets and favorable comparisonwith
other consensus functions. Among the advantages of these
algorithms are their low-computational complexity andwell-
grounded statistical model.

We have also considered combining weak clustering
algorithms that use data projections and random data splits.
A simple explanatory model is offered for the behavior of
combination of such weak components. We have analyzed
combination accuracy as a function of parameters, which
control the power and resolution of component partitions as
well as the learning dynamics versus the number of cluster-
ings involved. Empirical study compared the effectiveness of
several consensus functions applied to weak partitions.

It is interesting to continue the study of clustering
combination in several directions: 1) design of effective
search heuristics for consensus functions, 2) more precise
and quantifiable notion of weak clustering, and 3) an
improved understanding of the effect of component
resolution for overall performance. This research can be
extended in order to take into account nonindependence of
partitions in the ensemble. The consensus function pre-
sented here is equivalent to a certain kind of Latent Class
Analysis, which offers established statistical approaches to
measure and use dependencies (at least pair-wise) between
variables. It is also interesting to consider a combination of
partitions of different quality. In this case, one needs to
develop a consensus function that weights the contributions
of different partitions in proportional to their strength. We
hope to address these issues in our future work.
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