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Abstract
Recently, there has been an explosive growth in graphical modeling approaches
for estimating brain functional networks. In a detailed study, we show that sur-
prisingly, standard graphical modeling approaches for fMRI data may not yield
accurate estimates of the brain network due to the inability to suitably account
for temporal correlations. We propose a novel Bayesian matrix normal graph-
ical model that jointly models the temporal covariance and the brain network
under a separable structure for the covariance to obtain improved estimates. The
approach is implemented via an efficient optimization algorithm that computes
the maximum-a-posteriori network estimates having desirable theoretical prop-
erties and which is scalable to high dimensions. The proposed method leads to
substantial gains in network estimation accuracy compared to standard brain
network modeling approaches as illustrated via extensive simulations. We apply
the method to resting state fMRI data from the Human Connectome Project
involving a large number of time scans and brain regions, to study the rela-
tionships between fluid intelligence and functional connectivity, where it is not
computationally feasible to apply existing matrix normal graphical models. Our
proposed approach led to the detection of differences in connectivity between
high and low fluid intelligence groups, whereas these differences were less pro-
nounced or absent using the graphical lasso.

KEYWORDS
functional connectivity, Human Connectome Project, matrix normal graphical models, preci-
sion matrix estimation

1 INTRODUCTION

Functional connectivity measures how different regions of
the brain change their activity together as a functionally
coherent unit. Recently, there has been a rapid increase
in the development of functional connectivity approaches
for resting-state functional magnetic resonance imaging
(rsfMRI) in which a subject lies in a scanner looking at
cross hairs. Among a variety of proposedmethods, the pre-
cision matrix estimation approach for brain connectivity

was found to be one of the most successful approaches
(Smith et al., 2011) in the presence of various issues that
often arise in real fMRI studies, given the fact that it can
distinguish a true, direct functional connection from an
apparent connection between two nodes that can poten-
tially be due to confounding by additional nodes.
The fMRI data recorded from experiments typically con-

tains structured noise that contributes to substantial auto-
correlation (Bollmann et al., 2018), arising from physical
sources such as scanner drift (eg, slowly varying changes
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F IGURE 1 Boxplots for autocorrelation and cross-correlation across varying lags for one subject in the Human Connectome Project data.
The top panels denote the empirical and prewhitened (using an AR(1) model) autocorrelations (left and right panels, respectively). The bot-
tom panel denotes the corresponding cross-correlations. It is clear that an AR(1) model is unable to completely remove the auto- and cross-
correlations from the data

in ambient temperature), physiological factors (eg, breath-
ing and cardiac pulsation), residual movement artifacts,
as well as from serial correlations inherent in the blood-
oxygen-level dependent signal related to neural activity.
Neuroimaging studies typically involve a pipeline of stan-
dard preprocessing steps to reduce motion artifacts, which
reduce but do not remove serial correlation (Smith et al.,
2013). Hence, the preprocessed fMRI data are often tem-
porally correlated within and across brain regions, which
may render standard network modeling tools ineffective.
Bayesian Gaussian graphical models (Dobra et al., 2011;

Kundu et al., 2019) have been successful in modeling
brain networks (Mumford and Ramsey, 2014), and have
been recently applied for the joint estimation of multiple
networks (Peterson et al., 2015), and for the estimation of
dynamic networks (Warnick et al., 2018). Unfortunately,
these existing approaches typically do not explicitly
account for temporal dependence in fMRI data, and often

do not scale to the high-dimensional networks considered
in our applications. Although there are some recent
asymptotic results for precision matrix estimation using
temporally correlated data via the graphical lasso algo-
rithm (Shu and Nan, 2019), the finite sample properties
of these approaches are not yet well understood. One
possible approach is to minimize the autocorrelations
using prewhitening methods (Zhu and Cribben, 2018),
which reduces temporal dependence between fMRI
measurements, and then fit the graphical models to these
prewhitened observations. However, such approachesmay
not be able to completely remove the temporal correlations
as illustrated using theHumanConnectome Project (HCP)
data in Figure 1. Another alternative is to assume a fixed
temporal structure when computing connectivity (Cas-
truccio et al., 2018), which can be restrictive in practical
applications with arbitrary temporal dependencies. There
is also relevant work on computing connectivity between
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channels via partial coherence measures obtained from
spectral density matrices for electroencephalogram (EEG)
data (Fiecas and Ombao, 2010), but these cannot be
directly used for network analysis using fMRI data. One
of the important findings of this article is that temporal
correlations, when not properly accounted for, may lead
to misleading brain network estimation under graphical
modeling approaches. Hence, there is a pressing need
for approaches that deal with temporal correlations in a
systematic manner to improve brain network estimation.
A promising solution may be found by jointly modeling

the temporal correlations and the brain network via a sep-
arable assumption on the covariance structure. Separable
covariance models have been heavily used in the spatial
statistics (Genton, 2007), and related literature. Unfortu-
nately these approaches do not focus on estimating con-
ditional dependencies. Moreover, they typically assume
prespecified spatiotemporal covariances, or consider
low-dimensional multivariate spatiotemporal data, which
make them ill-suited for high-dimensional network analy-
sis using graph theoretic approaches. There has also been
some development of separable covariance approaches for
estimating networks from high-dimensional time series
that do not assume any fixed structure on the covariance
between nodes in the network (Qiu et al., 2016) but instead
assume a prespecified temporal dependence structure
that may be restrictive in practical fMRI applications
involving long-range dependence (Meisel et al., 2017).
Penalized matrix normal graphical models (pMNGM)
involving separable covariance structures have also been
proposed (Allen and Tibshirani, 2010; Leng and Tang,
2012; Zhou, 2014), and a Bayesian alternative involving
hyper inverse-Wishart priors was developed by Wang and
West (2009). Although these approaches are attractive in
permitting arbitrary structures for the row and column
covariances, they are yet to be applied to mainstream
brain functional network analysis using high-dimensional
fMRI data, to our knowledge.
One potential difficulty with existing MNGM is their

computational feasibility for high-dimensional data set-
tings. For example, our motivating HCP application
includes rsfMRI scans with 1200 time points, and uses
a recently developed multi-modal atlas that contains 360
nodes (over 60 000 edges) (Glasser et al., 2016). As exist-
ing pMNGM approaches often involve two tuning param-
eters for imposing sparsity in both the row and column
inverse covariance matrices, they are not suitable for high-
dimensional brain network analysis using the HCP data.
Moreover, finding optimal choices for two tuning parame-
ters is difficult. Similarly, the Bayesian approaches involv-
ing hyper inverse-Wishart priors typically constrain their
search to the space of decomposable graphs, which may

be restrictive for high-dimensional settings (Kundu et al.,
2019).
We propose a novel and computationally scalable

Bayesian MNGM (BMNGM) for estimating brain func-
tional networks that bypasses the aforementioned
challenges. The proposed approach imposes shrinkage
priors on the precision off-diagonals for modeling the
brain network and simultaneously models the temporal
covariance matrix under an inverse-Wishart prior without
relying on sparsity assumptions and additional tuning
parameters. In addition to a Markov chain Monte Carlo
(MCMC) based implementation of the proposed model,
we develop a computationally efficient optimization
algorithm to obtain the maximum a posteriori (MAP)
estimates. The algorithm yields exact zeros corresponding
to absent network edges, and involves only one tuning
parameter controlling the network sparsity. The approach
scales to a large number of nodes and time points, and the
MAP estimator has desirable theoretical properties as the
number of nodes and time points grow. We perform exten-
sive simulations to illustrate the practical advantages of
the approach. We apply our method to a high-dimensional
HCP data application where existing MNGM approaches
are not applicable (due to scalability issues) and standard
graphical modeling approaches only detect feeble or no
network differences related to fluid intelligence changes.

2 METHODOLOGY

2.1 Proposed approach

Consider a 𝑇 × 𝑣 matrix of preprocessed fMRI measure-
ments 𝑋𝑖 corresponding to 𝑇 time points and 𝑣 regions
of interests for the 𝑖th subject, where the 𝑡th row is
denoted as 𝐱(𝑡)

𝑖
and the 𝑗th column is denoted as 𝐱𝑖𝑗, 𝑡 =

1, … , 𝑇, 𝑗 = 1,… , 𝑣. In what follows, we will first normal-
ize the columns of the data matrix 𝑋 (resulting in zero
column means and unit variances for each node) before
fitting the model, and subsequently perform a postfitting
rescaling step to recover the estimated precision matrix
(described in Algorithm I in Section 2.3), as in Rothman
et al. (2008). Consider the Bayesian matrix normal model

𝑋𝑖 ∼ 𝑀𝑁(𝟎𝑇×𝑣,Ω
−1
𝑣×𝑣 ⊗𝑇×𝑇), Ω ∼ 𝜋(Ω),  ∼ 𝜋(),

𝑖 = 1, … , 𝑛, (1)

where 𝟎𝑇×𝑣 denotes a 𝑇 × 𝑣 matrix of zeros, ⊗ denotes
the Kronecker product, 𝑀𝑁(⋅, ⋅) implies a matrix nor-
mal distribution, Ω denotes the inverse covariance matrix
between nodes, and encodes temporal correlations. Both
Ω and are unknown and estimated from the data under
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suitable priors 𝜋(Ω) and 𝜋() (see Section 2.2). Model
(1) is equivalent to assuming a multivariate normal distri-
bution on vec(𝑋) with zero mean and covariance matrix
Σ = Ω−1 ⊗, where vec(𝑋) is obtained by stacking the
columns of 𝑋. As Ω and in the likelihood are only iden-
tifiable up to a constant, one may optionally rescale  as
in Leng and Tang (2012) to ensure identifiability (see Algo-
rithm I in Supporting Information).
A sparse inverse covariance matrix Ω = (𝜔𝑘𝑙)

𝑣
𝑘,𝑙=1

cor-
responds to a graph that encodes functional connections
that is stationary. In other words, the partial correlation
between 𝑥𝑖,𝑡𝑘 and 𝑥𝑖,𝑡𝑙 is the same as that between 𝑥𝑖,𝑡′𝑘
and 𝑥𝑖,𝑡′𝑙, where 𝑡 ≠ 𝑡′, and 𝑘 ≠ 𝑙. Denote the graph 

that has the vertex set  consisting of vertices or nodes
{1, … , 𝑣} and edge set 𝐸 that contains all edges correspond-
ing to nonzero precision off-diagonals. Edges present in
𝐸 represent important network connections, while absent
edges imply insignificant associations. Further,  repre-
sents the temporal covariances across the scanning ses-
sion, which are assumed to be constant across all nodes,
that is, corr(𝑥𝑖,𝑡𝑘, 𝑥𝑖,𝑡′𝑘) = corr(𝑥𝑖,𝑡𝑙, 𝑥𝑖,𝑡′𝑙) (where 𝑙 ≠ 𝑘).
Further, the cross covariance between𝑥𝑖,𝑡𝑘 and 𝑥𝑖,𝑡′𝑙, which
represents the associations across nodes at nonzero lags, is
given by Ω−1(𝑘, 𝑙)(𝑡, 𝑡′), 𝑘 ≠ 𝑙, 𝑡 ≠ 𝑡′.
The Kronecker structure on the covariance in (1) is

designed to model temporal autocorrelations within
a node, and cross-correlations between nodes, while
simultaneously estimating Ω. This approach precludes
the need to pre-specify a temporal structure and bypasses
prewhitening steps, which may otherwise be required
to minimize temporal correlations under standard
approaches. The Kronecker assumption results in a sepa-
rable covariance structure that considerably reduces the
number of candidate covariance parameters, and provides
important benefits such as model parsimony and scala-
bility, which are crucial for a practical implementation
in high-dimensional applications. A separable structure
implies constant functional connectivity between two
nodes across all time points, and conversely, constant
temporal correlations across all brain regions. Although
the first assumption is commonly used for traditional
brain network analyses that do not assume dynamic
connectivity, the second constraint implies a global
temporal correlation structure. This latter assumption is
more flexible than the global autoregressive structures
implemented in the popular software SPM, although SPM
also includes the option of allowing the coefficients to
vary over space (Bollmann et al., 2018). We used numerical
studies in Section 4 to examine the separable assumption
under the proposed Bayesian model (1), and found it did
not significantly affect the ability to accurately estimate

the brain network when the true covariance structure
is nonseparable. Although the separable assumption
may potentially lead to inaccurate temporal correlation
estimates, this is tolerated as it is not our primary focus.

2.2 Prior on the precision matrix and
temporal correlations

Wepropose theBayesian graphical lasso prior (Wang, 2012)
on Ω in (1), which imposes double exponential priors on
the precision off-diagonals to shrink the elements corre-
sponding to absent edges toward zero. Further, the tem-
poral correlations in (1) are modeled under an inverse-
Wishart prior as follows

𝜋(Ω ∣ 𝜆) ∝

𝑣∏
𝑘=1

𝜋(𝜔𝑘𝑘)
∏
𝑗<𝑘

𝐷𝐸(𝜔𝑗𝑘; 𝜆)𝐼(Ω ∈ 𝑀+
𝑣 ),

 ∼ (𝑏, 𝐷), (2)

where 𝜋(𝜔𝑘𝑘) denotes the prior on the diagonal elements
in Ω (see Section 2.3), 𝐷𝐸(𝜆) represents the double expo-
nential/Laplace prior distribution, with 𝜆 being the shrink-
age parameter,  denotes the inverse-Wishart distribu-
tion with 𝑏 degrees of freedom and scale matrix 𝐷, and
𝑀+

𝑣 refers to the space of all 𝑣 × 𝑣 positive definite matri-
ces. We note that by varying 𝜆, one can still obtain a series
of networks corresponding to varying sparsity levels, with
a greater value of 𝜆 resulting in more sparsity and vice
versa. We denote the proposed approach in (1) and (2) as
the BMNGM.

2.3 Computational algorithm

The posterior distribution for the parameters in our
model (1) and (2) is given as 𝜋(Ω, ∣ −) ∝ 𝐿(𝑋1, … , 𝑋𝑛 ∣

Ω,)𝜋(Ω ∣ 𝜆)𝜋(). For the MCMC implementation, we
assume that the diagonal elements ofΩ are independently
distributed as Exp(𝜆∕2). The posterior computation can
proceed via fully Gibbs steps that performs columnwise
updates for the elements in Ω using a normal posterior
under a scale mixture representation of the double expo-
nential distribution (Wang, 2012), followed by updating 
using an inverse-Wishart posterior. The shrinkage param-
eter 𝜆 is treated as random and also updated under a
Gamma prior. The MCMC details along with the thresh-
olding procedure to obtain point estimates of the precision
matrix is detailed in Web Appendix C of the Supporting
Information.
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For MAP estimation 𝜆 is treated as a tuning parameter.
The negative log-posterior is

𝑄(Ω,) =

{
−

𝑛𝑇

2
log(det(Ω)) + 𝑛𝑣

2
log(det())

+
1

2
𝑇𝑟{−1

𝑛∑
𝑖=1

(𝑋𝑖Ω𝑋
𝑇
𝑖
)}

}
− log(𝜋(Ω; 𝜆))

+
𝑏 + 𝑇 + 1

2
log(det()) +

1

2
𝑇𝑟(𝐷−1) + ,

(3)

where 𝑇𝑟(⋅) and det(⋅) denote the trace and determinant,
 denotes a constant not involving model parameters, and
the term − log(𝜋(Ω; 𝜆)) ∝ 𝜆

∑
𝑗≤𝑘

|𝜔𝑗𝑘| or 𝜆
∑

𝑗<𝑘
|𝜔𝑗𝑘|

depending on whether the prior on the diagonal ele-
ments is exponential or uninformative (ie, 𝜋(𝜔𝑘𝑘) ∝ 1).
Although the first choice results in a graphical lasso algo-
rithm (Friedman et al., 2008), the second one resembles
the relatedmethod in Rothman et al. (2008), which is what
we will use for MAP estimation. Even under the uniform
prior 𝜋(𝜔𝑘𝑘) ∝ 1, one obtains a proper posterior as shown
in Lemma 1 (see Web Appendix A of Supporting Informa-
tion for proof).

Lemma 1. Given model (1), the prior 𝜋(Ω ∣ 𝜆) in (2) with
𝜋(𝜔𝑘𝑘) ∝ 1, 𝑘 = 1,… , 𝑣, results in a proper posterior distri-
bution 𝜋(Ω ∣ 𝜆,, 𝑋1, … , 𝑋𝑛).

We propose a coordinate descent algorithm for obtain-
ing the MAP estimate for parameters corresponding to (3),
which iteratively updates Ω and  till convergence. Algo-
rithm I inWebAppendix C of Supporting Information pro-
vides full details. The proposed approach can be fit for a
series of 𝜆 values resulting in varying sparsity levels, and
the optimal graph can be chosen corresponding to the 𝜆

value minimizing the Bayesian information criteria (BIC).
Alternatively, the value of 𝜆 is chosen to give a desired net-
work sparsity in brain imaging applications. The total cost
of the algorithm at an iteration with 𝜅∗ nonzero elements
inΩ is between𝑂(𝑣𝜅∗) + 𝑂(𝑇2.37) and𝑂(𝑣𝜅∗) + 𝑂(𝑇3).We
note that the computation time is smaller for larger values
of the penalty parameter that results in more sparse pre-
cision matrices. Although there is no guarantee that the
algorithm converges to the global minimum, it is possible
to show that the algorithm converges to a local stationary
point using a similar argument as in Proposition 2 of Allen
and Tibshirani (2010). See Lemma 2 (proof very similar to
the proof of Proposition 2 in Allen and Tibshirani (2010)).
Moreover, we illustrate in Section 3 that the proposedMAP
estimator is able to asymptotically recover the true preci-
sion matrix under certain commonly used regularity con-
ditions.

Lemma 2. Iterative block coordinate-wise maximization of
𝑄(Ω,) with respect to Ω and  converges to a stationary
point of 𝑄(Ω,).

3 THEORETICAL PROPERTIES

In our theoretical treatment, we show the consistency of
the MAP estimator for Ω as the number of brain voxels
and time scans increase, while the sample size is fixed
(without loss of generality, fix 𝑛 = 1). Unlike some previ-
ouswork onMNGM(Zhou, 2014)who showed consistency
in estimating both the row and column covariances, we are
only interested in the accurate estimation of the precision
matrix that is of practical interest in brain network stud-
ies, and we consider as a nuisance parameter. Moreover,
our theoretical results focus on a broad class of true mod-
els (not necessarily MNGM) that capture several practical
settings (see below). In particular, we assume that the true
model is such that 𝐱(𝑡), 𝑡 = 1, … , 𝑇, follow the same distri-
bution with Cov(𝑋𝑡) = Σ0 = Ω−1

0
and corresponding cor-

relation matrix 𝑅0, where Ω0 belongs to the class of well-
behaved matrices as elaborated in Assumption (C1) in the
sequel. We assume that the true data generating mecha-
nism follows

vec(𝑋) = 𝐻𝐞, 𝐸(𝐞) = 𝟎, Cov(𝐞) = 𝐼𝑚, (4)

where 𝐼𝑚 is an 𝑚 ×𝑚 identity matrix, 𝐻 = (ℎ𝑖𝑗) is a 𝑣𝑇 ×

𝑚 real deterministic matrix, and 𝐞 = (𝑒1, … , 𝑒𝑚) is a ran-
dom vector with 𝑒𝑗 and 𝑒𝑗′ independent (𝑗 ≠ 𝑗′). More-
over, the true covariance matrix for vec(𝑋) is given by
Cov(𝐻𝐞) = 𝐻Cov(𝐞)𝐻𝑇 = 𝐻𝐻𝑇 . We assume that the true
covariance parameters in Σ0 are bounded even when the
number of columns in 𝐻 (ie, 𝑚), goes to ∞. The class of
models defined by (4) covers multivariate fractional Gaus-
sian noise and vector autoregressive models, as discussed
in Shu and Nan (2019).
Denote Λ(𝑀) as the eigen-values of 𝑀, and define

the spectral, Frobenius, and matrix 𝐿1 norms as
||𝑀||2 = √

Λmax(𝑀′𝑀), ||𝑀||𝐹 =
√∑

𝑖,𝑗
𝑀2

𝑖𝑗
, and

||𝑀||1 = max𝑗
∑

𝑘
𝑀𝑘𝑗 , respectively. The entry-wise

𝐿1 norm is |𝑀|1 = ∑
𝑘𝑙
|𝑀|𝑘𝑙 and the corresponding

off-diagonal version is |𝑀|1,𝑜𝑓𝑓 =
∑

𝑘≠𝑙
|𝑀|𝑘𝑙, and finally,

the entry-wise 𝐿∞ norm 𝑀∞ = max𝑘,𝑙 |𝑀𝑘𝑙|. Let 𝑅[𝑘]
be the 𝑇 × 𝑇 correlation matrix for the 𝑘th time series,
𝑘 = 1,… , 𝑣. Further, let 𝑆0 denote the true edge set,
that is, the set of non-zero entries for Ω0, 𝑆𝑐0 denote the
complement of this set, and define 𝑑∗ to be the maximum
number of nonzeros per row inΩ0. Define 𝑅

⊗2
0

= 𝑅0 ⊗ 𝑅0
as the Kronecker product between 𝑅0 with itself, and let
𝑅⊗2
0,𝑆,𝑆′

denote a submatrix of 𝑅⊗2
0

with rows and columns
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corresponding to 𝑆, 𝑆′ ⊆ {1, … , 𝑣}. Define 𝜅𝑅 = ||𝑅||1 and
𝜅
𝑅⊗2
0

= ||(𝑅⊗2
0

)−1||1. Assumptions (C1)-(C4) are described
(see Web Appendix A of Supporting Information for
further discussions).
(C1): The class of true precision matrices satisfy Ω0 =

Σ−1
0

∈ 2(𝑠𝑣, 𝜈0) ∶= {Ω0 ∶
∑

1≤𝑘<𝑘′≤𝑣
1(𝜔0,𝑘𝑙 ≠ 0) ≤ 𝑠𝑣, 0

< 𝜈−1
0

≤ Λmin(Ω) ≤ Λmax(Ω) ≤ 𝜈0}, where 𝑠𝑣 determines
the sparsity of the graph and can depend on 𝜈0.
(C2):max1≤𝑘≤𝑣

1

𝑣
||𝑅[𝑘]||2𝐹 ≤ 𝑔𝐹 , andmax1≤𝑘≤𝑣||𝑅[𝑘]||2 ≤

𝑔2, with 1 ≤ 𝑔𝐹 ≤ 𝑔2 ≤ 𝑇.
(C3): max𝑒∈𝑆𝑐

0
|𝑅⊗2

0,𝑒𝑆0
(𝑅⊗2

0,𝑆0𝑆0
)−1|1 ≤ 1 − 𝛽, for some 𝛽 ∈

(0, 1].
(C4): Consider a sequence of priors on the temporal

correlation matrix 𝜋() such that 𝑏 → ∞, 𝑏 − 𝑣 > 0, and
𝐷∕𝑏 → 𝐼𝑇 as 𝑇, 𝑣 → ∞.
Define 𝑢1 = max{log(𝑣)𝑔2∕𝑇,

√
log(𝑣)𝑔𝐹∕𝑇} and 𝑟 =

(0.5 + 2.5(1 + 8∕𝛽)𝜅
𝑅⊗2
0
)𝑀𝑢1𝜈0. Theorem 1 is presented

(proof provided in Web Appendix A of Supporting Infor-
mation).

Theorem 1. Suppose 𝑋𝑇×𝑣 is generated from (4), with all
𝑒𝑗 satisfying (𝐸|𝑒𝑗|𝑘)1∕𝑘 ≤ 𝐾𝑘1∕2 where 𝐾 is a positive con-
stant, for all 𝑘 ≥ 1. Further, let assumptions (C1)-(C4) hold,
for sufficiently large constant𝑀 depending on 𝜈0 and𝐾, and
𝜆 = 8𝑀𝑢1∕𝛽 ≤ (6(1 + 𝛽)∕8)𝑑∗ max{𝜅𝑅0𝜅𝑅⊗2

0
, 𝜅3

𝑅0
𝜅3
𝑅⊗2
0

})
−1
,

and 𝑢1 = 𝑜(min{1, ((1 + 8∕𝛽)𝜅
𝑅⊗2
0
)−1}). Then as 𝑣, 𝑇 → ∞,

with probability tending to one, the following results hold:

(i) |Ω̂𝜆 − Ω0|∞ ≤ 𝑟, ||Ω̂𝜆 − Ω0||2 ≤ 𝑟 min{𝑑∗, 𝑣 + 𝑠𝑣}, and
1√
𝑣
||Ω̂𝜆 − Ω0||𝐹 ≤ 𝑟

√
1 + 𝑠𝑣∕𝑣.

(ii) For all (𝑘, 𝑙) ∈ 𝑆𝑐
0
, �̂�𝑘𝑙 = 0, and under the additional

assumption that |𝜔0,𝑘𝑙| > 𝑟 for all (𝑘, 𝑙) ∈ 𝑆0, we have
sign(�̂�∗

𝑘𝑙
) = sign(𝜔0,𝑘𝑙).

4 SIMULATION STUDY

4.1 Set-up

We performed a variety of simulation studies and com-
pared the performance of the proposed approach with
existing Gaussian graphical modeling approaches that (a)
fit the network using temporally correlated data; (b) use
prewhitening to minimize temporal correlations and then
fit the network; and (c) jointly model the brain network
and temporal correlations. All results in this section under
BMNGM correspond to the MAP estimator. We compare
our results with graphical lasso for both prewhitened
data (Glasso-AR), and datawithout prewhitening (Glasso).
The prewhitening was performed using the “auto.arima”
function in R (“forecast” package), which automatically

selects the autoregressive lag. We also compared with
the pMNGM that assumes a similar separable covariance
structure as BMNGM but imposed sparsity in both Ω and
−1 via two distinct penalty parameters. The pMNGM is
fit exactly as Algorithm I for BMNGM, but uses Glasso
to estimate −1. We also compare with the BMNGM
approach that has a fixed temporal dependence struc-
ture = (𝑛𝑣)−1

∑𝑛

𝑖=1

∑𝑣

𝑗=1
(𝐱𝑖𝑗 − �̄�𝑖𝑗)(𝐱𝑖𝑗 − �̄�𝑖𝑗)

𝑇 , which is
denoted as empirical MNGM (eMNGM). We note that
Glasso was implemented via the “QUIC” package in R
(Hsieh et al., 2011).
We generate data involving 𝑛 = 20 subjects under mul-

tiple scenarios. Scenario I generated data from the pro-
posedmodel with two types of networks and temporal cor-
relation structures. Scenario II incorporated polynomial
decay temporal correlations such that Cov(𝐱𝑖𝑡, 𝐱𝑖,𝑡+𝑗) =
(𝑗 + 1)−𝛼Ω−1

0
. Hence, the covariance has a separable struc-

ture, but the time series for each node is generated with
polynomial temporal correlations, similar to Shu and Nan
(2019). For Scenarios I and II, we generate the data for
𝑣 = 100, 200, and 𝑇 = 200, 500. Scenario III generates data
under a nonseparable covariance structure. The full details
are provided in Web Appendix D of Supporting Informa-
tion. To assess numerical performance, we compute the
area under the curve (AUC) under the receiver operat-
ing characteristic curves, which is a measure of the esti-
mated sensitivity versus specificity over different network
densities.MatthewsCorrelationCoefficient (MCC) (Wang,
2012), along with the 𝐿1 error for precision matrix estima-
tion were also used to measure network estimation accu-
racy. For BMNGM, eMNGM, and Glasso, these measures
are reported under the point estimates of the network
that are obtained by minimizing the BIC as in Yuan and
Lin (2007). For pMNGM, it may not be straightforward
to obtain the optimal choices of the two tuning parame-
ters required to impose sparsity in Ω (denoted by 𝜆1) and
−1 (denoted by 𝜆2). Hence, we report the highest AUC
across a series of 𝜆2 values. For the corresponding 𝜆2 value,
we report the lowest 𝐿1 error across the grid of 𝜆1 values
and the associated MCC, reflecting a best case scenario
under pMNGM.

4.2 Results

The results in Table 1 suggest that the proposed approach
has a comparable or improvedAUC and 𝐿1 error compared
to alternate approaches under Scenario I. Moreover, the
MCC value for BMNGM is higher compared to the other
methods for the majority of cases. Except two cases, the
eMNGM approach has a lower or comparable MCC and
AUC compared to BMNGM.Additional simulation studies
with Erdos-Renyi networks with 𝑣 = 200, 𝑇 = 500, for
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KUNDU and RISK 445

TABLE 1 Numerical results for data generated under a true separable covariance in Scenario I

Scale-free network, AR(1) temporal covariance
v = 100, T = 200 v = 100, T = 500 v = 200, T = 200 v = 200, T = 500

Methods AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error
BMNGM 0.92 0.84 0.01 0.93 0.84 0.01 0.89 0.74 0.002 0.91 0.81 0.002
eMNGM 0.91 0.84 0.01 0.91 0.84 0.01 0.83 0.64 0.002 0.80 0.42 0.002
pMNGM 0.90 0.18 0.02 – – – 0.58 0.20 0.006 - - -
GLasso - AR 0.91 0.41 0.02 0.93 0.48 0.03 0.82 0.69 0.002 0.89 0.64 0.003
GLasso 0.91 0.41 0.02 0.92 0.42 0.03 0.88 0.73 0.002 0.91 0.71 0.003

Scale-free network, squared exponential temporal covariance
v = 100, T = 200 v = 100, T = 500 v = 200, T = 200 v = 200, T = 500

Methods AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error
BMNGM 0.91 0.81 0.01 0.92 0.77 0.01 0.89 0.72 0.001 0.91 0.72 0.002
eMNGM 0.91 0.64 0.01 0.91 0.64 0.01 0.81 0.34 0.001 0.79 0.59 0.002
pMNGM 0.90 0.14 0.02 – – – 0.89 0.16 0.006 - - -
GLasso - AR 0.91 0.55 0.02 0.92 0.59 0.03 0.87 0.74 0.002 0.88 0.83 0.002
GLasso 0.90 0.60 0.02 0.92 0.61 0.04 0.88 0.75 0.002 0.90 0.83 0.002

Small world network, AR(1) temporal covariance
v = 100, T = 200 v = 100, T = 500 v = 200, T = 200 v = 200, T = 500

Methods AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error
BMNGM 0.93 0.85 0.003 0.93 0.81 0.02 0.90 0.75 0.006 0.93 0.82 0.006
eMNGM 0.92 0.84 0.006 0.94 0.84 0.02 0.88 0.75 0.006 0.91 0.76 0.005
pMNGM 0.90 0.40 0.019 – – – 0.78 0.45 0.009 - - -
GLasso - AR 0.92 0.34 0.003 0.94 0.41 0.07 0.89 0.75 0.006 0.92 0.45 0.008
GLasso 0.91 0.37 0.01 0.94 0.37 0.03 0.89 0.75 0.006 0.92 0.43 0.008

Small world network, squared exponential temporal covariance
v = 100, T = 200 v = 100, T = 500 v = 200, T = 200 v = 200, T = 500

Methods AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error
BMNGM 0.92 0.82 0.004 0.93 0.80 0.02 0.88 0.73 0.005 0.92 0.72 0.005
eMNGM 0.92 0.65 0.005 0.92 0.66 0.02 0.88 0.53 0.005 0.91 0.81 0.006
pMNGM 0.90 0.41 0.019 – – – 0.79 0.42 0.009 - - -
GLasso - AR 0.91 0.40 0.004 0.93 0.37 0.03 0.88 0.44 0.007 0.92 0.74 0.007
GLasso 0.91 0.46 0.01 0.92 0.49 0.03 0.88 0.50 0.007 0.91 0.79 0.007

Note. Glasso-AR refers to the graphical lasso approach using prewhitened observations under an AR model, and other methods are described in Section 4. We
do not report the results under the penalized MNGM (pMNGM) for 𝑇 = 500 as the algorithm failed to converge. Bolded numbers imply a significantly better
performance compared to at least two other methods.

Scenario I (results presented in Table 1 in Supporting
Information) suggested that BMNGM has similar AUC
but higher MCC values as compared to the eMNGM.
This implies that the proposed approach is more suitable
for a more diverse variety of true networks compared
to eMNGM. The graphical lasso approaches with and
without prewhitening perform worse than BMNGM in
general, with the exception of scale-free networks for
𝑣 = 200 where they have higher MCC values under the
squared exponential covariance. However, even in these
cases the BMNGM has a comparable or higher AUC and
comparable or lower 𝐿1 error.
Under Scenario II (see results in Table 2), the BMNGM

approach has comparable or significantly higher AUC
compared to other methods. Similarly, the MCC values

under BMNGM is higher for most cases. For the two cases
where the graphical lasso with prewhitening has higher
MCC, it is seen that the BMNGM has a comparable 𝐿1
error and a comparable or higher AUC. In general, the
𝐿1 error under BMNGM is almost always comparable or
lower relative to the other methods, while the 𝐿1 error for
graphical lasso without prewhitening is often the highest.
On the other hand, the pMNGM approach failed to con-
verge for all cases in Scenario II, indicating its inadequacy
for certain cases when the true correlations are long range.
The performance under eMNGM also seems to suffer in
Scenario II for𝑇 = 500, whichmay be due to nonnegligible
long range correlations that could be difficult to estimate
empirically. Under Scenario III, the proposed BMNGM
approach and the related eMNGM method consistently
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446 KUNDU and RISK

TABLE 2 Numerical results for data generated under a vector autoregressive model with a true separable covariance structure (Scenario
II)

Small world network
v = 100, T = 200 v = 100, T = 500 v = 200, T = 200 v = 200, T = 500

Methods AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error
BMNGM 0.94 0.76 0.002 0.96 0.20 0.002 0.86 0.50 0.003 0.90 0.63 0.003
eMNGM 0.96 0.76 0.003 0.67 0.11 0.007 0.87 0.19 0.004 0.75 0.17 0.007
GLasso-AR 0.94 0.53 0.002 0.94 0.52 0.002 0.81 0.46 0.002 0.90 0.83 0.002
GLasso 0.81 0.07 0.041 0.80 0.27 0.037 0.72 0.25 0.003 0.68 0.06 0.03

Scale-free network
v = 100, T = 200 v = 100, T = 500 v = 200, T = 200 v = 200, T = 500

Methods AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error
BMNGM 0.96 0.78 0.002 0.96 0.63 0.003 0.87 0.52 0.003 0.69 0.20 0.002
eMNGM 0.97 0.75 0.004 0.75 0.17 0.007 0.88 0.17 0.001 0.67 0.11 0.007
GLasso - AR 0.94 0.54 0.002 0.94 0.54 0.002 0.84 0.35 0.002 0.57 0.17 0.001
GLasso 0.86 0.09 0.035 0.84 0.06 0.032 0.76 0.30 0.002 0.35 0.02 0.037

Note. Glasso-AR refers to the graphical lasso approach using prewhitened observations under an ARmodel, and the other methods are described in Section 4. We
do not report the results under the penalized MNGM (pMNGM) as the algorithm failed to converge or encountered numerical instability. Bolded numbers imply
a significantly better performance compared to at least two other methods.

TABLE 3 Results for data generated under a nonseparable covariance structure (Scenario III) with 𝑣 = 40, 𝑇 = 100

Erdos-Renyi Small world Scale free
Methods AUC MCC L1 error AUC MCC L1 error AUC MCC L1 error
BMNGM 0.91 0.79 0.018 0.88 0.74 0.040 0.89 0.71 0.033
eMNGM 0.91 0.79 0.018 0.88 0.74 0.039 0.88 0.72 0.032
pMNGM 0.88 0.30 0.038 0.86 0.19 0.058 0.84 0.16 0.052
GLasso - AR 0.91 0.67 0.022 0.88 0.73 0.044 0.89 0.69 0.038
GLasso 0.90 0.65 0.022 0.88 0.74 0.044 0.89 0.69 0.038

aNote. Glasso-AR refers to the graphical lasso approach using prewhitened observations under a AR model, and the other methods are described in Section 4.
Bolded numbers imply a significantly better performance compared to at least two other methods.

has a significantly lower 𝐿1 error and significantly higher
MCC. Given the fact that the separability assumption is
violated in Scenario III, the results under BMNGM for
this case is quite encouraging, especially in contrast to the
graphical lasso based approaches.
Moreover, the consistently poor performance under

pMNGM (even under one of the best case scenarios), cou-
pled with the lack of scalability, illustrate the challenges
of implementing this approach for brain network analy-
sis using high dimensional fMRI data. We conjecture that
the poor performance under pMNGM may be attributed
to approximating −1 by a sparse matrix that may not be
realistic. On the other hand, the BMNGM approach only
takes a few (often 40 or less) iterations to converge for
the simulation scenarios considered, and in general, per-
forms well for experiments with 𝑇 > 100 (that is almost
always the case in practical fMRI studies) and nonnegli-
gible sample size (> 10). Additional simulation results for
varying number 𝑇 are reported in Table 2 of Supporting
Information.

5 ANALYSIS OF HUMAN
CONNECTOME PROJECT DATA

5.1 Description

We examined the relationship between fluid intelligence
(hereafter gF) and functional connectivity using the HCP
data. gF measures a person’s ability to solve problems
without past knowledge and was measured using the
Penn Matrix Reasoning Task A (PMAT24_A_CR). The
impact of functional connectivity on gF is an area of
active research without a consensus in the neuroscience
community. For example, the MegaTrawl web interface
(April 2016 “HCP820-MegaTrawl” release) allows a user
to query the relationship between HCP behavioral vari-
ables and functional connectivity. In univariate regres-
sion of gF versus functional connectivity for each node
of a 200-node network, no edges survived multiplicity
corrections. This motivates the development of statistical
methodology based on partial correlations accounting for
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KUNDU and RISK 447

TABLE 4 Difference in graph theoretic measures between high and low fluid intelligence groups

BMNGM-MAP BMNGM-MCMC GLasso
Measure Difference P-value Difference Difference P-value
Degree 0.0122 0.0110 0.008 −0.0015 0.2608
Clustering coefficient −0.0210 0.0002 −0.0150 −0.0083 0.0107
Characteristic path length −0.0461 0.0062 −0.0378 −0.0018 0.6384
Local efficiency −0.0075 0.0003 −0.0044 −0.0055 0.0067
Global efficiency 0.0118 0.0075 0.0138 −0.0002 0.8403
Modularity −0.0308 0.0164 −0.0408 −0.0052 0.3317
Assortativity 0.0131 0.3166 0.0191 0.0026 0.7995

aNote. Differences in bold are significant after Bonferroni correction.

temporal correlations. We used the multimodal parcella-
tion atlas (Glasser et al., 2016) involving 360 regions that
were grouped into six consensus communities: (a) visual;
(b) somatomotor; (c) dorsal salience; (d) ventral salience;
(e) default mode; and (f) central executive (Akaki and
Abdallah, 2018) for our analysis. The scan for each indi-
vidual was 14:33 minutes with TR = 0.72, resulting in 1200
time points for each voxel. The details for fMRI data pre-
processing can be found in Web Appendix E of Support-
ing Information.
To examine whether partial correlations are related to

differences in fluid intelligence, we dichotomized fluid
intelligence by subsetting to subjects with low or high
gF, and then estimated the partial correlations for each
group. In our initial analysis, we found that the relation-
ship between gF and partial correlations was confounded
by gender. To avoid possible confounding, we restricted the
analysis to females. We used the subset of subjects having
fluid intelligence scores in the lower (gF ≤ 13) and upper
(gF ≥ 21) quartiles to form the low and high fluid intel-
ligence groups with 149 and 137 individuals, respectively.
We examined network differences in: (a) global degree,
clustering coefficient, characteristic path length, average
local efficiency, efficiency, modularity, and assortativity;
(b) nodal measures including degree, clustering coeffi-
cient, characteristic path length, and local efficiency; and
(c) edge-level partial correlations. Graph theoretic mea-
sures were calculated using the Brain Connectivity Matlab
toolbox (Rubinov and Sporns, 2010).
Permutation testing was used to infer significant net-

work differences. We permuted the group memberships
for a random subset of individuals and estimated precision
matrices for both permuted groups using a penalty selected
to yield approximately 15% nonzero edges, which resulted
in 𝜆 = 0.1. This was repeated 10 000 times to obtain a per-
mutation distribution for differences in edge strengths and
network summary measures between groups, which was
used for a permutation test. Specifically, the permutation
P-value was calculated as the proportion of times the abso-
lute value of the difference in the original sample was less

than the absolute value of the difference in a permuted
sample. MAP estimation takes approximately 20 minutes
for each data set on a 3 GHz processor, which was imple-
mented on a cluster with 40 processors. Additionally, we
conducted the same analysis but using partial correlations
estimated using GLasso ignoring temporal correlation. For
fair comparison, the penalty was chosen as 𝜆 = 0.03 to
result in approximately 15% network density.

5.2 Results

There were notable differences in global connectivity mea-
sures between the high and low fluid intelligence groups
when using theMAP estimator for the BMNGM, while the
differences were absent or less significant under GLasso
(Table 4). Under BMNGM, degree and global efficiency
were higher in high gF (P = 0.01 and P = 0.0075, respec-
tively) and characteristic path length was lower (P =

0.0062), which indicates a greater number of connections
and faster information transfer in the high gF group. Clus-
tering coefficient and local efficiency were significantly
lower in the high gF group (P < 0.007), and modularity
was also lower (P= 0.02). This implies that the connections
in the brain for the high gF group were less clustered and
more evenly distributed than the connections in the net-
work for the low gF group. TheMCMC-based estimates for
BMNGM were similar to the MAP estimates highlighting
the robustness of the proposed approach. As the MCMC
samples for the precision matrix are only able to provide a
point estimate for the network, it is not straightforward to
test for significant differences of network summary mea-
sures under the MCMC implementation. For Glasso, these
measures were in the same direction as in BMNGM but
the only significant difference was with respect to local
efficiency, which suggests a reduced ability to detect sig-
nificant differences in global network features compared
to BMNGM.
At the node level, we examined the distribution of

the P-values (by community) for each of the four nodal
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448 KUNDU and RISK

F IGURE 2 This figure appears in color in the electronic version of this article, and any mention of color refers to that version. MAP
estimates for partial correlations in high gF (A), low gF (B), the difference between the two (C), and circle plots for the high gF (D), low gF (E),
and difference in edge strengths (corresponding to P < 0.0001), where red indicates edge strength in gf high > gf low and blue indicates gf high
< gf low (F). In A-C, the nodes are ordered according to hierarchical clustering with six functional communities in (Akiki and Abdallah, 2019).
Indices 1-70 – visual; indices 71-125 – somatomotor; indices 126-148 – dorsal salience; indices 149-197 – ventral salience; indices 198-293 – default
mode; indices 294-360 – central executive

network measures. A higher density near zero is evidence
that P-values are smaller than expected under the null, and
we see there is evidence of differences in nodal network
measures for BMNGM while less for GLasso (see Figure 1
in Supporting Information). In the BMNGM, the P-values
cluster near zero for the central executive and default
mode communities for node degree and characteristic
path length. The central executive network includes por-
tions of the frontoparietal cortex, which is thought to play
an important role in fluid intelligence (Finn et al., 2015).
With respect to degree, there were 17 nodes with P < 0.01
in BMNGM versus 6 in GLasso; clustering coefficient: 17
versus 8; characteristic path length: 39 versus 7; and local
efficiency: 17 versus 6. In BMNGM, nodes R_a10p (central
executive) and R_OP2-3 (somatomotor) were notable
for having very small P-values for degree, clustering
coefficient, characteristic path length, and local efficiency
(R_a10p and R_OP2-3 correspond to indices 311 and 87 in

Figure 2). This Figure appears in color in the electronic
version of this article, and any mention of color refers to
that version. Note that using a Bonferonni correction of
0.05/360 and 10 000 permutations, a graphmeasure differs
between high and low groups if at most one permutation
has a statistic greater than it (ie, P ≤ 0.0001).
For node R_a10p, the differences between the high

and low gF groups for degree, clustering coefficient,
characteristic path length, and local efficiency were 0.05
(P = 0), −0.17 (P = 0.0001), −0.19 (P = 0.0021), and −0.07
(P = 0.0009). Hence, our analysis discovers a pivotal role
for this node in fluid intelligence. The node is located in
the frontal lobe and associated with the central executive
module. We can visualize the role of node R_a10p and
its possible connections by calculating partial correlation
differences between the high and low gF groups, and
then plotting this difference with the remaining nodes
(see Figure 2 in Supporting Information). The differences
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KUNDU and RISK 449

tend to concentrate in the frontal lobe, which plays an
important role in decision-making, memory formation,
and other cognitive functions. Unfortunately, none of the
node level differences survived multiplicity adjustment
under graphical lasso.
At the edge level, partial correlations tended to be

nonzero in contralateral regions—see Figure 2. Further,
edges were more common within the functional commu-
nities than betweenmodules. Partial correlation heatmaps
for the 25th, 50th, and 75th quantiles for both groups
under MCMC are also reported in Figure 3 in Supporting
Information, which show similar patterns. There were 14
edges with very strong associations (zero P-values) based
on 10 000 permutations (see Figure 2F and Table 3 in
Supporting Information). Ten of these edges were inter-
community edges. Nine edges included a node in the
default mode, and four included a node in the central
executive module. The results of our HCP analysis signify
important whole brain network differences with respect
to behavioral and cognitive measures in high-dimensional
HCP data, and addresses an important gap in literature.

6 DISCUSSION

We have proposed a novel BMNGM approach for the
estimation of brain networks while accounting for tem-
poral dependence. In the likelihood (3), the inverse of the
temporal covariances,−1 weights the partial covariances
via the term 𝑇𝑟{−1∑𝑛

𝑖=1
𝑋𝑖Ω𝑋

𝑇
𝑖
}. We conjecture this

leads to improvements in partial correlation estimates.
Our approach is designed for group level analyses with at
least a small number of subjects, but may not performwell
for exceedingly small sample sizes (𝑛 < 10). We note that
it is possible to extend the proposed approach to mixtures
of BMNGM in order to tackle between subject hetero-
geneity, which would discover subgroups of individuals
with distinct networks. Extensions can also be made for
computing functional connectivity guided by anatomical
knowledge (Kang et al., 2017; Higgins et al., 2018) that
account for temporal dependence in fMRI, by including
edge-specific shrinkage parameters that are modeled
in terms of brain structural connectivity. We note one
could potentially consider an alternate Bayesian analysis
that estimates the precision matrices for both high and
low intelligence groups jointly by pooling information
across networks and under a common choice of 𝜆, and
then thresholds the precision matrices at each MCMC
iteration to obtain an approximate sample of networks
for both groups. Such a joint analysis could result in
greater accuracy by sharing information across groups and
provide a more elegant mechanism to estimate and infer
network differences at multiple scales using the MCMC

samples of the networks. However, more work is needed
for developing scalable models for jointly estimating mul-
tiple networks that also account for temporal dependence
in fMRI. We plan to investigate these issues in future
work.
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