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Abstract. The question of aggregating pairwise comparisons to obtain a global ranking
over a collection of objects has been of interest for a very long time: be it ranking of online
gamers (e.g., MSR’s TrueSkill system) and chess players, aggregating social opinions, or
deciding which product to sell based on transactions. In most settings, in addition to
obtaining a ranking, finding ‘scores’ for each object (e.g., player’s rating) is of interest for
understanding the intensity of the preferences.

In this paper, we propose Rank Centrality, an iterative rank aggregation algorithm for
discovering scores for objects (or items) from pairwise comparisons. The algorithm has a
natural random walk interpretation over the graph of objects with an edge present between
a pair of objects if they are compared; the score, which we call Rank Centrality, of an object
turns out to be its stationary probability under this random walk.

To study the efficacy of the algorithm, we consider the popular Bradley-Terry-Luce
(BTL) model (equivalent to the Multinomial Logit (MNL) for pairwise comparisons) in
which each object has an associated score that determines the probabilistic outcomes of
pairwise comparisons between objects. In terms of the pairwise marginal probabilities,
which is the main subject of this paper, the MNL model and the BTL model are identical.
We bound the finite sample error rates between the scores assumed by the BTLmodel and
those estimated by our algorithm. In particular, the number of samples required to learn
the score well with high probability depends on the structure of the comparison graph.
When the Laplacian of the comparison graph has a strictly positive spectral gap, e.g., each
item is compared to a subset of randomly chosen items, this leads to dependence on the
number of samples that is nearly order optimal.

Experimental evaluations on synthetic data sets generated according to the BTL model
show that our algorithm performs as well as the maximum likelihood estimator for that
model and outperforms other popular ranking algorithms.

Funding: This research is supported in part by Army Research Office MURI [Award W911NF-11-
1-0036], National Science Foundation [Grants CMMI-1462158, MES-1450848, CNS-1527754, and
CCF-1553452].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2016.1534.
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1. Introduction
Rank aggregation is an important task in a wide range
of learning and social contexts arising in recommen-
dation systems, information retrieval, and sports and
competitions. Given n items, wewish to infer relevancy
scores or an ordering on the items based on partial
orderings provided through many (possibly contradic-
tory) samples. Frequently, the available data that are
presented to us is in the form of a comparison: player
A defeats player B; book A is purchased when books
A and B are displayed (a bigger collection of books
implies multiple pairwise comparisons); movie A is
liked more compared to movie B. From such partial
preferences in the form of comparisons, we frequently
wish to deduce not only the order of the underlying
objects, but also the scores associated with the objects

themselves so as to deduce the intensity of the result-
ing preference order.

For example, the Microsoft TrueSkill engine assigns
scores to online gamers based on the outcomes of
(pairwise) games between players. Indeed, it assumes
that each player has inherent “skill” and the outcomes
of the games are used to learn these skill param-
eters, which in turn lead to scores associated with
each player. In most such settings, similar model-based
approaches are employed.

In this paper, we have set out with the following
goal: develop an algorithm for the above stated prob-
lem in which (a) is computationally simple, (b) works
with available (comparison) data only, and (c) when
data is generated as per a reasonable model, then the
algorithm should do as well as the best model aware
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algorithm. The main result of this paper is an affirma-
tive answer to these questions.
Related work. Most rating-based systems rely on users
to provide explicit numeric scores for their interests.
While these assumptions have led to a flurry of the-
oretical research for item recommendations based on
matrix completion (cf. Candès and Recht 2009, Kesha-
van et al. 2010, Negahban and Wainwright 2012),
arguably numeric scores provided by individual users
are generally inconsistent. Furthermore, in a number
of learning contexts as illustrated above, explicit scores
are not available.
These observations have led to the need to develop

methods that can aggregate such forms of ordering
information into relevance ratings. In general, however,
designing consistent aggregation methods can be chal-
lenging due in part to possible contradictions between
individual preferences. For example, if we consider
items A, B, and C, one user might prefer A to B, while
another prefers B to C, and a third user prefers C to A.
Such problems have been well studied starting with
(and potentially even before) Condorcet (1785). In the
celebrated work by Arrow (1963), existence of a rank
aggregation algorithm with reasonable sets of proper-
ties (or axioms) was shown to be impossible.
In this paper, we are interested in a more restrictive

setting: we have outcomes of pairwise comparisons
between pairs of items, rather than a complete ordering
as considered in Arrow (1963). Based on those pair-
wise comparisons, wewant to obtain a ranking of items
alongwith a score for each item indicating the intensity
of the preference. One reasonable way to think about
our setting is to imagine that there is a distribution over
orderings or rankings or permutations of items (also
known as the discrete choice model in the literature on
social choice) and every time a pair of items is com-
pared, the outcome is generated as per this underlying
distribution. Examples of popular distributions over
permutations include the Plackett-Luce model (Luce
1959, Plackett 1975) and the Mallows model (Mallows
1957). With this, our question becomes even harder
than the setting considered by Arrow (1963) as, in that
work, effectively the entire distribution over permuta-
tions was already known!
Indeed, such hurdles have not stopped the scientific

community as well as practical designers from design-
ing such systems. Chess rating systems and the more
recent MSR TrueSkill Ranking system are prime exam-
ples. Our work falls precisely into this realm: design
algorithms that work well in practice, makes sense in
general, and perhaps more importantly, have attrac-
tive theoretical properties under common comparative
judgment models.

An important and landmark model in this class is
called the Plackett-Luce model, which is also known
as the multinomial logit (MNL) model (cf. McFadden

1973) in the operations research and social science
literature. A special case of the Plackett-Luce model
applied to pairwise comparisons is known as the
Bradley-Terry-Luce (BTL) model (Bradley and Terry
1955, Luce 1959). It has been the backbone of many
practical system designs including pricing in the air-
line industry, e.g., see Talluri and Van Ryzin (2005).
Adler et al. (1994) used such models to design adap-
tive algorithms that select the winner from a small
number of rounds. Interestingly enough, the (near-
)optimal performance of their adaptive algorithm for
winner selection is matched by our nonadaptive algo-
rithm for assigning scores to obtain global rankings of
all players.

We propose a new rank aggregation algorithm,1
which we call Rank Centrality, that builds on a long
line of research in using eigenvectors of certain matri-
ces to find global rankings of items, which dates back
to Seeley (1949). This line of research is referred to as
spectral ranking and for an extensive survey we refer
to Vigna (2009). Given pairwise comparisons of items
from a single individual on all possible choices of
pairs,Wei (1952) introduced a ranking algorithm based
on the leading eigenvector of the matrix represent-
ing the comparisons outcome. A slight generalization
accounting for data frommultiple decisionmakers was
proposed by Kendall (1955). Keener (1993), and more
recent work by Dwork et al. (2001), proposed several
variations of spectral algorithms for ranking from pair-
wise comparisons. We propose Rank Centrality for
ranking from pairwise comparisons by using the lead-
ing eigenvector of a particular matrix formed by con-
structing a Markov chain corresponding to a random
walk on a graph. Although it appears to be similar
to the existing spectral ranking approaches, the pre-
cise form of the algorithm proposed is distinct and this
precise form does matter: the empirical results using
synthetic data presented in Section 3.3 make this clear.
In summary, building on the classical field of spectral
ranking,we propose a novel spectral ranking algorithm
and provide a firm theoretical grounding by showing
that it is a provably near-optimal estimator for a popu-
lar discrete choice model, i.e., the BTL model formally
defined in Section 2.1.

Numerous spectral ranking algorithms have been
proposed in the past, one of the most popular exam-
ples being PageRank (Brin and Page 1998). However,
almost invariably, the question of when one should
choose to use a particular spectral ranking algorithm is
left open. One notable exception is the work of Altman
and Tennenholtz (2005), which provides a set of axioms
satisfied by the PageRank algorithm and proves that
PageRank is the only rank aggregation algorithm that
satisfies those particular axioms. Hence, it provides a
guideline for decidingwhen PageRank should be used,
i.e., in applications where the specific set of axioms
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make sense. In a similar spirit, Rank Centrality is a
spectral ranking algorithm with a theoretical justifica-
tion suggesting that it should be used in applications
where the BTL or MNL model makes sense (in the
remainder of this manuscript, we shall use the BTL
model to represent the BTL and MNL models).
There has been significant work on rankings from

pairwise comparison in the last several years. A pop-
ular model is a distribution over permutations known
as the Mallows model, which assigns probability to
observed rankings according to the Kendall-τ dis-
tance to a true ranking. Since the maximum likeli-
hood estimation is provably difficult, Dwork et al.
(2001b) studied this problem (also known as the
Kemeny optimization)when full rankings are observed
and provided a 2-approximation algorithm. This was
later improved by Ailon et al. (2008) and also gen-
eralized to partial rankings (Ailon 2010). Recently,
Lu and Boutilier (2011) proposed an expectation-
maximization approach with novel sampling schemes
to learn the Mallows model from pairwise compar-
isons. These distance-based approaches aim to provide
good approximation algorithms for the provably diffi-
cult problem of minimizing the Kendall-τ distance and
some variations of it (e.g., Farnoud et al. 2012).
Learning to rank from pairwise comparisons has

also been studied in applications where one might
observemore than just the ordinal outcome of pairwise
comparisons. Additional data on cardinal preferences
such as the margin of victory (the difference between
the winning team’s score and the losing team’s score)
in a football match has led to score-based methods
for ranking, where the goal is to find scores for each
team such that the difference of the scores is consistent
with the observedmargins of victory (Hochbaum 2006,
Gleich and Lim 2011, Jiang et al. 2011). More recently,
Volkovs and Zemel (2012) proposed a unified model
that generalizes both the BTL model and the cardinal
preferences. These approaches add to the traditional
approaches based on some notion of distance, such as
the Kendall-τ distance, and probabilistic models, such
as the BTL model.
Another probabilistic model directly parameter-

izes the distribution of pairwise comparisons for all
the pairs and asks the question of whether exist-
ing pairwise ranking algorithms are consistent or
not (Duchi et al. 2010, Rajkumar and Agarwal 2014).
It is shown that many existing algorithms do not
meet the proposed “consistency” criteria and new
regret/optimization-based algorithms are presented.

The algorithm proposed by Ammar and Shah (2011)
can be viewed as a natural adaption of Borda count
based on pairwise comparison data. They establish it
to be equivalent to Borda count based on entire distri-
bution when perfect pairwise marginals are available,
i.e., a large sample limit. In Braverman and Mossel

(2008), the authors present an algorithm that produces
an ordering based on O(n log n) pairwise comparisons
on adaptively selected pairs. They assume that there
is an underlying true ranking and one observes noisy
comparison results. Each time a pair is queried, we are
given the true ordering of the pair with probability
1/2+ γ for some γ > 0, which does not depend on the
items being compared.
Our contributions. In this paper, we introduce Rank
Centrality, an iterative algorithm that takes the noisy
comparison answers between a subset of all possi-
ble pairs of items as input and produces scores for
each item as the output. The proposed algorithm has
a nice intuitive explanation. Consider a graph with
nodes/vertices corresponding to the items of interest
(e.g., players). Construct a random walk on this graph
where at each time, the random walk is likely to go
from vertex i to vertex j if items i and j were ever com-
pared; and if so, the likelihood of going from i to j
depends on how often i lost to j. That is, the random
walk is more likely to move to a neighbor who has
more “wins.” How frequently this walk visits a partic-
ular node in the long run, or equivalently the station-
ary distribution, is the score of the corresponding item.
Thus, effectively this algorithm captures preference of
the given item versus all of the others, not just immedi-
ate neighbors: the global effect induced by transitivity
of comparisons is captured through the stationary dis-
tribution.

Such an interpretation of the stationary distribution
of a Markov chain or a random walk has been an
effective measure of relative importance of a node in
wide class of graph problems, popularly known as the
Network Centrality; cf. (Newman 2010). Notable exam-
ples of such network centralities include the random
surfer model on the web graph for the version of the
PageRank (Brin and Page 1998), which computes the
relative importance of a web page, a model of a ran-
dom crawler in a peer-to-peer file-sharing network to
assign trust value to each peer in EigenTrust (Kamvar
et al. 2003), and a randomwalk interpretation of Rumor
Centrality that assigns likelihood to each node for
being the source of information (or rumor) spread in
a network graph based on the footprint of infection
under the susceptible-infected model Shah and Zaman
(2011, 2016).

The computation of the stationary distribution of
the Markov chain boils down to “power iteration”
using transition matrix lending to a nice iterative algo-
rithm. To establish rigorous properties of the algo-
rithm, we analyze its performance under the BTL
model described in Section 2.1.

Formally, we establish the following result: given n
items, when comparisons between randomly chosen
ω(n log n) pairs of items are produced as per an
(unknown) underlying BTL model, Rank Centrality
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learns the true score up to an arbitrary accuracy with
high probability as n → ∞. It should be noted that
Ω(n log n) is a necessary number of (random) compar-
isons for any algorithm to even produce a consistent
ranking with high probability since with fewer edges
(comparisons) the resulting random graph will be
disconnected with positive probability. In that sense,
Rank Centrality is nearly order optimal.

In general, the comparisons may not be available
between randomly chosen pairs. Let G� ([n],E) denote
the graph of comparisons between these n objects
with an edge (i , j) ∈ E if and only if objects i and j
are compared. In this setting, we establish that with
O(ξ−2 n poly(log n)) comparisons, Rank Centrality
learns the true score of the underlying BTLmodel up to
an arbitrarily small error with high probability. Here,
ξ is the spectral gap for the Laplacian of G and this is
how the graph structure of comparisons plays a role.
Indeed, as a special case when comparisons are chosen
at random, the induced graph is Erdös-Rényi for which
ξ is strictly positive, independent of n, with high prob-
ability, leading to the (order) optimal performance of
the algorithm as stated earlier.
To understand the performance of Rank Centrality

compared to the other options, we perform an ex-
perimental study. It shows that the performance of
Rank Centrality is identical to the ML estimation
of the BTL model. Furthermore, it outperforms other
popular choices. In summary, Rank Centrality (a) is
computationally simple, (b) always produces a solution
using available data, and (c) has near-optimal perfor-
mance with respect to a reasonable generative model.

Some remarks about our analytic technique. Our anal-
ysis boils down to studying the induced station-
ary distribution of the random walk or Markov
chain corresponding to the algorithm. Like most
such scenarios, the only hope to obtain meaning-
ful results for such “random noisy” Markov chain is
to relate it to a stationary distribution of a known
Markov chain. Through recent concentration of mea-
sure results for randommatrices and comparison tech-
nique using Dirichlet forms for characterizing the spec-
trum of reversible/self-adjoint operators, along with
the known expansion property of the random graph,
we obtain the eventual result. Indeed, it is the con-
sequence of such existing powerful results that lead
to near-optimal analytic results for the random com-
parison model and characterization of the algorithm’s
performance for general setting.
As an important comparison, we provide analy-

sis of sample complexity required by the maximum
likelihood estimator (MLE) using the state-of-the-art
analytic techniques; cf. Negahban and Wainwright
(2012). Subsequent to our work, Hajek et al. (2014)
extended our analysis of MLE and established that

MLE also achieves near-optimal performance guaran-
tees (up to a logarithmic factor). Our numerical exper-
iments suggests something even stronger, the result-
ing error is effectively identical for both MLE and
Rank Centrality.
Organization. The remainder of the paper is organized
as follows. In Section 2, we describe the model, prob-
lem statement, and the rank centrality algorithm. Sec-
tion 3 describes the main results—the key theoretical
properties of rank centrality as well as its empirical
performance in the context of two real data sets from
NASCAR and One Day International (ODI) cricket. We
provide comparison of the Rank Centrality with the
maximum likelihood estimator using the existing ana-
lytic techniques in the same section. We derive the
Cramer-Rao lower bound on the square error for esti-
mating parameters by any algorithm—across a range
of parameters, the performance of Rank Centrality and
MLEmatches the lower bound implied by Cramer-Rao
bound as explained in Section 3 as well. Finally, Sec-
tion 4 details proofs of all results. We discuss and con-
clude in Section 5.
Notation. In the remainder of this paper, we use C,C′,
etc. to denote absolute constants, and their value
might change from line to line. We use AT to denote
the transpose of a matrix. The Euclidean norm of a
vector is denoted by ‖x‖ �

√∑
i x2

i , and the opera-
tor norm of a linear operator is denoted by ‖A‖2 �

maxx(xT Ax/(xT x). When we say with high probability,
we mean that the probability of a sequence of events
{An}∞n�1 goes to one as n grows: limn→∞ �(An)� 1. Also
define [n] � {1, 2, . . . , n} to be the set of all integers
from 1 to n.

2. Model, Problem Statement, and
Algorithm

2.1. Model
In this section, we discuss a model of comparisons be-
tween various items. This model will be used to ana-
lyze the Rank Centrality algorithm.
Bradley-Terry-Luce model for comparative judgment.
When comparing pairs of items from n items of inter-
est, represented as [n] � {1, . . . , n}, the Bradley-Terry-
Lucemodel assumes that there is a weight or score wi ∈
�+ ≡ {x ∈ �: x > 0} associated with each item i ∈ [n].
The outcome of a comparison for a pair of items i and j
is determined only by the corresponding weights wi
and w j . Let Y l

i j denote the outcome of the lth compari-
son of the pair i and j, such that Y l

i j � 1 if j is preferred
over i and 0 otherwise. Then, according to the BTL
model,

Y l
i j �


1 with probability

w j

wi + w j
,

0 otherwise.
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Furthermore, conditioned on the score vector w �

(w1 , . . . ,wn)T , it is assumed that the random vari-
ables Y l

i j’s are independent of one another for all i, j,
and l.
Since the BTL model is invariant under the scaling

of the scores, an n-dimensional representation of the
scores is not unique. Indeed, under the BTL model,
a score vector w ∈ �n

+
is the equivalence class [w] �

{w′ ∈ �n
+
|w′�aw , for some a > 0}. The outcome of a

comparison only depends on the equivalence class of
the score vector.
To get a unique representation, we represent each

equivalence class by its projection onto the standard
orthogonal simplex such that ∑i wi � 1. This represen-
tation naturally defines a distance between two equiv-
alent classes as the Euclidean distance between two
projections:

d(w ,w′) ≡
 1
〈w ,�〉w −

1
〈w′,�〉w

′
.

Our main result provides an upper bound on the (nor-
malized) distance between the estimated score vector
and the true underlying score vector.

Bradley-Terry-Luce is equal to pairwise marginals of
multinomial logit (MNL)/Plackett-Luce. We take a brief
detour to remind the reader that the BTL model is
identical to the MNL model in the sense that the pair-
wise distributions between objects induced under BTL
are identical to that under MNL. Consider an equiv-
alent way to describe an MNL model. Each object i
has an associated score wi > 0. A random ordering
over all n objects is drawn as follows: iteratively fill the
ordered positions 1, . . . , n by choosing object i(k) for
position k, among the remaining objects (not chosen in
the first 1, . . . , k − 1 positions) with probability propor-
tional to its weight wi(k). It can be easily verified that
in the random ordering of n objects generated as per
this process, i is ranked higher than j with probability
wi/(wi + w j).
Sampling model. We also assume that we perform a
fixed k number of comparisons for all pairs i and j that
are considered (e.g., a best of k series). This assump-
tion is mainly to simplify notations, and the analysis
as well as the algorithm easily generalizes to the case
when we might have a different number of compar-
isons for different pairs. Given observations of pairwise
comparisons among n items according to this sampling
model, we define a comparisons graph G � ([n],E,A) as
a graph of n items where two items are connected if we
have comparisons data on that pair and A denotes the
weights on each of the edges in E.

2.2. Rank Centrality
In our setting, we will assume that ai j represents the
fraction of times object j has been preferred to object i,

for example the fraction of times chess player j has
defeated player i. Given the notation above, we have
that ai j � (1/k)

∑k
l�1 Y l

i j . Consider a random walk on a
weighted directed graph G � ([n],E,A), where a pair
(i , j) ∈ E if and only if the pair has been compared. The
weight edges are defined based on the outcome of the
comparisons: Ai j � ai j/(ai j + a ji) and A ji � a ji/(ai j + a ji)
(note that ai j + a ji � 1 in our setting). We let Ai j � 0
if the pair has not been compared. Note that by the
strong law of large numbers, as the number k→∞ the
quantity Ai j converges to w j/(wi + w j) almost surely.

A random walk can be represented by a time-
independent transition matrix P, where Pi j � �(Xt+1 �

j |Xt � i). By definition, the entries of a transition
matrix are nonnegative and satisfy ∑

j Pi j � 1. One way
to define a valid transition matrix of a random walk on
G is to scale all the edge weights by 1/dmax, where we
define dmax as the maximum out-degree of a node. This
rescaling ensures that each row-sum is at most one.
Finally, to ensure that each row-sum is exactly one, we
add a self-loop to each node. Concretely,

Pi j �


1

dmax
Ai j if i , j,

1− 1
dmax

∑
k,i

Aik if i � j.
(1)

The choice to construct our random walk as above is
not arbitrary. In an ideal setting with infinite samples
(k→∞) per comparison the transition matrix P would
define a reversible Markov chain under the BTLmodel.
Recall that a Markov chain is reversible if it satisfies
the detailed balance equation: there exists v ∈ �n

+
such

that viPi j � v jP ji for all i , j; and in that case, π ∈ �n
+

defined as πi � vi/(
∑

j v j) is its unique stationary dis-
tribution. In the ideal setting (say k→∞), we will have
Pi j � P̃ i j ≡ (1/dmax)w j/(wi + w j). That is, the random
walk will move from state i to state j with probabil-
ity proportional to the chance that item j is preferred
to item i. In such a setting, it is clear that v � w satis-
fies the reversibility conditions. Therefore, under these
ideal conditions it immediately follows that the vector
w/∑i wi acts as a valid stationary distribution for the
Markov chain defined by P̃, the ideal matrix. Hence, as
long as the graph G is connected and at least one node
has a self-loop, then we are guaranteed that our graph
has a unique stationary distribution proportional to w.
If the Markov chain is reversible then we may apply
the spectral analysis of self-adjoint operators, which is
crucial in the analysis of the behavior of the method.

In our setting, the matrix P is a noisy version (due
to finite sample error) of the ideal matrix P̃ discussed
above. Therefore, it naturally suggests the following
algorithm as a surrogate. We estimate the probability
distribution obtained by applying matrix P repeated
starting from any initial condition. Precisely, let pt(i) �
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�(Xt � i) denote the distribution of the random walk
at time t with p0 � (p0(i)) ∈ �n

+
as an arbitrary starting

distribution on [n]. Then,

pT
t+1 � pT

t P. (2)

When the transition matrix has a unique left largest
eigenvector, then starting from any initial distribu-
tion p0, the limiting distribution π is unique. This
stationary distribution π is the top left eigenvector
of P, which makes computing π a simple eigenvector
computation. Formally, we state the algorithm, which
assigns numerical scores to each node, which we shall
call Rank Centrality:

Rank Centrality

Input: G � ([n],E,A)
Output: rank {π(i)}i∈[n]
1: Compute the transition matrix P according to (1);
2: Compute the stationary distribution π

(as the limit of (2)).

The stationary distribution of the random walk is a
fixed point of the following equation:

π(i)�
∑

j
π( j)

A ji∑
` Ai`

.

This suggests an alternative intuitive justification: an
object receives a high rank if it has been preferred to
other high ranking objects or if it has been preferred to
many objects.
One key question remains: does P have a well-

defined unique stationary distribution? Since the
Markov chain has a finite state space, there is always a
stationary distribution or solution of the above stated
fixed-point equations. However, it may not be unique if
the Markov chain P is not irreducible. The irreducibil-
ity follows easily when the graph is connected and for
all edges (i , j) ∈ E, ai j > 0, a ji > 0. Interestingly enough,
we show that the iterative algorithm produces a mean-
ingful solution with near-optimal sample complexity
as stated in Theorem 2 when the pairs of objects that
are compared are chosen at random.

3. Main Results
The main result of this paper derives sufficient con-
ditions under which the proposed iterative algorithm
finds a solution that is close to the true solution (under
the BTLmodel) for a general model with arbitrary con-
nected comparison graph G. This result is stated as
Theorem 1. In words, the result implies that to learn
the true score correctly as per our algorithm, it is suf-
ficient to have the number of comparisons scaling as
O(ξ−2n poly(log n)), where ξ is the spectral gap of the

Laplacian of the graph G. This result explicitly identi-
fies the role played by the graph structure in the ability
of the algorithm to learn the true scores.

In the special case, when the pairs of objects to be
compared are chosen at random, that is the induced G
is an Erdös-Rényi random graph, the spectral gap ξ
can be lower bounded by a constant with high proba-
bility and hence the resulting number of comparisons
required scales as O(n poly(log n)). This is effectively
the optimal sample complexity.

The bounds are presented as the rescaled Euclidean
norm between our estimate π and the underlying sta-
tionary distribution of P̃. This error metric provides
us with a means to quantify the relative certainty in
guessing if one item is preferred over another.

After presenting our main theoretical result, we
describe illustrative simulation results. We also present
application of the algorithm in the context of two real
data sets: results of NASCAR race for ranking drivers,
and results of ODI Cricket for ranking teams. We shall
discuss relation between Rank Centrality, the maxi-
mum likelihood estimator, and the information theo-
retic lower bound to conclude that bothMLE and Rank
Centrality are near optimal when the pairs are chosen
according to the Erdös-Renyi random graph.

3.1. Rank Centrality: Error Bound for General
Graphs

Recall that in the general setting, each pair of objects
or items are chosen for comparisons as per the com-
parisons graph G([n],E). For each such pair, we have k
comparisons available. The result below characterizes
the performance of Rank Centrality for such a general
setting.

Before we state the result, we present a few nec-
essary notations. Let di denote the degree of node i
in G; let the max-degree be denoted by dmax ≡maxi di
and min-degree be denoted by dmin ≡mini di ; let κ ≡
dmax/dmin. The random walk normalized Laplacian matrix
of the graph G is defined as L � D−1B, where D is
the diagonal matrix with Dii � di and B is the adja-
cency matrix with Bi j � B ji � 1 if (i , j) ∈ E and 0 other-
wise. This normalized Laplacian, defined thus, can be
thought of as a transitionmatrix of a reversible random
walk on graph G: from each node i, jump to one of its
neighbors j with equal probability. Given this, it is well
known that the random walk normalized Laplacian of
the graph has real eigenvalues denoted as

− 1 6 λn(L) 6 · · · 6 λ1(L)� 1. (3)

We shall denote the spectral gap of the Laplacian as

ξ ≡ 1− λmax(L),

where
λmax(L) ≡max{λ2(L),−λn(L)}. (4)
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There is one-to-one correspondence between the eigen-
values of the random walk normalized Laplacian L
and the standard (symmetric) normalized Laplacian
	 − D−1/2BD−1/2. Now we state the result establishing
the performance of Rank Centrality.

Theorem 1. Given n objects and a connected comparison
graph G � ([n],E), let each pair (i , j) ∈ E be compared for k
times with outcomes produced as per a BTL model with
parameters w1 , . . . ,wn . Then, for some positive constant
C > 8 and when k > 4C2(b5κ2/dmaxξ

2) log n, the following
bound on the normalized error holds with probability at least
1− 4n−C/8:

‖π− π̃‖
‖π̃‖ 6

Cb5/2κ
ξ

√
log n
k dmax

,

where π̃(i) � wi/
∑
` w` , b ≡ maxi , j wi/w j , and κ ≡

dmax/dmin.

3.2. Rank Centrality: Error Bound for
Random Graphs

Now we consider the special case when the compari-
son graph G is an Erdös-Rényi random graphwith pair
(i , j) being compared with probability d/n. When d
is polylogarithmic in n, we provide a strong perfor-
mance guarantee. Specifically, the result stated below
suggests that with O(n poly(log n)) comparisons, Rank
Centrality manages to learn the true scores with high
probability.

Theorem 2. Given n objects, let the comparison graph G �

([n],E) be generated by selecting each pair (i , j) to be in E
with probability d/n independently of everything else. Each
such chosen pair of objects is compared k times with the
outcomes of comparisons produced as per a BTL model with
parameters w1 , . . . ,wn . Then, if d > 10 C2 log n and k d >
128 C2b5 log n, the following bound on the error rate holds
with probability at least 1− 10n−C/8:

‖π− π̃‖
‖π̃‖ 6 8 Cb5/2

√
log n
k d

,

where π̃(i)� wi/
∑
` w` and b ≡maxi , j wi/w j .

Remarks. Some remarks are in order. First, Theorem 2
immediately implies that as long as kd grows super
linear in log n, then the error goes to 0. Furthermore,
in the context that the number of items n goes to ∞ as
long as we choose d �Ω(log n) and kd � ω(log n), the
relative error goes to 0 as n→∞with high probability.
That is, with ω(n log n) total samples, the relative error
goes to 0 with high probability. It is well known that
for Erdös-Renyi graphs, the induced graph G is con-
nected with high probability only when d �Ω(log n),
i.e., when total number of pairs sampled scales as
Ω(n log n). Thus, Rank Centrality is nearly order opti-
mal in this setting.

Second, the b parameter should be treated as con-
stant. It is the dynamic range in which we are trying
to resolve the uncertainty between scores. We are con-
sidering a regime that there exists some uncertainty
in the samples. Otherwise, if the weight of a single
item were an order n greater than the weights of other
items, then it would effectively be preferred with cer-
tainty. Hence, we would remove it from the items
under consideration.

Third, for a general graph, Theorem 1 implies that by
choice of kdmax �O(κ2ξ−2 log n), Rank Centrality learns
a score vector close to the true scores with high prob-
ability. That is, effectively the Rank Centrality algo-
rithm requires O(nκ2ξ−2 poly(log n)) comparisons to
learn scores well. Ignoring κ, the graph structure plays
a role through ξ−2, the squared inverse of the spec-
tral gap of Laplacian of G, indictating the performance
of Rank Centrality. A reversible natural random walk
on G, whose transition matrix is the Laplacian, has its
mixing time scaling as ξ−2 (precisely, relaxation time).
In that sense, the mixing time of natural random walk
on G ends up playing an important role in the ability of
Rank Centrality to learn the true scores. Hence, if one
has the option to choose which pairs to compare, our
analysis in Theorem 1 suggests that one should choose
pairs such that the resulting graph has large spectral
gap. Spectral gap of the comparisons graph also plays
an important role in Osting et al. (2013), where the goal
is to choose pairs to compare under a different model
where cardinal preferences (as opposed to ordinal pref-
erences) are observed.

Finally, if we wish to obtain a relative accuracy of
ε with probability at least 1− δ for a fixed number of
items n, then our results also show that we require
kd > [512 b5/ε2] ·max(log2(10/δ)/log n , log n).

3.3. Experimental Results
Under the BTL model, define an error metric of an esti-
mated ordering σ as the weighted sum of pairs (i , j)
whose ordering is incorrect:

Dw(σ) �
{

1
2n‖w‖2

∑
i< j
(wi −w j)2

· 	((wi −w j)(σi − σ j) > 0)
}1/2

,

where 	( · ) is an indicator function. This is a more nat-
ural error metric compared to the Kemeny distance,
which is an unweighted version of the above sum, since
Dw( · ) is less sensitive to errors between pairs with sim-
ilar weights. Further, assuming without loss of gen-
erality that w is normalized such that ∑

i wi � 1, the
next lemma connects the error in Dw( · ) to the bound
provided in Theorem 2. Hence, the same upper bound
holds for Dw error. A proof of this lemma is provided
in the online appendix.
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Lemma 1. Let σ be an ordering of n items induced by a
scoring π. Then,

Dw(σ) 6
‖w − π‖
‖w‖ .

Synthetic Data. To begin with, we generate data syn-
thetically as per a BTL model for a specific choice of
scores. For a given n and b, the scores are chosen such
that the ratio between two consecutive scores are fixed
to be b1/n , i.e., w1 � b(1−n)/2n , w2 � b(3−n)/2n , w3 � b(5−n)/2n ,
etc. A representative result is depicted in Figure 1: for
fixed n � 400 and a fixed b � 10, it shows how the error
scales when varying two key parameters—varying the
number of comparisons per pair with fixed d � 10 log n
(on left), and varying the sampling probability with
fixed k � 32 (on right). This figure compares perfor-
mance of Rank Centrality with variety of other algo-
rithms. Next, we provide a brief description of various
algorithms that we shall compare with.
Regularized Rank Centrality. When there are items
that have been compared only a few times, the scores
to those items might be sensitive to the randomness
in the outcome of the comparisons, or even worse the
resulting comparisons graph might not be connected.
To make the random walk irreducible and get a rank-
ing that is more robust against comparisons noise in
those edges with only a few comparisons, one can add
regularization to Rank Centrality. A reasonable way to
add regularization is to consider the transition proba-
bility Pi j as the prediction of the event that j beats i,
given data (ai j , a ji). The Rank Centrality, in nonregu-
larized settings, uses the Haldane prior of Beta(0, 0),
which gives Pi j ∝ ai j/(ai j + a ji). To add regularization,
one can use different priors, for example Beta(ε, ε),
which gives

Pi j �
1

dmax

ai j + ε

ai j + a ji + 2ε . (5)

Figure 1. Average error Dw(σ) of various rank aggregation algorithms averaged over 20 instances.
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Notes. In the figure on the left, d and n are fixed while k is increased. The figure on the right keeps k � 32 fixed, and lets d increase.

When the prior is unknown, a reasonable choice in
practice is ε � 1.
Maximum Likelihood Estimator (MLE). The ML esti-
mator directly maximizes the likelihood assuming the
BTL model (Ford 1957). If we reparameterize the prob-
lem so that θi � log(wi), then we obtain our estimates θ̂
by solving the convex program

θ̂∈ arg min
θ

∑
(i , j)∈E

k∑
l�1

{
log(1+exp(θj −θi))−Y l

i j(θj −θi)
}
,

(6)

which is a pairwise logistic regressionmodel. TheMLE
is known to be consistent (Ford 1957). The finite sample
analysis of MLE is provided in Section 3.5.

For comparison with Regularized Rank Centrality,
we provide regularized MLE or regularized Logistic
Regression:

arg min
θ

[ ∑
(i , j)∈E

∑
l

{
log(1+ exp(θj − θi)) −Y l

i j(θj − θi)
}

+
1
2λ‖θ‖

2
]
. (7)

Borda Count. The (generalized) Borda Count method,
analyzed recently by Ammar and Shah (2011), scores
an item by counting the number of wins divided by the
total number of comparisons:

s(i)� No. of times item i has won
No. of times item i has been compared .

This can be thought of as an extension of the standard
Borda Count for aggregating full rankings (de Borda
1781), which is widely used in psychology (David 1963,
Kendall and Smith 1940, Mosteller 1951). If we break
the full rankings into pairwise comparisons and apply
the pairwise version of the Borda Count from (Ammar
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and Shah 2011), then it produces the same ranking
as the standard Borda Count applied to the origi-
nal full rankings. This is different from how HodgeR-
ank from Jiang et al. (2011) generalizes Borda count,
which does not normalize the scores by the number of
comparisons.
Spectral Ranking Algorithms. Rank Centrality can be
classified as part of the spectral ranking algorithms,
which assign scores to the items according to the lead-
ing eigenvector of a matrix that represents the data.
Different choices of the matrix based on data can lead
to different algorithms. A few prominent examples are
Ratio matrix in Saaty (2003) and those in Dwork et al.
(2001). In the RatioMatrix algorithm, amatrix M ∈�n×n

with Mi j � ai j/a ji is constructed (and Mii � 1), and the
scores for the times are assigned as per the top eigen-
vector of this ratio matrix. Dwork et al. (2001) intro-
duced four spectral ranking algorithms called MC1,
MC2, MC3, and MC4. They are all based on a random
walk very similar (but distinct) to that of Rank Central-
ity. These algorithms use the stationary distributions of
the following Markov chains, respectively, translated
to account for the pairwise comparisons data: P(MC1)

i j �

1/|{`: ai` > 0}|, P(MC2)
i j � ai j/

∑
`,i ai` ,

P(MC3)
i j �


ai j/deg(i) if i , j.

1−
∑̀
,i

ai`/deg(i) if i � j,

P(MC4)
i j �


1/n if ai j > a ji ,

0 if ai j < a ji ,

1−
∑̀
,i
|{`: ai` > a`i}|/n if i � j,

where deg(i) is the number of items that item i has
been compared to.
We make note of the following observations from

Figure 1. First, the error achieved by our Rank Central-
ity is comparable to that of ML estimator, and vanishes
at the rate of 1/

√
k as predicted by our main result.

Moreover, as predicted by our bounds, the error scales
as 1/

√
d. Second, for fixed d, both the Borda Count

and RatioMatrix algorithms have strictly positive error
even if we take k → ∞. This exhibits that these are
inherently inefficient algorithms. Third, despite strong
similarity between Rank Centrality and the Markov
chain based algorithms of Dwork et al. (2001), the
careful choice of the transition matrix of Rank Cen-
trality makes a noticeable difference as shown in the
figure—like Borda Count and Ratio Matrix, for fixed
d , n, despite k increasing the error remains finite (and
at times gets worse!).
Real Data Sets. Next we show that Rank Centrality is
more robust to randomly missing data compared to
existing spectral ranking approaches on real data sets,
which are not necessarily derived from the BTLmodel.

Data Set 1: Washington Post. This is the public data
set collected from an online polling on Washington
Post2 from December 2010 to January 2011. Using
allourideas3 platform developed by Salganik and Levy
(2012), they asked who had the worst year in Washing-
ton, where each user was asked to compare a series of
randomly selected pairs of political entities. There are
67 political entities in the data set, and the resulting
graph is a complete graph on these 67 nodes. We used
Rank Centrality and other algorithms to aggregate
this data. We use this data set primarily to check the
“robustness” of algorithms rather than understanding
their ability to identify ground truth, as by design it is
not available.

Now each algorithm gives different ground truth
rankings given the full set of data. This ground truth is
compared to a ranking we get from only a subset of the
data, which is generated by sampling each edge with
a given sampling rate and revealing only the data on
those sampled edges. We want to measure how much
each algorithm is affected by eliminating edges from
the complete graph. Let σGT be the ranking we get by
applying our choice of rank aggregation algorithm to
the complete data set, and σSample be the ranking we get
from sampled data set. To measure the resulting error
in the ranking, we use the following metric:

DL1
(σGT , σSample)�

1
n

∑
i
|σGT(i) − σSample(i)|.

Figure 2 illustrates that Rank Centrality, ML estima-
tor and MC2 are less sensitive to sampling the data
set, compared to Borda Count, MC1, MC3, and MC4.
Hence they are more robust when available compar-
isons data are limited.
Data Set 2: NASCAR 2002. Table 1 shows ranking of
drivers from NASCAR 2002 season racing results.
Hunter (2004) used this data set for studying rank-
aggregation algorithms, and we use the data set, at
Guiver and Snelson (2009). The data set has 87 different
drivers who competed in a total of 36 races in which
43 drivers were racing at each race. Some of the drivers
raced in all 36 races, whereas some drivers only par-
ticipated in one. To break the racing results into parity
comparisons and to be able to run the comparison-
based algorithm, like Hunter (2004), Guiver and Snel-
son (2009), we eliminated four drivers who finished
last in every race they participated. Therefore, for the
data set we used, there are a total of 83 drivers.

Table 1 shows the top 10 and bottom 10 drivers
according to their average place, and their ranking
from Rank Centrality and ML estimator. The unregu-
larized Rank Centrality can over fit the data by plac-
ing P. J. Jones and Scott Pruett in the first and second
places. They have high average place, but they only
participated in one race. In contrast, the regularized
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Figure 2. Experimental results on a real data set shows that
Rank Centrality, ML estimator, and MC2 are less sensitive to
having limited data.
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version places them lower and gives the top rank-
ing to those players with more races. Similarly, Mor-
gan Shepherd is placed last in the regularized version,
because he had consistently low performance in five
races. Similarly, the ML estimator with regularization
gives the top (and bottom) rankings to those players
with more races.

Table 1. ε-regularized Rank Centrality for the top 10 and bottom 10 2002 NASCAR drivers,
as ranked by average place.

Rank Centrality ML estimator

ε � 0 ε � 3 λ � 0.01

Driver Races Av. place π Rank π Rank eθ Rank

P. J. Jones 1 4.00 0.1837 1 0.0181 11 0.0124 23
Scott Pruett 1 4.00 0.0877 2 0.0176 12 0.0124 24
Mark Martin 36 12.17 0.0302 5 0.0220 2 0.0203 1
Tony Stewart 36 12.61 0.0485 3 0.0219 1 0.0199 2
Rusty Wallace 36 13.17 0.0271 6 0.0209 3 0.0193 3
Jimmie Johnson 36 13.50 0.0211 12 0.0199 5 0.0189 4
Sterling Marlin 29 13.86 0.0187 14 0.0189 10 0.0177 8
Mike Bliss 1 14.00 0.0225 10 0.0148 18 0.0121 27
Jeff Gordon 36 14.06 0.0196 13 0.0193 8 0.0184 5
Kurt Busch 36 14.06 0.0253 7 0.0200 4 0.0184 6
...
Carl Long 2 40.50 0.0004 77 0.0087 68 0.0106 59
Christian Fittipaldi 1 41.00 0.0001 83 0.0105 49 0.0111 40
Hideo Fukuyama 2 41.00 0.0004 76 0.0088 67 0.0106 60
Jason Small 1 41.00 0.0002 80 0.0105 48 0.0111 41
Morgan Shepherd 5 41.20 0.0002 78 0.0059 83 0.0092 75
Kirk Shelmerdine 2 41.50 0.0002 81 0.0084 70 0.0105 61
Austin Cameron 1 42.00 0.0005 75 0.0107 44 0.0111 43
Dave Marcis 1 42.00 0.0012 71 0.0105 47 0.0111 44
Dick Trickle 3 42.00 0.0001 82 0.0071 77 0.0100 65
Joe Varde 1 42.00 0.0002 79 0.0110 43 0.0111 42

Data Set 3: ODI Cricket. Table 2 shows ranking of inter-
national cricket teams from the 2012 season of the ODI
cricket match, where 16 teams played a total of 362
games. Like NASCAR data set, in Table 2, teams with
a smaller number of matches, such as Scotland and
Ireland, are moved toward the middle with regular-
ization, and New Zealand is moved toward the end.
Notice that regularized or not, the ranking from Rank
Centrality is different from the simple ranking from
average place or winning ratio, because we give more
score for winning against stronger opponents. The reg-
ularized ML estimator produces similar ranking as the
regularized Rank Centrality. These data on ODI cricket
match are publicly available, for example, from http://
www.cricmetric.com/blog/.

3.4. Information-Theoretic Lower Bound
In previous sections, we presented the achievable error
rate based on a particular low-complexity algorithm.
In this section, we ask how this bound compares to the
fundamental limit under the BTL model.

Our result in Theorem 2 provides an upper bound on
the achievable error rate between estimated scores and
the true underlying scores. We provide a constructive
argument to lower bound theminimax error rate over a
class of BTLmodels. Concretely, we consider the scores
coming from a simplex with bounded dynamic range
defined as

Sb ≡
{
π̃ ∈ �n

���� ∑
i∈[n]

π̃i � 1,max
i , j

π̃i

π̃ j
6 b

}
.

http://www.cricmetric.com/blog/
http://www.cricmetric.com/blog/
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Table 2. Applying ε-regularized Rank Centrality to One Day International (ODI) cricket
match results from 2012.

Rank Centrality ML estimator

ε � 0 ε � 1 λ � 0.01

Team Matches Win ratio deg π Rank π Rank eθ Rank

South Africa 43 0.6744 11 0.1794 2 0.0943 2 0.0924 2
India 76 0.6382 11 0.1317 4 0.0911 3 0.0923 3
Australia 72 0.6319 13 0.1798 1 0.0900 4 0.0881 4
England 60 0.6000 10 0.1526 3 0.0957 1 0.0927 1
Scotland 15 0.6000 7 0.0029 12 0.0620 7 0.0627 7
Sri Lanka 78 0.5577 12 0.1243 5 0.0801 5 0.0768 5
Parkistan 65 0.5385 13 0.0762 6 0.0715 6 0.0755 6
Ireland 32 0.5316 13 0.0124 11 0.0561 8 0.0539 9
Afghanistan 20 0.5000 7 0.0005 15 0.0435 13 0.0472 12
West Indies 55 0.4091 12 0.0396 7 0.0546 9 0.0592 8
New Zealand 50 0.3800 10 0.0354 8 0.0466 12 0.0514 10
Bangladesh 51 0.3333 11 0.0320 9 0.0500 10 0.0492 11
Netherlands 24 0.3333 10 0.0017 13 0.0432 14 0.0427 14
Zimbabwe 40 0.3250 11 0.0307 10 0.0481 11 0.0439 13
Canada 22 0.2273 11 0.0003 16 0.0365 16 0.0364 15
Kenya 21 0.1905 10 0.0007 14 0.0367 15 0.0356 16

Notes. The degree of a team in the comparisons graph is the number of teams it has played against.

We constrain the scores to be on the simplex, because
we represent the scores by its projection onto the stan-
dard simplex as explained in Section 2.1. Then, we
can prove the following lower bound on the minimax
error rate.

Theorem 3. Consider a minimax scenario where we first
choose an algorithm A that estimates the BTL weights,
say πA, from given observations and for this particular algo-
rithm A, nature chooses the worst-case true BTL weights π̃.
Let Sb denote the space of all BTL score vectors π̃ with
dynamic range at most b as defined above. Then

inf
A

sup
π̃∈Sb

Ɛ[‖πA − π̃‖]
‖π̃‖ >

b − 1
240
√

10(b + 1)
1
√

kd
, (8)

where the infimum ranges over all estimation algorithms A
that are measurable functions over the observations. Here a
pair of items is chosen to be compared with probability d/n,
and for thus chosen pair k comparison observations are gen-
erated as per the underlying BTL model.

By definition the dynamic range is always at least
one. When b � 1, we can trivially achieve a minimax
rate of zero. Since the infimum ranges over all mea-
surable functions, it includes a trivial estimator that
always outputs (1/n)� regardless of the observations,
and this estimator achieves zero errorwhen b �1. In the
regime where the dynamic range b is bounded away
from one and bounded above by a constant, Theorem 3
establishes that the upper bound obtained in Theo-
rem 2 is minimax-optimal up to factors logarithmic in
the number of items n.

3.5. MLE: Error Bounds Using a State-of-the-Art
Method

It is well known that the maximum-likelihood estimate
of a set of parameters is asymptotically normal with
mean 0 and covariance equal to the inverse Fisher infor-
mation of the set of parameters. In this section we wish
to show the behavior of the estimates obtained through
the logistic regression-based approach for estimating
the parameters θ∗i � log wi in a finite sample setting.

Model. Recall that the logistic regression-basedmethod
reparameterizes the model so that given items i and j
the probability that i defeats j is

P(i defeats j)�
exp(θ∗i − θ∗j)

1+ exp(θ∗i − θ∗j)
.

To ensure identifiability we also assume that ∑i θ
∗
i � 0,

so that we also enforce the constraint ∑ θ̂i � 0. We also
recall that we let b � wmax/wmin. Similarly, we let b̃ :�
θ∗max − θ∗min and enforce the constraint that θ̂max − θ̂min

6 b̃′ where b̃ 6 b̃′. For simplicity we assume that b̃′ � b̃.
Finally, recall that we are given m i.i.d. observations.

We take l ∈ {1, 2, . . . , n} and let vl to be the outcome
of the lth comparison. Furthermore, if during the lth
competition item i competed against item j we take
xl � ei − e j where ei is the standard basis vector with
entries that are all zero except for the ith entry, which
equals one. Note that in this context the ordering of the
competition does matter. Finally, we define the inner
product between two vectors x , y ∈ �n to be 〈x , y〉 �
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i�1 xi yi . Therefore, under the BTLmodel with param-
eters θ∗ we have that

vl �

{
1 with probability exp 〈xl , θ

∗〉/(1+ exp 〈xl , θ
∗〉),

0 otherwise.

Now the estimation procedure is of the form

θ̂ � arg min
θ

Lm(θ, v , x)

where

Lm(θ, v , x)�
1
m

n∑
l�1

{
log(1+ exp 〈xl , θ〉) − vl 〈xl , θ〉

}
. (9)

Results. Before proceeding we recall that ‖θ∗‖2 6 b̃
√

n.
With that in mind we have the following theorem.

Theorem 4. Suppose that we have m > 12n log n obser-
vations of the form (i , j, y) where i and j are drawn uni-
formly at random from [n] and y is Bernoulli with parameter
exp(θ∗i − θ∗j)/(1+ exp(θ∗i − θ∗j)). Then, we have with prob-
ability at least 1− 2/n

‖θ̂− θ∗‖ 6 6 (1+ b)2
b

√
n2 log n

m
.

With the assumption that ‖θ∗‖∞ 6 b̃, we have ‖θ∗‖
6 b̃
√

n.

3.6. Cramér-Rao Lower Bound
The Fisher information matrix (FIM) encodes the
amount of information that the observed measure-
ments carry about the parameter of interest. The
Cramér-Rao boundwe derive in this section provides a
lower bound on the expected squared Euclidean norm
Ɛ[‖π̃ − π‖2] of any unbiased estimator and is directly
related to the (inverse of) Fisher information matrix.
Denote the log-likelihood function as

`(π̃ | a) �
∑
(i , j)∈E

log f (ai j , a ji | π̃), where

f (ai j , a ji | π̃) �
(

π̃ j

π̃i + π̃ j

)ki j ai j
(

π̃i

π̃i + π̃ j

)ki j a ji

,

and ki j is the number of times the pair (i , j) was com-
pared. The Fisher information matrix with the BTL
weights π̃ is defined as F(π̃) ∈ �n×n with

F(π̃)i j � Ɛa

[
−∂

2`(π̃ | a)
∂π̃i ∂π̃ j

]

�



∑
i′∈∂i

kii′

(π̃i + π̃i′)2
π̃i′

π̃i
if i � j,

−
ki j

(π̃i + π̃ j)2
if (i , j) ∈ E,

0 otherwise.

This follows from the fact that
∂`(π̃ | a)
∂π̃i

�
∑
i′∈∂i

−kii′(aii′ + ai′ i)
π̃i + π̃i′

+
kii′ai′ i

π̃i
, and

∂2`(π̃ | a)
∂π̃i ∂π̃ j

�



∑
i′∈∂i

kii′

(
1

(π̃i + π̃i′)2
− ai′ i

(π̃i)2

)
if i � j ,

ki j

(π̃i + π̃ j)2
if (i , j) ∈ E,

0 otherwise.

Let π denote our estimate of the weights. Applying the
CRB (Rao 1945), we get the following lower bound for
all unbiased estimators π:

E[‖π− π̃‖2] > Trace(F(π̃)−1).

This bound depends on π̃ and the graph structure.
Although a closed-form expression is difficult to get
and Rank Centrality as well as the ML estimate is
biased, we compare our numerical experiments with a
numerically computed CRB on the same graph and the
same weights π̃.
3.6.1. Numerical Comparisons. In Figure 3, the aver-
age normalized root mean squared error (RMSE) is
shown as a function of various model parameters. We
fixed the control parameters as k � 32, n � 400, d � 60,
and b � 10 with pairs assigned according to Erdős-
Renyi graph G(n , d/n). Each point in the figure is aver-
aged over 20 random instances S. Let π̃(i) be the result-
ing estimate at the ith experiment, then

RMSE�
1
|S|

∑
i∈S

‖π(i) − π̃‖
‖π̃‖ . (10)

For all ranges of model parameters k, d, and b, RMSE
achieved using Rank Centrality is almost indistin-
guishable from that of the ML estimate and also the
CRB.

CRB provides a lower bound on the expected mean
squared error for unbiased estimators. Although we
are plotting average root mean squared error, as
opposed to average mean squared error, we do not
expect any estimator to achieve RMSE better than the
CRB as long as there is a concentration.

The ML estimator in (7) with λ � 0 finds an esti-
mate π � e θ̂ that maximizes the log likelihood, and in
general the ML estimate does not coincide with the
minimum mean squared error estimator. From the fig-
ure we see that it in fact achieves the minimum mean
squared error and matches the CRB.

What is perhaps surprising is that for all the param-
eters that we experimented with, the RMSE achieved
by Rank Centrality is almost indistinguishable with
that of ML estimate and the CRB. Thus, coupled with
the minimax lower bounds, one cannot do better than
Rank Centrality under the BTL model.
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Figure 3. (Color online) Comparisons of Rank Centrality, the ML estimator, and the Cramér-Rao bound.
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Notes. All three lines are almost indistinguishable for all ranges of model parameters.

3.7. Discussion of Results
In this section we review the results that we have estab-
lished above. In Theorem 1 we establish upper bounds
on the error when samples are drawn from an arbitrary
graph and when each edge is compared k times. This
bound depends on the spectral gap of the underlying
graph, which shows that graphs with a larger spec-
tral gap achieve smaller estimation error. For the case
of Erdös-Renyi graphs, Theorem 2 provides an upper
bound on the error achieved by Rank Centrality. In
Theorem 3 we prove that the bound is near optimal,
up to logarithmic factors, in an information theoretic
sense. That is, no method, regardless of computational
power can achieve better performance on the same sta-
tistical model. For a tighter analysis of the optimality
of Rank Centrality, we provide numerical experiments
under the BTL model and compare it to the Cramer
Rao lower bound established in Section 3.6. Compar-
isons with the Cramer-Rao bound in Figure 3 suggests
that the error achieved by Rank Centrality is indis-
tinguishable from the fundamental Cramer-Rao lower
bound, and hence exactly optimal for a certain class of
estimators.
For completeness, we further provide an analysis of

the error achieved by the MLE in Theorem 4. Building
upon our analysis, Hajek et al. (2014) shows that MLE
is near order optimal, just like Rank Centrality.

Finally, we compare the computational cost of Rank
Centrality versus the MLE. While it is difficult to
make an exact, theoretical, comparison, we neverthe-
less compare their computational cost by means of
popular implementations on a common computation
platform. For Rank Centrality, the implementation
is based on using eigs function MATLAB. For MLE,
the implementation is based on the basic first-order
method. In a collection of experiments (with varying
problem parameters), Rank Centrality converges an
order of magnitude faster than the MLE. It should
be noted that the first-order method has tunable step
size and our implementation did not attempt to opti-
mize this selection when varying problem parame-
ters. Finally, MLE can be viewed as a standard logistic

regression. Therefore, the lm function of R-package can
be used to solve for MLE. Again, in the same compu-
tation environment, the resulting MLE is an order of
magnitude slower compared to the MATLAB imple-
mentation of Rank Centrality, but faster than the
first-order method.

4. Proofs
We may now present proofs of Theorems 1 and 2. We
first present a proof of convergence for general graphs
in Theorem 1. This result follows from Lemma 2 that
we state below, which shows that our algorithm enjoys
convergence properties that result in useful upper
bounds. The lemma is made general and uses standard
techniques of spectral theory. Themain difficulty arises
in establishing that theMarkov chain P satisfies certain
properties that we will discuss subsequently. Given
the proof for the general graph, Theorem 2 follows by
showing that in the case of Erdös-Renyi graphs, certain
spectral properties are satisfied with high probability.

The next set of proofs involve the information-
theoretic lower bound stated in Theorem 3 and the
proof of Theorem 4 establishing the finite sample error
analysis of MLE.

4.1. Proof of Theorem 1: General Graph
In this section, we characterize the error rate achieved
by our ranking algorithm. Given the random Markov
chain P, where the randomness comes from the out-
come of the comparisons, we will show that it does
not deviate too much from its expectation P̃, where we
recall that P̃ is defined as

P̃ i j �


1

dmax

w j

wi + w j
if i , j,

1− 1
dmax

∑̀
,i

w`

wi + w`

if i � j,

for all (i , j) ∈ E and P̃ i j � 0 otherwise.
Recall from the discussion following Equation (1)

that the transition matrix P used in our ranking
algorithm has been carefully chosen such that the
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corresponding expected transition matrix P̃ has two
important properties. First, the stationary distribution
of P̃, which we denote with π̃ is proportional to the
weight vectors w. Furthermore, when the graph is con-
nected and has self loops (which at least one exists),
this Markov chain is irreducible and aperiodic so that
the stationary distribution is unique. The next impor-
tant property of P̃ is that it is reversible–π̃(i)P̃ i j �

π̃( j)P̃ ji . This observation implies that the operator P̃ is
symmetric in an appropriately defined inner product
space. The symmetry of the operator P̃ will be crucial
in applying ideas from spectral analysis to prove our
main results.
Let ∆ denote the fluctuation of the transition matrix

around its mean, such that ∆ ≡ P − P̃. The follow-
ing lemma bounds the deviation of the Markov chain
after t steps in terms of two important quantities: the
spectral radius of the fluctuation ‖∆‖2 and the spectral
gap 1− λmax(P̃), where

λmax(P̃) ≡max{λ2(P̃),−λn(P̃)}.

Since λ(P̃)’s are sorted, λmax(P̃) is the second largest
eigenvalue in absolute value.

Lemma 2. For any Markov chain P � P̃ +∆ with a rever-
sible Markov chain P̃, let pt be the distribution of theMarkov
chain P when started with initial distribution p0. Then,

‖pt − π̃‖
‖π̃‖ 6 ρt ‖p0 − π̃‖

‖π̃‖

√
π̃max

π̃min
+

1
1− ρ ‖∆‖2

√
π̃max

π̃min
, (11)

where π̃ is the stationary distribution of P̃, π̃min �mini π̃(i),
π̃max � maxi π̃(i), and ρ � λmax(P̃)+ ‖∆‖2

√
π̃max/π̃min.

The above result provides a general mechanism for
establishing error bounds between an estimated sta-
tionary distribution π and the desired stationary distri-
bution π̃. It is worth noting that the result only requires
control on the quantities ‖∆‖2 and 1− ρ. We may now
state two technical lemmas that provide control on the
quantities ‖∆‖2 and 1− ρ, respectively.

Lemma 3. For some constant C > 8, the error matrix ∆ �

P − P̃ satisfies

‖∆‖2 6 C

√
log n
k dmax

with probability at least 1− 4n−C/8.

The next lemma provides our desired bound on
1− ρ.

Lemma 4. If ‖∆‖2 6 C
√

log n/(kdmax) and k > 4C2b5 ·
dmax log n(1/dminξ)2, then

1− ρ > ξdmin

b2dmax
.

Proof of Theorem 1. With the above stated Lemmas,
we shall proceed with the proof of Theorem 1. When
there is a positive spectral gap such that ρ < 1, the
first term in (11) vanishes as t grows. The rest of the
first term is bounded and independent of t. Formally,
we have

π̃max/π̃min 6 b , ‖π̃‖ > 1/
√

n , and ‖p0 − π̃‖ 6 2,

by the assumption that maxi , j wi/w j 6 b and the fact
that π̃(i) � wi/(

∑
j w j). Hence, the error between the

distribution at the tth iteration p t and the true station-
ary distribution π̃ is dominated by the second term in
Equation (11). Substituting the bounds in Lemmas 3
and 4, the dominant second term in Equation (11) is
bounded by

lim
t→∞

‖pt − π̃‖
‖π̃‖ 6

C b5/2

ξdmin

√
dmax log n

k

with probability of at least 1− 4n−C/8. In fact, we only
need t � Ω(log n + log b + log(dmax log n/(d2

minkξ2))) to
ensure that the above bound holds up to a constant
factor. This finishes the proof of Theorem 1. Notice
that in order for this result to hold, we need k >
4C2b5dmax log n(1/dminξ)2 for Lemma 4.
4.1.1. Proof of Lemma 2. Due to the reversibility of P̃,
we can view it as a self-adjoint operator on an appro-
priately defined inner product space. This observation
allows us to apply the well-understood spectral anal-
ysis of self-adjoint operators. To that end, define an
inner product space L2(π̃) as a space of n-dimensional
vectors, �n , endowed with

〈a , b〉π̃ �
n∑

i�1
ai π̃i bi .

Similarly, we define ‖a‖π̃ �
√
〈a , a〉π̃ as the 2-norm

in L2(π̃). An operator (matrix) A is self-adjoint with
respect to L2(π) if 〈u ,Av〉π̃ � 〈Au , v〉π̃ for all u , v ∈
�n . For a self-adjoint operator A in L2(π̃), we define
‖A‖π̃, 2 �maxa ‖Aa‖π̃/‖a‖π̃ as the operator norm. These
norms are related to the corresponding norms in the
Euclidean space through the following inequalities:√

π̃min‖a‖ 6 ‖a‖π̃ 6
√
π̃max‖a‖ , (12)√

π̃min

π̃max
‖A‖2 6 ‖A‖π̃, 2 6

√
π̃max

π̃min
‖A‖2. (13)

It is easy to check that, a reversible Markov chain P̃
is self-adjoint in L2(π̃) because of the detailed-balanced
condition, where π̃ is the unique stationary distribution
of P̃.

Consider a symmetrized version of P̃, defined as S �

Π̃
1/2

P̃Π̃
−1/2, where Π̃ is a diagonal matrix with Π̃ii �

π̃(i). Again, reversibility of P̃ makes S symmetric. It
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can be verified that P̃ and S have the same set of eigen-
values. By the Perron-Frobenius theorem, the eigen-
values are in [−1, 1] with largest being equal to 1. Let
them be denoted as 1 � λ1 > λ2 > · · · > λn > −1, and
let λmax � max{|λn |, λ2}. Let ui be the left eigenvector
of S corresponding to λi for 1 6 i 6 n. Then the ith
left eigenvector of P̃ is given by vi � Π̃

1/2
ui . Since the

first left eigenvector of P̃ is the stationary distribution,
i.e., v1 � π̃, we have that u1(i) � π̃(i)1/2 or Π̃−1/2

u1 � �.
Finally, define rank-1 projection of S as S1 � λ1u1uT

1 �

u1uT
1 and let P̃1 � Π̃

−1/2
S1Π̃

1/2.
Our interest is inMarkov chain P � P̃+∆ and iterates

obtained from it pT
t � pT

t−1P. Then,

pT
t − π̃T

� (pt−1 − π̃)T(P̃ +∆)+ π̃T∆. (14)

Using the fact that (p` − π̃)TΠ̃
−1/2

u1 � (p` − π̃)T�� 0 for
any probability distribution p` , we get (p` − π̃)T P̃1 �

(p` − π̃)TΠ̃
−1/2

u1λ1uT
1 Π̃

1/2
� 0. Then, from (14) we get

pT
t − π̃T

� (pt−1 − π̃)T(P̃ − P̃1 +∆)+ π̃T∆.

By definition of P̃1, it follows that ‖P̃− P̃1‖π̃, 2 � ‖S−S1‖2
� λmax. Let ρ � λmax + ‖∆‖π̃, 2, then
‖pt − π̃‖π̃ 6 ‖pt−1 − π̃‖π̃(‖P̃ − P̃1‖π̃, 2 + ‖∆‖π̃, 2)+ ‖π̃T∆‖π̃

6 ρt ‖p0 − π̃‖π̃ +
t−1∑̀
�0
ρt−1−` ‖π̃T∆‖π̃ .

Dividing each side by ‖π̃‖ and applying the bounds in
(12) and (13), we get

‖pt − π̃‖
‖π̃‖ 6 ρt

√
π̃max

π̃min

‖p0 − π̃‖
‖π̃‖ +

t−1∑̀
�0
ρt−1−`

√
π̃max

π̃min

‖π̃T∆‖
‖π̃‖ .

This finishes the proof of the desired claim.
4.1.2. Proof of Lemma 3. Our interest is in bound-
ing ‖∆‖2. Now ∆� P − P̃ so that for 1 6 i , j 6 n,

∆i j �
1

kdmax
Ci j , (15)

where Ci j is distributed as per B(k , pi j) − kpi j if (i , j) ∈
E and Ci j � 0 otherwise. Here B(k , pi j) is a binomial
random variable with parameter k and pi j ≡ w j/(wi +

w j). It should be noted that Ci j + C ji � 0 and Ci j are
independent across all the pairs with i < j. For 16 i 6 n

∆ii � Pii − P̃ ii �

(
1−

∑
j,i

Pi j

)
−

(
1−

∑
j,i

P̃ i j

)
�

∑
j,i

P̃ i j −Pi j �−
∑
j,i
∆i j . (16)

Given the above dependence between diagonal and off-
diagonal entries, we shall bound ‖∆‖2 as follows: let D
be the diagonal matrix with Dii � ∆ii for 1 6 i 6 n and
∆̄�∆−D. Then,

‖∆‖2 � ‖D + ∆̄‖2 6 ‖D‖2 + ‖∆̄‖2. (17)

We shall establish the bound of O(
√

log n/(kdmax)) for
both ‖D‖2 and ‖∆̄‖2 to establish the Lemma 3.

Bounding ‖D‖2. Since D is a diagonal matrix, ‖D‖2 �
maxi |Dii | � maxi |∆ii |. For a given fixed i, as per
(15)–(16), kdmax∆ii can be expressed as the summation
of at most kdmax independent, zero-mean random vari-
ables taking values in the range of at most 1. Therefore,
by an application of the Azuma-Hoeffding’s inequality,
it follows that

�(kdmax |∆ii | > t) 6 2 exp
(
− t2

2kdmax

)
. (18)

By selection of t � C
√

kdmax log n for an appropriately
large constant, it follows from the above display that

�

(
‖D‖2 > C

√
log n
kdmax

)
6

n∑
i�1

�

(
|∆ii | > C

√
log n
kdmax

)
(19)

6 2n−C2/2+1. (20)

Bounding ‖∆̄‖2 when dmax 6 log n. Toward this goal,
we shall make use of the following standard inequality:
for any square matrix M,

‖M‖2 6
√
‖M‖1‖M‖∞ , (21)

where ‖M‖1 � maxi
∑

j |Mi j | and ‖M‖∞ � ‖MT ‖1. In
words, ‖M‖22 is bounded above by product of the max-
imal row-sum and column-sum of absolute values of
M. Since ∆i j and ∆ ji are identically distributed and
entries along each row (and hence each column) are
independent, it is sufficient to obtain a high probability
bound (> 1− 1/poly(n)) for maximal row-sum of abso-
lute values of ∆̄; exactly the same bound will apply
for column-sum; and using union bound the desired
result will follow.

To that end, consider the sum of the absolute values
of the ith row-sum of ∆̄ and for simplicity let us denote
it by Ri . Then,

Ri �
1

kdmax

∑
j,i
|Ci j |, (22)

where recall that Ci j � Xi j − kpi j with Xi j an indepen-
dent binomial random variable with parameters k , pi j .
Therefore, for any s > 0,

�(Ri > s) � �

(∑
j∈∂i

|Ci j | > kdmaxs
)

6
∑
j∈∂i

∑
ξ j∈{−1,+1}

�

(∑
j
ξ jCi , j > kdmaxs

)
,

by the union bound

6
∑
j∈∂i

∑
ξ j∈{−1,+1}

exp
(−2k2d2

maxs2

di k

)
,

where the last inequality follows from Hoeffding’s
bound and the fact that Xi j �

∑k
j�1(yi j − pi j), where yi j

are Bernoulli random variables with mean pi j . Now,
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the number of terms in the sum is 2di , the summand
is constant, and di 6 dmax. Thus, the last inequality is
upper bounded by∑
j∈∂i

∑
ξ j∈{−1,+1}

exp
(−2k2d2

maxs2

di k2

)
6 exp(−2kdmaxs2

+di ln 2).

By an application of the union bound

�(‖∆̄‖2 > s) 6 2n �(Ri > s)
6 2n exp(−2kdmaxs2

+ dmax ln 2).

Now, if we set s � (C/2)
√
(log n + dmax ln 2)/(kdmax) we

have that

�

(
‖∆̄‖2 > C/2

√
log n + dmax ln 2

kdmax

)
6 2n−(C

2/2−1).

Finally, using the assumption that dmax 6 log n yields

‖∆̄‖2 6 C

√
log n
kdmax

with probability at least 1− 2n−C2/2+1.
Bounding ‖∆̄‖2 When dmax > log n. Toward this goal,
we shall make use of the recent results on the con-
centration of the sum of independent random matri-
ces. For completeness, we recall the following result
(Tropp 2012).

Lemma 5 (Theorem 6.2 (Tropp 2012)). Consider a finite
sequence {Z̃ i j}i< j of independent random self-adjoint matri-
ces with dimensions n × n. Assume that

Ɛ[Z̃ i j]� 0 and Ɛ(Z̃ i j)p �
p!
2 Rp−2(Ãi j)2 ,

for p � 2, 3, 4, . . . .

where A � B if and only if B −A is a positive semidefinite
matrix.
Define σ̃2 ≡ ‖∑i> j(Ã

i j)2‖2. Then, for all t > 0,

�

(∑
i< j

Z̃
i j


2
> t

)
6 2n exp

{
−t2/2
σ̃2

+Rt

}
.

We wish to prove concentration results on ∆̄ � ∆ −
D �

∑
i< j Z i j , where

Z i j
� (ei e

T
j − e j e

T
i )(Pi j − P̃ i j) for (i , j) ∈ E,

and Z i j � 0 if i and j are not connected. The Z i j’s
as defined are zero-mean and independent, however,
they are not self-adjoint. Nevertheless, we can sym-
metrize it by applying the dilation ideas presented in
the paper (Tropp 2012):

Z̃
i j ≡

(
0 Z i j

(Z i j)T 0

)
.

Now we can apply the above lemma to these self-
adjoint, independent, and zero-mean randommatrices.

To find R and Ã
i j’s that satisfy the conditions of the

lemma, first consider a set of matrices {Ai j}i< j such that
Z̃

i j
�∆i jAi j and

Ai j
�

(
0 ei eT

j − e j eT
i

e j eT
i − ei eT

j 0

)
,

if (i , j) ∈ E and zero otherwise. In the following, we
show that the condition on the pth moment is satisfied
with R � 1/

√
kd2

max and (Ãi j)2 � (1/(kd2
max))(Ai j)2 such

that

Ɛ[(Z̃ i j)p] �
p!
2

(
1√

kd2
max

) p−2 1
kd2

max
(Ai j)2. (23)

We can also show that σ̃2 ≡ ‖∑i< j(Ã
i j)2‖2 � 1/(kdmax),

since∑
i< j
(Ãi j)2 �

∑
i< j

1
kd2

max
	((i , j)∈E)

(
ei eT

i + e j eT
j 0

0 ei eT
i + e j eT

j

)
�

1
kd2

max

n∑
i�1

di

(
ei eT

i 0
0 ei eT

i

)
,

where 	( · ) is the indicator function. Using di 6 dmax and
the structure of matrices in the summation in the last
term, it can be easily verified that the ‖ · ‖2 norm of
the resulting matrix is at most 1/kdmax. Now we can
apply the results of Lemma 5 to obtain a bound on
‖∑i< j Z i j ‖2 � ‖

∑
i< j Z̃

i j ‖2:

�

(∑
i< j

Z i j

 > t
)
6 2n exp

(
−t2/2

(1/kdmax)+ (t/
√

kd2
max)

)
.

Under our assumption that dmax > log n and choosing
t � C

√
log n/(kdmax), the tail probability is bounded by

2n exp{−(C2 log n/2)(1/(1+C))}.

Hence, we get the desired bound that ‖∆ − D‖2 6
C
√

log n/(kdmax) with probability at least 1 − 2n−C/4+1,
where we have used the fact that C > 8.
Now we are left to prove that the condition (23)

holds. A quick calculation shows that

(Ai j)p �
{
(Ai j)2 for p even,
Ai j for p odd.

(24)

Furthermore, we can verify that the eigenvalues of Ai j

are either 1 or −1. Hence, (Ai j)p � (Ai j)2 for all p > 1.
Thus, given the fact that Z̃

i j
� ∆i jAi j we have that

Ɛ[(Z̃ i j)p]� Ɛ[∆p
i j(Ai j)p] � | Ɛ[∆p

i j]|(Ai j)2 for all p. This fact
follows since for any constant c ∈�, cAi j � |c |(Ai j)2 and
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c(Ai j)2 � |c |(Ai j)2. Hence, coupling these observation
with the identities presented in Equation (24) we have

Ɛ[(Z̃ i j)p] � Ɛ[|∆i j |p](Ai j)2 ,

where we used Jensen’s inequality for | Ɛ[∆p
i j]| 6

Ɛ[|∆i j |p].
Next, it remains to construct a bound on Ɛ |∆p

i j |:

Ɛ[|∆i j |p] 6
p!
2

(
1√

kd2
max

) p

. (25)

From (15), we have ∆i j � Pi j − P̃ i j � (1/(kdmax))Ci j .
Therefore,

Ɛ[|∆i j |p]� (1/kdmax)p Ɛ[|Ci j |p].

Applying Azuma-Hoeffding’s inequality to Ci j , we
have that

�

(
1

kdmax
|Ci j | > t

)
6 2 exp(−2t2d2

maxk).

That is, (1/(kdmax))Ci j is a sub-Gaussian random vari-
able. And therefore, it follows that for p > 2,

Ɛ

[���� 1
kdmax

Ci j

����p] 6 p!
2

(
1√

kd2
max

) p

.

This proves the desired bound in (25).
4.1.3. Proof of Lemma 4. By Lemma 3, we have for
some C > 8 that

1− ρ � 1− λmax(P̃) − ‖∆‖2
√

b

> 1− λmax(P̃) −C
√

b log n/(kdmax)

with probability at least 1 − 4n−C/8. In this section we
prove that there is a positive gap: (dmin/2 b2 dmax) ξ. We
will first prove that

1− λmax(P̃) >
ξdmin

b2 dmax
. (26)

This implies that we have the desired eigen-
gap for k > 4C2b5dmax log n (1/dminξ)2 such that
C
√

b log n/(kdmax) 6 (dmin/2 b2 dmax) ξ.
To prove (26), we use comparison theorems (Diaco-

nis and Saloff-Coste 1993), which bound the spectral
gap of the Markov chain P̃ of interest using a few com-
parison inequalities related to a more tractable Markov
chain, which is the simple random walk on the graph.
We define the transition matrix of the simple random
walk on the graph G as

Qi j �
1
di

for (i , j) ∈ E,

and the stationary distribution of this Markov chain
is µ(i) � di/

∑
j d j . Further, since the detailed balance

equation is satisfied, Q is a reversible Markov chain.
Formally, µ(i)Qi j � 1/∑` d` � µ( j)Q ji for all (i , j) ∈ E.
The following key lemma is a special case of a more

general result (Diaconis and Saloff-Coste 1993) proved
for two arbitrary reversible Markov chains, which are
not necessarily defined on the same graph. For com-
pleteness, we provide a proof of this lemma later in
this section, following a technique similar to the one
in Boyd et al. (2005) used to prove a similar result
for a special case when the stationary distribution is
uniform.

Lemma 6. Let Q , µ and P̃ , π̃ be reversible Markov chains
on a finite set [n] representing random walks on a graph
G � ([n],E), i.e., P̃(i , j)� 0 and Q(i , j)� 0 if (i , j) < E. For
α ≡min(i , j)∈E{π̃(i)P̃ i j/µ(i)Qi j} and β ≡maxi{π̃(i)/µ(i)},

1− λmax(P̃)
1− λmax(Q)

>
α
β
. (27)

By assumption, we have ξ ≡ 1 − λmax(Q). To prove
that there is a positive spectral gap for the randomwalk
of interest as in (26), we are left to bound α and β. We
have µ(i)Qi j � 1/∑` d` 6 1/|E | and µ(i) > (di/|E |). Also,
by assumption that maxi , j wi/w j 6 b, we have π̃(i)P̃ i j �

wi w j/(dmax(wi + w j)
∑
` w`) > 1/(bndmax) and π̃(i) �

wi/
∑
` w` 6 b/n. Then, α �min(i , j)∈E{π̃(i)P̃ i j/µ(i)Qi j} >

|E |/(nbdmax) and β � maxi{π̃(i)/µ(i)} 6 b |E |/ndmin.
Hence, α/β > dmin/(dmaxb2) and this finishes the proof
of the bound in (26).
4.1.4. Proof of Lemma 6. Since 1− λmax � min{1− λ2,
1+ λn}, we will first show that 1 − λ2(Q) 6 (β/α) ·
(1− λ2(P̃)) and 1 + λn(Q) 6 (β/α)(1 + λn(P̃)). The
desired bound in (27) immediately follows from the
fact that min{a , b} 6min{a′, b′} if a 6 b and a′ 6 b′.
A reversible Markov chain Q is self-adjoint in L2(µ).

Then, the second largest eigenvalue λ2(Q) can be rep-
resented by the Dirichlet form E defined as

EQ(φ, φ) ≡ 〈(I −Q)φ, φ〉µ
�

1
2

∑
i , j
(φ(i) −φ( j))2µ(i)Q(i , j).

For λn(Q), we use

FQ(φ, φ) ≡ 〈(I +Q)φ, φ〉µ
�

1
2

∑
i , j
(φ(i)+φ( j))2µ(i)Q(i , j).

Following the usual variational characterization of the
eigenvalues (see, for instance, Horn and Johnson 1985,
p. 176) gives

1− λ2(Q) � min
φ⊥�

EQ(φ, φ)
〈φ, φ〉µ

, (28)

1+ λn(Q) � min
φ

FQ(φ, φ)
〈φ, φ〉µ

. (29)
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By the definitions of α and β, we have π̃(i , )P̃(i , j) >
αµ(i)Q(i , j) and π̃(i) 6 βµ(i) for all i and j, which
implies

EP̃(φ, φ) > αEQ(φ, φ),
FP̃(φ, φ) > αFQ(φ, φ),
〈φ, φ〉π̃ 6 β〈φ, φ〉µ .

Together with (28), this implies 1 − λ2(Q) 6 (β/α) ·
(1− λ2(P̃)) and 1 + λn(Q) 6 (β/α)(1 + λn(P̃)). This fin-
ishes the proof of the desired bound.

4.2. Proof of Theorem 2: Random Sampling
Given the proof of Theorem 1 in the previous section,
we only need to prove that for an Erdös-Renyi graph
with average degree d > C′ log n the following are true:

(1/2)d 6 di 6 (3/2)d , (30)
1/2 6 ξ. (31)

Then, it follows that κ 6 3 and (1/2)d 6 dmin 6 dmax 6
(3/2)d. By Theorem 1, it follows that

‖π− π̃‖
‖π̃‖ 6 6 Cb5/2

√
log n

kd
,

with probability at least 1 − 4n−C/8 for some positive
constant C > 8 and for kd > 288 C2b5 log n.

We can apply standard concentration inequalities to
establish Equation (30). Applying Chernoff’s inequal-
ity, we get �(|di − d | > (1/2)d) 6 2e−d/16. Hence, for d >
C′ log n, Equation (30) is true with probability at least
1− 2n−C′/16.

Finally, we finish the proof with a result on the lower
bound of the spectral gap ξ � 1− λmax(D−1B).
Lemma 7. Consider a random graph G drawn from
the Erd̈os-Renyi distribution G(n , d/n). Then if d >
10C2 log n, we have ξ > 1/2 with probability at least 1 −
n−Cn/(n−d)/8.

The proof of this result can be found in the online
appendix.

4.3. Proof of Theorem 3: Information-Theoretic
Lower Bound

In this section, we prove Theorem 3 using an
information-theoretic method that allows us to reduce
the stochastic inference problem into a multiway
hypothesis testing problem.
This estimation problem can be reduced to the fol-

lowing hypothesis testing problem. Consider a set
{π̃(1) , . . . , π̃(M(δ))} of M(δ) vectors on the standard
orthogonal simplex that are separated by δ, such that
‖π̃(`1) − π̃(`2)‖ > δ for all `1 , `2. To simplify the nota-
tions, we are going to use M as a shorthand for M(δ).
Suppose we choose an index L ∈ {1, . . . ,M} uniformly

at random. Then, we are given noisy outcomes of pair-
wise comparisons with w � π̃(L) from the BTL model.
We use X to denote this set of observations. Let π
be the estimation produced by an algorithm using the
noisy observations. Given this, the best estimation of
the “index” is L̂, where L̂ � arg min`∈[M] ‖π− π̃(`)‖.

By construction of our packing set, when we make
a mistake in the hypothesis testing, our estimate is at
least δ/2 away from the trueweight π̃(L). Precisely, L̂,L
implies that ‖π− π̃(L)‖ > δ/2. Then,

Ɛ[‖π− π̃(L)‖] > δ
2 �(L̂ , L)

>
δ
2

{
1−

I(L̂; L)+ log 2
log M

}
, (32)

where I(·; ·) denotes the mutual information between
two random variables and the second inequality fol-
lows from Fano’s inequality.

These random vectors form a Markov chain L—
π̃(L)—X—π—L̂, where X—Y—Z indicates that X
and Z are conditionally independent given Y. Let
�L,X(`, x) denote the joint probability function, and
�X | L(x | `), �L(`) and �X(x) denote the conditional and
marginal probability functions. Then, by data process-
ing inequality for a Markov chain, we get

I(L; L̂) 6 I(L; X)

� ƐL,X

[
log

(
�L,X(L,X)
�L(L)�X(X)

)]
�

1
M

∑
`∈[M]

ƐX

[
log

(
�X | L(X | `)
�X(X)

)]
�

1
M

∑
`∈[M]

ƐX

[
log

(
�X | L(X | `)∑

`2∈[M] �X | L(X | `2)�(`2)

)]
6

1
M

∑
`∈[M]

∑
`2∈[M]

�(`2)ƐX

[
log

(
�X | L(X | `)
�X | L(X | `2)

)]
�

1
M2

∑̀
1 , `2

DKL(�X | L(X | `1)‖ �X | L(X | `2)), (33)

where DKL(·‖·) is the Kullback-Leibler (KL) divergence
and the inequality follows from the concavity of loga-
rithm and Jensen’s inequality.

The KL divergence between the observations coming
from two different BTL models depends on how we
sample the comparisons. We are sampling each pair of
items for comparison with probability d/n, and we are
comparing each of these sampled pairs k times. Let Xi j
denote the outcome of k comparisons for a sampled
pair of items (i , j). To simplify notations, we drop the
subscript X | L whenever it is clear from the context.
Then,

DKL(�(X | `1)‖ �(X | `2))

�
d
n

∑
16i< j6n

DKL(�(Xi j | `1)‖ �(Xi j | `2))

6 2n2kd‖(π̃(`1) − π̃(`2)‖2 , (34)
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where in the last inequality we used the fact that

DKL(�(Xi j | `1)‖ �(Xi j | `2))

6
k(π̃(`2)

j (π̃
(`1)
i − π̃

(`2)
i )2 + π̃

(`2)
i (π̃

(`1)
j − π̃

(`2)
j )2)

π̃(`2)
i π̃(`2)

j (π̃
(`1)
i + π̃(`1)

j )
6 2kn2((π̃(`1)

i − π̃
(`2)
i )2 + (π̃

(`1)
j − π̃

(`2)
j )2),

for k independent trials of Bernoulli random variables,
and π̃(`)i > 1/(2n) for all i and `, which follows from our
construction of the packing set in Lemma 8 and our
choice of δ.
The remainder of the proof relies on the following

key technical lemma, on the construction of a suitable
packing set that has enough number of entries that are
reasonably separated. This is proved in Section 4.3.1.

Lemma 8. For n > 90 and for any positive δ 6 1/2
√

10n,
there exists a set of n-dimensional vectors {π̃(1) , . . . , π̃(M)}
with cardinality M � en/128 such that ∑i π̃

(`)
i � 1 and

1− 2δ
√

10n
n

6 π̃(`)i 6
1+ 2δ

√
10n

n
,

for all i ∈ [n] and ` ∈ [M], and

δ 6 ‖π̃(`1) − π̃(`2)‖ 6
√

13δ,

for all `1 , `2.
Substituting this bound in Equations (34), (33), and

(32), we get

max
`∈[M]

Ɛ[‖π− π̃(`)‖] > Ɛ[‖π− π̃(L)‖]

>
δ
2

{
1−

3,328n2k dδ2 + 128 log 2
n

}
.

Choosing δ� (b−1)/(30
√

10(b+1)
√

kdn), we know that
3,328n2kdδ2+128 log 26 (1/2)n for all b and all n > 682.
This implies that

max
`∈[M]

Ɛ[‖π− π̃(`)‖] > b − 1
120(b + 1)

√
10kdn

.

From Lemma 8, it follows that ‖π̃(`)‖ 6 2/
√

n for
all `. Then, scaling the bound by 1/‖π̃(`)‖, the nor-
malized minimax rate is lower bounded by (b − 1)/
(240(b + 1)

√
10kd). Also, for this choice of δ, the

dynamic range is at most b. From Lemma 8, the
dynamic range is upper bounded by

max
`, i , j

π̃(`)i

π̃(`)j

6
1+ 2δ

√
10n

1− 2δ
√

10n
.

This is monotonically increasing in δ for δ < 1/(2
√

10n).
Hence, for δ 6 (b − 1)/((b + 1)2

√
10n), which is always

true for our choice of δ, the dynamic range is
upper bounded by b. This finishes the proof of the
desired bound on normalized minimax error rates for
general b.

4.3.1. Proof of Lemma 8. We show that a random con-
struction succeeds in generating a set of M vectors on
the standard orthogonal simplex satisfying the condi-
tions with a strictly positive probability. Let M � en/128

and for each ` ∈ [M], we construct independent ran-
dom vectors π̃(`) according to the following procedure.
For a positive α to be specified later, we first draw n
random variables uniformly from [(1 − αδ

√
n)/n , (1 +

αδ
√

n))/n]. Let Y(`)� [Y(`)1 , . . . ,Y(`)n ] denote this random
vector in n dimensions. Then we project this onto the
n-dimensional simplex by setting

π̃(`) � Y(`) + (1/n − Ȳ
(`))�,

where Ȳ
(`)
� (1/n)∑i Y(`)i . By construction, the resulting

vector is on the standard orthogonal simplex: ∑
i π̃
(`)
i

� 1. Also, applying Hoeffding’s inequality for Ȳ
(`), we

get that

�

(����Ȳ(`) − 1
n

���� > αδ
√

n

)
6 2e−n/2.

By union bound, this holds uniformly for all ` with
probability at least 1 − 2e−63n/128. In particular, this
implies that

1− 2αδ
√

n
n

6 π̃(`)i 6
1+ 2αδ

√
n

n
, (35)

for all i ∈ [n] and ` ∈ [M].
Next, we use standard concentration results to

bound the distance between two vectors:

‖π̃(`1) − π̃(`2)‖2 � ‖Y(`1) −Y(`2)‖2 − n(Ȳ(`1) − Ȳ
(`2))2.

Applying Hoeffding’s inequality for the first term,
we get �(|∑i(Y

(`1)
i − Y(`2)

i )2 − (2/3)α2δ2 | > (1/2)α2δ2) 6
2e−n/32. Similarly for the second term, we can show that
�(|∑i(Y

(`1)
i −Y(`2)

i )| > (1/4)αδ
√

n)6 2e−n/32. Substituting
these bounds, we get

1
10α

2δ2 6 ‖π̃(`1) − π̃(`2)‖2 6 13
10α

2δ2 , (36)

with probability at least 1 − 4e−n/32. Applying union
bound over

(M
2

)
6 en/64 pairs of vectors, we get that the

lower and upper bound holds for all pairs `1 , `2 with
probability at least 1− 4e−n/64.

The probability that both conditions (35) and (36) are
satisfied is at least 1 − 4e−n/64 − 2e−63n/128. For n > 90,
the probability of success is strictly positive. Hence,
we know that there exists at least one set of vectors
that satisfy the conditions. Setting α �

√
10, we have

constructed a set that satisfies all the conditions.

4.4. Proof of Theorem 4: Finite Sample
Analysis of MLE

The proof of this theorem will follow in two parts.
First we will show that if the gradient of the loss ∇Lm
evaluated at θ∗ is small, then the error between θ∗
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and θ̂ is also small. To that end we begin with a simple
inequality:

Lm(θ̂) 6Lm(θ∗).
Let ∆ � θ̂ − θ∗. We can add and subtract 〈∇Lm(θ∗),∆〉
from the above equation to obtain

Lm(θ∗ +∆) −Lm(θ∗) − 〈∇Lm(θ∗),∆〉 6 〈∇Lm(θ∗),∆〉.
Now assume ‖∇Lm(θ∗)‖2 6 c. By the Cauchy-Schwartz
inequality we have that

Lm(θ∗ +∆) −Lm(θ∗) − 〈∇Lm(θ∗),∆〉 6 c‖∆‖2.
Therefore, we if we prove that

Lm(θ∗ +∆) −Lm(θ∗) − 〈∇Lm(θ∗),∆〉 >
µ

2 ‖∆‖
2
2 , (37)

then we immediately have that ‖∆‖2 6 2c/µ. We now
proceed to establish the above inequality.
4.4.1. Proof of Equation (37). By Taylor’s theorem and
the definition of Lm from Equation (9) for some v ∈
[0, 1]we have

Lm(θ∗ +∆) −Lm(θ∗) − 〈∇Lm(θ∗),∆〉

�
1

2m

m∑
l�1

exp(〈θ∗ , xl〉 + v〈θ∗ , xl〉)
(1+ exp(〈θ∗ , xl〉 + v〈θ∗ , xl〉))2

(〈∆, xl〉)2.

Now, by assumption ∑
i θ
∗
i �

∑
i θ̂i � 0; and θ∗max − θ∗min

and θ̂max − θ̂min 6 log(b) so that |〈θ∗ , xl〉 + v〈θ∗ , xl〉| 6
log(b). Therefore,

Lm(θ∗ +∆) −Lm(θ∗) − 〈∇Lm(θ∗),∆〉

>
1

2m

m∑
l�1

b
(1+ b)2 (〈∆, xl〉)2.

Thus, what remains is to establish a lower bound on
1
m

m∑
l�1
(〈∆, xl〉)2.

We appeal to the following lemma for the lower bound.
Lemma 9. Given m > 12n log n i.i.d. samples yl , xl we
have that

1
m

m∑
l�1
(〈∆, xl〉)2 >

1
3n
‖∆‖22

with probability at least 1− 1/n.
Finally, we present the following lemma that estab-

lishes an upper bound on ‖∇Lm(θ∗)‖2.
Lemma 10. Given m observations (vl , xl) we have that

‖∇Lm(θ∗)‖2 6 2

√
log n

m
with probability at least 1− 1/n.
Therefore, putting everything together we have that

‖∆‖2 6
6(1+ b)2

b
√

n2 log n/m
,

which establishes the desired result.

4.4.2. Proof of Lemma 9. To prove this lemma we
note that

1
m

m∑
l�1
(〈∆, xl〉)2 �

1
m

m∑
l�1
∆T xl x

T
l ∆.

Thus, it is sufficient to prove a lower bound on
λmin((1/m)

∑m
l�1 xl xT

l ). To do so we may again appeal to
recent results on random matrix theory Tropp (2012).
Lemma 11 [Theorem 1.4 (Tropp 2012)]. Consider a finite
sequence {Xk} of independent, random, self-adjoint matrices
with dimensions d. Assume that each random matrix satis-
fies ƐXk � 0 and λmax(Xk) 6 R almost surely. Then, for all
t > 0,

�

{
λmax

(∑
k

Xk

)
> t

}
6 d · exp

(
−t2/2

σ2 +Rt/3

)
,

where σ2 :�
∑

k

Ɛ(X2
k)
, (38)

and ‖X‖ for a matrix X represents the operator norm of X
or its larges singular value.

To apply the above lemma we let

Xl � xl x
T
l −

2
n(I − ��T/n)

.

Therefore, the Xl are zero-mean, i.i.d., and symmet-
ric. Furthermore, ‖Xl ‖ 6 2 and ƐX2

l � 4/n(I − ��T/n) −
4/n2(I − ��T/n). Therefore, applying the above lemma
to both Xl and −Xl yields the inequality

�

{∑
l

Xl/m
 > t

}
6 2n exp

(
−t2/2

4/(nm)+ 2t/(3m)

)
.

Thus, with probability at least 1− 1/n, 1
m

∑
l

Xl

 6max
(
4

√
2 log n

nm
, 8/3

log n
m

)
.

Hence, as long as 12n log n < m, then 1
m

∑
l

Xl

 6 4

√
2 log n

nm
,

with probability at least 1− 1/n.
With the above result in hand we now have that 1

m

m∑
l�1

xl x
T
l −

2
n
(I − ��T/n)

 6 4

√
2 log n

nm
.

Therefore,

1
m

m∑
l�1
∆T xl x

T
l ∆ >

2
n
‖∆‖22

(
1− 2

√
2n log n

m

)
,

where we have used the fact that ∆ � θ̂ − θ∗ and∑
i θ̂i �

∑
i θ
∗
i � 0. Recalling that, m > 12n log n the above

inequality can be lower bounded by (1/(3n))‖∆‖22 ,
establishing the desired result.



Negahban, Oh, and Shah: Rank Centrality: Ranking from Pairwise Comparisons
286 Operations Research 65(1), pp. 266–287, ©2017 INFORMS

4.4.3. Proof of Lemma 10. To establish this result, we
will proceed by showing each individual element of
∇Lm is upper bounded by 2

√
log n/(nm) with high

probability. Recall that

∇Lm �
1
m

m∑
l�1

xl(Ɛ[Xl | xl] −Xl).

Consequently, focusing on a single component ∇Lm k
we have that

∇Lm k �
1
m

m∑
l�1
(xl)k(Ɛ[Xl | xl] −Xl).

Thus, the kth component of ∇Lm is the average over
m independent mean zero random variables that are
upper bounded by 1 and that each have variance upper
bounded by 1/n. Therefore, an application of Bern-
stein’s inequality yields

�(|∇Lm k | > t) 6 2 exp
(

−t2

2/(nm)+ 2t/(3m)

)
.

Therefore,

�(‖∇Lm ‖∞ > t) 6 n �(|∇Lm k | > t)

6 2n exp
(

−t2

2/(nm)+ 2t/(3m)

)
.

Using arguments similar to those to establish the
results in Section 4.4.1 we have that with probability at
least 1− 2/n

‖∇Lm ‖∞ 6 2

√
log n
nm

,

as desired.

5. Conclusion
The main contribution of this paper is the design and
analysis of Rank Centrality: an iterative algorithm
for rank aggregation using pairwise comparisons. We
established the efficacy of the algorithm by analyzing
its performance when data are generated as per the
popular BTL orMNLmodel. We have obtained an ana-
lytic bound on the finite sample error rates between the
scores assumed by the BTL model and those estimated
by our algorithm. As shown, these lead to near-optimal
dependence on the number of samples required to
learn the scores well by our algorithm under random
selection of pairs for comparison. More generally, the
comparison graph structure plays a crucial role in the
performance of the algorithm.
For a tighter analysis of the optimality of Rank Cen-

trality, we provide numerical experiments under the
BTL model and compare it to the Cramer Rao lower
bound. Comparisons with the Cramer-Rao bound in
Figure 3 suggests that the error achieved by Rank

Centrality is indistinguishable from the fundamen-
tal Cramer-Rao lower bound, and thus suggest its
stronger optimality properties compared to what we
can establish.

For completeness, we further provided an analysis
of the error achieved by the MLE. Building upon our
analysis, Hajek et al. (2014) shows that the MLE is near
order optimal, just like Rank Centrality. It is worth
noting, however, that empirically the computational
cost of Rank Centrality seems much better than that
of finding the MLE.

Endnotes
1Similar algorithms, based on the comparison data matrix have been
proposed in the literature. As discussed in detail in Section 3.3, they
are all different from Rank Centrality.
2http://www.washingtonpost.com/wp-srv/interactivity/worst-year
-voting.html.
3http://www.allourideas.org.
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