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 The production of mesons by electrons 361

 the same as the spectrum derived from thin-target radiation. Even quantitatively
 we should expect the resemblance to be close, considering the equivalence of electrons
 and photons revealed in the Weizsacker-Williams method.
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 Statistical mechanics and the partition of numbers

 I. The transition of liquid helium

 BY H. N. V. TEMPERLEY, King's College, University of Cambridge

 (Communicated by D. R. Hartree, E.R.S.-Received 15 February 1949-
 Revised 7 May 1949)

 The existing theory of 'Bose-Einstein condensation' is compared with some results obtained
 from the theory of partition of numbers. Two models are examined, one in which the energy
 levels are all equally spaced, the other being the perfect gas model. It is concluded that
 orthodox theory can be relied upon at very high and at very low temperatures, also that
 the condensation phenomenon is a real one, but that it is not correctly described by orthodox
 theory, the position of the transition temperature and the form of the specific heat anomaly
 both being given wrongly.

 1. INTRODUCTION

 It has long been recognized that the central problem of statistical mechanics, the
 determination of the number of ways in which a given amount of energy can be
 shared out among the different possible states of an assembly, is essentially a problem
 of the same type as that of the determination of the number of partitions of a number

 into integral parts under certain restrictions. The application by Fowler and Darwin,
 in the former writer's great book Statistical mechanics, of the powerful methods of
 complex variable theory that had already proved so successful in analytic number
 theory, served to underline this affinity, which has been explicitly mentioned by
 a number of writers, for example, Auluck & Kothari (1946). In the present paper,
 some of the methods of partition theory will be applied to a study of the 'Bose-
 Einstein condensation' of a perfect gas. This problem has been chosen for study
 because a recent paper by Schubert (I946) has thrown doubt on the validity of ortho-
 dox theory. The difficulty arises when one attempts to use the Fowler-Darwin
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 362 H. N. V. Temperley

 method of steepest descents to determine the coefficient of xN in the generating

 function [l (1 - xzEr)-1, where E, is the energy of the rth state. In the Fowler-Darwin
 r

 method, this is done by means of a contour integration with respect to the variable

 x, the contour being a circle of radius A encircling the origin, A being chosen so that

 the circle passes through the saddle-point of the integrand on the real axis. The

 results of orthodox theory now follow if it can be shown that the main contribution

 to the contour integral comes from a small region of the circle in the neighbourhood

 of the real axis. If so, it then follows that the occupation number of the rth state,

 of weight -orr, is given by the well-known expression Nr - Aij,.Ae , and, if this
 1-A e-ErlkT

 may be assumed, the detailed theory of the Bose-Einstein condensation can be

 rigorously proved as was done by London (I938), and Fowler & Jones (I938).

 The contour used by Fowler and Darwin is the circle x = A et,x and their procedure

 is to expand the integrand in the form exp (E Ar ar), where A, vanishes because
 r

 x = A is a saddle-point of the integrand. In general A2 is large and negative, and it is

 possible to find a small value ao of ax such that A2cxo has become numerically very
 large, while the terms involving A3, A4, .... are still negligibly small, on account of
 the fact that they involve higher powers of ac. The results of orthodox theory now

 follow if it can be shown that:

 (a) The remainder of the circle 17 > I a I >, ao contributes to the integral an amount
 that is negligibly small compared with the contribution of the region of the circle

 a I a< a.
 (b) The expansion of the integrand as the exponential of a power series in ac is

 convergent in the region I j I < co.
 Assumption (a) does not seem to have been critically examined, but Schrodinger

 (Statistical thermodynamiccs) has examined at length the analogous case of integra-

 tion over the z-variable in classical statistics, and has proved that here the analogous

 assumption introduces no physically significant error. Assumption (b) has been

 examined by Schubert (I 946) and by Fraser (unpublished) for the perfect gas model,

 who find that, for temperatures in the region of the alleged transition temperature,
 the expansion of the integrand used by Fowler and Darwin fails to converge in part

 of the range of I ac I < aox. The reason for this is that the integrand has a singularity
 at A = 1, so that when the saddle-point approaches the unit circle, as it does in this

 temperature region, the circle of convergence of the expansion of the integrand

 becomes insufficient to include the whole of the range of j a I < cx0, and the Fowler-
 Darwin method breaks down. It is, however, still possible that the orthodox formula

 Nr = 'rAE "k' is universally true, and it is the purpose of this paper to examine

 this question by methods which do not involve contour integration over the vari-

 able x.

 A recent attempt by Leibfried (I 947) to show that the orthodox formula for Nr is
 always valid for the perfect gas model must be rejected as completely fallacious, the
 fallacy being that one cannot differentiate an asymptotic expansion without a
 careful examination of the remainder term, still less may one differentiate the
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 Statistical mechanics and the partition of numbers. I 363

 leading term after rejecting all the others, as Leibfried attempts to do. Because each

 term is negligible compared with the one before it, it does not follow that the same

 is true of their derivatives.

 The investigation now to be described seems to show conclusively that the orthodox

 expression for the occupation number NA is not universally valid and that the true

 distribution law is more complicated. The orthodox law appears to be valid at very

 high and at very low temperatures, but for the two dist;ributions of energy level

 examined there is a region of intermediate temperatures where it fails. It is not yet

 possible to say whether this failure always occurs in Bose-Einstein statistics, or

 whether it is confined to models which would, on orthodox theory, show a con-

 densation phenomenon.

 The two models studied are, first, one in which the energy-levels are equally

 spaced. The consequences of this model are examined, first, if the orthodox expression

 for the occupation number is assumed, secondly, making no such assumption but

 using the analytic theory of the partition of numbers. It is concluded that the

 orthodox expression gives incorrect results in the transition region (in particular

 that there is no 'sharp' specific heat anomaly). The second model studied is the more

 complicated one of the perfect gas, which cannot yet be solved so completely by

 partition methods, but again the orthodox expression is shown to be invalid for

 a certain range of temperatures.

 2. A MODEL WITH EQUALLY SPACED LEVELS

 This model has already been considered by Auluck & Kothari (I946) in connexion

 with their work on the partition of numbers, the problem they consider being the

 'radiation problem', that is, the sharing of a fixed amount of energy between N

 harmonic oscillators of equal frequency. We shall consider the rather different

 problem of N particles obeying Bose-Einstein statistics distributed among infinitely

 many energy-levels 0, , 2e, 3e, ... of uniform spacing e, in such a way that the total

 energy is 6E. Auluck & Kothari find expressions for pN(E), the number of ways of
 dividing an integer E into N or less integral parts, from the statistical mechanics of

 harmonic oscillators, and obtain results agreeing with those obtained for pAN(E) by
 purely mathematical methods, so that for the radiation problem the use of the

 method of steepest descents for the evaluation of their integrals seems justified. In

 our problem, we shall obtain results differing widely from those given by orthodox

 theory.

 The generating function for PN(E) is

 E E PN(E) XZE = 1/(I-X) (1-XZ) (1-XZ2) (1-XZ3).... (1)
 N E

 In our problem, if Nr is the mean occupation number of the state with energy re

 referred to the lowest state as zero, the generating function for NrPN(E) is easily
 seen to be

 xzr 1

 1 _XZr (1 _X) (1 _XZ) (I_XZ2)...'~~~~~~~~~~~~ 2
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 364 H. N. V. Temperley

 According to orthodox theory we now apply the method of contour integration with

 steepest descents to pick out the appropriate powers of x and z in these two expres-

 sions, and obtain for the ratio the expression

 Nr= (3)

 where A and 06 are the values of x and z respectively at the saddle-point.

 In this particular model, the coefficient of xN can be picked out exactly, so that

 the contour integration with respect to x is not really necessary. We shall first assume

 the accuracy of equation (3), and that the spacing of the levels e is independent

 of N. In these circumstances we obtain a discontinuity in the specific heat at the

 transition temperature. (If we wanted to discuss the 'two-dimensional Bose-Einstein

 gas', which can be approximated to by a spacing of energy-levels at,equal intervals,
 we should have to allow e to tend to zero like 1/A, where A is the area within which

 the molecules are confined. For a constant surface density of particles N/A, this

 would make e tend to zero like 1/N as the assembly became very large, and, in these

 circumstances it is well known that no discontinuity appears.)

 We shall then compare these results with those obtained by a method that does

 not assume the validity of equation (3), and does not necessitate the use of a contour

 integral to determine the coefficient of xN. In Schubert's (I946) discussion of a

 perfect gas, it was the corresponding contour integration that was found to be

 impossible by the method of steepest descents, and we shall find evidence of a similar

 failure here, which may be traced to the fact that, if N is large compared with El,

 the function pN(E) varies so slowly with N that it is not surprising that the method

 of steepest descents fails. On the other hand, pN(E) always increases very rapidly

 with E, and the contour integration with respect to z, to determine the coefficient

 of zE, seems to be always possible by the method of steepest descents. A corresponding
 result is implicitly assumed by Schubert (I946) for the perfect gas.

 The result of the amended treatment of the equally spaced model is that there is

 certainly a range of temperatures just above absolute zero for which the occupation
 numbers of all states but the lowest are independent of N, and that there is a transi-

 tion temperature above which the fact that N is finite begins to affect the occupation

 numbers, but that this effect certainly cannot be described by a single parameter
 A in the manner of equation (3). Furthermore, this transition temperature is much

 lower than that predicted by orthodox theory based on equation (3). It seems

 probable that the transition is of an unfamiliar type, in that it is not associated with

 a discontinuity of any finite derivative of the partition function, but our present

 knowledge of the behaviour of the function pN(E) is not sufficient to enable us to
 be quite certain of this.

 Finally, some results are obtained for the perfect gas model. It is first shown that,

 in the 'classical' limiting case of high temperatures, the consequences of equation (3)
 are practically equivalent to some well-known results on the representation of large

 numbers as sums of integral squares. Secondly, it is shown that equation (3) is co rrect
 at sufficiently low temperatures, but that the transition temperature again lies m uch

 lower than it would according to orthodox theory, so that the transition temperature
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 Statistical mechanics and the partittion of numbers. 1 365

 for a perfect gas of particles of mass equal to that of a helium atom would lie well
 below 1?K. If, however, the assumption of a perfect gas were replaced by the more
 realistic assumption that a typical helium atom is confined within a 'cage' of dimen-

 sions of the order of magnitude of the atomic distances in liquid helium, then this

 model would be expected to have a transition temperature of the order of 1 to 20 K.

 3. A MODEL WITH EQUALLY SPACED ENERGY-LEVELS. ORTHODOX TREATMENT

 We consider an assembly containing infinitely many energy-levels spaced at equal

 intervals e above the lowest one, each being capable of being occupied any number

 of times. We let the total number of particles be N and the total energy 6E. It is
 not claimed that this model represents any actual physical situation, but it does

 exhibit in what way the orthodox and exact treatments fail to agree. According

 to the orthodox theory we have

 N- E 1 _A-oe E- Io g- An(4)

 we kee finte, itis nevr= r~01O r=OlAr If we keep 6 finite, it is never possible to represent these sums as tending to integrals,
 but they can be summed without much difficulty by Poisson's formula, which enables

 one to sum a series if one can sum the series formed by applying the Fourier transform
 to each term. We apply this process to the series for N after removing the-first term,

 and to the series for E. We obtain, putting A = 1/A, 0 e-lIkT,

 1 1 1 ~ + X e21dit

 NA- 12AeelkT =1 E Ae6(l+t)IkT 1t
 00 +c 00

 =E E I e2iltA-s e-s(t+1) elkT dt
 s=l t=-0o JO

 +co+ 0 A-s e-se/kT

 s1= - t=oo (s8/kT) + 27rIi

 kcT )A-se-s6IkT 2e X AX eselkT
 6 s=1 s + kT8 = (sc/kT)2 + 47r212
 kT ( e-elkT 6 1/A eelkT

 og kA] T (1-1/IA eeIkT)20
 The corresponding equation for E is

 E 1 _ 1 _ (t +l)e2 dt
 2A eeIkT 1 =-X o A e(t+1)eIkT - 1

 CO +c X

 E E (t + 1) e2nhitA-s e-s(t?1)elkT dt
 s= =-0 o

 ? + 0 A-s e-seIkT 00 +0 A-S e-sekT
 8= z=-?0(s,e1kT)+ 27ri s= 11=- [(se/kT) + 27r1i]2
 kT A -s e-selkT IkT\2 E A s e-seIkT

 2e 00 00 sA-s e-seIkT ?? ?? A-s e-seIkT [(sc/kT)2 _ 4T212]

 kT s-1 =- (se/kT)2 + 47T212 s=l 11 [(se/kT)2 + 472l2]2
 (6)
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 366 H. N. V. Temperley

 We know that A may never be less than unity because this would make the occupa-
 tion number of the lowest state infinite. Equation (6) shows that, to make E a large
 number, we must have c/kT = 0(1). The third and fourth terms in equation (6)
 (right-hand side) are then at most O(kcT/c), as is the term '(A eclkT - 1)-l, while the

 first term on the right-hand side is O{--log (-)} and the second term is 0(k)

 On the right-hand side of equation (5), the second term can only become large if A
 is nearly unity, in which case it is of order kT/e, but the first term is then of order

 kT IkT\ OM1
 log If, for example, we have A equal to 1 + N) then, in the limiting case

 of a very large assembly, the second and third terms on the left-hand side are negli-
 gible compared with N, and we shall have

 N k kTlog(kT) E (kT)2 72(kT)2 (7)

 If now A takes the slightly smaller value 1 + ( ), the expression for E is practically
 N

 unaffected, but the term ll(A - 1) in equation (5) now contributes effectively to N.
 Thus, we have a situation very similar to that in the orthodox theory of the perfect
 gas, the energy at a given temperature being no longer affected by N when this

 number rises above the value <6 E log E, any further increase merely affecting A,

 but, as the change in A is only of the order of 1/N, the only term in equations (6)
 and (7) to be significantly affected is the term 1/(A - 1), which determines the
 occupation number of the very lowest level.

 The nature of the anomaly that occurs can be found by differentiating the expres-

 sion (4) for E with respect to temperature, and summing the resulting series for aE/lT,
 by means of Poisson's formula. This gives an expression for the specific heat in terms

 of AA /lT, and the latter quantity can be evaluated by differentiating the series (4) for
 N with respect to temperature, using the fact that N is constant, so that the series
 for aN/aT must vanish. Both these series can be summed by the same process as that
 used for equations (5) and (6), that of picking out the dominant terms in the trans-
 formed series. Below the transition temperature the quantity aA/AT is negligibly
 small, while just above the transition temperature it is, in the limiting case of very
 large N and E, given by the simple expression l1To, where To is the transition tem-

 perature as determined by equation (7). The discontinuity in aA/lT leads to a
 negative discontinuity in the specific heat, which drops discontinuously from the

 value --- - just below the transition temperature to the value _- I just above

 this temperature. The analysis is rather lengthy on account of the fact that both the
 transformed series contain a great many terms whose orders of magnitude all
 have to be examined, so it is omitted, as it contains no features of any special
 interest.

 This model thus gives a discontinuity in the specific heat itself, in contrast with
 the discontinuity in the derivative of the specific heat found for the perfect gas. The
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 Statistical mechanics and the partition of numbers. I 367

 slightly more drastic nature of the discontinuity is due to the fact that we are sup-

 posing the separation of the energy-levels to remain finite, while in the perfect gas,

 the spacing of the levels becomes zero for a very large assembly.

 4. A MORE EXACT TREATMENT OF THE MODEL WITH EQUALLY

 SPACED ENERGY-LEVELS

 In this treatment we abandon equation (3) and return to the exact equations (1)

 and (2). For this simple model, one of the integrations by the method of steepest

 descents can be avoided by algebraic means. In equation (1), putting xz for x
 we obtain

 E , PN(E)XZE+N /(l-XZ) ( -xz2) (l -XZ3) * * (1X)>EEPN(E)XNZE. (8)
 N E N E

 Equating coefficients of xN, we find

 SPN-1(E)ZE = (I-zN) EpN(E)zE,
 E E

 so that E PN(E)ZE= 1/(1-z) (1_ Z2)- (I ZN). (9)
 E

 Expanding the first factor in expression (2) in powers of x, and remembering that
 expression (2) may also be written as X E N?.PN(E) XNZE, we obtain

 N E

 Y,NrPN(E) ZE = Zr(j ZN )+Z2j -1_ZN)(1 zA ZN1)+ (10) E VPNJdZ lZ)(lZ2) ... ( Z~N)

 One can prove formally the applicability of the saddle-point method to determine
 the ratio of the coefficients of ZE in (9) and (10). An outline of this proof is as follows:

 The contour integral dJ z jjl - has been intensively studied, e.g. by

 Hardy's Ramanujan (I940, chap. viii), using the following method of evaluating such
 integrals. A given radius R ( < 1) of the contour is chosen, and the contour is divided

 into arcs each of which arcs is associated with one of the rational fractions in the

 Farey series of order n, this Farey series consisting of those rational fractions whose

 denominators are not greater than n. Each rational fraction p is associated with
 a point on the unit circle whose polar angle is 2grp, which point is a singularity of

 f(z). The function f(z) = - 1 Z is transformed by the formulae of elliptic
 function theory, and it is shown that, in each arc of the contour, it is sufficiently
 accurate to replace f(z) by its asymptotic form in the neighbourhood of the point on

 the unit circle associated with this arc, a different transformation formula holding 0
 for each arc, according to the particular polar angle 2np. The investigation shows
 that the main contribution to the contour integral is always given by the arc in the
 neighbourhood of the real axis associated with the singularity z = 1 of f(z), in other

 words that, to use Hardy's language, this singularity of f(z) is by far the 'heaviest'
 one. The contributions to the contour integral associated with the other rational

 singularities of f(z) are together negligible compared with this one (however large
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 368 H. N. V. Temperley

 n may be). For any given value of n, it cin further be shown that the error in the

 evaluation of the contour integral can even be made less than unity if n is made

 sufficiently large and all the corresponding singularities are considered.

 Thus, for the contour integral containing f(z), we can show quite rigorously, first

 that the only contribution of physical importance for a very large assembly comes

 from the immediate neighbourhood of the real axis, secondly that f(z) can always be

 expressed in a form that converges on the whole of the arc corresponding to z = 1,

 so that both our conditions (a) and (b) above (p. 362) would be satisfied if the in-

 tegrand containedf(z). This situation is not changed by replacingf(z) by the function
 1

 (1-z) (1 - Z2) (1 ) which only means that the essential singularities of f(z) on

 the unit circle are replaced by poles of order N, IN, IN, etc., nor does multiplication
 of the integrand by the function Zr( 1 ZN) + zr(1 - ZN) (1 - ZNl) + ... (which has at

 most a simple pole at z = 1) affect the position of the saddle-point, because the
 integrand itself has a pole of order N at z = 1 and is therefore varying with extreme

 rapidity in this neighbourhood.

 We thus obtain the following expression for Nr

 N= O6r(lI Ne) ? 02er(-N-) (I - (N1) )(11)

 where 06 is the value of z at the saddle-point. This argument fails for the very lowest

 state, r = 0, but, as a matter of fact; expression ( 11) is valid in this case also. To prove

 this, we have

 N0N-~OC OeN=N(1 0N) 02e (I10Ne) (i(N-1)e)
 No = N- E Nr =N- - g_6- - 102e

 r= 1 ~ 0 102

 (using equation (11) for Nr and summing from r 1 to infinity), which gives

 No = (1 - 0N6) + (1ONE) (1-0(N-1)E) +

 by setting p = 06 in the identity

 + (lpN) (pN-1)
 i-p 1-p2

 This identity may be proved as follows: Let lcN stand for the expression

 kNP N- (I -pN) ( 1 _ pN-1) kN- +

 Then

 kN- kN p-1 +pN2(I pN-1) pN-3( pN-1) (1pN2) +

 + (1 pN1) (1 pN2) (1 p)
 pN-1 + (1 pN-1) (kN--kN2)

 Now k2 - k1 is identically unity, therefore so are k3-k2, k4 -k3, etc., and since k is

 unity it follows that kN is identically equal to N and therefore that equation (11)

 is also true for r = 0.

 For N > E, the terms in expression (10) that involve zN and higher powers of z can

 contribute nothing to the coefficient of zE, while, until N drops to a value com-
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 Statistical mechanics and the partition of numbers. I 369

 parable with El, they give a contribution to expression (11) that vanishes in com-

 parison with the main terms. For N less than E, the expression for Nr therefore

 takes the form
 oer

 Nr Se0 +?O2er + 03er + ... (12)

 which agrees with the very low temperature expression for Nr according to orthodox
 theory provided that we make the customary identification 0 = e-'lkT. For T very

 large, expression (11) agrees with the 'classical' expression 0 6r/(l + Qe + 026 + ...)

 for Nr, provided that we can neglect 06 in comparison with unity. The customary
 relation between 0 and T therefore gives us results that agree with orthodox theory

 both for very high temperatures and for a finite range of energies above absolute

 zero, thus justifying this identification of 0.

 We now examine whether expression (11) can be made to agree with orthodox

 theory in the region of the transition temperature predicted by the orthodox theory.

 We notice first of all the following relation between the values of N, for two con-
 secutive values of N, which follows easily from expression (l1),

 Nr(N) = Otr(l 0N6) (1 +Nr(N -1)). (13)

 If orthodox theory were correct in the transition region, then it would be possible

 to express the occupation numbers in the form

 Nr(N) 1 AN,r Ore (14)

 where AN,r may be written 1-AN,r' where 6N,r is a small quantity which may depend
 on N, but whose leading term must be independent of r. Substituting expression (14)

 into equation (13), expressing the A's in terms of the ('s-, and neglecting products

 of the d's,

 61N,r = ON (1 -re) + OreN-1, r +T0(02N6), (15)

 which implies that the leading terms in 6Nr must take the following form:

 (1 -0re) (ON6 -ONre) r2
 6N, r O (r-1)e(r 2

 Nf0Ne(1 - oe) (r =1.(16)

 Equation (16) shows clearly that 6Nr is not independent of r, a different degeneracy

 parameter ANr appearing for each energy level, and it must be concluded that
 orthodox theory is not correct, at least not in the supposed transition region where

 AN,r should be nearly unity.
 Orthodox theory therefore cannot be used in the transition region, where we can

 point to two other discrepancies with the treatment we have just given. In the first

 place, the onset of the transition is not located correctly. Orthodox theory (equation

 (7)) predicts that the transition should take place when N is proportional to El log E,

 while the exact theory shows that the transition must set in, in the sense of the

 occupation numbers of the state other than the lowest becoming functions of N as

 well as of E, when N becomes less than E. In the second place, orthodox theory pre-

 Vol. I99. A. 24
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 370 H. N. V. Temperley

 dicts a jump in the specific heat, while the exact theory certainly predicts an anomaly,

 but not one corresponding to a phase-transition of any finite order. The following

 is the asymptotic expression for pN(E), which can be obtained from equation (9)

 by using an asymptotic expression for the function 1/(1 - z) ( - Z2) (1zN) in

 the neighbourhood of the singularity z = 1, as in the classical work on the partition

 of numbers of Hardy & Ramanujan (I9I8). It can also be obtained, as was done by

 Auluck & Kothari (i946), from the accepted statistical mechanical formulae for the
 distribution of energy among simple harmonic oscillators. Auluck, Chowla & Gupta

 (I942) have obtained a similar result by methods which do not use a contour integral

 at all. FI 2 2E__J 6E)(7TN]
 PN ) 3 exp (6E)J (N >E E). (17) PN) 3~EexPLr 3 exn.-6E

 By the Boltzmann formula the entropy S is given by the expression S = k log9pN(E),

 which reduces to k log p(E) when N > E. The quantityk log is therefore the

 defect in entropy caused by the fact that N is finite, which will lead to a specific

 heat anomaly as E passes through the value N. (The temperature is determined by
 the usual relation T = S/E.) The form of equation (17) suggests that none of the

 derivatives of S with respect to E or T are discontinuous as E passes through the

 value N, so that no discontinuity of co-operative type is to be expected. This result

 is not yet formally proved, on account of the difficulties of differentiating asymptotic

 expressions, but an elementary argument can be used to establish it. The numbers

 pE(E) and PE-1(E) only differ by unity, namely by the one partition in which E is
 divided into E parts, all of them unity. There is therefore, for E large, no significant

 discontinuity in the first derivative of logpN(E). A similar argument can be applied
 to the second, third and higher derivatives by counting up the number of partitions

 that we lose in going from pE-1(E) to PE-2(E), PE-3(E), etc. It is therefore extremely
 likely that there is no actual discontinuity in any finite derivative of S. This situation

 seems to be rather like what one would observe supposing that one had a transition

 temperature T, with no anomaly in the entropy below T, but an extra term pro-

 portional to exp (Tf T) , where B is a constant, above T2. Such an extra term would

 not give any discontinuity in the specific heat or in any of its derivatives, and, from
 an experimental point of view, would be indistinguishable from a 'smooth' specific
 heat anomaly.

 Equation (17) is of interest from another point of view, in indicating a possible

 reason for the failure of the saddle-point method when applied to the variable x in

 equations (1) and (2), namely, that in the transition region the value of PN(E) is
 changing-extremely slowly with N. This, combined with the fact that the saddle-

 point value of x is nearly unity means that, for a fixed E, expression (1) contains
 a very large number of terms E pN(E) N all of which are of the same order of magni-

 N

 tude, so that one cannot necessarily replace the logarithm of this series by the

 logarithm of a single term with sufficient approximation. Since PN(E) always varies
 extremely rapidly with the variable E, no such effect occurs to spoil the validity of
 the z-integration.
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 Statistical mechanics and the partition of numbers. I 371

 We have still to examine the behaviour of NO according to the exact theory, as
 equation (11) gives no direct information on this point. Equation (10), however, is

 valid, giving us

 XNOPN(E)Z =1 ) ( ZN) ZN (18)

 LetfN stand for the series

 (I ZN) + (1ZN) (1_ZN-1) +

 Then we have the following relation

 fNi = (I ZN 1 +fNi-1) (19)

 Now setfN = N-gN and equation (19) becomes

 gN =NZN+ (1-ZN) 9N-1. (20)
 If we now set

 gN = hN(I Z) (I Z2) ... (I ZN)

 we obtain from equation (20)
 NzN

 hN- 1 - _Z) 1_ Z2) . .. (1_ZN) (1

 which gives us the following expression for hN:

 NzN + (N-1) ZN-z

 hN Z) (I - Z2) . .(-Z) (+ Z 1 N1 + ...+ 1Z. (22)
 Equation (18) may now be written

 E XOPN(E)ZE - N - hN or X(N-N )pN(E)zE= hN
 (23)

 since, from equation (9), pN(E) is the coefficient of ZE in i/(I - Z) (1 - Z2) ... (1 - ZN).
 We already know that PN(E) becomes independent of N if N > E, and equation (22)
 shows that the coefficient of ZE in hN becomes independent of N when N > E. Thus,
 we have shown that the quantity N - NO, that is to say, the total number of systems
 in states other than the lowest one is independent of N for N greater than F, but

 begins to depend on N as soon as N passes through this value. Thus, we have suc-

 ceeded in confirming, by a purely algebraic method, the result proved above by

 contour integration, namely, that the anomaly sets in at N equals E.
 It thus seems to be definitely established that orthodox theory cannot be relied

 on for any correct results in the transition region, the occupation numbers, the nature

 of the specific heat anomaly, and the energy content at which the transition sets in
 all being incorrect. One further remark about this model may be of interest. Let us
 make the usually correct, but not self-evident, assumption that the statistical mean

 state (obtained by averaging over all accessible states) is identical with the most

 probable state. Let us fix No the occupation number of the lowest state. Then the
 remaining states can be occupied in PN-NO(E) ways, where Pk(E) is the number of
 ways of partitioning E into exactly k non-zero parts. The behaviour of this function

 24-2
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 has been studied by Auluck et al. (I942). It is clearly an increasing function of k

 when k is small, and a decreasing function of k when k is becoming comparable with E.

 Thus, if N is below the value that makes PN(E) a maximum, we shall get the greatest

 number of arrangements if we make No zero, whereas if N is greater than this
 value, we shall get the largest number of arrangements if we choose N. so that
 PN-N(E) takes the maximum value. The precise behaviour of the function Pk(E) is

 not known, but Auluck et al. present theoretical and numerical evidence in support

 of the view that there is a single maximum in the region k - J( 2) log E. If their

 conjecture proves correct, it will mean that the condensation sets in (according to

 the assumption that the mean state is identical with the most probable state) for

 a value of N differing by a factor of 2 from that predicted by the saddle-point method,

 and widely different from that predicted by the exact theory. It therefore seems

 that it is possible to construct models for which the most probable state is not

 identical with the mean state.

 5. SOME PRELIMINARY RESULTS FOR THE 'PERFECT BOSE-EINSTEIN GAS' MODEL

 There seems to be a very general relation between N the number of particles and

 the total energy for which a condensation sets in. In any model, let ec be the energy-

 separation between the state of lowest energy and the first excited state, either or

 both of which may be multiple. Let Eeo be the total energy. If E is less than N, there
 is clearly no possible arrangement of the particles for which the ground state does

 not contain at least one particle. If we add more particles, keeping the energy

 constant, we do not introduce any new possible ways in which the excited states can

 be occupied, the new arrangements are simply reproductions of the old ones,

 differing only from them by having more particles in the ground state. If the ground

 state is single, an exact one-to-one correspondence can be set up between the new and

 the old arrangements, but the correspondence is no longer exact if the ground state

 is multiple, as the occupation of different sub-states of the ground state does produce

 a few more arrangements. If the ground state is single, then the average number

 of particles in the excited states is quite unaffected by adding more particles, provided
 N > E, while the average increase in the number in the ground state is just the number

 of particles added. It is interesting to work out the energy at which degeneracy sets

 in in the perfect Bose-Einstein gas according to this argument. (In this model, the

 ground state is single.) The separation between the ground state and the first excited

 state, if the gas is in a cubical box of side d, is given by the expression 3h2/8md2, so
 that we have the following relation between N and E for degeneracy to set in. It

 is not possible to calculate the transition temperature, because we have no know-

 ledge of the behaviour in this region of the function corresponding to pN(E) in the
 simple model.

 3h2
 N= E, with o= 8d2' (24)

 We can, however, make a comparison with the position of the transition region as
 given by the orthodox theory by writing down the expressions for critical number of
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 atoms per unit volume as a function of temperature, and for energy content as a
 function of temperature and eliminating T between these two equations. These two

 equations are well known, see, for example Mayer & Mayer (1940, chap. 16):

 N= -(2-Tm)- (kT)1d3 1 (25)

 (2gm)l~ ~ ~ ~~~~~~~(6 E60 h3 (-s- (k T)4d3 E1 (26)

 Eliminating T between them, we find the following relation between N and E:

 NI =0-17E. (27)

 This differs from relation (24) by a factor of the order of N*, so that an exact theory
 would give a transition beginning at a temperature far below 1 K. This investigation

 suggests, however, that the 'cell' model of a liquid, or some similar conception,
 rather than the perfect gas assumption, would, if investigated properly, be found to

 lead to a relationship between N and E very similar to equation (27), and may
 therefore be expected to lead also to a transition temperature in the right region.

 For suppose that each atom is supposed to be confined by the interactions with its

 neighbours in a volume of order of magnitude l3 or d31N which is one atom's share of
 the total volume, then the spacing of the first excited state above the ground state

 is now of the order of magnitude 3h2/8M12 which differs from the perfect gas model

 by a factor d2/12 or Ni, which is just the order of magnitude of the discrepancy

 between equations (24) and (27), so that the cell model, worked out properly, should
 give a transition temperature in the proper region.

 The perfect gas model is mathematically equivalent to a certain problem in the

 partition of numbers into sums of squares, a subject that has been much studied by

 mathematicians. Unfortunately, the results hitherto available only seem to be
 applicable to the high temperature region, and we shall state the mathematical-

 problem involved, in the hope that it may stimulate further work by mathematicians.

 Finally, we shall show the equivalence of existing theory of a perfect gas at high
 temperatures with certain well-known results on the representation of numbers as

 sums of squares. A 'representation' differs from a partition in two important
 respects, namely that the order of arrangement of the squares is considered, each

 possible order being regarded as a different representation, also the squares of
 negative numbers are reckoned to be different from those of positive numbers.

 The mathematical problem is as follows: The energy-levels available to particles

 2 + 2 +t2)h2 inside a cubical box of side d are given by the expression (r2 + s2 + t2) which we
 h2 8md2 '

 write - K(r, s, t) for brevity. Each of these levels may be occupied an integral

 number of times, or not at all. We require to know the asymptotic form for the
 number of distinct partitions of an integer E, representing the ratio of the total

 energy to the lowest possible energy-separation h2/8md2, into a sum of the numbers
 K(r, S? t), where the order in which the K's are arranged is ignored, but, on the other
 hand, K's like K(1, 2, 3), K(2, 1, 3) are distinct from one another, and such K's have
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 to be reckoned as 'different', in spite of the fact that they are numerically equal.

 In all cases, the r, s, t are positive integers (not zero).

 The following result is well known, being taken from Hardy (1940),

 S3N(E) -( 3N) EiN-l (28)

 giving the number of representations of the number E as the sum of 3N squares.

 Since some of these squares may be zero, we must replace this expression, which is

 really the sum of the number of representations of E as 3N, 3N - 1, 3N -2, ..., etc.,

 non-zero squares by the expression
 3N-r

 oo ,7T 2 3N-r_1

 TSN(E) V(_(N )rE 2 (29)

 which may also be written

 T3N(SN(E) -(E) I1- 0 N) (30)
 and the correction is thus negligible as long as E > N.

 Having removed the representations involving zero squares, the next task is

 to remove those involving the squares of negative integers, which since the zero

 squares have been allowed for, simply involves dividing expression (28) by 23N.

 Finally, we have to allow for the fact, that, in expression (28), the same partition

 into squares written in a different order is counted as different. In our problem,

 the 3N squares have to be divided into N groups of three each. A permutation

 within a group of three, or an exchange of one or two squares between two groups

 of three leads, in general, to a new physical state, but a reshuffling of the order in

 which the groups of three are taken does not lead to a new physical state. Thus,

 the number of physically different partitions is obtained by dividing expression
 (28) by a further factor N! giving us finally

 fi lN EIN-1

 QN(E) f(3N) N! 23N (31)
 The last step would be invalidated if too many of the groups of three in a typical

 partition were identical. I have not succeeded in making even an 'order of

 magnitude' estimate of the error due to this, but it seems certain on physical

 grounds that it becomes rapidly less important as E increases.

 From expression (31), we can calculate the number of partitions which contain

 a state of energy el K(r, s, t), where el is the 'energy step' h2/8md2. Clearly it is
 the number of partitions of E - K(r, s, t) into N - 1 groups of three squares, so that

 the probability of finding the state (r, s, t) in a typical partition is obtained by

 replacing N by N -1 and E by E - K(r, s, t) in expression (31), and then dividing

 this by the expression (31) as it stands, which is the total number of partitions

 without restriction, we obtain

 N N, N8 (8,N)l(1 _K(r;,s,t)) (32)
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 This is to be compared with the 'classical' expression

 00

 - N [ ~~6.IK(r, s, t)2 /Sep (r2 +S2+ t2)6l ret (3 N, -~ N exp [~i~ t]ffxp [-6 dr dl dt, (33)
 0

 and it can be seen that these two expressions agree in the limiting case of large T,

 provided that Ee1 --N iT, which is the classical relation between temperature

 and energy content in a perfect gas.

 We may thus conclude that the behaviour of the perfect gas model is qualitatively

 similar to that of the model with equally spaced levels, in that orthodox theory

 describes the situation correctly at very high temperatures but breaks down in the

 supposed transition region. A. R. Fraser (unpublished) has proved a rather stronger

 result than the one we have just obtained, namely that orthodox theory gives

 correct results at least down to a temperature not greater than 1P5 times the supposed

 transition temperature. R. B. Dingle (unpublished) has further shown that, for any

 model, there is a finite region of temperature starting from absolute zero, within

 which orthodox theory is correct.

 6. CoNCLuSIoN

 The two models studied show the same general type of behaviour, namely the

 existence of an intermediate temperature region within which the results of orthodox

 theory are unreliable, the orthodox expression for the occupation numbers of the

 energy levels being only an approximation in this range. The investigation has

 confirmed the existence of the phenomenon of 'condensation into the lowest energy-

 level', though the perfect gas model worked out properly, would give a transition

 temperature far below 1? K for a perfect gas of helium atoms. On the other hand, we

 have seen that the 'cell' model of a liquid may well have such a transition at a tem-

 perature agreeing with the transition temperature for liquid helium, so the investiga-

 tion gives us no reason to doubt either the reality of the condensation phenomenon

 or its relevance to the liquid helium problem.

 I wish to thank Mr Dingle and Mr Fraser for helpful discussions, and for showing

 me their results before publication. I also wish to thank the Royal Society for

 awarding me the Smithson Research Fellowship during the tenure of which this

 work was carried out.
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