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Abstract
The authors consider processes on social networks that can potentially involve three factors:
homophily, or the formation of social ties due to matching individual traits; social contagion, also
known as social influence; and the causal effect of an individual’s covariates on his or her
behavior or other measurable responses. The authors show that generically, all of these are
confounded with each other. Distinguishing them from one another requires strong assumptions on
the parametrization of the social process or on the adequacy of the covariates used (or both). In
particular the authors demonstrate, with simple examples, that asymmetries in regression
coefficients cannot identify causal effects and that very simple models of imitation (a form of
social contagion) can produce substantial correlations between an individual’s enduring traits and
his or her choices, even when there is no intrinsic affinity between them. The authors also suggest
some possible constructive responses to these results.

Keywords
contagion; social influence; homophily; causal inference; network confounding; neutral models

Introduction: “If Your Friend Jumped Off a Bridge, Would You Jump too?”
We all know that people who are close to each other in a social network are similar in many
ways: They share characteristics, act in similar ways, and similar events are known to befall
them. Do they act similarly because they are close in the network, due to some form of
influence that acts along network ties (or, as it is often suggestively put, “contagion”1)? Or
rather, are they close in the network because of these similarities, through the processes
known as assortative mixing on traits, or more simply as homophily (McPherson, Smith-
Lovin, and Cook 2001)? Suppose that there are two friends named Ian and Joey, and Ian’s
parents ask him the classic hypothetical of social influence: “If your friend Joey jumped off
a bridge, would you jump too?” Why might Ian answer “yes”?

1. because Joey’s example inspired Ian (social contagion/influence);

2. because Joey infected Ian with a parasite that suppresses fear of falling (biological
contagion);
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3. because Joey and Ian are friends on account of their shared fondness for jumping
off bridges (manifest homophily, on the characteristic of interest);

4. because Joey and Ian became friends through a thrill-seeking club, whose
membership rolls are publicly available (secondary homophily, on a different yet
observed characteristic);

5. because Joey and Ian became friends through their shared fondness for roller-
coasters, which was caused by their common thrill-seeking propensity, which also
leads them to jump off bridges (latent homophily, on an unobserved characteristic);

6. because Joey and Ian both happen to be on the Tacoma Narrows Bridge in
November 1940, and jumping is safer than staying on a bridge that is tearing itself
apart (common external causation).

The distinctions between these mechanisms—and others that no doubt occur to the reader—
are all ones that make causal differences. In particular, if there is any sort of contagion, then
measures that specifically prevent Joey from jumping off the bridge (e.g., restraining him)
will also have the effect of tending to keep Ian from doing so; this is not the case if
contagion is absent. However, the crucial question is whether these distinctions make
differences in the purely observational setting, since we are usually not able to conduct an
experiment in which we push Joey off the bridge and see whether Ian jumps (let alone
repeated trials.)

The goal of this article is to establish that these are, by and large, phenomena that are
surprisingly difficult to distinguish in purely observational studies. More precisely, latent
homophily and contagion are generically confounded with each other (see the second
section), and any direct contagion effects cannot be nonparametrically identified from
observational data.2 To identify contagion effects, we need either strong parametric
assumptions or strong substantive knowledge that lets us rule out latent homophily as a
causal factor. It has been proposed that asymmetries in regression estimates that match
asymmetries in the social network would let us establish direct social contagion; we show
(see following section on “The Argument From Asymmetry”) as a corollary of our main
result that this also fails.

We realize that many issues with unobservable characteristics exist in many observational
study settings, not just in those that share our explicit focus on network phenomena, yet our
investigations of social contagion are not driven by some animus; we are just as concerned
for those investigations that ignore network structure when it is present. If contagion works
along with homophily, we show that it confounds inferences for relationships between
homophilous traits and outcome variables such as observed behaviors (third section). In
particular, even when the true causal effect of the homophilous trait is zero, the trait can still
act as a strong predictor of the outcome of interest merely through the outcome’s natural
diffusion in a network (see “Simulation Model”).

We also realize that our main findings are negative and implicitly critical of much previous
work. The fourth section suggests some possible constructive responses to our findings,
while the fifth section concludes with some methodological reflections.

2We remind the reader of the relevant sense of “identification” (Manski 2007). We have a collection of random variables, which are
generated by one causal process M out of a set of possible processes . Not all aspects of this process are recorded, and the result is
a distribution P over observables. Each M leads to only one distribution over observables, P(M). A functional θ of the data-generating
process is identifiable if it depends on M only through P(M), namely, if θ(M) ≠ θ(M’) implies P(M) ≠ P(M’). Otherwise, the
functional is unidentifiable. If θ is identifiable only when  is restricted to a finitely parameterized family, then θ is parametrically
identifiable (within that family). If θ is identifiable without such a restriction, it is nonparametrically identifiable. See further Pearl
(2009b:ch. 3) of causal effects from observables.
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Notation, Terminology, Conventions
In our framework, the random variable Xi is a collection of unchanging latent traits for node
i; similarly, Zi is a collection of static observed traits. Both X and Z may be discrete,
continuous, mixtures of both, and so on. The social network is represented by the binary
variable Aij, which is 1 if there is a (directed) edge from i to j—that is, i considers j to be a
“friend”—and 0 otherwise. Time t advances in discrete steps of equal duration; this is
inessential but avoids mathematical complications. Yi(t) denotes a response variable for
node i at time t; again, whether categorical, metric, or otherwise doesn’t matter. (We will
sometimes write this as Y(i,t) or even Yit, as typographically convenient, and likewise for
other indices.) These variables are also listed in Figure 1, alongside a graphical
representation of the prototypical process we are examining (Figure 2).

We conducted all simulations in R (R Development Core Team 2010). Our code is available
from http://www.stat.cmu.edu/cshalizi/homophilyconfounding/.

How Homophily and Individual-Level Causation Look Like Contagion
The members of a social network often exhibit correlated behavior. When we speak of
contagion or influence within networks, we imply that conditioning on all other factors,
there will be a temporal relationship between the behavior of individual i at time t and any
neighbors of i (potential js) at the previous time point. This is easiest to see when all other
causes of adoption of a trait aside from the network itself are eliminated, such as person-to-
person infectious diseases (M. S. Bartlett 1960; Ellner and Guckenheimer 2006; Newman
2002), though other examples include the spread of innovations (Rogers 2003).

More puzzling are situations such as the investigation of Christakis and Fowler (2007),
where the behavior that apparently spreads through the network is “becoming obese,” as
obesity is not normally thought of as an infectious condition,3 or the apparent spread of
“happiness,” documented by Fowler and Christakis (2008). It is natural to ask how much of
such “network autocorrelation”—the tendency of these behaviors to be correlated in
individuals that are closely connected—is due to some direct influence of i’s neighbors on
i’s behavior, as opposed to the effect of homophily, in which social ties form between
individuals with similar antecedent characteristics, who may then behave similarly as a
result.4

Social network scholars have long been concerned with this issue, under the label of
“selection versus influence” or “homophily versus contagion” (Leenders 1995), usually with
regard to manifest homophily but certainly not limited to it. To give just one example of a
sophisticated recent attempt to divide the credit for network autocorrelation between
homophily and contagion, consider Aral, Muchnik, and Sundararajan (2009). (The following
remarks apply, with suitable changes, to many other high-quality studies, e.g.,
Anagnostopoulos, Kumar, and Mahdian 2008; Bakshy, Karrer, and Adamic 2009;
Bramoullé, Djebbari, and Fortin 2009; Yang, Longini, and Halloran 2007.) They worked
with a uniquely obtained data set with a clear outcome measure: the adoption of an online
service over time, with users of an instant messaging service as the (extremely large)
community of interest. To separate the effects of contagion from those of homophily, a large
and rich table of covariates on an individual’s personal and network characteristics was
assembled (with 46 covariates in total), and matched pairs were assembled using propensity

3There are claims, however, in the medical literature (Atkinson 2007) that certain viruses induce obesity in rodents and may
contribute to the condition in human beings. (Thanks to Matthew Berryman and Gustavo Lacerda for bringing this to our attention.)
We lack the knowledge to assess the soundness of these claims, let alone their plausibility as explanations of human obesity.
4Chapter 5 in Sperber (1996) is a detailed and subtle exploration of just how powerful the latter mechanism can be and how it can
interact with imitation or contagion.
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score estimation (Rosenbaum and Rubin 1983) so that one member of the pair had, at one
point, exposure to the online service through one (or more) of their network neighbors;
assuming that these characteristic differences had then been teased out, the difference in the
adoption rate would then reflect the total proportion of the adoption by contagion, allowing
for an estimate of the proportion of association that is attributable to contagion, as opposed
to the proportions caused by homophily, either secondary (in terms of the 46 observed
network characteristics) or manifest (caused by two users becoming friends specifically due
to their connection on the online service)—but notably, not latent homophily, which may
still remain as a component of the so-called contagious proportion; this is due to the nature
of propensity score matching, which can simplify the relationships between observed
properties and the adoption of a “treatment” (in this case, network-localized exposure to the
service); the effort may prove to be inadequate if any unobserved covariates have a part in
both tie selection and in service adoption.

This brings us to our fundamental point: To attempt to assign strengths to influence or
contagion as opposed to homophily presupposes that the distinction is identifiable, and there
have been grounds to doubt this for some time. Manski (1993), in a well-known paper,
considered the related problem of the identification of group effects: Supposing that an
individual’s behavior depends on some individual-level predictors and on the mean behavior
of the group to which they belong, can the degree of dependence on the group be identified?
He showed that in general the answer is no, unless you make strong parametric assumptions,
and perhaps not even then (since group effects can fail to be identified even in linear
models). Indeed, this has been shown to cause difficulties in other social situations where
this sort of phantom influence can be observed: Among others, Calvó-Armengol and
Jackson (2009) note that estimating the apparent effect of parental influence on a child’s
educational outcomes is confounded by the actions of the larger community. (See Blume et
al. 2010 for a recent review of the group-effects literature.) However, this does not quite
answer our questions, since Manski (1993) considered influence from the group average,
rather than from individual members of the network neighborhood, and one could hope this
would provide enough extra information for identification.

We now show that in fact, contagion effects are nonparametrically un-identifiable in the
presence of latent homophily—that there is just no way to separate selection from influence
observationally. Our proof involves some simple manipulations of graphical causal models;
we refer the reader to standard references (Morgan and Winship 2007; Pearl 2009a, 2009b;
Spirtes, Glymour, and Scheines 2001) for the necessary background.

Contagion Effects Are Nonparametrically Unidentifiable
We first assume that there is latent homophily present in the system: The network tie Aij is
influenced by the unobserved traits of each individual, Xi and Xj. We assume that the “past”
observable outcome Yi(t − 1) has a direct influence on the same outcome measured in the
present, Yi(t).5 We also assume that Xi directly influences Yi(t) for all t, though possibly not
to the same magnitude or mechanism at each time t.6 Finally, we assume that another
individual’s prior outcome Yj(t − 1) can directly influence Yi(t) only if Aij=1—that is, there
must be an edge present for this direct influence to occur. We are indifferent as to whether
the observable covariates Zi have a direct influence on Yi(·), or whether it is correlated with
the latent covariates Xi. The upshot of these assumptions is the causal graph in Figure 2,
examination of which should make it unsurprising that contagion, the direct influence of Yj(t
− 1) on Yi(t), is confounded with latent homophily:

5The results of this investigation hold even if this assumption is dropped, or if the time dependence goes beyond the first order; that is,
Yi(t –k) continues to influence Yi(t) even after controlling for Yi(t − 1).
6The result will go through so long as Yi(t0) is influenced by Xi for at least one t0, and for the subsequent observation t ≥ t0.
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• Yj(t − 1) is informative about Xj;

• Xj is informative about Xi when i and j are linked (Aij = 1); and

• Xi is informative about Yi(t).

Thus Yi(t) depends statistically on Yj(t − 1), whether or not there is a direct causal effect of
contagion present.

While this argument would appear to be loosely assembled, it can be tightened up using the
familiar rules for manipulating graphical causal models (Pearl 2009b; Spirtes et al. 2001). Xi
d-separates Yi(t) from Aij. Since Xi is latent and unobserved, Yi(t) ← Xi → Aij is a
confounding path from Yi(t) to Aij. Likewise Yj(t − 1) ← Xj → Aij is a confounding path
from Yj(t − 1) to Aij. Thus, Yi(t) and Yj(t − 1) are d-connected when conditioning on all the
observed (boxed) variables in Figure 2. Hence the direct effect of Yj(t − 1) on Yi(t) is not
identifiable (Pearl 2009b:93-4).

This argument is not affected by adding conditioning on Yi(t − 1) or Yj(t), as that does not
remove the confounding paths. Nor does adding conditioning on Zi,Zj remove the
confounding. Nor is the situation helped by allowing Aij, or indeed X, to vary over time, as
is readily verified by drawing the appropriate graphs. Finally, adding a third individual to
the graph would not help: Even if they were, say, assumed to be linked to i but not j or vice
versa, Yi(t) ← Xi → Aij and Yj(t − 1) ← Xj → Aij would remain confounding paths.

How then might we get identifiability? It may be that very stringent parametric assumptions
would suffice, though we have not been able to come up with any that would suffice.7

Otherwise, we must keep X from being latent, or, more precisely, either the components of
X that influence Y must be made observable (Figure 3a), or those parts of X that influence
the social tie formation A (Figure 3b). In either case the confounding arcs go away, and the
direct effect of Yj(t − 1) on Yi(t) becomes identifiable.8 It is noteworthy that the most
successful attempts at explicit modeling that handle both homophily and influence, as found
in the work of Leenders (2005) and Steglich, Snijders, and Pearson (2004), involve, all at
once, strong parametric (exponential-family) assumptions, plus the assumption that
observable covariates carry all of the dependence from X to Y and A; the latter is also
implicitly assumed by the matching methods of Aral et al. (2009).

Whether we face the unidentifiable situation of Figure 2 or the identifiable case of Figure 3
currently depends upon subject-matter knowledge rather than statistical techniques. It may
be possible to adapt algorithms, such as those in Spirtes et al. (2001), to detect the presence
of influential latent variables. Some new methodological work would be required, however,
since all such algorithms known to us rely strongly on having a supply of independent cases,
and social networks are of interest precisely because individuals, and even dyads, are not
independent.

The Argument From Asymmetry
A clever argument for the presence of direct influence was introduced by Christakis and
Fowler (2007). By focusing on unreciprocated directed edges—pairs (i,j) where Aij = 1 but
Aji = 0, so that j’s prior outcome can be said to influence i’s present, but not i’s prior

7In particular, making all of the relations between continuous variables in Figure 2 linear, with independent noise for each variable, is
not enough—the confounding path continues to prevent identifiability even in a linear model.
8Elwert and Christakis (2008) is another interesting approach. In effect, they introduce a third node, call it k, where they can assume
that Yi is not influenced by Yk, but the homophily is the same. Estimating the apparent influence of Yk on Yi then shows the extent of
confounding to due purely to homophily; if Yi is more dependent than this on Yj, the excess is presumably due to actual causal
influence.
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outcome on j’s present—one can consider the distributions of the outcomes conditional on
their partner’s previous outcome, Yi(t)|Yj(t − 1) and Yj(t)|Yi(t − 1) (though other observable
covariates [Zi,Zj] may also be conditioned on). An asymmetry here, revealed by the
difference in the corresponding regression coefficients, might then be due to some influence
being transmitted along the asymmetric edge, and not due to external common causes (e.g.,
a new fast food restaurant) or other behaviors attributable to latent characteristics.

This idea has considerable plausibility and has been picked up by a number of other authors
(Anagnostopoulos et al. 2008; Bramoullé et al. 2009), who have shown that it works as a test
for direct influence in some models. However, we show that the argument can break down if
two conditions are met: first, the influencers (the j in the pair) differ systematically in their
values of X from the influenced (the i), and second, different neighborhoods of X have
different local (linear) relationships to Y. As previously mentioned, the most successful
claims of simultaneous accounting of these phenomena require strong parametric
assumptions, and our demonstration shows that even assumptions of linearity may be too
strong for this sort of data.

To illustrate this claim, we present a toy model of a network with latent homophily on an X
variable that controls an observable time series Y at multiple points, but with no direct
influence between values of Y for different nodes. We present this as a multistep time series
to approximate the scenario of Christakis and Fowler (2007), so that we can add the two
most recent time steps of the alter’s expression into the regression.9 We also note that there
is no “coupled evolution” of two nodes’ outcomes due to an exogenous common cause, one
of the stated purposes of the asymmetry test. Despite the lack of direct interaction, it is
possible to predict Yi at time t from the value of Y at its neighbors for times t – 1 and t – 2,
and these relations are asymmetric across unreciprocated edges.

First we present the formation of the network, which contains n individuals (nodes), and
each node i has a scalar latent attribute Xi ~ u(0,1), which are generated independently. We
generate an underlying undirected network (a potential friendship pool) where such an edge
forms between i and j with probability equal to logit−1(− 3|Xi – Xj|), so that edges are more
likely to form between individuals with similar values of X. Each individual i then
nominates their “declared” friendships from these neighbors, naming j with probability
proportional to ∝ logit−1(–|Xj – 0.5|)—individuals, whatever their own value of X, prefer to
nominate acquaintances closer to the median value of that trait.10 For this demonstration, as
in the data sets used in Christakis and Fowler (2007) and Fowler and Christakis (2008), each
individual i declares one friend, though the results hold for greater numbers of nominations.
This produces the sociomatrix/adjacency matrix A, where Aij = 1 signifies that individual i
has nominated j as a “friend.”

Second, we establish the time trends of the observable outcomes (Yi(t = 0),Yi(t = 1)):

•
At time t = 0, we set , a nonlinear assignment of
outcome attributes.

9The method in Christakis and Fowler (2007) uses a “simultaneous” regression set-up, including Yj(t) as a predictor of Yi(t) as well as
a previous time point Yj(t − 1). Treated at face value, this can produce an incoherent probability distribution for the evolution of the
system (Lyons 2010), as well as implying a scarcely comprehensible notion of simultaneous causation (rather than coupled behavior
or feedback); this can be somewhat salvaged by considering it as an observation that shares information from the “t minus one-half”
time point, as well as picking up any coupled behavior at time t.
10Whether this is an actual bias in the social network formation process or merely a part of the process recording the network does not
matter. Also, results would work equally well if ties were biased toward extreme rather than central values of X, for multivariate latent
traits, and so forth.
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•
For time t = 1, we set , so that the trend is
greater for those individuals with higher values of the latent attribute.

•
For time t = 2, we set , repeating the trend.

Figure 2 is the graphical model for the actual causal structure of our simulation at three time
points.

We simulate a network of fixed size (n= 400) from this model and estimated the linear
model

so that α represents the intercept term and β1 represents the autocorrelation; β2 is the effect
of the nominee’s status at time t=1 on the nominator, and β3 is the converse, the network
effect if i was nominated by j, at time t=1; β4 and β5 are those same coefficients for the
outcome at time t=0. This was replicated 5,000 times, with the latent variables, time
series,=and network regenerated in each replication.

Figure 5 shows the results of these simulations. Figure 5a shows the magnitude of β2, the
coefficient of network influence; in 4,010 of these 5,000 trials is the estimate less than zero
despite the lack of a direct connection, in line with the empirical results of Cohen-Cole and
Fletcher (2008). This is also the case for Figure 5b, showing the apparent coefficient of a
“reverse” network effect β3, which is smaller in magnitude. Figure 5c shows the sum of the
two effects; this demonstrates that the effect of a mutual tie, where AijAji=1, is determined
by the sum of the one-way effects and is greater than the effect of a “named” tie, Aij = 1,
which is greater than the effect of a “naming” tie, Aji=1. This is the result of the type that
was cited in Christakis and Fowler (2007) and Fowler and Christakis (2008) but produced
without any network interaction.11

Figure 5d shows the difference between the “sender” and “receiver” coefficients, which
would be approximately Gaussian (for a t-distribution with 400 degrees of freedom) and
centered at zero; if this were the case, a t test could be used to claim statistical significance
in the difference between the two effects. It is evident from the histogram that this null
distribution is not centered at zero, and about 77 percent of the sample values are positive,
even though there is really no effect. Thus, latent homophilous variables can produce a
substantial apparent contagion effect, including the asymmetry expected of actual contagion.

The parameter values in this model were not chosen to maximize either the apparent
contagion effect or its asymmetry, merely to demonstrate their presence. As well, we note
that controlling for additional past values of the property for each node reduces the
imbalance in magnitude, while it still remains statistically significant; as we show in the
section “Bounds,” this is not the end of the story if we cannot find a bound for this
asymmetry.

In addition, it may seem unlikely that these conditions may exist on unobserved variables in
the system, but this still places the burden on the investigator to pursue as many possible
latent factors as may be present—an extremely onerous task in a multidecade observational

11There is also the notion of a “bonus” effect for mutual ties, β4 ∑j AijAjiYj(0), which could provide an additional bump for
mutuality that would indicate a stronger tie than simply indicated by a binary specification. We leave this for another investigation,
noting that the mutual > named > namer relation is satisfied without adding this term.
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study—or to work exclusively with experimental data, such as in the recent work of Fowler
and Christakis (2010).

How Contagion and Homophily Look Like Causation at the Individual Level
We would be remiss if we gave the impression that it is only investigators who actually take
network structure into account who have problems. In this section, we show that a very
common kind of use of survey data, namely, that relating individuals’ choices (cultural,
political, economic, etc.) to their long-term stable traits is also confounded in the presence of
homophily and contagion (see Figure 6). Continuing the spirit of “Argument From
Asymmetry,” we present another toy model in which regressions of choices on traits
produce significant non-zero coefficients that are solely due to this confounding.12

It should be emphasized that there is a long tradition within social science of distinguishing
long-term, hard-to-change aspects of social organization and individuals’ place in it from
more short-term, malleable aspects that show up in behavior and choices. As Ernest Gellner
(1973) put it, “Social structure is who you can marry, culture is what you wear at the
wedding.” The long-standing theoretical presumption, common to all the classical
sociologists (even, in his own way, to Max Weber), and going back through them to
Montesquieu if not beyond (Aron 1989), is that social structure explains culture, or that the
latter reflects the former; in many versions, culture is an adaptation to social structure. This
intuition is alive and well through the social sciences, the humanities, and among lay people.
Many of these accounts have considerable plausibility, though since they conflict with each
other they cannot all be true. However, aside from casual empiricism, the evidence for them
consists largely of correlations between cultural choices and social positions, demonstrations
that the superstructure can be predicted from the base. Famously, for instance, Bourdieu
(1984) attempts to do this for survey data.

We do not wish to assert that social position is never a cause of cultural choices; like
everyone else, we think that it often is. The issue, rather, is the evidence for such theories,
and in particular for the magnitude of such effects.

Simulation Model
We work with what is, frankly, a toy model of contagion (though, see footnote 13). There
are n individuals connected in an undirected social network. Each individual i has an
observed trait Xi, which is an unchanging variable; in our examples, this will be binary. The
network is homophilous on this trait, so that individuals with the same value of X are more
likely to be connected. Individuals also have a time-varying choice variable Yi(t), which
again we will take to be binary. The initial choices, Yi(0), are set by flipping a fair coin (i.e.,
an unbiased Bernoulli process), and are therefore independent of the traits Xi.

Choices evolve as follows: At each time t, we pick an individual It, uniformly at random
from i ∈ {1,…,n}, independently of all prior events. This individual then picks a neighbor,
again uniformly at random, Jt ∈ {j : AItj =1}, and either, with very high probability, copies
their choice, so that YIt(t) = YJt (t − 1), or, with very low probability, assumes the opposite

12Preliminary versions of these results appeared in Shalizi (2007) and as long ago as 2005 at http://bactra.org/notebooks/neutral-
cultural-networks.html. We understand from a presentation by Prof. Miller McPherson (2009) that he and colleagues have been
working on parallel lines and will soon publish a demonstration that biases of this sort can be quite substantial even for the canonical
General Social Survey.
13Notice that the expected value of YIt(t + 1) is just the mean of Yj(t) for the j neighboring It. The expected value of Yi(t + 1) for all i
is thus a weighted average of Yi(t) and the mean of their neighbors. At the level of expectations, then, this process belongs to the
family of linear social influence models used in, for example, Friedkin (1998).
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choice, for YIt(t) = 1 – YJt(t − 1); all other individuals retain their previous choices. This
process repeats for each time step. Figure 7 shows the causal structure.

This random copying model is, of course, a drastic oversimplification of actual processes of
transmission and influence, which have been extensively studied in social psychology and
allied fields since the 1920s (F. C. Bartlett 1932; Friedkin 1998; Huckfeldt, Johnson, and
Sprague 2004; Sperber 1996).13 However, not only is it adequate to demonstrate the
existence of the phenomenon we are concerned with, its very abstraction helps indicate just
how robust the problem is.

Probabilistically, the vector Y(t) is a Markov chain, specifically, a variant of the “voter
model” of statistical mechanics on a graph (Liggett 1985; Sood and Redner 2005); the minor
addition of low-frequency noise (doing the opposite of the selected neighbor) keeps the
homogeneous configurations (where Yi is constant over i) from being absorbing states, but
has little influence on the medium-run behavior we are concerned with.

Figure 8 shows a typical evolution of this model. In the top image at the initial state of the
system, there are two clusters based on social traits X, but the individual cultural choices
(colors represent values of Y) are independent of these traits. The bottom image shows the
same network and configurationafter 3,000 updates. Now, even by eye, it is clear that one of
the choices has become associated with one of the social types.

This can be confirmed more quantitatively by doing a logistic regression of choice on trait
(Figure 9) at several points during the diffusion process. In this particular example, there are
significant deviations in each direction. First, the association between trait 1 and color 1 is
positive and significant, and remains so for several dozen iterations; then the diffusion
reverses the association, which then becomes negative and significant. For comparison, a
network with the same average degree but no homophilous tie formation is shown to
undergo the same diffusion process but with no corresponding association between choice
and trait.14

Intuitively, the copying process tends to make neighbors more similar to each other; Ian’s
choice can be predicted from Joey’s choice. On regular lattices, this mechanism causes the
voter model to self-organize into spatially homogeneous domains, with slowly shifting
boundaries between them (Cox and Griffeath 1986). A similar process is at work here, only,
owing to the assortative nature of the graph, neighbors tend to be of the same social type.
Hence social type is an indirect cue to network neighborhood, and accordingly predicts
choices.

To summarize, this “neutral” process of diffusion, together with homophily, is sufficient to
create what looks like a causal connection between an individual’s social traits and cultural
choice. This is because individuals’ choices are not independent conditional on their traits,
as is generally assumed in, for example, survey research; diffusion creates the observed
dependence.15

This demonstration shows that it is difficult to argue that, for example, being of type 0 is an
indirect cause of picking the color black as opposed to red, since even within a single run of

14Note that the standard errors are from the isolated logistic regression at each time point; when taken collectively, the errors in the
effect size would be different. Our point remains that this would be the effect size estimated if the time evolution were not properly
accounted for.
15It should be clarified here that the problem is not the ecological fallacy, or a red-state/blue-state issue (Gelman et al. 2008), since
the simulation is not aggregating any data.
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the model the association can be seen to reverse. Put another way, differences in social types
are at most related to differences in choices, not to the actual content of those choices.

Constructive Responses
To sum up the argument so far, we have shown that latent homophily together with causal
effects from the homophilous trait cannot be readily distinguished, observationally, from
contagion or influence, and that this remains true even if there is asymmetry between
“senders” and “receivers” in the network. We have also shown that the combination of
homophily and contagion can imitate a causal effect of the homophilous trait. It requires
little extra to see that contagion, plus a causal influence of the contagious trait, yields a
network that contains the appearance of homophily. Thus, given any two of homophily,
contagion, and individual-level causation, the third member of the triad seems to follow.

We realize that these results appear to wreck the hopes on which many observational studies
of social networks have rested. It would be nice to think that something, nonetheless, could
be salvaged from the ruins. The “easy” solution is to use expert knowledge of the system to
identify all causally relevant variables, measure a sufficient set of them, and adjust for them
appropriately (Morgan and Winship 2007; Pearl 2000; Spirtes et al. 2001). Since this is
clearly a Utopian proposal, we sketch three constructive responses that may be possible
when dealing with network data where the causal structure is imperfectly understood or
incompletely measured. These are to randomize over the network, place bounds on
unidentifiable effects, and use the division of the network into communities as a proxy for
latent homophily.

Identifying Contagion From Non-Neighbors
The essential obstacle to identifying contagion in the setting of Figure 2 is that the presence
or absence of a social tie Aij between individuals i and j provides information on the latent
variable Xi, whether we implicity include the tie by predicting Yi(t) from the past values of
neighbors Yj(t − 1) or we explicitly add Aij to the prediction model. In the language of
graphical models, conditioning or selecting on Aij “activates the collider” at that variable.
This suggests that we would do better, in some circumstances, to construct a useful
inference by deliberately not conditioning on the social network, thereby keeping the
collider quiescent.16 We outline this method to demonstrate the possibility, rather than to
advocate a new prescription for solving the problem.

We can conduct the following procedure over many repeated trials:

1. Divide the nodes into two groups, by assigning each node to one of two bins with
equal probability; let these groups be labeled as J1 and J2.

2. Let YJ1(t) be the vector-valued time series obtained by collecting each of the Yi(t)
for i ∈ J1 into one object, and similarly for YJ2(t).

3. Use some available mechanism to predict the time series for the first bin, YJ1(t).
from its lagged counterpart, YJ2(t − 1), while controlling for the previous time point
within the first half, YJ1(t − 1).

By repeating this procedure, then averaging over all iterations (producing new partitions
each time), there will be a non-zero predictive ability if and only if there is actual contagion
or influence. We can see why one must average over multiple divisions as follows. Clearly,
influence is possible between the two halves only if there are social ties linking them.

16Thanks to Peter Spirtes and Richard Scheines for making this paradoxical suggestion.
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However, there will generally exist some way of picking J1 and J2 so that there are no
linking ties, and in the presence of homophily, those will tend to be divisions of the network
into parts that are unusually dissimilar in their homophilous traits. If we restricted ourself to
values of J1 and J2, which did have linking ties, we would once again be selecting on the
homophilous trait and activating colliders.

This may not be a practical method, as the statistical power of this test may be very low—
the data have very high dimension, and the method deliberately selects random predictors—
but it will be non-zero.

Even the random-halves test will fail, however, if we add a direct causal effect of Xj on Yi(t)
(or one modulated by Aij). We omitted such a link in Figure 2 and subsequently, on the
assumption that causal effects between individuals must pass through observed behavior Y,
but this is a nontrivial substantive hypothesis requiring rigorous justification.

Bounds
In the second and third sections, we saw that certain causal effects were not identifiable; that
different causal processes could produce identical patterns of observed associations. As
Manski (2007) emphasizes, even when parameters (e.g., the causal effect of Yj(t − 1) on
Yi(t)) are observationally unidentifiable, the distribution of observations may suffice to
bound the parameters. (With sampled data, the empirical distribution of observations
generally provides estimators of those bounds.) Sometimes these bounds can be quite useful,
even in the general nonparametric case.

We thus propose as a topic for future research placing bounds on the causal effect of Yj(t −
1) on Yi(t) in terms of observable associations, assuming the structure of Figure 2. If the
bound on this effect excluded zero, that would show the observed association could not be
due solely to homophily, but that some contagion must also be present.

If we keep the causal structure of Figure 5, assuming that the Y and X variables are all
jointly Gaussian and all relations between continuous variables are linear17 would let us
employ the usual rules for linear path diagrams (Spirtes et al. 2001). The standardized
linear-model coefficient for regressing senders on receivers, namely, Yi(t) on Yj(t − 1),
controlling for all other observables, turns out to be

where ρ[K,L] is the path coefficient between K and L (and ρ[K,L|M] is the path coefficient
given the required condition M, rather than an observable that would be controlled for).
Clearly, any standardized regression coefficient can be obtained here by adjusting path
coefficients for unobserved variables X. Thus, a bound on the true causal effect cannot be
based on the linear regression coefficient alone, but we hope it may still be possible to find a
bound that uses more information about the pattern of associations.

It would also be valuable—and perhaps more tractable—to place limits on the magnitude of
the association that could be generated solely by homophily. Parallel remarks apply to
bounding the causal effect of Xi on Yi(t) assuming the structure of Figure 6; we suspect,
though merely on intuition, that this will be harder than bounding contagion effects.

17Note that our simulation had a nonlinear relationship between Xi and Yi.
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Along these lines, it would be particularly interesting to bound the degree of asymmetry in
regressions that can be generated in the absence of direct causal influence (as in “The
Argument From Asymmetry”). Even though asymmetry as such can be produced in the
absence of influence or contagion, it could be that by some standard, really big asymmetries
can only plausibly be explained by influence, so that detecting such asymmetries would be
evidence for influence. More exactly, if one can establish that in the absence of direct
influence the degree of asymmetry can be at most α0, and one finds an actual asymmetry of

, then the hypothesis of influence has passed a more or less severe test (Mayo 1996),
the severity depending on the ease with which sampling fluctuations and the like can push
the estimated asymmetry  over the threshold when the “true” asymmetry (in the population
or ensemble) was below it.

Network Clustering
Since the problems we have identified stem from latent heterogeneity of a causally
important trait, the solution would seem to be to identify, and then control for, the latent
trait. “Homophily” means simply that individuals tend to choose neighbors that resemble
them; this tendency will be especially pronounced if pairs of neighbors also have other
neighbors in common, since these pairings will also be driven by homophily. This suggests
that homophily, latent or manifest, will tend to produce a network built primarily of
homogeneous clusters, also called, in this context, “communities” or “modules.” Inversely,
such clusters will tend to consist of nodes with the same value of the homophilous trait.

The topic of community discovery—essentially, dividing graphs into homogeneous, densely
interconnected clusters of nodes, with minimal connection between clusters—has been
thoroughly explored in the recent literature (explicitly in Bickel and Chen 2009; Fortunato
2010; Girvan and Newman 2002; Newman and Girvan 2003; Porter, Onnela, and Mucha
2009; implicitly in much smaller clusters in Elwert and Christakis 2008). A natural idea
would be to first establish the existence of these clusters, to note the memberships of each
individual in the chosen model, call this estimate Ĉi, and to control for Ĉi when looking for
evidence of contagion or influence.

By the arguments we have presented so far, such control-by-clustering will generally be
unable to eliminate the confounding.18 However, in conjunction with the bounds approach
mentioned earlier, conditioning on estimated community memberships might still noticeably
reduce the confounding. On the other hand, misspecification of the block structure may
make the problem worse—consider the cases where the generating mechanism may be a
mixed-membership block model (Airoldi et al. 2008) or “role” model (Reichardt and White
2007) but communities are “discovered” assuming a simple modular network structure.
Estimating the damage due to misspecification in this case is a goal of future research.

Conclusion: Toward Responsible Just-So Storytelling
We have seen that when there is latent homophily, contagion effects are unidentifiable, and
even the presence of contagion cannot be distinguished observationally from a causal effect
of the homophilous trait. Conversely, when contagion and homophily both exist, choices can
be predicted from the homophilous trait, and so the effects of such traits on socially
influenced variables are again observationally unidentifiable. These results raise barriers to
many inferences social scientists would like to make. The barriers can be breached by

18The exception will be if Ĉi was a predictively sufficient statistic, which in this case would mean that the realized graph A provided
enough information to render the true community memberships of all nodes conditionally independent of their observed behaviors.
Then we would effectively move from the situation of Figure 2 to that of Figure 3b, with Ĉi in the role of Zi. Determining the class of
network models for which such “screening off” holds is the subject of ongoing work.
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assuming enough about the causal architecture of the process in question, though then the
inferences stand or fall with those architectural assumptions; perhaps the bounding approach
can squeeze an opening through them as well. Beyond these technical qualifications, what is
the larger moral for social science?

Accounts of social contagion are fundamentally causal accounts, pointing to one of a
number of mechanisms—imitation, persuasion, and so on—by which a belief or behavior
spreads through a population. Similarity among individuals is explained by their belonging
to common networks; differences by differences in their networks. This parallels the other
great project of social science, which is to explain differences in cultural choices by location
within the social structure, or, at a broader scale, by differences between social structures
(Boudon 1989, Berger 1995; Lieberson 2000). The accounts that have connected social
structure to behavior have typically been adaptationist or functionalist: The content or
meaning of cultural choices serves the choosers’ interests, or their classes’ interests, or (far
more nebulously) the interests of the system, or reflects their experiences in life, or
rationalizes their positions in life, and so forth. At the very least, these are causal accounts:
If social structure or social positions were different, the content of the choices would be
different. Far more commonly, they really are adaptationist accounts: Choices fit to the
objective circumstances. They accordingly follow the familiar pattern of the “Just-So” story
(Kipling 1912/1974), with all their familiar problems. It would be intellectually irresponsible
to accept such accounts, with their strong causal claims, without careful checking; but also
irresponsible to simply dismiss them out of hand.

The example of biology suggests that a powerful way of doing such tests is to use “neutral
models” (Gillespie 1998; Harvey and Pagel 1991), which biologists use to test claims that
features of organisms are evolutionary adaptations; we note the similarity with the “null
hypothesis” in general statistical hypothesis testing. A neutral evolutionary model should
include all the relevant features of the evolutionary process except adaptive forces (e.g.,
natural or sexual selection). The expected behavior of the system is then calculated under the
neutral model (i.e., the distribution of expected outcomes); if the data depart significantly
from the predictions of the neutral model, this is taken as evidence of adaptation. Said
another way, the neutral model as a whole is used as the null hypothesis, not just a generic
regression model with some coefficients set to zero. For instance, a model might include
mutation and genetic recombination but assume all organisms are equally likely to be
parents of the next generation; all have equal fitness. Gene frequencies will change in such a
model because of random fluctuations; some organisms become parents and have differing
numbers of offspring. Indeed, we expect some genetic variants to go to fixation (to become
universal) in the population and others to disappear entirely through the effects of repeated
sampling.19 We are not aware of any studies in the sociology of culture or related fields
employing formal neutral models; however, something similar to this is implicit in the
arguments of Lieberson (2000)20 and some other strands of recent work on “endogenous
explanations of culture” (Kaufman 2004).

The point is not that accounts of causation and adaptation in social phenomena must be
rejected; it is that they must be subjected to critical scrutiny, and that comparison to neutral
models is a particularly useful form of critique. Our toy models produce the kind of
phenomena that theories of contagion, or of adaptation and reflection, set out to explain. (It
is only too easy to imagine crafting a historical narrative for Figure 8, explaining the deep

19Superficially, this looks very much like the effects of selection, even though the statistical properties of fixation via sampling and
fixation via selection are quite different; in particular, fixation via selection is much faster.
20Lieberson and Lynn (2002), while offering evolutionary biology as a methodological model for social science, curiously do not
mention the issue of neutral models.

Shalizi and Thomas Page 13

Sociol Methods Res. Author manuscript; available in PMC 2012 April 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



forces that impelled the east to become red.) The best way forward for advocates of those
theories may in fact be to craft better, more compelling neutral models than ours and show
that even these cannot account for the data. Thus, they will support their theories not only by
plausible just-so stories, but by compelling evidence.
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Figure 1.
Notational guide to terms used in this investigation
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Figure 2.
Causal graph allowing for latent variables (X) to influence both manifest network ties Aij
and manifest behaviors (Y)
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Figure 3.
Modifications of the causal graph shown in Figure 2, in which observable covariates (Z)
convey enough information about X that contagion effects are unconfounded with latent
homophily
Note: In panel a (left), Z carries all of the causal effect from X to the observable outcome Y;
in panel b (right), Z carries all of the effect from X to the social network tie A.
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Figure 4.
Graphical causal model for our simulation study in “The Argument From Asymmetry”
Note: Here, unlike Figure 2, there are no arrows from (Yj(t – 2), Yj(t − 1)) to Yi(t)—the
former outcomes for the “alter” are not, in reality, a cause of the latter for the “ego,” and the
relationships of the Yj and Yi time series are symmetrical. As we show in the text, however,
not only is Yi(t) predictable from Yj(t − 1), but the relationship is asymmetric when social
network ties are unreciprocated, namely, Aij = 1 but Aji = 0.
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Figure 5.
Results for a toy model where a latent variable causes spurious timedependent network
effects
Note: Clockwise from the top left: (a) the estimate for β2, the effect in the expected direction
of influence; (b) the estimate for β2, the effect in the opposite direction of influence (from
the namer to the named); (c) the sum of the estimated effects, indicating that the effect for a
mutual tie (in which each respondent names the other) is greater than either the expected or
opposite unreciprocated tie effect; (d) the normalized difference between directional effects
is clearly greater than zero on balance (in roughly 77 percent of simulations), suggesting that
the asymmetry in coefficient estimates can be produced without contagion and falsely
detected by t tests on the difference.
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Figure 6.
Typical situation in surveys linking cultural choices to social traits when homophily and
influence exist
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Figure 7.
Graphical model showing the causal structure of the model simulated in “Simulation Model”
section (cf. Figure 6)
Note: Notice that here, the persistent traits X have no direct causal influence on the choices
Y. As we show, however, diffusion of choices along homophilous ties creates states where
Y can be predicted from X.

Shalizi and Thomas Page 23

Sociol Methods Res. Author manuscript; available in PMC 2012 April 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
An illustration of the diffusion process on a network with homophilous ties; members of the
left and right clusters have attribute values of 0 and 1, respectively
Note: Initially (top), there is very little detectable similarity between choices within each
cluster; however, after a few hundred time steps (bottom), there is a clear association
between trait and cluster caused entirely by the diffusion along homophilous ties.
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Figure 9.
Coefficient estimates for logistic regressions of choice on trait as functions of time.
Note: Error bars represent 95 percent confidence intervals on each run, independent of all
others. Left: the evolution in a homophilous network; in this run of the simulation, the
coefficient first becomes negative and statistically significant, then becomes positive and
significant, purely due to diffusion along homophilous ties, before returning to a state of
negative significance. Right: a corresponding series of estimates in a network where ties
form independently of traits; deviations from neutrality are much smaller.
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