Random graph models for dynamic networks
Abstract
Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.
Keywords
Statistical and Nonlinear PhysicsReferences
- 1.M.E.J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)Google Scholar
- 2.P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)ADSCrossRefGoogle Scholar
- 3.P. Holme, Eur. Phys. J. B 88, 1 (2015)CrossRefGoogle Scholar
- 4.S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gomez-Gardenes, M. Romance, I. Sendina-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)ADSMathSciNetCrossRefGoogle Scholar
- 5.M. De Domenico, C. Granell, M.A. Porter, A. Arenas, Nat. Phys. 12, 901 (2016)CrossRefGoogle Scholar
- 6.P. Grindrod, D.J. Higham, Proc. R. Soc. Lond. A 466, 753 (2010)ADSCrossRefGoogle Scholar
- 7.P. Grindrod, D.J. Higham, IMA J. Manage. Math. 23, 1 (2012)CrossRefGoogle Scholar
- 8.P. Grindrod, D.J. Higham, M.C. Parsons, Internet Math. 8, 402 (2012)MathSciNetCrossRefGoogle Scholar
- 9.J. Ugander, L. Backstrom, J. Kleinberg, Subgraph frequencies: Mapping the empirical, extremal geography of large graph collections, in Proceedings of the 22nd International Conference on World Wide Web, Association of Computing Machinery, New York (2013), pp. 1307–1318Google Scholar
- 10.E.P. Xing, W. Fu, L. Song et al., Ann. Appl. Stat. 4, 535 (2010)MathSciNetCrossRefGoogle Scholar
- 11.T. Yang, Y. Chi, S. Zhu, Y. Gong, R. Jin, Mach. Learn. 82, 157 (2011)MathSciNetCrossRefGoogle Scholar
- 12.M. Kim, J. Leskovec, Nonparametric multi-group membership model for dynamic networks, in Proceedings of the 2013 Conference on Neural Information Processing Systems, edited by C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K.Q. Weinberger (MIT Press, Cambridge, MA, 2013), pp. 1385–1393Google Scholar
- 13.C. Matias, V. Miele, J. R. Stat. Soc. B (2016)Google Scholar
- 14.A. Ghasemian, P. Zhang, A. Clauset, C. Moore, L. Peel, Phys. Rev. X 6, 031005 (2016)Google Scholar
- 15.K.S. Xu, A.O. Hero III, Dynamic stochastic blockmodels: statistical models for time-evolving networks, in Social Computing, Behavioral-Cultural Modeling and Prediction (Springer, Berlin, 2013), pp. 201–210Google Scholar
- 16.K.S. Xu, Stochastic block transition models for dynamic networks, in Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, edited by G. Lebanon, S.V.N. Vishwanathan (2015), pp. 1079–1087Google Scholar
- 17.C. Matias, T. Rebafka, F. Villers, A semiparametric extension of the stochastic block model for longitudinal networks, arXiv:1512.07075 (2015)
- 18.N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Sci. Rep. 2 (2012)Google Scholar
- 19.S. Liu, N. Perra, M. Karsai, A. Vespignani, Phys. Rev. Lett. 112, 118702 (2014)ADSCrossRefGoogle Scholar
- 20.M. Ogura, V.M. Preciado, IEEE Trans. Network Sci. Eng. 3, 44 (2016)MathSciNetCrossRefGoogle Scholar
- 21.Q. Han, K. Xu, E. Airoldi, Consistent estimation of dynamic, multi-layer block models, in Proceedings of the 32nd International Conference on Machine Learning, edited by F. Bach, D. Blei (Omnipress, Madison, WI, 2015), pp. 1511–1520Google Scholar
- 22.N. Stanley, S. Shai, D. Taylor, P.J. Mucha, IEEE Trans. Network Sci. Eng. 3, 95 (2016)MathSciNetCrossRefGoogle Scholar
- 23.A. Clauset, C. Moore, M.E.J. Newman, Nature 88, 98 (2008)ADSCrossRefGoogle Scholar
- 24.D. Liben-Nowell, J. Kleinberg, J. Assoc. Inform. Sci. Technol. 58, 1019 (2007)CrossRefGoogle Scholar
- 25.R. Guimerà, M. Sales-Pardo, Proc. Natl. Acad. Sci. USA 106, 22073 (2009)ADSCrossRefGoogle Scholar
- 26.P. Erdős, A. Rényi, Publ. Math. 6, 290 (1959)Google Scholar
- 27.P. Erdős, A. Rényi, Publ. Math. Inst. Hungarian Acad. Sci. 5, 17 (1960)Google Scholar
- 28.M. Molloy, B. Reed, Random Struct. Algor. 6, 161 (1995)CrossRefGoogle Scholar
- 29.M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)ADSCrossRefGoogle Scholar
- 30.F. Chung, L. Lu, Proc. Natl. Acad. Sci. USA 99, 15879 (2002)ADSMathSciNetCrossRefGoogle Scholar
- 31.P.W. Holland, K.B. Laskey, S. Leinhardt, Social Networks 5, 109 (1983)MathSciNetCrossRefGoogle Scholar
- 32.B. Karrer, M.E.J. Newman, Phys. Rev. E 83, 016107 (2011)ADSMathSciNetCrossRefGoogle Scholar
- 33.B.W. Kernighan, S. Lin, Bell Syst. Tech. J. 49, 291 (1970)CrossRefGoogle Scholar
- 34.A. Decelle, F. Krzakala, C. Moore, L. Zdeborová, Phys. Rev. Lett. 107, 065701 (2011)ADSCrossRefGoogle Scholar
- 35.L. Danon, J. Duch, A. Diaz-Guilera, A. Arenas, J. Stat. Mech. 2005, P09008 (2005)CrossRefGoogle Scholar
- 36.M. Meilă, J. Multivariate Anal. 98, 873 (2007)MathSciNetCrossRefGoogle Scholar
- 37.L. Michell, P. West, Health Educ. Res. 11, 39 (1996)CrossRefGoogle Scholar
- 38.M. Pearson, P. West, Connections 25, 59 (2003)Google Scholar
- 39.M. Pearson, C. Sieglich, T. Snijders, Connections 27, 47 (2006)Google Scholar
- 40.R. Mastrandrea, J. Fournet, A. Barrat, PLoS One 10, e0136497 (2015)CrossRefGoogle Scholar
- 41.J.C. Silva, L. Bennett, L.G. Papageorgiou, S. Tsoka, Eur. Phys. J. B 89, 1 (2016)CrossRefGoogle Scholar