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One Sentence Summary:  We used single cell transcriptomics to create a molecularly 

defined phenotypic reference of human cell types which spans 24 human tissues and 

organs. 

  

 

Abstract: Molecular characterization of cell types using single cell transcriptome 

sequencing is revolutionizing cell biology and enabling new insights into the physiology 

of human organs.  We created a human reference atlas comprising nearly 500,000 cells 

from 24 different tissues and organs, many from the same donor. This atlas enabled 

molecular characterization of more than 400 cell types, their distribution across tissues 

and tissue specific variation in gene expression. Using multiple tissues from a single 

donor enabled identification of the clonal distribution of T cells between tissues, the 

tissue specific mutation rate in B cells, and analysis of the cell cycle state and 

proliferative potential of shared cell types across tissues. Cell type specific RNA splicing 

was discovered and analyzed across tissues within an individual.  

 

Main Text 

Introduction 
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Although the genome is often called the blueprint of an organism, it is perhaps more 

accurate to describe it as a parts list composed of the various genes which may or may 

not be used in the different cell types of a multicellular organism. While nearly every cell 

in the body has essentially the same genome, each cell type makes different use of that 

genome and expresses a subset of all possible genes (1). Therefore, the genome in 

and of itself does not provide an understanding of the molecular complexity of the 

various cell types of that organism. This has motivated efforts to characterize the 

molecular composition of various cell types within humans and multiple model 

organisms, both by transcriptional (2) and proteomic (3, 4) approaches. 

 

While such efforts are yielding insights (5–7), one caveat to current approaches is that 

individual organs are often collected at different locations, from different donors (8) and 

processed using different protocols, or lack replicate data (9). Controlled comparisons of 

cell types between different tissues and organs are especially difficult when donors 

differ in genetic background, age, environmental exposure, and epigenetic effects. To 

address this, we developed an approach to analyzing large numbers of organs from the 

same individual (10), which we originally used to characterize age-related changes in 

gene expression in various cell types in the mouse (11).   

 

Data Collection and Cell Type Representation 

We collected multiple tissues from individual human donors (designated TSP 1-15) and 

performed coordinated single cell transcriptome analysis on live cells (12). We collected 

17 tissues from one donor, 14 tissues from a second donor, and 5 tissues from two 
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other donors (Fig. 1). We also collected smaller numbers of tissues from a further 11 

donors, creating biological replicates for nearly all tissues. The donors comprise a range 

of ethnicities, are balanced by gender, have a mean age of 51 years and a variety of 

medical backgrounds (table S1).  Single cell transcriptome sequencing was performed 

with both FACS sorted cells in well plates with smartseq2 amplification as well as 10x 

microfluidic droplet capture and amplification for each tissue (fig. S1).  Tissue experts 

used a defined cell ontology terminology to annotate cell types consistently across the 

different tissues (13), leading to a total of 475 distinct cell types with reference 

transcriptome profiles (tables S2, S3). The full dataset can be explored online with the 

cellxgene tool via the Tabula Sapiens data portal (14). 

 

Data was collected for bladder, blood, bone marrow, eye, fat, heart, kidney, large 

intestine, liver, lung, lymph node, mammary, muscle, pancreas, prostate, salivary gland, 

skin, small intestine, spleen, thymus, tongue, trachea, uterus and vasculature. Fifty-nine 

separate specimens in total were collected, processed, and analyzed, and 481,120 cells 

passed QC filtering (figs. S2-S7 and table S2). On a per compartment basis, the 

dataset includes 264,009 immune cells, 102,580 epithelial cells, 32,701 endothelial cells 

and 81,529 stromal cells. Working with live cells as opposed to isolated nuclei ensured 

that the dataset includes all mRNA transcripts within the cell, including transcripts that 

have been processed by the cell’s splicing machinery, thereby enabling insight into 

variation in alternative splicing.  
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To characterize the relationship between transcriptome data and conventional histologic 

analysis, a team of pathologists analyzed H&E stained sections prepared from 9 tissues 

from donor TSP2 and 13 tissues from donor TSP14 (14). Cells were identified by 

morphology and classified broadly into epithelial, endothelial, immune and stromal 

compartments, as well as rarely detected peripheral nervous system (PNS) cell types. 

(Fig. 2A). These classifications were used to estimate the relative abundances of cell 

types across four compartments, as well as to the uncertainties in these abundances 

due to spatial heterogeneity of each tissue type (Fig. 2B, fig. S8). We compared the 

histologically determined abundances with those obtained by single cell sequencing 

(fig. S9).  Although, as expected, there can be substantial variation between the 

abundances determined by these methods, in aggregate we observe broad 

concordance over a large range of tissues and relative abundances. This approach 

enables an estimate of true cell type proportions since not every cell type survives 

dissociation with equal efficiency (15). For several of the tissues we also performed 

literature searches and collected tables of prior knowledge of cell type identity and 

abundance within those tissues (table S4). We compared literature values with our 

experimentally observed frequencies for three well annotated tissues: lung, muscle and 

bladder (fig. S10). 

 

Immune Cells: Variation in Gene Expression Across Tissues and a Shared 

Lineage History 

The Tabula Sapiens can be used to study differences in the gene expression programs 

and lineage histories of cell types that are shared across tissues. We analyzed tissue 
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differences in the 36,475 macrophages distributed amongst 20 tissues, as tissue-

resident macrophages are known to carry out specialized functions (16). These shared 

and orthogonal signatures are summarized in a correlation map (fig. S11A). For 

example, macrophages in the spleen were different from most other macrophages, and 

this was driven largely by higher expression of CD5L, a regulator of lipid synthesis (fig. 

S11B). We also observed a shared signature of elevated EREG (epiregulin) expression 

in solid tissues such as the skin, uterus and mammary compared to circulatory tissues 

(fig. S11B).  

 

We characterized lineage relationships between T cells by assembling the T cell 

receptor sequences from from donor TSP2.  Multiple T cell lineages were distributed 

across various tissues in the body, and we mapped their relationships (Fig. 3A). Large 

clones often reside in multiple organs, and several clones of mucosal associated 

invariant T cells are shared across donors (fig. S11C); these cells had characteristic 

expression of TRAV1-2  as they are thought to be innate-like effector cells (17). Lineage 

information can also reveal tissue-specific somatic hyper-mutation rates in B cells. We 

assembled the B Cell Receptor sequences from donor TSP2 and inferred the germline 

ancestor of each cell.  The mutational load varies dramatically by tissue of residence, 

with blood having the lowest mutational load compared to solid tissues (fig. S11D); solid 

tissues have an order of magnitude more mutations per nucleotide (mean=0.076, 

s.d.=0.026) compared to the blood (0.0069), suggesting that the immune infiltrates of 

solid tissues are dominated by mature B cells. 
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B cells also undergo class-switch recombination which diversifies the humoral immune 

response by using constant region genes with distinct roles in immunity. We classified 

every B cell in the dataset as IgA, IgG, or IgM expressing and then calculated the 

relative amounts of each cellular isotype in each tissue (Fig. 3B, table S5). Secretory 

IgA is known to interact with pathogens and commensals at the mucosae, IgG is often 

involved in direct neutralization of pathogens, and IgM is typically expressed in naive B 

cells or secreted in first response to pathogens. Consistent with this, our analysis 

revealed opposing gradients of prevalence of IgA and IgM expressing B cells across the 

tissues with blood having the lowest relative abundance of IgA producing cells and the 

large intestine having the highest relative abundance, and the converse for IgM 

expressing B cells (Fig. 3B). 

 

Endothelial Cells Subtypes with Tissue-Specific Gene Expression Programs 

As another example of analyzing shared cell types across organs, we focused on 

endothelial cells (ECs). While ECs are often categorized as a single cell type, they 

exhibit differences in morphology, structure, immunomodulatory and metabolic 

phenotypes depending on their tissue of origin. Here, we discovered that tissue-

specificity is also reflected in their transcriptomes, as ECs mainly cluster by tissue-of-

origin (table S6). UMAP analysis (fig. S12A) revealed that lung, heart, uterus, liver, 

pancreas, fat and muscle ECs exhibited the most distinct transcriptional signatures, 

reflecting their highly specialized roles. These distributions were conserved across 

donors (fig. S12B).  
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Interestingly, ECs from the thymus, vasculature, prostate, and eye were similarly 

distributed across several clusters, suggesting not only similarity in transcriptional 

profiles but in their sources of heterogeneity. Differential gene expression analysis 

between ECs of these 16 tissues revealed several canonical and previously 

undescribed tissue-specific vascular markers (Fig. 3C). These data recapitulate tissue-

specific vascular markers such as LCN1 (tear lipocalin) in the eye, ABCG2 (transporter 

at the blood-testis barrier) in the prostate, and OIT3 (oncoprotein induced transcript 3) in 

the liver. Of the potential novel markers determined by this analysis, SLC14A1 (solute 

carrier family 14 member 1) appears to be a new specific marker for endothelial cells in 

the heart, whose expression was independently validated with data from the Human 

Protein Atlas (18) (fig. S13).  

 

Notably, lung ECs formed two distinct populations, which is in line with the aerocyte 

(aCap- EDNRB+) and general capillary (gCap - PLVAP+) cells described in the mouse 

and human lung (19) (fig. S12 C,D). The transcriptional profile of gCaps were also more 

similar to ECs from other tissues, indicative of their general vascular functions in 

contrast to the more specialized aCap populations. Lastly, we detected two distinct 

populations of ECs in the muscle, including a MSX1+ population with strong angiogenic 

and endothelial cell proliferation signatures, and a CYP1B1+ population enriched in 

metabolic genes, suggesting the presence of functional specialization in the muscle 

vasculature (fig. S12 E,F). 

 

Alternative Splice Variants are Cell Type Specific 
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We used SICILIAN (20) to identify alternative splice junctions in Tabula Sapiens using 

both 10X and Smart-Seq2 sequencing technologies and found a total of 955,785 

junctions (fig. S14A-E, table S7).  217,855 of these were previously annotated, and 

thus our data provides independent validation of 61% of the total junctions catalogued in 

the entire RefSeq database. Although annotated junctions made up only 22.8% of the 

unique junctions, they represent 93% of total reads, indicating that previously annotated 

junctions tend to be expressed at higher levels than novel junctions. We additionally 

found 34,624 novel junctions between previously annotated 3’ and 5’ splice sites 

(3.6%). We also identified 119,276 junctions between a previously annotated site and a 

novel site in the gene (12.4%). This leaves 584,030 putative junctions for which both 

splice sites were previously unannotated, i.e. about 61% of the total detected junctions. 

Most of these have at least one end in a known gene (94.7%), while the remainder 

represent potential new splice variants from unannotated regions (5.3%). In the 

absence of independent validation, we conservatively characterized all of the 

unannotated splices as putative novel junctions. We then used the GTEx database (21) 

to seek independent corroborating evidence of these putative novel junctions, and found 

that reads corresponding to nearly one third of these novel junctions can be found within 

GTEx data (table S7); this corresponds to more than 300,000 new validated splice 

variants revealed by the Tabula Sapiens.  

 

Hundreds of splice variants are used in a highly cell-type specific fashion; these can be 

explored in the cellxgene browser (14) which uses a statistic called SpliZ (22). Here we 

focus on two examples of cell type specific splicing of two well studied genes: MYL6 
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and CD47; similar cell-type specific splice usage was also observed with TPM1, TPM2, 

and ATP5F1C, three other genes with well-characterized splice variants (fig. S15). 

 

MYL6 is an “essential light chain” (ELC) for myosin and is highly expressed in all tissues 

and compartments. Yet, splicing of MYL6, in particular involving the inclusion/exclusion 

of exon 6 (Fig. 4A) varies in a cell-type and compartment-specific manner (Fig. 4B). 

While the -exon6 isoform has previously been mainly described in phasic smooth 

muscle (23), we discovered it can also be the predominant isoform in non-smooth-

muscle cell types. Our analysis establishes pervasive regulation of MYL6 splicing in 

many cell types, such as endothelial and immune cells. These previously unknown 

compartment-specific expression patterns of the two MYL6 isoforms are reproduced in 

multiple individuals from the Tabula Sapiens dataset (Fig. 4A,B). 

 

CD47 is a multi-spanning membrane protein involved in many cellular processes, 

including angiogenesis, cell migration, and as a “don’t eat me” signal to macrophages 

(24). Differential use of exons 7-10 (Fig. 4C and fig. S14F) compose a variably long 

cytoplasmic tail (25). Immune cells – but also stromal and endothelial cells – have a 

distinct, consistent splicing pattern in CD47 that dominantly excludes two proximal 

exons and splicing directly to exon 8. In contrast to other compartments, epithelial cells 

exhibit a different splicing pattern that increases the length of the cytoplasmic tail by 

splicing more commonly to exon 9 and exon 10 (Fig. 4D). Characterization of the 

splicing programs of CD47 in single cells may have implications for understanding the 
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differential signaling activities of CD47 and for therapeutic manipulation of CD47 

function.  

 

Cell State Dynamics Can Be Inferred From A Single Time Point 

Although the Tabula Sapiens was created from a single moment in time for each donor, 

it is possible to infer dynamic information from the data.  Cell division is an important 

transient change of internal cell state, and we computed a cycling index for each cell 

type to identify actively proliferating versus quiescent or post-mitotic cell states.  Rapidly 

dividing progenitor cells had among the highest cycling indices, while cell types from the 

endothelial and stromal compartments, which are known to be largely quiescent, had 

low cycling indices (Fig. 5A). In intestinal tissue, transient amplifying cells and the crypt 

stem cells divide rapidly in the intestinal crypts to give rise to terminally differentiated 

cell types of the villi (26). These cells were ranked with the highest cycling indices 

whereas terminally differentiated cell types such as the goblet cells had the lowest ranks 

(fig. S16A). To complement the computational analysis of cell cycling, we performed 

immunostaining of intestinal tissue for MKI67 protein (commonly referred to as Ki-67) 

and confirmed that transient amplifying cells abundantly express this proliferation 

marker (fig. S16B,C), supporting that this marker is differentially expressed in the G2/M 

cluster.  

 

We observed several interesting tissue-specific differences in cell cycling. To illustrate 

one example, UMAP clustering of macrophages showed tissue-specific clustering of this 

cell type, and that blood, bone marrow, and lung macrophages have the highest cycling 
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indices compared to macrophages found in the bladder, skin, and muscle (fig. S16D-

G). Consistent with this finding, the expression values of CDK-inhibitors (in particular 

the gene CDKN1A), which block the cell cycle, have the lowest overall expression in 

macrophages from tissues with high cycling indices (fig. S16F).  

 

We used RNA velocity (27) as a further dynamic approach to study trans-differentiation 

of bladder mesenchymal cells to myofibroblasts (Fig. 5B).  Latent time analysis, which 

provides an estimate of each cell’s internal clock using RNA velocity trajectories (28), 

correctly identified the direction of differentiation (Fig. 5C) across multiple donors. 

Ordering cells as a function of latent time shows clustering of the mesenchymal and 

myofibroblast gene expression programs for the most dynamically expressed genes 

(Fig. 5D). Among these genes, ACTN1 (Alpha Actinin 1) – a key actin crosslinking 

protein that stabilizes cytoskeleton-membrane interactions (29) – increases across the 

mesenchymal to myofibroblast trans-differentiation trajectory (fig. S16H).  Another gene 

with a similar trajectory is MYLK (myosin light-chain kinase), which also rises as 

myofibroblasts attain more muscle-like properties (30). Finally, a random sampling of 

the most dynamic genes shared across TSP1 and TSP2 demonstrated that they share 

concordant trajectories and revealed some of the core genes in the transcriptional 

program underlying this trans-differentiation event within the bladder (fig. S16I). 

 

Unexpected Spatial Variation in the Microbiome  

The Tabula Sapiens provided an opportunity to densely and directly sample the human 

microbiome throughout the gastrointestinal tract. The intestines from donors TSP2 and 
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TSP14 were sectioned into five regions: the duodenum, jejunum, ileum, and ascending 

and sigmoid colon (Fig. 6A). Each section was transected, and three to nine samples of 

were collected from each location, followed by amplification and sequencing of the 16S 

rRNA gene. Uniformly there was a high (~10-30%) relative abundance of 

Proteobacteria, particularly Enterobacteriaceae (Fig. 6B), even in the colon. Samples 

from each of the duodenum, jejunum, and ileum were largely distinct from one another, 

with samples exhibiting individual patterns of blooming or absence of certain families 

(Fig. 6B). These data reveal that the microbiota is patchy even at a 3-inch length scale. 

We observed similar heterogeneity in both donors (fig. S17A-C). In the small intestine, 

richness (number of observed species) was also variable, and was negatively correlated 

with the relative abundance of Burkholderiaceae (Fig. 6B); in TSP2, the Proteobacteria 

phylum was dominated by Enterobacteriaceae, which was present at >30% in all 

samples at a level negatively correlated with richness (fig. S17A-C). In a comparison of 

species from adjacent regions across the gut, a large fraction of species was unique to 

each region (Fig. 6C), reflecting the patchiness. These data are derived from only two 

donor samples and further conclusions about the statistics and extent of microbial 

patchiness will require larger studies. 

 

We analyzed host immune cells in conjunction with the spatial microbiome data; UMAP 

clustering analysis revealed that the small intestine T cell pool from TSP14 contained a 

population with distinct transcriptomes (Fig. 6D). The most significant transcriptional 

differences in T cells between the small and large intestine were genes associated with 

trafficking, survival, and activation (Fig. 6E, table S8). For example, expression of the 
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long non-coding RNA MALAT1, which impacts the regulatory function of T cells, and 

CCR9, which mediates T lymphocyte development and migration to the intestine (31), 

were high only in the small intestine, while GPR15 (colonic T cell trafficking), 

SELENBP1 (selenium transporter), ANXA1 (repressor of inflammation in T cells), 

KLRC2 (T cell lectin), CD24 (T cell survival), GDF15 (T cell inhibitor), and RARRES2 (T 

cell chemokine) exhibited much higher expression in the large intestine. Within the 

epithelial cells, we observed distinct transcriptomes between small and large intestine 

Paneth cells and between small and large intestine enterocytes, while there was some 

degree of overlap for each of the two cell types for either location (fig. S17E,F). The 

site-specific composition of the microbiome in the intestine, paired with distinct T cell 

populations at each site helps define local host-microbe interactions that occur in the GI 

tract and is likely reflective of a gradient of physiological conditions that influence host-

microbe dynamics. 

 

Conclusion 

The Tabula Sapiens is part of a growing set of data which when analyzed together will 

enable many interesting comparisons of both a biological and a technical nature.  

Studying particular cell types across organs, datasets, and species will yield new 

biological insights – as shown with fibroblasts (32). Similarly, comparing fetal human cell 

types (33) to those determined here in adults may give insight into the loss of plasticity 

from early development to maturity. Having multi-organ data from individual donors may 

facilitate development of methods to compare diverse datasets and yield understanding 

of technical artifacts from various approaches (8, 9, 34, 35).  The Tabula Sapiens has 
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enabled discoveries relating to shared behavior and organ specific differences across 

cell types. For example, we found T cell clones shared between organs, and 

characterized organ dependent hypermutation rates amongst resident B cells. 

Endothelial cells and macrophages are cell types which are shared across tissues, but 

often show subtle tissue-specific differences in gene expression.   We found an 

unexpectedly large and diverse amount of cell-type specific RNA splice variant usage, 

and discovered and validated many new splices. These are but a few examples of how 

the Tabula Sapiens represents a broadly useful reference to understand and explore 

human biology deeply at cellular resolution.  

 

 

Brief synopsis of methods  

Fresh whole non-transplantable organs, or 1-2cm2 organ samples, were obtained from 

surgery and then transported on ice by courier to tissue expert labs where they were 

immediately prepared for transcriptome sequencing. Single-cell suspensions were 

prepared for 10x Genomics 3’ V3.1 droplet-based sequencing and for FACS sorted 384-

well plate Smart-seq2. Preparation began with dissection, digestion with enzymes and 

physical manipulation; tissue specific details are in the methods supplement (12). Cell 

suspensions from some organs were normalized by major cell compartment (epithelial, 

endothelial, immune, and stromal) using antibody-labelled magnetic microbeads to 

enrich rare cell types. cDNA and sequencing libraries were prepared and run on the 

Illumina NovaSeq 6000 with the goal to obtain 10,000 droplet-based cells and 1000 

plate-based cells for each organ. Sequences were de-multiplexed and aligned to the 
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GRCh38 reference genome. Gene count tables were generated with CellRanger 

(droplet samples), or STAR and HTSEQ (plate samples). Cells with low UMI counts and 

low gene counts were removed. Droplet cells were filtered to remove barcode-hopping 

events and filtered for ambient RNA using DecontX. Sequencing batches were 

harmonized using scVI and projected to 2-D space with UMAP for analysis by the tissue 

experts. Expert annotation was made through the cellxgene browser and regularized 

with a public cell ontology. Annotation was manually QC checked and cross-validated 

with PopV, an annotation tool, which employs seven different automated annotation 

methods. For complete methods, see supplementary materials (12). 
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Figure Legends: 

 

Figure 1. Overview of Tabula Sapiens. The Tabula Sapiens was constructed with 

data from 15 human donors; for detailed information on which tissues were examined 

for each donor please refer to table S2.  Demographic and clinical information about 

each donor is listed in the supplement and in table S1.  Donors 1, 2, 7 and 14 

contributed the largest number of tissues each, and the number of cells from each 

tissue is indicated by the size of each circle. Tissue contributions from additional donors 

who contributed single or small numbers of tissues are shown in the “Additional donors” 

column, and the total number of cells for each organ are shown in the final column. 

 

Figure 2. Comparison of single cell transcriptomics with conventional  

histology. Clinical pathology was performed on nine tissues from donors TSP2 and 

TSP13.  A. Hematoxylin and eosin (H&E) stained image used for histology of the colon 

from TSP2, with compartments (solid, colored lines) and individual cell types (dashed 

black ellipses) identified by the pathologists. B. Coarse cell type representation of TSP2 

as morphologically estimated by pathologists across several tissues, ordered by 

increasing heterogeneity of the tissue. Compartment colors are consistent between 

panels A and B.  

 

Figure 3. Analysis of immune and endothelial cell types shared across tissues. A. 

Illustration of clonal distribution of T cells across multiple tissues. The majority of T cell 

clones are found in multiple tissues and represent a variety of T cell subtypes. B. 
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Prevalence of B cell isotypes across tissues, ordered by decreasing abundance of IgA.  

C. Expression level of tissue specific endothelial markers, shown as violin plots, in the 

entire dataset. Many of the markers are highly tissue specific, and typically derived from 

multiple donors as follows: bladder (3 donors), eye (2), fat (2), heart (1), liver (2), lung 

(3), mammary (1), muscle (4), pancreas (2), prostate (2), salivary gland (2), skin (2), 

thymus (2), tongue (2), uterus (1) and vasculature (2). A detailed donor-tissue 

breakdown is available in table S2. 

  

Figure 4. Alternative splicing analysis. A,B. The sixth exon in MYL6 is skipped at 

different proportions in different compartments. Cells in the immune and epithelial 

compartments tend to skip the exon, whereas cells in the endothelial and stromal 

compartments tend to include the exon. Boxes are grouped by compartment and 

colored by tissue. The fraction of junctional reads that include exon 6 was calculated for 

each cell with more than 10 reads mapping to the exon skipping event. Horizontal box 

plots in B show the distribution of exon inclusion in each cell type. C,D. Alternative 

splicing in CD47 involves one 5’ splice site (exon 11, 108,047,292) and four 3’ splice 

sites. Horizontal box plots in D show the distribution of weighted averages of alternative 

3’ splice sites in each cell type. Epithelial cells tend to use closer exons to the 5' splice 

site  compared to immune and stromal cells. Boxes are grouped by compartment and 

colored by tissue.  

 

Figure 5. Dynamic changes in cell state. A. Cell types ordered by magnitude of cell 

cycling index, per donor (each a separate color) with the most highly proliferative at the 
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top and quiescent cells at the bottom of the list. B. RNA velocity analysis demonstrating 

mesenchymal to myofibroblast transition in the bladder. The arrows represent a flow 

derived from the ratio of unspliced to spliced transcripts which in turn predicts dynamic 

changes in cell identity. C,D. Latent time analysis of the mesenchymal to myofibroblast 

transition in the bladder demonstrating stereotyped changes in gene expression 

trajectory. 

 

Figure 6. High-resolution view highlights patchiness of the gut microbiome. A. 

Schematic (left) and photo of the colon from donor TSP2 (right), with numbers 1-5 

representing microbiota sampling locations. B. Relative abundances and richness 

(number of observed species) at the family level in each sampling location, as 

determined by 16S rRNA sequencing. The Shannon diversity, a metric of evenness, 

mimics richness. Variability in relative abundance and/or richness/Shannon diversity 

was higher in the duodenum, jejunum and ileum as compared with the ascending and 

sigmoid colon. C. A Sankey diagram showing the inflow and outflow of microbial 

species from each section of the gastrointestinal tract. The stacked bar for each 

gastrointestinal section represents the number of observed species in each family as 

the union of all sampling locations for that section. The stacked bar flowing out 

represents gastrointestinal species not found in the subsequent section and the stacked 

bar flowing into each gastrointestinal section represents the species not found in the 

previous section. D. UMAP clustering of T cells reveals distinct transcriptome profiles in 

the distal and proximal small and large intestines. E. Dots in volcano plot highlight 
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genes up-regulated in the large (left) and small (right) intestines. Labeled dots include 

genes with known roles in trafficking, survival, and activation.  
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Supplementary Material 
 

Materials and Methods 
Figs. S1 to S16 
Tables S1 to S9 
References (40-95) 
 

Resources 

Data portal for Tabula Sapiens (14) 
Code for the analysis (36) 
Single cell gene counts and metadata (37) 
Histology images (38) 
SpliZ scores (39) 
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Fig. S9
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Fig. S17
A 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon
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