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Abstract. Agglomerative clustering is a well established strategy for identifying communities in networks.
Communities are successively merged into larger communities, coarsening a network of actors into a more
manageable network of communities. The order in which merges should occur is not in general clear,
necessitating heuristics for selecting pairs of communities to merge. We describe a hierarchical clustering
algorithm based on a local optimality property. For each edge in the network, we associate the modularity
change for merging the communities it links. For each community vertex, we call the preferred edge that
edge for which the modularity change is maximal. When an edge is preferred by both vertices that it
links, it appears to be the optimal choice from the local viewpoint. We use the locally optimal edges to
define the algorithm: simultaneously merge all pairs of communities that are connected by locally optimal
edges that would increase the modularity, redetermining the locally optimal edges after each step and
continuing so long as the modularity can be further increased. We apply the algorithm to model and
empirical networks, demonstrating that it can efficiently produce high-quality community solutions. We
relate the performance and implementation details to the structure of the resulting community hierarchies.
We additionally consider a complementary local clustering algorithm, describing how to identify overlapping
communities based on the local optimality condition.

PACS. 89.75.Hc Networks and genealogical trees

1 Introduction

A prominent theme in the investigation of networks is
the identification of their community structure. Informally
stated, network communities are subnetworks whose con-
stituent vertices are strongly affiliated to other commu-
nity members and comparatively weakly affiliated with
vertices outside the community; several formalizations of
this concept have been explored (for useful reviews, see
Refs. [1, 2]). The strong internal connections of community
members is often accompanied by greater homogeneity of
the members, e.g., communities in the World Wide Web as
sets of topically related web pages or communities in scien-
tific collaboration networks as scientists working in similar
research areas. Identification of the network communities
thus can facilitate qualitative and quantitative investiga-
tion of relevant subnetworks whose properties may differ
from the aggregate properties of the network as a whole.

Agglomerative clustering is a well established strategy
for identifying a hierarchy of communities in networks.
Communities are successively merged into larger commu-
nities, coarsening a network of actors into a more manage-
able network of communities. The order in which merges
should occur is not in general clear, necessitating heuris-
tics for selecting pairs of communities to merge.

A key approach to community identification in net-
works is from Newman [3], who used a greedy agglomer-
ative clustering algorithm to search for communities with
high modularity [4]. In this algorithm, pairs of commu-
nities are successively merged based on a global optimal-
ity condition, so that the modularity increases as much
as possible with each merge. The pairwise merging ulti-
mately produces a community hierarchy that is structured
as a binary tree. The structure of the hierarchy closely re-
lates to both the quality of the solution and the efficiency
of its calculation; modularity is favored by uniform com-
munity sizes [5, 6] while rapid computation is favored by
shorter trees [7], so both are favored when the commu-
nity hierarchy has a well-balanced binary tree structure,
where the sub-trees at any node are similar in size. But
the greedy algorithm may produce unbalanced commu-
nity hierarchies—the hierarchy may even be dominated
by a single large community that absorbs single vertices
one-by-one [8], causing the hierarchy to be unbalanced at
all levels.

In this work, we propose a new agglomerative cluster-
ing strategy for identifying community hierarchies in net-
works. We replace the global optimality condition for the
greedy algorithm with a local optimality condition. The
global optimality condition holds for communities c and
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c′ when no other pair of communities could be merged so
as to increase the modularity more than would merging c
and c′. The local optimality condition weakens the global
condition, holding when no pair of communities, one of
which is either c or c′, could be merged to increase the
modularity more than would merging c and c′. The essen-
tials of the clustering strategy follow directly: concurrently
merge communities that satisfy the local optimality con-
dition so as to increase the modularity, re-establishing the
local optimality conditions and repeating until no further
modularity increase is possible. The concurrent formation
of communities encourages development of a cluster hier-
archy with properties favorable both to rapid computation
and to the quality of the resulting community solutions.

2 Agglomerative clustering

2.1 Greedy algorithms

Agglomerative clustering [9, 10] is an approach long used
[11] for classifying data into a useful hierarchy. The ap-
proach is based on assigning the individual observations of
the data to clusters, which are fused or merged, pairwise,
into successively larger clusters. The merging process is
frequently illustrated with a dendrogram, a tree diagram
showing the hierarchical relationships between clusters; in
this work, we will also refer to the binary tree defined
by the merging process as a dendrogram, regardless of
whether it is actually drawn.

Specific clustering algorithms depend on defining a
measure of the similarity of a pair of clusters, with differ-
ent measures corresponding to different concepts of clus-
ters. Additionally, a rule must be provided for selecting
which merges to make based on their similarity. Com-
monly, merges are selected with a greedy strategy, where
the single best merge is made and the similarity recal-
culated for the new cluster configuration, making succes-
sive merges until only a single cluster remains. The greedy
heuristic will not generally identify the optimal configura-
tion, but can often find a good one.

2.2 Modularity

Agglomerative clustering has seen much recent use for in-
vestigating the community structure of complex networks
(for a survey of agglomerative clustering and other com-
munity identification approaches, see Refs. [1, 2]). The
dominant approaches follow Newman [3] in searching for
communities (i.e., clusters) with high modularity Q. Mod-
ularity assesses community strength for a partition of the
n network vertices into disjoint sets, and is defined [4] as

Q =
1

2m

∑

c

∑

i,j∈c

(

Aij −
kikj
2m

)

, (1)

where the Aij are elements of the adjacency matrix for the
graph, m is the number of edges in the graph, and ki is

the degree of vertex i, i.e., ki =
∑

j Aij . The outer sum is

over all clusters c, the inner over all pairs of vertices (i, j)
within c.

With some modest manipulation, Eq. (1) can be writ-
ten in terms of cluster-level properties and in a form suit-
able as well for use with weighted graphs:

Q = λ
∑

c

(

Wc − λK2

c

)

, (2)

where

Wc =
∑

i,j∈c

Aij (3)

Kc =
∑

i∈c

ki (4)

λ =

(

∑

c

Kc

)−1

. (5)

Here, Wc is a weight of edges internal to cluster c, mea-
suring the self-affinity of the cluster constituents; Kc is
a form of volume for cluster c, analogous to the graph
volume; and λ is a scaling factor equal to 1/2m for an un-
weighted graph. Other choices for λ may also be suitable
[6], but we will not consider them further.

Edges between vertices in different clusters c and c′

may also be described at the cluster level; denote this
edge by (c, c′). Edge (c, c′) has a corresponding symmetric
inter-cluster weight wcc′ , defined by

wcc′ =
∑

i∈c

∑

j∈c′

Aij . (6)

Using wcc′ , we can describe the merge process entirely in
terms of cluster properties. When two clusters u and v are
merged into a new cluster x, it will have

Wx = Wu +Wv + 2wuv (7)

Kx = Ku +Kv . (8)

The inter-cluster weights for the new cluster x will be

wxy = wuy + wvy (9)

for each existing cluster y, excluding u and v. The modu-
larity change ∆Quv is

∆Quv = 2λ (wuv − λKuKv) . (10)

From Eq. (10), it is clear that modularity can only increase
when wuv > 0 and, thus, when there are edges between
vertices in u and v.

With the above, we can view a partition of the vertices
as an equivalent graph of clusters or communities; merg-
ing two clusters equates to edge contraction. The cluster
graph is readily constructed from a network of interest
by mapping the original vertices to vertices representing
singleton clusters and edges between the vertices to edges
between the corresponding clusters. For a cluster c derived
from a vertex i, we initialize Wc = 0 and Kc = ki.
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2.3 Modularity-based greedy algorithms

Newman [3] applied a greedy algorithm to finding a high
modularity partition of network vertices by taking the sim-
ilarity measure to be the change in modularity ∆Quv. In
this approach, ∆Quv is evaluated for each inter-cluster
edge, and a linked pair of clusters leading to maximal in-
crease in modularity is selected for the merge. A naive im-
plementation of this greedy algorithm constructs the com-
munity hierarchy and identifies the level in it with greatest
modularity in worst-case time O ((m+ n)n), where m and
n are, respectively, the numbers of edges and vertices in
the network.

Finding a partition giving the global maximum in Q is
a formally hard, NP-complete problem, equivalent to find-
ing the ground state of an infinite-range spin glass [12]. We
should thus expect the greedy approach only to identify a
high modularity partition in a reasonable amount of time,
rather than to provide us with the global maximum. Vari-
ations on the basic greedy algorithm may be developed
focusing on increasing the community quality, reducing
the time taken, or both.

Likely the most prominent such variation is the imple-
mentation described by Clauset et al. [7]. While neither
the greedy strategy nor the modularity similarity measure
is altered, the possible merges are tracked with a priority
queue implemented using a binary heap, allowing rapid
determination of the best choice at each step. This results
in a worst-case time of O (mh logn), where h is the height
of the resulting dendrogram. Thus, the re-implementation
is beneficial when, as for many empirical networks of inter-
est, the dendrogram is short, ideally forming a balanced
binary tree with height equal to ⌊log

2
n⌋, where ⌊x⌋ de-

notes the integer part of x. But the dendrogram need not
be short—it may be a degenerate tree of height n, formed
when all singleton clusters are merged one-by-one into the
same cluster. Such a dendrogram results in O (mn logn)
time, worse than for the naive implementation.

Numerous variations on the use of the change in modu-
larity have been proposed for use with greedy algorithms,
with some explicitly intended to provide a shorter, better
balanced dendrogram. We note two in particular. First,
Danon et al. [5] consider the impact that heterogeneity in
community size has on the performance of clustering al-
gorithms, proposing an altered modularity as the similar-
ity measure for greedy agglomerative clustering. Second,
Wakita and Tsurumi [8] report encountering poor scaling
behavior for the algorithm of Clauset et al., caused by
merging communities in an unbalanced manner; they too
propose several modifications to the modularity to encour-
age more well-balanced dendrograms. In both papers, the
authors report an improvement in the (unmodified) mod-
ularity found, even though they were no longer directly
using modularity to select merges—promoting short, well-
balanced dendrograms can promote better performance
both in terms of time taken and in the quality of the re-
sulting communities.

Alternatively, the strategy by which merges are se-
lected may be changed, while keeping the modularity as
the similarity measure, giving rise to the multistep greedy

(MSG) algorithm [13, 14]. In the MSG approach, multiple
merges are made at each step, instead of just the sin-
gle merge with greatest increase in the modularity. The
potential merges are sorted by the change in modularity
∆Quv they produce; merges are made in descending order
of ∆Quv, so long as (1) the merge will increase modu-
larity and (2) neither cluster to be merged has already
been selected for a merge with greater ∆Quv. The MSG
algorithm promotes building several communities concur-
rently, avoiding early formation of a few large communi-
ties. Again, this leads to shorter, better balanced dendro-
grams with improved performance both in terms of time
and community quality.

More drastic changes to the basic greedy hierarchical
clustering scheme are also possible. Blondel et al. [15] de-
scribe a two-phase algorithm consisting of first identitying
a local optimum in the modularity by repeatedly reas-
signing individual vertices to the communities where they
make the maximal contribution to modularity, and second
constructing a new, weighted network where those com-
munities are the vertices; these two phases are repeated
until no further modularity increases are possible. Based
on application to sample networks, the algorithm is re-
ported to rapidly determine high-modularity community
solutions, but the resulting hierarchy is generally no longer
a binary tree. Effectively, the algorithm avoids formation
of the unbalanced portions of the hierarchy by allowing
multiple vertices to be merged into a community in one
step instead of successively, thereby compressing uninfor-
mative portions of the hierarchy while retaining fewer,
hopefully relevant details.

When required for clarity, we will refer to the original
greedy strategy as single-step greedy (SSG). Additionally,
we will restrict our attention to an implementation follow-
ing Clauset et al. [7].

3 Clustering with local optimality

3.1 Local optimality

Greedy community detection algorithms are intrinsically
global algorithms, drawing upon information from across
the entire network to select which communities to merge.
Yet it is instructive to consider what can be said about the
merges on a local scale, and, in particular, about the glob-
ally optimal merge selected in the SSG algorithm. Glob-
ally, if clusters u and v are selected for the merge, then
∆Quv ≥ ∆Qxy for all clusters x and y. Restricting to the
edges incident on the clusters, this indicates

∆Quv ≥ ∆Quy ∀y (11)

∆Quv ≥ ∆Qxv ∀x . (12)

Informally, the two clusters each have the other as the best
choice of merge; these local properties are necessary, but
not sufficient, conditions for the global optimality condi-
tion in SSG—an edge may satisfy the local conditions, but
not cause the greatest modularity change in the network.
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Fig. 1. Preferred and locally optimal edges. Each edge is la-
beled with its modularity change ∆Quv, which is the basis
for determing the merge preferences shown with arrows. Edges
with a single arrowhead are preferred edges for the vertex at
the tail of the arrow, but not for the vertex at the head of
the arrow. Edges with arrowheads at each end are preferred
for both vertices; these are locally optimal edges. Those edges
without arrowheads are not preferred by either of the linked
vertices.

We may use this idea to classify the inter-cluster edges.
Call an edge (u, v) preferred for vertex u or v if Eq. (11)
or Eq. (12) holds, respectively; similarly refer to the cor-
responding merge as preferred. If the edge is preferred for
both u and v, call it locally optimal. We illustrate preferred
and locally optimal edges in Fig. 1.

3.2 Greedy clustering using local optimality

We can base an agglomerative clustering algorithm on
merging along the locally optimal edges in the network,
determining whether any edges become locally optimal as
a consequence, and repeating this until no locally optimal
edges remain. With such an approach, we discourage the
formation of unbalanced dendrograms by allowing mul-
tiple merges to occur concurrently, thus favoring shorter
dendrograms and—given a suitable implementation—more
efficient computation. The approach lies somewhere be-
tween SSG and MSG clustering, featuring concurrent for-
mation of clusters like MSG, but selecting merges with a
generalization of the condition in SSG.

For the most part, it is straightforward to define a
precise algorithm from this idea. One complication is the
presence of vertices with multiple locally optimal edges
incident upon them. These edges can lead to, for example,
a state where edges (u, v) and (u,w) are locally optimal,
but (v, w) is not locally optimal. Thus, if we make both
locally optimal merges, we produce a combined cluster of
{u, v, w} which also includes the locally suboptimal merge.
But to exclude merging v and w, we must then only make
one of the locally optimal merges. In this work, we adopt
the latter approach, arbitrarily selecting one of the locally
optimal merges.

The resulting algorithm is:

1. For each edge (u, v), evaluate ∆Quv.
2. For each vertex v, identify the maximum modularity

change ∆Qmax

v from all incident edges.

3. For each edge (u, v), determine if it is locally optimal
by testing ∆Quv = ∆Qmax

u = ∆Qmax

v . If, in addition,
∆Quv > 0, edge (u, v) is a candidate merge.

4. If there are no candidate merges, stop. Otherwise, for
each candidate, merge the corresponding clusters, so
long as neither cluster has so far been changed in the
current iteration.

5. Begin a new iteration from step 1.

The order of iteration in step 4 will have an effect on the
resulting community hierarchy when vertices have multi-
ple locally optimal edges. In the implementation used in
this work, we iterate through the edges in an arbitrary
order that is uncorrelated with the modularity changes
∆Quv. As the algorithm greedily selects edges based on
local optimality, we call it GLO clustering—greedy, local
optimality clustering.

When the GLO algorithm terminates, no remaining
edge will support a positive change in modularity; other-
wise, one or more edges (u, v) would have ∆Quv > 0, and
thus there would be at least one candidate merge—that
edge with the greatest ∆Quv. The clusters at termina-
tion have greater modularity than at any earlier iteration
in the algorithm, since merges are only made when they
increase the modularity.

Note that the GLO algorithm generally terminates only
having formed the sub-trees of the dendrogram for each
cluster rather than the full dendrogram with single root.
If the full dendrogram is needed, additional cluster merges
can be made by using an alternate greedy algorithm. Here,
we follow the above steps for GLO clustering, but drop
the requirement that ∆Quv > 0—all locally optimal edges
become candidate merges. This laxer condition is always
satisfied by at least at least the edge with greatest ∆Quv,
so the merge process continues until all edges have been
eliminated and only a single cluster remains.

Implementing the GLO algorithm presents no special
difficulties. The needed properties of the clusters (Wv, Kv,
and wuv) can be handled as vertex and edge attributes of a
graph data structure. Straightforward implementation of
the above steps can be done simply by iterating through
the m edges, leading to O (m) worst-case time complex-
ity for each of the p iterations of the merge process, or
O (mp) overall worst-case time complexity. A simple opti-
mization of this basic implementation strategy is to keep
track of the ∆Qmax

v values and a list of corresponding pre-
ferred edges, recalculating these only when merges could
lead to changes; this does not change the worst case time
complexity from O (mp), but does notably improve the
execution speed in practice.

The above estimates of time complexity have the short-
coming that they are given not just in terms of the size
of the network, but also in terms of an outcome of the
algorithm—the number of iterations p. There is no clear
a priori relation between p and the network size, but we
may place bounds on p. First, the algorithm merges at
least one pair of clusters in each iteration, so p is bounded
above by n. Second, the algorithm involves any cluster in
at most one merge in an iteration, so p must be at least
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the height h of the dendrogram. This gives

n > p ≥ h ≥ ⌊log
2
n⌋ . (13)

Runtime of the algorithm is thus seen to be dependent on
the structure of the cluster hierarchy found, with better
performance requiring a well-balanced dendrogram.We do
have reason to be optimistic that p will be relatively small
in this case: a well-balanced dendrogram results when mul-
tiple clusters are constructed concurrently, which also re-
quires fewer iterations of the algorithm.

3.3 Local clustering using local optimality

Although all merging decisions in GLO clustering are made
using only local information, the algorithm is nonethe-
less a global algorithm—the clusters possible at one point
in the graph are influenced by merges concurrently made
elsewhere in the network. Yet we may specify a local clus-
tering algorithm: starting from a single vertex, succes-
sively merge along any modularity-increasing, locally opti-
mal edges incident upon it, stopping only when no such lo-
cally optimal edges remain. In this fashion, the modularity—
an assessment of a partition of the vertices—may be used
to identify overlapping communities.

This local algorithm functions by absorbing vertices
one-by-one into a single cluster. Unfortunately, this is ex-
actly the behavior corresponding to the worst case behav-
ior for the SSG and GLO algorithms, producing a degener-
ate binary tree as the dendrogram whose height is one less
than the number of vertices in the community and conceiv-
ably is one less than the number of vertices in the graph.
The expected time complexity is thus quadratic in the
resulting community size. Worse still, characterizing all
local clusters for the graph may require a sizable fraction
of the vertices to be so investigated, giving a worst-case
time complexity that is cubic in the number of vertices of
the graph. Such an approach is thus suited for networks
of only the most modest size.

A compromise approach is possible using a hybrid of
the agglomerative and local approaches. First, determine
an initial set of clusters using the GLO algorithm. Sec-
ond, for each community, expand it using local clustering,
treating all other vertices as belonging to distinct single-
ton clusters. The hybrid algorithm is still quite slow (and
leaves the worst-case time complexity unchanged), but
fast enough to provide some insight into the overlapping
community structure of networks with tens of thousands
of vertices.

4 Results

4.1 Model networks

To begin, we confirm that the GLO clustering algorithm
is able to identify network communities by applying it to
randomly generated graphs with known community struc-
ture. We make use of the model graphs proposed and im-
plemented by Lancichinetti et al. [16]. We generate 1000

random graphs using the default parameter settings, so
that each random graph has 1000 vertices with an aver-
age degree of 15.

In Table 1, we show some characteristics of the results
of clustering algorithm, comparing the results to those for
SSG and MSG clustering. For the model networks, GLO
produces community solutions that have a greater num-
ber of communities, on average, than either SSG or MSG.
The average modularity is greatest with SSG, with GLO
second and MSG lowest. Modularity values are sufficiently
high to indicate that GLO clustering is able to recognize
the presence of communities in the model networks.

While modularity characterizes clustering, it does not
directly measure the accuracy of the clusters. We instead
assess accuracy using the normalized mutual information
Inorm. For the joint probability distribution P (X,Y ) over
random variables X and Y , Inorm (X,Y ) is

Inorm (X,Y ) =
2I (X,Y )

H (X) +H (Y )
, (14)

where the mutual information I (X,Y ) and entropiesH (X)
and H (Y ) are defined

I (X,Y ) =
∑

x,y

P (X,Y ) log
P (X,Y )

P (X)P (Y )
(15)

H (X) = −
∑

x

P (X) logP (X) (16)

H (Y ) = −
∑

y

P (Y ) logP (Y ) . (17)

In Eqs. (14) to (17) , we use the typical abbreviations
P (X = x, Y = y) = P (X,Y ), P (X = x) = P (X), and
P (Y = y) = P (Y ). The base of the logarithms in Eqs. (15)
to (17) is arbitrary, as the computed measures only appear
in the ratio in Eq. (14).

To assess clustering algorithms with Inorm (X,Y ), we
treat the actual community membership for a vertex as
a realization of a random variable X and the commu-
nity membership algorithmically assigned to the vertex
as a realization of a second random variable Y . The joint
probability P (X,Y ) is then defined by the distribution
of paired community membership over all vertices in the
graph. We can then evaluate Inorm (X,Y ), finding a result
that parallels the modularity: SSG on average obtains the
greatest normalized mutual information, with GLO sec-
ond and MSG the lowest. The high value for Inorm (X,Y )
indicates that GLO clustering assigns most vertices to the
correct communities.

As GLO clustering attempts to improve performance
by favoring well-balanced dendrograms, we also assess the
balance of the dendrograms using their height. Since a
dendrogram is a binary tree, the optimal height for a graph
with n vertices is just the integer part of log

2
n; the ex-

tent to which the dendrogram height exceeds this value is
then indicative of performance shortcomings of the algo-
rithm. The random graphs considered in this section have
1000 vertices, and therefore the optimal height is 9. The
results are essentially what one would expect: SSG, which
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Table 1. Algorithm performance with model networks. Values
are computed by averaging over clustering results from 1000
realizations of the random graphs proposed by Lancichinetti
et al. [16], with default parameter settings. Results shown are
for the highest modularity clusters in the generated hierar-
chies, with the number of clusters in the partition, the cor-
responding modularity Q, the normalized mutual information
Inorm comparing the algorithm output to the known commu-
nity assignments, and the height h of the dendrogram (optimal
height would be 9). Uncertainties for the final significant dig-
its are shown parenthetically. All values in each column differ
significantly (p < 0.001).

Algorithm Clusters Q Inorm h

SSG 16.16(5) 0.7155(2) 0.8481(6) 124.1(5)
GLO 25.55(5) 0.6904(2) 0.8379(5) 38.3(1)
MSG 15.70(5) 0.5673(5) 0.6457(8) 11.94(2)

does not attempt to favor merges leading to balanced den-
drograms, produces the tallest dendrograms on average;
MSG, which aggressively makes concurrent merges, pro-
duces the shortest dendrograms; and GLO, which makes
concurrent merges more selectively than MSG, produces
dendrograms with heights on average between those re-
sulting from SSG and MSG.

4.2 Empirical networks

Based on the model networks considered in the preced-
ing section, it appears that SSG produces the best com-
munity solutions of the three clustering algorithms con-
sidered. But we are ultimately not interested in model
networks—it is in the application to real networks that
we are concerned. In this section, we consider algorithm
performance with several commonly used empirical net-
works.

The networks considered are a network of friendships
between members of a university karate club [17]; a net-
work of frequent associations between dolphins living near
Doubtful Sound, New Zealand [18]; a network of character
co-appearances in the novel Les Misérables [19]; a network
of related purchases of political books during the 2004 U.S.
presidential election [20]; a network of word adjacency
in the novel David Copperfield [21]; a network of Amer-
ican college football games played during the Fall 2000
season[22]; a network of collaborations between jazz mu-
sicians [23]; a network of the neural connections in the C.
elegans nematode worm [24]; a network of co-authorships
for scientific papers concerning networks [21]; a network
of metabolic processes in the C. elegans nematode worm
[25]; a network of university e-mail interactions [26]; a net-
work of links between political blogs during the 2004 U.S.
presidential election[27]; a network of the western U.S.
power grid [24]; a network of co-authorships for scientific
preprints posted to the high-energy theory archive (hep-
th) [28]; a network of cryptographic keys shared among
PGP users [29]; a network of co-authorships for scien-
tific preprints posted to the astrophysics archive (astro-
ph) [28]; a network of the structure of the internet, at the

Table 2. Empirical networks under consideration. The number
of vertices n and edges m in each network are shown.

Network n m

Karate club 34 78
Dolphins 62 159
Les Misérables 77 254
Political books 105 441
Word adjacency 112 425
Football 115 615
Jazz 198 2742
C. elegans neural 297 2148
Network science 379 914
C. elegans metabolic 453 2040
Email 1133 5452
Political blogs 1222 16717
Power grid 4941 6594
hep-th 5835 13815
PGP users 10680 24316
cond-mat 1999 13861 44619
astro-ph 14845 119652
Internet 22963 48436
cond-mat 2003 27519 116181
cond-mat 2005 36458 171735

level of autonomous systems [30]; and three networks of
co-authorships for scientific preprints posted to the con-
densed matter archive (cond-mat), based on submissions
beginning in 1995 and continuing through 1999, 2003,
and 2005 [28]. Several networks feature weighted or di-
rected edges; we ignore these, treating all networks as un-
weighted, undirected simple graphs. Not all of the net-
works are connected; we consider only the largest con-
nected component from each network. The networks vary
considerably in size, with the number of vertices n and
number of edges m spanning several orders of magnitude
(Table 2).

We apply SSG, MSG, and GLO clustering algorithms
to each of the empirical networks. In Table 3, we show
properties of the clusterings produced by each of the algo-
rithms. The properties of the community solutions differ
notably from those for the random model networks. The
number of clusters produced by GLO clustering no longer
exceeds those for SSG and MSG clustering. Instead, the
three algorithms produce similar numbers of clusters for
the smaller networks, with the SSG algorithm yielding so-
lutions with the greatest number of clusters for the largest
networks. As well, the GLO algorithm tends to produce
the greatest modularity values, exceeding the other ap-
proaches for 15 of the 20 empirical networks considered,
including all of the larger networks.

The dendrograms produced for the empirical networks
parallel those for the random networks. The dendrograms
resulting from the SSG algorithm are the tallest, those
from the GLO algorithm are second, and those from MSG
the shortest. The SSG algorithm often produces dendro-
grams far taller than the ideal for a graph with a given
number n of vertices.

The differences between the dendrograms suggests the
abundant presence of locally optimal edges in the empir-
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Table 3. Comparative performance of agglomerative clustering algorithms. For each network and each algorithm, shown are
the number of clusters found, the modularity Q, and the dendrogram height h. Additionally shown for h is the minimum height
for a dendrogram for the network.

Network Clusters Q h

SSG GLO MSG SSG GLO MSG SSG GLO MSG min
Karate club 3 4 4 0.381 0.387 0.381 9 10 8 6
Dolphins 4 3 4 0.495 0.491 0.492 18 10 7 6
Les Misérables 5 6 6 0.501 0.556 0.536 21 13 11 7
Political books 4 5 4 0.502 0.524 0.506 48 18 8 7
Word adjacency 7 7 8 0.295 0.289 0.252 23 13 8 7
Football 7 8 5 0.577 0.564 0.487 27 14 8 7
Jazz 4 4 4 0.439 0.424 0.363 65 33 10 8
C. elegans neural 5 6 5 0.372 0.388 0.333 110 35 17 9
Network science 19 18 16 0.838 0.843 0.836 47 18 13 9
C. elegans metabolic 11 10 9 0.404 0.428 0.400 121 43 13 9
Email 14 11 10 0.510 0.553 0.487 333 60 16 11
Political blogs 11 7 10 0.427 0.420 0.406 631 316 77 11
Power grid 40 41 39 0.934 0.935 0.930 79 35 27 13
hep-th 76 56 51 0.791 0.815 0.794 816 82 28 13
PGP users 176 120 95 0.855 0.874 0.860 904 181 139 14
cond-mat 1999 165 77 71 0.764 0.827 0.801 2005 115 40 14
astro-ph 138 51 38 0.622 0.708 0.642 3576 279 60 14
Internet 43 32 28 0.630 0.653 0.644 3517 1635 1209 15
cond-mat 2003 316 81 67 0.671 0.740 0.690 5893 297 90 15
cond-mat 2005 472 77 70 0.646 0.704 0.645 6857 570 119 16
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Fig. 2. Number of locally optimal edges. For the astro-ph net-
work, we show the number of locally optimal edges that are
candidate merges at each iteration of the algorithm. As the
algorithm is not always able to merge all the candidates, also
shown are the actual number of merges made at each iteration.
For comparison, we also show, for the SSG algorithm, the num-
ber of locally optimal edges that would be candidate merges
in GLO clustering.

ical networks. We verify this by counting the number of
candidate merges in the network for each iteration of the
GLO and SSG algorithms. In Fig. 2, we show the number
of candidate merges for the astro-ph network; the other
empirical networks show similar trends.

We additionally applied the local clustering scheme de-
scribed in section 3.3, expanding the clusters found for the

empirical network. In each case, some or all of the clusters
are expanded (Table 4), leading to overlapping communi-
ties. As a measure of the degree of cluster expansion, we
define a size ratio R as

R =
1

n

∑

c

nc , (18)

where nc is the number of vertices in the expanded cluster
c. The size ratio equals the expected number of clusters
in which a vertex is found. Values of R for the empirical
networks are given in the final column of Table 4.

The clusters do not expand uniformly. We illustrate
this in Fig. 3 using the astro-ph network. In this represen-
tative example, numerous clusters expand only minimally
or not at all, while others increase in size dramatically.

5 Conclusion

We have described a new agglomerative hierarchical clus-
tering strategy for detecting high-modularity community
partitions in networks; we call this GLO clustering, for
greedy, local optimality clustering. At the core of the ap-
proach is a locally optimality criterion, where merging two
communities c and c′ is locally optimal when no better
merge is available to either c or c′. The cluster hierarchy
is then formed by concurrently merging locally optimal
community pairs that increase modularity, repeating this
until no further modularity increases are possible. As all
decisions on which communities to merge are based on
purely local information, a natural counterpart strategy
exists for local clustering.
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Table 4. Cluster expansion using hybrid algorithm, consisting
of the GLO clustering algorithm followed by expansion using
the local clustering algorithm. Shown are the number of clus-
ters found in the GLO stage, the number of those clusters that
increase in size in the local clustering stage, and the size ratio
R showing an average expansion.

Network Clusters Expanded R

Karate club 4 1 1.18
Dolphins 3 1 1.02
Les Misérables 6 4 1.38
Political books 5 5 1.97
Word adjacency 7 6 1.31
Football 8 7 1.43
Jazz 4 4 1.51
C. elegans neural 6 6 2.33
Network science 18 11 1.33
C. elegans metabolic 10 9 1.96
Email 11 11 2.64
Political blogs 7 3 1.01
Power grid 41 23 1.01
hep-th 56 45 4.48
PGP users 120 43 2.37
cond-mat 1999 77 61 6.83
astro-ph 51 45 8.20
Internet 32 22 2.45
cond-mat 2003 81 63 9.39
cond-mat 2005 77 58 8.31
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Fig. 3. Expansion of communities with hybrid algorithm, con-
sisting of the GLO clustering algorithm followed by expansion
using the local clustering algorithm. Each point corresponds
to a single cluster, with the location showing the number of
vertices in the cluster as determined in the GLO stage and
after the local clustering stage. The line shown indicates no
expansion; all points necessarily lie on or above the line.

The motivation for GLO clustering was to improve
the computational performance and result quality of com-
munity identification by favoring the formation of a bet-
ter hierarchy. The performance improvements have been
largely achieved. The hierarchical structure, as encoded in
the dendrogram, is considerably better balanced than that
produced by SSG clustering, with corresponding improve-

ments in computational performance observed for both
model and empirical networks. The hierarchies produced
by GLO clustering are moderately worse than those pro-
duced by MSG clustering, which is far more aggressive
about making merges.

In terms of the modularity of the community solutions,
the best results are found for the model networks using
SSG clustering. But the results with the model are not
borne out in reality—the highest modularity solution is
found with GLO clustering for fifteen of the twenty empir-
ical networks considered, including the eight largest net-
works.

Overall, the local optimality condition proposed in this
paper appears to be a good basis for forming clusters. We
can gain some insight into this from the local clustering
algorithm. For each of the empirical networks considered
here, there is some overlap of the communities, with sev-
eral networks showing a great deal of community overlap.
The borders between communities are then not entirely
well defined, with the membership of particular vertices
depending on the details of the sequence of merges per-
formed in partitioning the vertices. The concurrent build-
ing of communities in GLO clustering seems to allow suit-
able cores of communities to form, with the local optimal-
ity condition providing a useful basis for identifying those
cores.

Several directions for future work seem promising. First,
the local clustering algorithm described in section 3.3 has
worst-case time complexity O

(

n3
)

and is thus unsuited
to investigation of large networks; a reconsideration of the
local algorithm may lead to a method suited to a broader
class of networks. Second, we observe that nothing about
GLO clustering requires that it be used with modular-
ity, so it may prove beneficial to apply GLO clustering
to community quality measures for specialized classes of
networks (e.g., bipartite networks [31]) or to quality mea-
sures based on substantially different assumptions than
modularity (e.g., ratio association [32] or the map equa-
tion [33]). Finally, we note that GLO clustering need not
be used with networks at all; application to broader classes
of data analysis could thus be explored, developing GLO
clustering into a general tool for classifying data into an
informative hierarchy of clusters.

This work has been partly funded by the Austrian Science
Fund (FWF): [I 886-G11] and the Multi-Year Research Grant
(MYRG) Level iii (RC Ref. No. MYRG119(Y1-L3)-ICMS12-
HYJ) by the University of Macau.
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