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Abstract A known approach to optimization is the cyclic (or alternating or block
coordinate) method, where the full parameter vector is divided into two or more sub-
vectors and the process proceeds by sequentially optimizing each of the subvectors,
while holding the remaining parameters at their most recent values. One advantage of
such a scheme is the preservation of potentially large investments in software, while
allowing for an extension of capability to include new parameters for estimation.
A specific case of interest involves cross-sectional data that is modeled in state–space
form, where there is interest in estimating the mean vector and covariance matrix of
the initial state vector as well as certain parameters associated with the dynamics of
the underlying differential equations (e.g., power spectral density parameters). This
paper shows that, under reasonable conditions, the cyclic scheme leads to parame-
ter estimates that converge to the optimal joint value for the full vector of unknown
parameters. Convergence conditions here differ from others in the literature. Further,
relative to standard search methods on the full vector, numerical results here suggest
a more general property of faster convergence for seesaw as a consequence of the
more “aggressive” (larger) gain coefficient (step size) possible.
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1 Introduction

A known method for optimization is the cyclic (also called alternating or block coor-
dinate) approach, where the full parameter vector is divided into two or more subvec-
tors and the process proceeds by sequentially optimizing the criterion of interest with
respect to each of the subvectors while holding the other subvectors fixed. One ap-
plication of such a method arises in system identification for state–space (dynamical)
models, where it is sometimes the case that models are modified to include unknown
parameters that may not have been present in an original implementation or that may
have been assumed known. For example, in the author’s work on a defense system,
there has long been interest in estimating the mean vector and covariance matrix for
the initial state in a state–space model (e.g., Shumway et al. [1]; Sun [2]). An ex-
tensive suite of software has been developed to carry out the estimation based on
multiple tests for the system; this sophisticated software produces physically mean-
ingful estimates (i.e., the estimates meet constraints) in an efficient, numerically sta-
ble manner. More recently, there has been a need to extend the estimation setting to
include unknown parameters associated with the dynamical parameters in the under-
lying state–space models. There is strong interest in developing methods that preserve
the substantial investment in software for estimating only the mean vector and covari-
ance matrix, while allowing for an extension to include dynamical parameters. More
generally, this paper provides the theoretical foundation for the cyclic approach to
such joint estimation in arbitrary identification and optimization problems.

Because our focus is on the division of the full parameter vector into two subvec-
tors, we sometimes refer to the resulting back-and-forth cyclic process as a “seesaw”
process. This contrasts with traditional methods of directly optimizing the full set
of all relevant parameters. The seesaw process represents a form of cyclic optimiza-
tion. The method applies as well to a portioning of the full vector into three or more
subvectors. Our discussion is in the context of minimization and associated loss func-
tions.

2 Background and Related Literature

Let θ be a p-dimensional vector representing the unknown parameters to be estimated
and L = L(θ) be the loss function to be minimized (e.g., a negative log-likelihood
function). According to the seesaw estimation, we represent θ as composed of two
subvectors θ (1) and θ (2):

θ =
(

θ (1)

θ (2)

)
.

Iteration by iteration, the subvector θ (1) is estimated based on the most recent value
of θ (2) and, likewise, θ (2) is estimated based on the most recent value of θ (1). Thus,
there are two subiterations in each full iteration of seesaw, with each subiteration
corresponding to the update of θ (1) or θ (2). In the application of interest for the author,
θ (1) represents all parameters associated with the mean vector and covariance matrix
for the initial state in a state–space model and θ (2) represents the power spectral
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density parameters that enter the process noise covariance matrix (see Sect. 4). We
are using the more general θ (1) and θ (2) notation because the results are not restricted
to this specific allocation of parameters.

A fundamental issue in justifying the seesaw estimation process is the question
of convergence. The method cannot be blindly applied without carefully consider-
ing conditions for convergence, as demonstrated in the simple counterexample in
Achtziger [3]. In particular, consider the linear programming problem of minimizing
θ(1) + 2θ(2) subject to θ(1) + θ(2) = 1, where θ(1) and θ(2) are two nonnegative scalar
parameters. At the feasible point θ = (0,1)T (superscript T is transpose), it is not
possible to change either of θ(1) or θ(2) (separately) to reduce L. Hence, the method
would be stuck at the suboptimal loss L(θ) = 2, not being able to reach L(θ∗) = 1 at
θ∗ = (1,0)T . Another simple counterexample (suggested by a reviewer of this paper)
is a bilinear problem, where the loss function to be minimized is a product of two
scalar parameters, θ(1) and θ(2), on the domain [−1,1]× [−1,1]. When θ(1) = 0 and
θ(2) = 0, it is not possible to change either parameter alone to reduce the loss func-
tion toward its minimum of −1; hence, the seesaw process can get stuck. We present
a theorem and supporting corollaries below that preclude such counterexamples and
give sufficient conditions for convergence to an optimum.

Note that the seesaw idea is a generalization of a known method within nonlin-
ear programming (sometimes called the Gauss–Seidel method), where a parameter
vector is sequentially optimized along each linearly independent coordinate direction
(Bazaraa et al. [4, pp. 254–255]; Miller [5, pp. 256–257]). However, it was found
that the theory associated with this coordinate-wise method was of little use in show-
ing convergence for the seesaw method here because of our interest in working with
groups of parameters, not necessarily linearly independent between groups. Others
have considered convergence for the cyclic scheme. For example, Bezdek and Hath-
away [6] consider a partitioning of θ into two or more subvectors and show a q-linear
convergence rate when the loss function is strictly convex and twice differentiable (q-
linear convergence implies that iterate error drops at a rate at least as fast as q times
the error in the previous iterate, 0 < q < 1; see Bazaraa et al. [4, pp. 257–258]). Tseng
[7] considers convergence to a stationary, but not necessarily minimum, point for loss
functions that include a nondifferentiable and separable contribution (usually added
to a nonseparable differentiable contribution). Bertsekas [8, Sect. 2.7] shows conver-
gence to a stationary point for continuously differentiable loss functions when it is
possible to fully (and uniquely) minimize the loss in terms of each of the subvectors.
Konno [9], Alarie et al. [10], and Audet et al. [11] present convergence results for
the cyclic scheme with two subvectors, as emphasized here, when applied to bilinear
models having the form θ (1)T Aθ (2) + linear part, where A is an appropriately dimen-
sioned rectangular matrix and the “linear part” includes linear functions of θ (1), θ (2)

(Audet et al. [11] also allows for a third parameter vector that is optimized at each
subiteration to be included in the seesaw process). An especially appealing aspect
of the application of seesaw to bilinear problems is that the two subiterations reduce
to linear programming problems. We present some global convergence theory under
conditions different than those above.

Let us mention several applications of the cyclic idea. Lee and Park [12] demon-
strate numerical convergence and high efficiency, relative to the powerful Levenberg–
Marquardt algorithm, for a problem in classification and computer vision. There
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have also been applications of the cyclic optimization idea in the context of the
expectation-maximization (EM) method for finding maximum likelihood parameter
estimates. For example, an approach having some resemblance to the seesaw method
is the SAGE method for maximum likelihood estimation (Fessler and Hero [13]).
SAGE is based on dividing the overall parameter vector in the “M” step of EM into
two parts for carrying out the optimization. One distinction between SAGE and the
seesaw method is that seesaw applies to arbitrary loss functions, including those that
are not a likelihood function and/or those for which the EM method is not being used
for carrying out the optimization. Likewise, Haaland et al. [14], use the cyclic idea
(with four subvectors) to carry out the “M” step in the context of parameter estima-
tion for multivariate Gaussian autoregressive hidden Markov models as applied to
a problem in temperature control for a large data center and Fessler et al. [15] use
the cyclic idea for medical image reconstruction for a class of penalized likelihood
problems.

Before proceeding with the main results, let us introduce some notation and basic
concepts associated with the identification problem of interest. A formal representa-
tion of the parameter estimation problem of interest here is to find the set:

Θ∗ := arg min
θ∈Θ

L(θ) := {
θ∗ ∈ Θ : L(

θ∗) ≤ L(θ) for all θ ∈ Θ
}
,

where Θ ⊆ R
p represents the possible values for θ (i.e., the constraint set for θ ).

We assume that at least one minimum θ∗ exists; that is, Θ∗ is nonempty. The vector
elements θ∗ ∈ Θ∗ ⊆ Θ are equivalent solutions in the sense that they yield identical
values of the loss function. In practice, it is usually sufficient to identify just one
element of Θ∗. Note that the minimization problem above is well defined when, for
example, Θ is compact and L is continuous because it is known that at least one θ∗
exists such that L(θ∗) = minθ∈Θ L(θ) (Polak [16, p. 655]).

3 Algorithm and Convergence Analysis

3.1 Seesaw Algorithm

The estimate at iteration k in the seesaw approach has the form

θ̂k :=
(

θ̂
(1)

k

θ̂
(2)

k

)
,

with θ̂
(1)

k a function of θ̂k−1, and θ̂
(2)

k a function of θ̂
(1)

k and θ̂
(2)

k−1. The value θ̂0
represents an initial guess for θ . It is assumed that the seesaw process satisfies the
following relationship:

L(θ̂k+1) ≤ L
(
θ̂

(1)

k+1, θ̂
(2)

k

) ≤ L(θ̂k) (1)

for all k. Further, θ̂
(1)

k+1 �= θ̂
(1)

k or θ̂
(2)

k+1 �= θ̂
(2)

k only if there is strict reduction in the loss

function in stage 1 or 2, respectively, of the seesaw process. Thus, overall, θ̂k+1 �= θ̂k

only if

L(θ̂k+1) < L(θ̂k). (2)
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(In practice, checking (1) and (2) requires evaluations of L that are not formally
needed in standard implementations of gradient-based methods such as steepest
descent, Newton–Raphson, EM, or scoring; see, e.g., Bazaraa et al. [4, Chap. 8];
Spall [17, Chap. 1]; Ng et al. [18]; and Levy [19].) Let L∗ = L(θ∗) for θ∗ ∈ Θ∗.
As in the notation and ordering of operations in (1), we let the per-iteration min-
ima for each of θ (1) and θ (2) be denoted by θ

∗(1)
k and θ

∗(2)
k , respectively. That

is, θ
∗(1)
k = arg minθ (1) L(θ (1), θ̂

(2)

k−1) and θ
∗(2)
k = arg minθ (2) L(θ̂

(1)

k , θ (2)). Therefore,

θ
∗(1)
k is a function of θ̂

(2)

k−1 while θ
∗(2)
k is a function of θ̂

(1)

k .
More formally, the seesaw process can be described according to the following

steps:

Step 0: Set k = 0 and choose initial condition θ̂0.
Step 1a: From θ̂k , determine a candidate value of θ (1) from whatever search algo-

rithm is being used. Set θ̂
(1)

k+1 = θ (1) if L(θ (1), θ̂
(2)

k ) < L(θ̂k); else set θ̂
(1)

k+1 = θ̂
(1)

k .

Step 1b: From θ̂
(1)

k+1, θ̂
(2)

k , determine a candidate value of θ (2) from whatever search

algorithm is being used. Set θ̂
(2)

k+1 = θ (2) if L(θ̂
(1)

k+1, θ
(2)) < L(θ̂

(1)

k+1, θ̂
(2)

k ); else set

θ̂
(2)

k+1 = θ̂
(2)

k .
Step 2: Replace k with k + 1 and go to Step 1a; terminate as appropriate.

3.2 Convergence Analysis

An important issue in this partial decoupling of the estimation process is the question
of convergence: Under what conditions does the seesaw estimation process lead to
convergence of the loss L(θ̂k) and/or estimate θ̂k to the corresponding optimal L or
θ as the number of iterations in the estimation process increase? We now present a
theorem and supporting corollaries that gives sufficient conditions for convergence.

Theorems 3.1 and 3.2 below consider the convergence of L(θ̂k) and θ̂k for con-
tinuous, but not necessarily differentiable, loss functions. Theorem 3.2 gives a more-
checkable special case of a main condition in Theorem 3.1. Corollary 3.1 pertains
to continuously differentiable loss functions that are pseudoconvex (e.g., Bazaraa et
al. [4, pp. 113–115]; Miller [5, p. 558]). Pseudoconvexity is a significant generaliza-
tion of convexity to include functions that do not have the classical “bowl shape.”
However, as with convexity, pseudoconvex functions have the property that if the
loss function gradient g(θ) = 0 at some point θ , then this θ corresponds to a global

minimum θ∗. The loss function is pseudoconvex iff for each θ̄ , ¯̄θ ∈ Θ ,

L( ¯̄θ) < L(θ̄) implies g(θ̄)T ( ¯̄θ − θ̄) < 0, (3)

where Θ is a convex set. Note that pseudoconvexity does not guarantee uniqueness of
the global minimum. However, under stronger conditions of strict pseudoconvexity,

θ∗ is unique (L is strictly pseudoconvex iff for each distinct θ̄ , ¯̄θ ∈ Θ , L( ¯̄θ) ≤ L(θ̄)

implies g(θ̄)T ( ¯̄θ − θ̄) < 0; see, e.g., Bazaraa et al. [4, pp. 112 and 116]). Corollar-
ies 3.3 and 3.4 generalize the two-stage seesaw process to an M-stage process, where
θ is divided into M subvectors, 2 ≤ M ≤ p.
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Theorem 3.1 Suppose that Θ is a compact, convex set and that L(θ) is continuous
on Θ . Suppose that at any θ ∈ Θ with θ �∈ Θ∗, it is possible to change at least one of
θ (1) or θ (2) to yield a reduction in L and that the two-stage algorithm with properties
(1) and (2) reduces L with respect to θ (1) or θ (2) in the sense that at least one of (4a)
or (4b) holds for each k = 0,1,2, . . .:

L
(
θ̂

(1)

k+1, θ̂
(2)

k

) ≤ L
(
θ

∗(1)
k+1, θ̂

(2)

k

) + α
(1)
k if θ (1) is changed or (4a)

L
(
θ̂

(1)

k+1, θ̂
(2)

k+1

) ≤ L
(
θ̂

(1)

k+1, θ̂
∗(2)

k+1

) + α
(2)
k if θ (2) is changed, (4b)

where the sequences α
(1)
k and α

(2)
k are nonnegative and converge to 0. Then

L(θ̂k) → L∗ as k → ∞. (5)

Further, if θ∗ is unique (i.e., Θ∗ is the singleton θ∗), then

θ̂k → θ∗ as k → ∞. (6)

Remark 3.1 While (2) and the finite lower bound on L ensure that some limiting point
L′ exists (as used in the proof of Theorem 3.1 below), those two conditions alone are
not sufficient to guarantee that L′ = L∗. For example, if −∞ < L∗ < −2, L(θ̂k+1) =
L(θ̂k) − 1/2k , and L(θ̂0) = 0, then (2) is satisfied, but L′ = −∑∞

k=0 1/2k = −2 �=
L∗.

Remark 3.2 By the reduction property in (1) and (2), we have 0 ≤ α
(1)
k ≤ L(θ̂k) −

L(θ
∗(1)
k+1, θ̂

(2)

k ) and 0 ≤ α
(2)
k ≤ L(θ̂

(1)

k+1, θ̂
(2)

k ) − L(θ̂
(1)

k+1, θ̂
∗(2)

k+1).

Proof Because L is continuous and Θ is bounded, we have L∗ > −∞. Further,
L(θ̂k) is monotonically nonincreasing by (1), implying that limk→∞L(θ̂k) exists
(e.g., Apostol [20, p. 185]). Let L′ be the limiting point (i.e., limk→∞L(θ̂k) = L′).
Let us prove that L′ = L∗ (i.e., (5) holds). Because Θ is a bounded set, there ex-
ists a convergent subsequence {θ̂kj

} as j → ∞ (Fleming [21, p. 47]). Further, by the

convergence of L(θ̂k) and continuity of L on the compact set Θ , we know that the
limiting point for this subsequence is some θ ′ ∈ Θ such that L(θ ′) = L′. We show
L′ = L∗ by demonstrating that a contradiction results when L′ > L∗.

Consider the point θ ′ (θ ′ is apportioned according to θ ′(1), θ ′(2) corresponding to
the first- and second-stage parameters θ (1), θ (2)). Because L(θ ′) > L∗, it is known
by assumption that a change in at least one of θ ′(1) or θ ′(2) will reduce L. Sup-
pose that a change applied to θ ′(1) reduces L. Hence, there exists a point θ ′′ ≡
((θ ′′(1))T , (θ ′(2))T )T and ε > 0 such that L(θ ′)−L(θ ′′) ≥ ε. Let �(1) ≡ θ ′′(1) − θ ′(1).
The continuity of L implies that for all 0 < ε0 < ε there exists an N(ε0) > 0 such
that ∣∣L(

θ̂
(1)

kj
+ �(1), θ̂

(2)

kj

) − L
(
θ ′′)∣∣ ≤ ε0 (7)

for all j ≥ N(ε0). Hence, from (7),

L
(
θ ′) − L

(
θ̂

(1)

kj
+ �(1), θ̂

(2)

kj

) = [
L

(
θ ′) − L

(
θ ′′)] + [

L
(
θ ′′) − L

(
θ̂

(1)

kj
+ �(1), θ̂

(2)

kj

)]
≥ ε − ε0

> 0 (8)
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for all j ≥ N(ε0). However, by the guaranteed reduction property of the algorithm in
(4a), it is known that at any j ≥ N(ε0)

L
(
θ̂

(1)

kj +1, θ̂
(2)

kj

) ≤ L
(
θ

∗(1)
kj +1, θ̂

(2)

kj

) + α
(1)
kj

≤ L
(
θ̂

(1)

kj
+ �(1), θ̂

(2)

kj

) + α
(1)
kj

≤ L′ − ε + ε0 + α
(1)
kj

, (9)

where we have used (8) to obtain the last inequality. By the fact that α
(1)
k → 0, it

follows that there exists an integer N1 such that α
(1)
k < ε − ε0 for all k ≥ N1. Taking

j ≥ max{N1,N(ε0)}, we have

L(θ̂kj +1) < L′. (10)

The monotonicity of (1) leads to a contradiction of (10) with limk→∞L(θ̂k) = L′ >

L(θ∗). Based on assumption (4b), analogous reasoning applies for a change applied
to θ ′(2) that reduces L. Hence, it has been shown that (5) is true.

Let us now show (6). Suppose by contradiction that (6) is not true. That is, there
exists a subsequence {θ̂kj

} such that ‖θ̂kj
− θ∗‖ ≥ η for some η > 0 and all j =

0,1,2, . . . . By the boundedness of Θ , there exists a subsequence of {θ̂kj
} (i.e., a sub-

subsequence of {θ̂k}) converging to some point θ ′′′ ∈ Θ such that ‖θ̂ ′′′ − θ∗‖ ≥ η

(Fleming [21, p. 47]). By the continuity of L on Θ , it is known that L(θ ′′′) exists
and, because θ∗ is unique, L(θ ′′′) > L(θ∗). Hence, the associated sub-subsequence
of L(θ̂k) converges to L(θ ′′′) > L(θ∗), which violates (5), indicating that (6) must be
true. �

Theorem 3.2 below presents the same convergence conclusions under alternative
conditions to (4a, 4b). These conditions may be more checkable in some cases. In
particular, the alternative conditions below imply that at each iteration the search is
reducing L by at least some fixed fraction 0 < γ ≤ 1 of the possible improvement
in the direction of at least one of the parameter subvectors θ (1) or θ (2). For example,
if γ = 0.1, then it is known that the search will always yield an improvement of at
least 10 percent of the maximum possible improvement in at least one of the two
subvectors. If γ = 1, then the search is such that L is minimized in at least one of
θ (1) or θ (2) at each iteration, corresponding to one of the conditions in the above-
mentioned convergence result in Bertsekas [8, Sect. 2.7].

Theorem 3.2 Suppose that all conditions of Theorem 3.1 hold except that (4a) and
(4b) are replaced by

L(θ̂k) − L(θ̂
(1)

k+1, θ̂
(2)

k )

L(θ̂k) − L(θ
∗(1)
k+1, θ̂

(2)

k )

≥ γ if θ (1) is changed or (11a)

L(θ̂
(1)

k+1, θ̂
(2)

k ) − L(θ̂
(1)

k+1, θ̂
(2)

k+1)

L(θ̂
(1)

k+1, θ̂
(2)

k ) − L(θ̂
(1)

k+1, θ
∗(2)
k+1)

≥ γ if θ (2) is changed, (11b)

where 0 < γ ≤ 1. Then the conclusions shown in (5) and (6) hold.
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Proof The proof follows exactly as in Theorem 3.1 with the exception of replacing
the statement at (9) by the fact that the guaranteed reduction property of the algorithm
in (4a) implies that at any j ≥ N(ε0)

L
(
θ̂

(1)

kj +1, θ̂
(2)

kj

) ≤ γ
[
L

(
θ

∗(1)
kj +1, θ̂

(2)

kj

) − L(θ̂kj
)
] + L(θ̂kj

)

≤ γ
[
L

(
θ̂

(1)

kj
+ �(1), θ̂

(2)

kj

) − L(θ̂kj
)
] + L(θ̂kj

)

= γL
(
θ̂

(1)

kj
+ �(1), θ̂

(2)

kj

) + (1 − γ )L(θ̂kj
). (12)

Hence, by the convergence of L(θ̂kj
), it is known that for any ε1 satisfying 0 <

ε1 < γ (ε − ε0)/(1 − γ ) (ε1 < ∞ when γ = 1), there exists an N1(ε1) > 0 such
that L(θ̂kj

) − L′ ≤ ε1 for all j ≥ N1(ε1). Using (8) in (12) implies that for all j ≥
max{N1(ε1),N(ε0)},

L
(
θ̂

(1)

kj +1, θ̂
(2)

kj

) ≤ γ
(
L′ − ε + ε0

) + (1 − γ )
(
L′ + ε1

)
= L′ + γ (−ε + ε0) + (1 − γ )ε1

< L′.

The remainder of the proof proceeds exactly as below (10). �

Note that a sequence satisfying conditions (11a, 11b) of Theorem 3.2 also satisfies
(4a, 4b) Theorem 3.1. That is, any seesaw sequence that satisfies the assumptions of
Theorem 3.2 will give rise by the proof of Theorem 3.2 to a sequence L(θ̂k) → L∗. It

follows easily from this result that the sequences L(θ
∗(1)
k+1, θ̂

(2)

k ) and L(θ̂
(1)

k , θ
∗(2)
k+1) also

converge to L∗ and, therefore, that the sequences L(θ̂k)−L(θ
∗(1)
k+1, θ̂

(2)

k ) and L(θ̂k)−
L(θ̂

(1)

k , θ
∗(2)
k+1) converge to 0. Hence, taking α

(1)
k = (1 + γ )[L(θ̂k) − L(θ

∗(1)
k+1, θ̂

(2)

k )]
and α

(2)
k = (1 + γ )[L(θ̂k) − L(θ̂

(1)

k , θ
∗(2)
k+1)] we see that the seesaw sequence does

indeed satisfy (4a, 4b) of Theorem 3.1. Note, however, that this choice of α
(1)
k and

α
(2)
k merely establishes the existence of at least one sequence satisfying (4a, 4b),

which is not a practical a priori choice of α
(1)
k and α

(2)
k because it requires that the

values of L during the search be known in advance.
The corollary below shows that pseudoconvexity is sufficient to satisfy the key

condition in Theorems 3.1 and 3.2 requiring that it be possible to change one of θ (1)

or θ (2) to yield a reduction in L at any θ �∈ Θ∗. Let g(m)(·) = ∂L/∂θ (m), m = 1
or 2. For some conditions relative to the behavior on the boundary of Θ , we need
to refer to subvectors of θ (1) or θ (2) (sub-subvectors of θ ). In particular, it is as-
sumed that there exists a partitioning of each of θ (m) into distinct sub-subvectors
θ (m;j), j = 1,2, . . . , n(m), such that θ (m) = (θ (m;1)T , . . . , θ (m;n(m))T )T for m = 1
or 2. Two important special cases are when the sub-subvectors are the p coordinates
of θ (each subvector of θ (m) corresponds to one component of θ (m)) and when the
sub-subvectors are the full subvectors themselves (i.e., there are two sub-subvectors,
each corresponding to a θ (m)). We let θ ′(m;j) and θ∗(m;j) denote the corresponding
sub-subvectors of an arbitrary θ ′ ∈ Θ and of an arbitrary θ∗ ∈ Θ∗.
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Corollary 3.1 Suppose that Θ is a compact, convex set and that L(θ) is a pseudo-
convex function with continuous gradient g(θ) on Θ . Further, suppose that at any θ

on the boundary of Θ , there exists a partitioning of each of θ (m),m = 1 or 2, into
distinct sub-subvectors θ (m;j) (see above) such that it is possible to make a nonzero
change in each sub-subvector along the line segment connecting θ ′(m;j) and θ∗(m;j),
with other components of θ held fixed, such that the new point θ lies in Θ . Then, at
any θ ∈ Θ with θ �∈ Θ∗, there exists a change in at least one of θ (1) or θ (2) that yields
a reduction in L.

Proof It is sufficient to show that at an arbitrary θ ′ ∈ Θ with θ ′ �∈ Θ∗, a change to at
least one of θ ′(1) or θ ′(2) yields a reduction in L. Because L(θ ′) > L∗, it is known by
the fundamental property of pseudoconvexity, (3), that g(θ ′)T (θ∗ − θ ′) < 0 for any
θ∗ ∈ Θ∗. For an arbitrary θ∗ ∈ Θ∗, this implies g(m)(θ ′)T (θ∗(m) − θ ′(m)) < 0 for at
least one of m = 1 or 2, where θ∗(m) denotes the mth subvector of θ∗. Let us examine
the effect on L of changes in the mth subvector of θ .

If int(Θ) (the interior of Θ) is nonempty and if θ ′ ∈ int(Θ), then both θ ′ ±δer ∈ Θ

for all sufficiently small δ > 0, where er is a vector with a one in the r th com-
ponent and zeroes elsewhere. Because g(θ ′)T (θ∗ − θ ′) < 0 for any θ∗ ∈ Θ∗, it is
known that gr(θ

′)(t∗r − t ′r ) < 0 for at least one r ∈ {1,2, . . . , p}, where gr(·) is
the r th component of g(·) and t∗r and t ′r are the r th components of θ∗ and θ ′, re-
spectively. For θ ′ ∈ int(Θ), it is known by the continuity of g(·) and convexity of
Θ that gr(θ

′ ± λδer )(t
∗
r − t ′r ) < 0 for all 0 ≤ λ ≤ 1 and sufficiently small δ > 0.

Hence, because t∗r �= t ′r at the given r , the mean-value theorem implies that there
exist 0 ≤ λ(±) ≤ 1 and δ(±) > 0 such that

L
(
θ ′) − L

(
θ ′ + δ(+)er

) = −gr

(
θ ′ + λ(+)δ(+)er

)
δ(+) > 0 if t∗r > t ′r ,

L
(
θ ′) − L

(
θ ′ − δ(−)er

) = gr

(
θ ′ − λ(−)δ(−)er

)
δ(−) > 0 if t∗r < t ′r .

(13)

For θ ′ on the boundary of Θ , it is known that there exists a partition of each
subvector, θ ′(1) and θ ′(2), such that a change in each sub-subvector in the direction of
the corresponding sub-subvector of θ∗, with other components of θ ′ remaining fixed,
produces a new value of θ that lies in Θ (in contrast to θ ′ ∈ int(Θ), it is possible that
no θ ′ ± δer lie in Θ). Because g(m)(θ ′)T (θ∗(m) − θ ′(m)) < 0 for at least one of m = 1
or 2, it is known that g(m;j)(θ ′)T (θ∗(m;j) −θ ′(m;j)) < 0 for at least one sub-subvector,
where g(m;j) = ∂L/∂θ (m;j). Suppose a change is made to such a sub-subvector along
the line segment connecting θ ′(m;j) and θ∗(m;j) with all other components of θ held
at their values in θ ′. That is, a change to θ ′ is made that is proportional to �(m;j) :=
(0,0, . . . ,0, (θ∗(m;j) − θ ′(m;j))T ,0, . . . ,0)T . The mean-value theorem and continuity
of g(m;j) imply that there exist a 0 ≤ λ ≤ 1 and sufficiently small δ > 0 such that

L
(
θ ′) − L

(
θ ′ + δ�(m;j)

) = −δg(m;j)
(
θ ′ + λδ�(m;j)

)T (
θ∗(m;j) − θ ′(m;j)

)
> 0,

(14)

where the convexity of Θ ensures that both θ ′ + δ�(m;j) and θ ′ + λδ�(m;j) lie in Θ .
Hence, it is possible to change at least one of θ (1) or θ (2) to yield a reduction in L

at any point outside of Θ∗. �
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The above ideas apply directly when the two-stage seesaw process is general-
ized to an M-stage process, M ≥ 2. In particular, suppose that there are vectors
θ (1), θ (2), . . . , θ (M), each processed sequentially in the manner of the two-stage al-
gorithm (so θ is the stacked vector of θ (1), θ (2), . . . , θ (M)). That is, the vectors are
processed sequentially such that

L(θ̂k+1) ≤ · · · ≤ L
(
θ̂

(1)

k+1, θ̂
(2)

k+1, . . . , θ̂
(M)

k

) ≤ L
(
θ̂

(1)

k+1, θ̂
(2)

k , . . . , θ̂
(M)

k

) ≤ L(θ̂k)

(15)

subject to θ̂k+1 �= θ̂k only if L(θ̂k+1) < L(θ̂k). Then the obvious modifications to
the statements of Theorems 3.1 and 3.2 and Corollary 3.1 apply. In particular, Corol-
laries 3.2 and 3.3 below are direct extensions of Theorems 3.1 and 3.2, respectively,
and Corollary 3.4 is an extension of Corollary 3.1 to M-stage pseudoconvex func-
tions. We let the per-iteration minima for each of θ (m),m = 1,2, . . . ,M , be denoted
by θ

∗(m)
k . That is,

L
(
θ̂

(1)

k+1, . . . , θ̂
(m−1)

k+1 , θ
∗(m)
k+1 , θ̂

(m+1)

k , . . . , θ̂
(M)

k

)
≤ L

(
θ̂

(1)

k+1, . . . , θ̂
(m−1)

k+1 , θ (m), θ̂
(m+1)

k , . . . , θ̂
(M)

k

)

for all θ (m). So, θ
∗(m)
k+1 is a function of θ̂

(j)

k+1, j < m, and θ̂
(j)

k , j > m.

Corollary 3.2 Consider an M-stage estimation process. Suppose that Θ is a com-
pact, convex set and that L(θ) is continuous on Θ . Further, suppose that at any θ ∈ Θ

with θ �∈ Θ∗, L is such that it is possible to change at least one of θ (1), θ (2), . . . , θ (M)

to yield a reduction in L and that the M-stage algorithm reduces L with respect to
at least one of the θ (m) at each iteration in the sense that (16) holds for at least one
1 ≤ m ≤ M for each k = 0,1,2, . . .:

L
(
θ̂

(1)

k+1, . . . , θ̂
(m−1)

k+1 , θ̂
(m)

k+1, θ̂
(m+1)

k , . . . , θ̂
(M)

k

)
≤ L

(
θ̂

(1)

k+1, . . . , θ̂
(m−1)

k+1 , θ
∗(m)
k+1 , θ̂

(m+1)

k , . . . , θ̂
(M)

k

) + α
(m)
k (16)

where α
(m)
k is nonnegative and converges to 0. Then L(θ̂k) → L∗ as k → ∞. Further

if θ∗ is unique (i.e., Θ∗ is the singleton θ∗), then θ̂k → θ∗ as k → ∞.

Remark 3.3 By the reduction property in (1) and (2), restrictions analogous to those
for M = 2 in Remark 3.2 apply to the α

(m)
k .

Proof This result follows very closely along the lines of the proof of Theorem 3.1
when making the obvious modification from M = 2, as in Theorem 3.1, to general M .
First, we have an L′ such that limk→∞L(θ̂k) = L′. Then it is known that L′ = L∗ by
demonstrating that a contradiction results when L′ > L∗.

Consider the point θ ′, where θ ′ ∈ Θ is the limiting point of a subsequence such
that L(θ ′) = L′. We have that θ ′ is apportioned according to θ ′(1), θ ′(2), . . . , θ ′(M).
Because L(θ ′) > L∗, it is known by assumption that a change in at least one subvec-
tor θ ′(m) will reduce L. Suppose that a change applied to θ ′(1) reduces L. Then the
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guaranteed reduction property of the algorithm in (16) and the arguments analogous
to those in the proof of Theorem 3.1 show that for any j ≥ N(ε0) and some N , we
get the following expression similar to (9),

L
(
θ̂

(1)

kj +1, θ̂
(2)

kj
, . . . , θ̂

(M)

kj

) ≤ L
(
θ

∗(1)
kj +1, θ̂

(2)

kj
, . . . , θ̂

(M)

kj

) + α
(1)
kj

≤ L′ − ε + ε0 + α
(1)
kj

,

where 0 < ε0 < ε. Taking j ≥ N(ε0) sufficiently large so that −ε + ε0 + α
(1)
kj

< 0,

we arrive at the contradiction L(θ̂kj +1) < L′. The monotonicity of (15), therefore,

leads to a further contradiction with the result limk→∞L(θ̂k) = L′ > L(θ∗). Based
on assumption (16), analogous reasoning applies for a change applied to θ ′(m),2 ≤
m ≤ M , which reduces L. Hence, it is known that L(θ̂k) → L∗ as k → ∞. Further,
the arguments in the last paragraph of the proof of Theorem 3.1 carry over directly to
show that θ̂k → θ∗ as k → ∞. �

Corollary 3.3 Consider an M-stage estimation process. Suppose that the conditions
of Corollary 3.2 hold except that, at each iteration k, the following replacement to
(16) holds for at least one 1 ≤ m ≤ M ,

L(θ̂
(1)

k+1, . . . , θ̂
(m−1)

k+1 , θ̂
(m)

k , θ̂
(m+1)

k , . . . , θ̂
(M)

k ) − L(θ̂
(1)

k+1, . . . , θ̂
(m−1)

k+1 , θ̂
(m)

k+1, θ̂
(m+1)

k , . . . , θ̂
(M)

k )

L(θ̂
(1)

k+1, . . . , θ̂
(m−1)

k+1 , θ̂
(m)

k , θ̂
(m+1)

k , . . . , θ̂
(M)

k ) − L(θ̂
(1)

k+1, . . . , θ̂
(m−1)

k+1 , θ
∗(m)
k+1 , θ̂

(m+1)

k , . . . , θ̂
(M)

k )

≥ γ,

where 0 < γ ≤ 1. Then L(θ̂k) → L∗ as k → ∞. Further if θ∗ is unique (i.e., Θ∗ is
the singleton θ∗), then θ̂k → θ∗ as k → ∞.

Proof The proof is immediate following the proof of Theorem 3.2 when making the
obvious modification from M = 2 to general M ≥ 2. �

Corollary 3.4 Suppose that Θ is a compact, convex set and that L(θ) is a pseudo-
convex function with continuous gradient g(θ) on Θ . Further, suppose that at any
θ on the boundary of Θ , there exists a partitioning of each subvector θ (m),m =
1,2, . . . ,M , into distinct sub-subvectors θ (m;j), j = 1,2, . . . , n(m) (see above), such
that it is possible to make a nonzero change in each sub-subvector along the line seg-
ment connecting θ ′(m;j) and θ∗(m;j), with other components of θ held fixed, such that
the new point θ lies in Θ . Then, at any θ ∈ Θ with θ �∈ Θ∗, there exists a change in
at least one of θ (1), θ (2), . . . , θ (M) that yields a reduction in L.

Proof The proof closely follows the proof of Corollary 3.1. It is sufficient to show
that at an arbitrary θ ′ ∈ Θ with θ ′ �∈ Θ∗, a change to at least one of θ ′(1), θ ′(2), . . . ,
or θ ′(M) yields a reduction in L. Because L(θ ′) > L∗, it is known by (3) that
g(θ ′)T (θ∗ − θ ′) < 0 for any θ∗ ∈ Θ∗. For θ ′ ∈ int(Θ) and an arbitrary θ∗ ∈ Θ∗,
this implies gr(θ

′)(t∗r − t ′r ) < 0 for at least one r ∈ {1,2, . . . , p}. The mean-value
arguments associated with (13) of Corollary 3.1 now follow directly since the argu-
ments are not limited to the M = 2 case. For θ ′ on the boundary of Θ , it is known by
assumption that there exists a partition of each subvector, θ ′(m), such that a change
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in each sub-subvector in the direction of the corresponding sub-subvector of θ∗, with
other components of θ ′ remaining fixed, produces a new value of θ that lies in Θ . As
in the case above of θ ′ not on the boundary, the result to be proved then follows using
the mean-value arguments of (14) since the arguments are not limited to the M = 2
case. �

3.3 Comments on Theorem Conditions for Strictly Convex Loss Functions,
Including Use with Steepest Descent Method

Let us sketch an argument to show that the key lower bound conditions (11a, 11b) in
Theorem 3.2 are reasonable for the special case of continuously twice differentiable
strictly convex functions (recall that the theorem conditions only involve continuity,
not differentiability). The arguments here, which are “local” in the sense of being
based on Taylor expansions, are suggestive of the reasonableness of the conditions
(11a, 11b), but they do not show formally either the necessity or sufficiency of strict
convexity for (11a, 11b). Nevertheless, for small changes in the subvectors, the ar-
guments indicate that (11a, 11b) apply for certain types of algorithms, including the
steepest (gradient) descent algorithm, when applied to strictly convex loss functions.

Let us consider (11a) (arguments for (11b) follow in the same manner). Expanding

the numerator of the ratio in (11a) around θ̂
(1)

k+1 and the denominator around θ
∗(1)
k+1, we

find that the relevant ratio satisfies

L(θ̂k) − L(θ̂
(1)

k+1, θ̂
(2)

k )

L(θ̂k) − L(θ
∗(1)
k+1, θ̂

(2)

k )

= g(1)(θ̂
(1)

k+1, θ̂
(2)

k )T (θ̂
(1)

k − θ̂
(1)

k+1) + 1
2 (θ̂

(1)

k − θ̂
(1)

k+1)
T H̄

(1)
(θ̂

(1)

k − θ̂
(1)

k+1)

1
2 (θ̂

(1)

k − θ
∗(1)
k+1)

T ¯̄H (1)
(θ̂

(1)

k − θ
∗(1)
k+1)

≈ (θ̂
(1)

k − θ̂
(1)

k+1)
T H̄

(1)
(θ̂

(1)

k − θ̂
(1)

k+1)

(θ̂
(1)

k − θ
∗(1)
k+1)

T ¯̄H (1)
(θ̂

(1)

k − θ
∗(1)
k+1)

≈ (θ̂
(1)

k − θ̂
(1)

k+1)
T H̄

(1)
(θ̂

(1)

k − θ̂
(1)

k+1)

(θ̂
(1)

k − θ
∗(1)
k+1)

T H̄
(1)

(θ̂
(1)

k − θ
∗(1)
k+1)

, (17)

where H̄
(1)

and ¯̄H (1)
represent the upper left blocks, corresponding to θ (1), of the

Hessian matrix of L evaluated at intermediate points between θ̂
(1)

k+1 and θ̂
(1)

k and

between θ
∗(1)
k+1 and θ̂

(1)

k , respectively, and at θ̂
(2)

k . By the strict convexity of L, it is

known that both H̄
(1)

and ¯̄H (1)
are positive definite. The “≈” in the second line

above follows from g(1)(θ̂
(1)

k+1, θ̂
(2)

k ) ≈ 0 when θ̂
(1)

k+1 is close to θ
∗(1)
k+1. The “≈” in

the third line follows from assuming that the upper left block of the Hessian matrix

is approximately constant in the neighborhood of θ̂
(1)

k that includes both θ̂
(1)

k+1 and

θ
∗(1)
k+1 (conditioned on θ̂

(2)

k ). Using the standard Euclidean vector norm, the compatible
matrix spectral norm (i.e., maximum eigenvalue since the matrix is positive definite),
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and the symmetric form of matrix square root, we find that the ratio on the right-hand
side of (17) satisfies

(θ̂
(1)

k − θ̂
(1)

k+1)
T H̄

(1)
(θ̂

(1)

k − θ̂
(1)

k+1)

(θ̂
(1)

k − θ
∗(1)
k+1)

T H̄
(1)

(θ̂
(1)

k − θ
∗(1)
k+1)

≥ ‖(H̄ (1)
)1/2(θ̂

(1)

k − θ̂
(1)

k+1)‖2

‖H̄ (1)‖‖θ̂ (1)

k − θ
∗(1)
k+1‖2

≥ ‖θ̂ (1)

k − θ̂
(1)

k+1‖2

‖H̄ (1)‖‖(H̄ (1)
)−1‖‖θ̂ (1)

k − θ
∗(1)
k+1‖2

. (18)

Hence, to the extent that the approximation on the right-hand side of (17) is an
accurate representation of the ratio in (11a), we know from (18) that the ratio in
(11a) is bounded below by a term proportional to the ratio of squared distances

‖θ̂ (1)

k − θ̂
(1)

k+1‖2/‖θ̂ (1)

k − θ
∗(1)
k+1‖2. That is, as long as θ̂

(1)

k+1 is generated such that the

distance between θ̂
(1)

k+1 and θ̂
(1)

k is at least some consistent fraction of the distance

between θ
∗(1)
k+1 and θ̂

(1)

k , so that the ratio of squared distances is bounded below by a
strictly positive constant, then the lower bound condition γ > 0 in (11a) is satisfied.
Analogous reasoning applies to (11b).

As an example of how the ratio of squared distances in the right-hand side of (18)
may be bounded below by a strictly positive constant, consider a seesaw version of the

steepest descent method, θ̂
(i)

k+1 = θ̂
(i)

k − a
(i)
k g

(i)
k , k = 0,1,2, . . . , i = 1 or 2, a

(i)
k is a

nonnegative (scalar) gain number (a(i)
k may be chosen as a constant, as a prespecified

decaying sequence, or adaptively via a line search), and g
(i)
k is the gradient g(1)(θ̂k) or

g(2)(θ̂
(1)

k+1, θ̂
(2)

k ), as appropriate. If a
(i)
k ≥ a > 0 for all k, then, under the assumptions

associated with (17),

‖θ̂ (1)

k − θ̂
(1)

k+1‖2

‖θ̂ (1)

k − θ
∗(1)
k+1‖2

≥ a2‖g(1)(θ̂k)‖2

‖θ̂ (1)

k − θ
∗(1)
k+1‖2

≈ a2‖H̄ (1)
(θ̂

(1)

k − θ
∗(1)
k+1)‖2

‖θ̂ (1)

k − θ
∗(1)
k+1‖2

≥ a2

‖(H̄ (1)
)−1‖2

,

where the “≈” follows from an expansion of g(1) around the point (θ
∗(1)T
k+1 , θ̂

(2)T

k )T

and the last inequality follows from:∥∥θ̂
(1)

k − θ
∗(1)
k+1

∥∥ = ∥∥(
H̄

(1))−1
H̄

(1)(
θ̂

(1)

k − θ
∗(1)
k+1

)∥∥ ≤ ∥∥(
H̄

(1))−1∥∥∥∥H̄
(1)(

θ̂
(1)

k − θ
∗(1)
k+1

)∥∥.

Hence, to the extent the local analysis associated with (17) and (18) apply, we know

that (11a) holds with γ chosen less than a2/(‖H̄ (1)‖‖(H̄ (1)
)−1‖3). Likewise, (11b)

holds with γ chosen less than a2/(‖H̄ (2)‖‖(H̄ (2)
)−1‖3), where H̄

(2)
represents the

lower right block, corresponding to θ (2), of the Hessian matrix of L evaluated at θ̂
(1)

k+1

and at an intermediate point between θ̂
(2)

k+1 and θ̂
(2)

k . Of course, following the pattern
in (17), we assume that the Hessian is approximately constant in the neighborhood of

θ̂
(2)

k that includes both θ̂
(2)

k+1 and θ
∗(2)
k+1 (conditioned on θ̂

(1)

k+1). Thus, in practice, both

H̄
(1)

and H̄
(2)

may be evaluated at the known point θ̂k (versus unknown intermediate
points) in calculating γ . Therefore, a γ can be chosen such that

0 < γ ≤ min
{
1, a2/

(∥∥H̄
(1)∥∥∥∥(

H̄
(1))−1∥∥3)

, a2/
(∥∥H̄

(2)∥∥∥∥(
H̄

(2))−1∥∥3)} ≤ 1, (19)
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implying that steepest descent, when applied to continuously twice differentiable
strictly convex loss functions, satisfies (11a, 11b) in Theorem 3.2. Because of the
local approximations used in the derivations above, the conclusions and bound for γ

are most appropriate when operating near θ∗.

4 Summary of Example in State–Space Model Identification

As mentioned in Sect. 1, a motivating application for the seesaw approach is a prob-
lem in the identification of parameters in state–space models. This section is a brief
discussion of the issues in the motivating application. It is assumed that the process
is modeled according to the traditional linear state–space model composed of a state
equation and a measurement equation. We observe N independent realizations of
the process (i.e., N independent tests). Such cross-sectional identification problems
for state–space models have been considered in a number of references, including
Goodrich and Caines [22], Shumway et al. [1], and Levy [19]. Each realization is
associated with its own state–space model, but θ is, in general, common across the N

models.
For the identification of the defense system of interest to the author, the original

focus and software development was aimed at the common mean vector and covari-
ance matrix, μ and Σ , for the initial states in the state–space model. Later, the interest
extended to include power spectral density parameters entering the state-noise covari-
ance matrix. We summarize below the essential aspects of the identification. Greater
detail on this state–space implementation is provided in Spall [23].

A standard method for optimization is a gradient-based recursion, which uses the
gradient of the log-likelihood function with respect to θ . This form of recursion pro-
vides the foundation for many system identification methods, as applied to state–
space models (e.g., Goodrich and Caines [22]; Levy [19], and Wills and Ninness
[24]). In turn, to compute the gradient of the log-likelihood, it is necessary to com-
pute the gradient of the state–space model terms with respect to θ (e.g., Goodrich
and Caines [22], Segal and Weinstein [25], and Levy [19]). That is, via the Kalman
filter and/or smoother, the gradient of the log-likelihood (direct or EM-based) is com-
putable via recursive calculations of the gradient with respect to the relevant terms
within the state–space model. Let us consider here the special case of θ representing
the parameters that enter initial state mean and covariance matrix and the state-noise
covariance matrices.

Consider first the {μ,Σ} part of the overall parameter vector θ ; these parameters
correspond to θ (1) in the general formulation of Sect. 2. Let us assume that x

(i)
0 ∼

N(μ, Σ), where x
(i)
0 represents the initial state for the ith realization. Let Z(i) :=

((z
(i)
0 )T , (z

(i)
1 )T , . . . , (z

(i)
ni

)T )T represent the vector of stacked measurements for the
ith realization. Then

Z(i) = C(i)x
(i)
0 + V (i), (20)

where C(i) is derived from the measurement and transition matrices of the underlying
state–space model and V (i) is derived from the measurement and transition matrices
as well as the process and measurement noises. Let Γ (i) = cov(V (i)).
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If the quantity P (i) ≡ [(C(i))T (Γ (i))−1C(i)]−1 exists, each estimate of x
(i)
0 , say

x̂
(i)
0 , is defined according to the standard weighted least-squares formula applied to

(20):

x̂
(i)
0 = P (i)

(
C(i)

)T (
Γ (i)

)−1
Z(i). (21)

As described in Shumway et al. [1], the collection of the above least-squares estimates
for i = 1,2, . . . ,N form a set of sufficient statistics for estimating μ and Σ . The
maximum likelihood estimate for μ and Σ can then be formed by maximizing the
log-likelihood function associated with the independent “data” (sufficient statistics)
{x̂(1)

0 , x̂
(2)
0 , . . . , x̂

(N)
0 }; each of these sufficient statistics is normally distributed with

mean vector μ and covariance matrix Σ + P (i).
The above approach relies on the existence of the least-squares-based sufficient

statistics x̂
(i)
0 shown in (21). In practical applications, it may be the case that the P (i)

do not exist as a consequence of poor observability represented in the C(i) matrices.
Hence, the least-squares solution in (21) does not exist. Using results in Rao [26,
p. 231], Spall [23] summarizes a maximum likelihood formulation not dependent on
the solution in (21), rather using only generalized inverses. Standard numerical meth-
ods are used to determine the maximum likelihood estimate for μ and Σ , although
coping with constraints (including the required positive definiteness of Σ ) requires
special care; this topic is outside the scope of this paper. The search process for μ

and Σ is the first stage of the seesaw process at each iteration.
We now focus on the second stage of the seesaw process (i.e., that associated with

θ (2)). The parameters θ (2) are associated with the state noise. Consider one realiza-
tion of the process. In practice, the calculations are carried out for each of the N

realizations. For the chosen realization, let Qt represent the covariance matrix for the
state noise at time index t in the discrete-time state–space model and ψ represent the
vector of unknown parameters (e.g., the power spectral density parameters) associ-
ated with the underlying continuous time process noise as represented in a differential
equation. The parameters ψ correspond to θ (2). Note that Qt is associated with the
discrete-time state transition from time t to time t + 1 (say, from τt to τt + 1). The
parameters in ψ manifest themselves in the discrete-time matrices Qt based on the
connection of the continuous-time dynamics to the discrete-time dynamics.

Then, given a state transition matrix Φ(τ, s) found using standard linear systems
methods (e.g., Moon and Stirling [27, pp. 20–21]), the derivative of the discrete-time
covariance matrix with respect to the mth component of ψ , say ψm, is

∂Qt

∂ψm

=
∫ τt+1

τt

Φ(τt+1, τ )
∂Ω(τ )

∂ψm

Φ(τt+1, τ )T dτ,

where Ω(τ ) is the power spectral density matrix of the continuous time process noise.
The above gradient is used as part of the chain rule in forming the gradient of the log-
likelihood function as part of the second part of the seesaw process according to the
references mentioned above.

A different state–space identification application involving a natural decoupling
into two groups of parameters is described in Spall and Garner [28] in the context
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of primary parameters and nuisance parameters. The analysis is based on N = 1
(i.e., a single realization). The seesaw idea could be used in the nuisance parameter
context if the aim was to estimate both primary and nuisance parameters from a given
set of data. (The Spall and Garner paper considers only the estimation of the primary
parameters, taking the nuisance parameters as “given” based on prior information.)

5 Numerical Analysis

5.1 Overview

In this section, we present a numerical analysis of the seesaw method for three test
functions. The test functions are simple functions not directly related to the state–
space problem of Sect. 4. These functions are chosen, rather than the state–space-
based log-likelihood, because there are many ancillary issues in the real-world im-
plementation of state–space identification that are not pertinent to the generic under-
standing of the seesaw method (e.g., square-root information forms of Kalman filters
and constraints for the covariance matrix part Σ of θ (1)).

Although seesaw is not tied to any specific numerical algorithm, we use the steep-
est (gradient) descent method as the basis of the studies here. The standard form of
steepest descent (no seesaw) is

θ̂k+1 = θ̂k − akg(θ̂k), k = 0,1,2, . . . , (22)

where ak is a nonnegative (scalar) gain number satisfying certain conditions. (The
obvious modification of (22) for seesaw is mentioned in Sect. 3.3.) For example, when
L is quadratic with positive definite Hessian matrix and when constant gains ak = a

are used for all k, convergence from any starting point to θ∗ requires 0 < a < 2/λmax,
where λmax is the maximum eigenvalue of the Hessian matrix (Moon and Stirling
[27, pp. 639–641]). Other conditions for convergence are available for more general
L and/or for nonconstant gains, such as when line searches are used (e.g., Bazaraa
et al. [4, Sect. 8.6] and Polak [16, Sect. 1.3]). We use constant gains ak = a for
all k in the studies here. As a check on whether the gain values in the studies are
reasonable relative to convergence to θ∗, the implementations of standard steepest
descent below use gain values that satisfy the above inequality, where λmax is the
maximum eigenvalue of the Hessian matrix at θ∗. Hence, the check is based on a
quadratic approximation to the functions being optimized, which, in fact, are not
quadratic. Finally, as needed below, the generic representation of the components of
θ is according to θ := (t1, t2, . . . , tp)T .

Although the steepest descent method is not likely to be the best algorithm for
minimizing any of the functions below, we use it in these studies because it is a foun-
dational method having broad applicability and reasonable performance in a range
of problems. Further, steepest descent represents a special case of stochastic gradient
methods (a.k.a. Robbins–Monro stochastic approximation) (e.g. Spall [17, Chaps. 4
and 5]). Hence, the performance improvement observed here might point to possible
improvements in a stochastic environment, as well.
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5.2 Simple Quartic Loss Function

The first test case in this study is the simple quartic loss function in Spall [17, Ex-
ample 1.8], L(θ) = t4

1 + t2
1 + t1t2 + t2

2 with Θ = R
2. It is easily seen that the global

minimum θ∗ = (0,0)T is the only critical point. We compare the steepest descent
method with the seesaw method under a common fixed gain coefficient (step size).
The subvectors θ (1) and θ (2) here correspond to the two scalar components of θ . We
use both a standard steepest descent (22) and a modified steepest descent that exploits
a known closed-form solution. In particular, the modified form uses standard steep-
est descent for the update of t1 while the closed-form solution t2 = −t1/2, found by
solving the equation g(θ) = 0 for θ , is used when updating t2 (i.e., in the nonseesaw
approach, t2 is updated from the value of t1 in the previous iteration; in seesaw, t2 is
updated using the value of t1 in the most recent subiteration).

It is easily seen that L is strictly convex on Θ (positive definite Hessian matrix
on Θ). Hence, the lower bound analysis in Sect. 3.3 indicates that the iterate θ̂k pro-
duced by steepest descent with seesaw converges to θ∗ subject to θ̂k staying in the
neighborhood of θ∗ for all k, The neighborhood requirement ensures the validity of
the local analysis in Sect. 3.3. That is, from (19), we may indentify a value γ satis-
fying conditions (11a, 11b), thereby ensuring convergence from Theorem 3.2 since
the other conditions are automatically satisfied. More broadly, without imposing the
local neighborhood restrictions of the analysis in Sect. 3.3, we may consider the ap-
plication of Corollary 3.1. Although we do not impose explicit constraints on θ , the
practical limits of computation operate as if this is a constrained problem. Hence, in
practice, with Θ reflecting a hypercube constraint on θ (i.e., each component of θ

has a fixed lower and upper bound), the conditions of Corollary 3.1 related to pseu-
doconvexity are satisfied, indicating that it is possible to change at least one of θ (1)

or θ (2) to yield a reduction in L (i.e., the main condition of Theorems 3.1 and 3.2 is
satisfied).

Table 1 compares the performance of steepest descent and seesaw in terms of the
error in θ for two gain values. Each entry in the table is based on k ≤ 50 iterations
using the initial condition θ̂0 = (1,1)T . The table gives results for two gain values,
a = 0.15 and a = 0.29. Basic steepest descent (22) is used with the conservative
gain a = 0.15. The modified steepest descent discussed above is used with the more
aggressive (larger) gain, a = 0.29. The larger gain provides for faster convergence,
but it is close to causing unstable behavior in the algorithm (a ≥ 0.30 leads to diver-
gence). All of the gain values are well under the above-mentioned upper bound to a,
2/λmax = 2/3, based on a quadratic approximation to L.

Table 1 indicates that the seesaw method outperforms the standard method with
both the conservative and large gain values. Further, these results indicate that the
accuracy improves with the larger gain in both the standard and seesaw implementa-
tions.

5.3 Rosenbrock Function

The well-known Rosenbrock [29] function has the form, L(θ) = 100(t2 − t2
1 )2 +

(1 − t1)
2. It is easily seen that the global minimum over Θ = R

2 is θ∗ = (1,1)T .
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Table 1 Norm values ‖θ̂k − θ∗‖ generated at a sample of iteration counts k while using the standard
and seesaw methods. The steepest descent algorithm is implemented for both parameters in trials listed
with the gain coefficient a = 0.15; the modified steepest descent (including closed-form solution for t2) is
applied for the trials listed below that use the larger gain, a = 0.29

k a = 0.15 a = 0.29

Standard Seesaw Standard Seesaw

0 1.4142 1.4142 1.4142 1.4142

5 0.2215 0.2860 0.2311 0.0048

10 0.0954 0.1152 0.0066 0.00028

25 0.00830 0.0080 9.22 × 10−6 5.30 × 10−8

50 0.00014 0.000094 1.59 × 10−10 3.35 × 10−14

We follow the pattern of Sect. 5.2 in comparing the steepest descent method with
the seesaw method using a standard algorithm form (22) and using a modified steep-
est descent method that exploits the closed-form solution, t2 = t2

1 . We use the stan-

dard initial condition θ̂0 = (−1.2,1)T (Rosenbrock [29]) in all runs. The topological
challenge in optimizing this function is the curved valley that lies between the ini-
tial condition and the solution. Note that the function is not quasi-convex (Tseng
[7]), and hence not pseudo-convex (Bazaraa et al. [4, p. 569]). Thus, Corollary 3.1
is not applicable; nevertheless, seesaw is numerically convergent, as demonstrated
below.

We initially choose a small, constant gain coefficient, a = 0.0012, which is the
largest value that allows the four implementations—steepest descent and modified
steepest descent, each with or without seesaw—to remain stable enough to achieve
convergence toward the solution. For this conservative gain value, convergence to θ∗
is relatively slow, although seesaw produces loss values that are less than 10−1 and
10−8 times the loss values of nonseesaw for steepest descent and modified steep-
est descent, respectively, at 10,000 iterations. We also conduct a study where the
gain a is tuned separately for each of the four implementations, with a = 0.0012 or
0.0020 in the nonseesaw implementations of steepest descent and modified steepest
descent and a = 0.0060 or 0.020 in the corresponding seesaw implementations. The
gain value a = 0.0012 for standard steepest descent is well under the upper bound
to a, 2/λmax = 2/1000.4 = 0.002, based on a quadratic approximation to L. (The
author is unaware of any bound to a available for other implementations of steepest
descent.)

Convergence is much faster with the tuned a. Seesaw produces loss values less
than 10−10 times the loss values of nonseesaw for both the steepest descent and
modified steepest descent implementations at 400 iterations. Part of the reason for
the relatively greater performance enhancement with seesaw, relative to the com-
mon a case, is the fact that it is possible to have a larger (“aggressive”) a in see-
saw while preserving algorithm stability. The larger a increased the convergence
rate.
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Table 2 Norm values ‖θ̂k −θ∗‖ generated at a sample of iteration counts k while using the standard steep-
est descent and seesaw methods for the skewed-quartic loss. The implementation with larger gains (right-
hand columns) reflects a tuning process for approximately optimal algorithm performance over k ≤ 1000

k a = 1 Standard: a = 2.21
Seesaw: a = 5.45

Standard Seesaw Standard Seesaw

0 3.1623 3.1623 3.1623 3.1623

50 0.2835 0.3229 0.7129 0.5362

100 0.1560 0.1756 0.2399 0.0923

500 0.0081 0.0109 0.00023 4.85 × 10−7

1000 0.00041 0.00056 5.24 × 10−7 2.54 × 10−13

5.4 Skewed-Quartic Loss Function

The final test case in this study involves the skewed-quartic loss function from Spall
[17, p. 168]:

L(θ) = θT BT Bθ + 0.1
p∑

i=1

(Bθ)3
i + 0.01

p∑
i=1

(Bθ)4
i ,

where (·)i represents the ith component of the argument vector Bθ , and B is such
that pB is an upper triangular matrix of 1’s. We consider the unconstrained case with
p = 10 and θ (1) and θ (2) corresponding to the first five and second five components of
θ , respectively. The minimum occurs at θ∗ = 0 with L(θ∗) = 0; all runs are initialized
at θ̂0 = (1,1, . . . ,1)T (so L(θ̂0) = 4.178). We consider only the standard steepest
descent method (22), not the modified method used in Sects. 5.2 and 5.3.

We can show that L is strictly convex on Θ by showing that the Hessian matrix
H (θ) is positive definite on Θ . To see that H (θ) is positive definite, note that for
all θ ,

H (θ) = BT B + 0.6
p∑

i=1

(Biθ)BT
i Bi + 0.12

p∑
i=1

(B iθ)2BT
i Bi ≥ 1

4
BT B > 0,

where Bi is the ith row of B and the inequalities are in the usual matrix positive
semidefinite or positive definite sense (the matrix lower bound follows from the fact
that

∑p

i=1 BT
i Bi = BT B). Hence, as discussed in Sect. 5.2 for a different strictly

convex function, we know from the analysis in Sect. 3.3 that Theorem 3.2 ensures
convergence of θ̂k to θ∗ when it is known that θ̂k stays in the neighborhood of θ∗ for
all k. Without such a local neighborhood requirement, but with Θ reflecting a broader
hypercube constraint on θ , we know from Corollary 3.1 (related to pseudoconvexity)
that, at a minimum, a change to at least one of θ (1) or θ (2) is guaranteed to yield a
reduction in L. That is, the main condition of Theorem 3.1 is satisfied.

Table 2 compares the performance of standard steepest descent and seesaw in
terms of the error in θ for a nominal (conservative) gain a = 1 and for two gain val-
ues, a = 2.21 and a = 5.45, tuned to provide approximately optimal performance for
the standard and seesaw method, respectively. The gain value a = 2.21 for standard
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steepest descent is slightly under the upper bound to a, 2/λmax = 2/0.8953 = 2.23,
based on a quadratic approximation to L. For the nominal gain, we see that the stan-
dard method produces a slightly lower error than seesaw over the k ≤ 1,000 iterations
that were considered. On the other hand, for the tuned gains, seesaw produces a sig-
nificantly lower error than the standard method over the full range of iterations, with
an improvement of several orders of magnitude at the higher end of the range of it-
erations. Similar relative results hold when considering the values of L (as opposed
to the error in θ ). For the nominal gain case, the seesaw method has a terminal loss
that is slightly greater than the loss for the standard method, while in the tuned gain
case, the seesaw method has a terminal loss that is over 10 orders of magnitude lower
than the loss for the standard method. The numerical results indicate that the “more
aggressive” gains that are feasible in the seesaw method provide a much faster rate of
convergence, both in terms of the accuracy of θ and the loss value.

6 Concluding Remarks

This paper has provided a description of a seesaw optimization process—also called
cyclic, alternating, or block coordinate process—together with associated conver-
gence theory having conditions that differ from existing convergence results. One
advantage of seesaw is the preservation of potentially large investments in software
while allowing for an extension to include parameters not covered by the original
software. For such a use, the seesaw scheme would require a separate module di-
rected at the new parameters and a master program to control the oscillation between
original software and the module devoted to the new parameters. We summarized an
application of the seesaw idea to system identification for the parameters in dynami-
cal models represented in state–space form.

Aside from the above advantages relative to software preservation, numerical stud-
ies have revealed the desirable property of a faster rate of convergence for seesaw
optimization, relative to standard joint optimization of all parameters, in the appli-
cation of steepest descent to three test functions. The faster rate is a consequence
of the more “aggressive” (larger) gain coefficient possible in the seesaw algorithm.
That is, for the joint optimization, the gain coefficient must be chosen small enough
to preserve stability for all parameters simultaneously (a gain that is too large will
cause the algorithm to go unstable and diverge from the both the initial value and
the optimal solution). In contrast, with seesaw, it is possible to pick larger gains for
each subvector because not all parameters are being changed simultaneously. The
larger gain enhances the rate of convergence via having the parameter iterates move
in larger steps toward the optimal value, providing for greater accuracy in the search
process (relative to the standard method).

There are several open issues related to seesaw. One is to determine whether the
observed faster convergence for seesaw with steepest descent in the numerical studies
above is an example of a general property of faster convergence for both steepest de-
scent methods and other types of search methods (Newton–Raphson, quasi-Newton,
etc.). Associated with the question of generality of faster convergence is the need to
develop a formal theory that characterizes the rate of convergence to the optimum rel-
ative to nonseesaw methods and whether there are “best” step sizes and partitionings
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of θ (of course, factors other than speed of convergence may govern the choice of par-
titioning, as in the state–space example discussed above). Another issue is whether
the “third parameter vector” idea in Audet et al. [11] can be included in seesaw. That
is, in the special case of bilinear loss functions, Audet et al. [11] include a third pa-
rameter vector, say β , that is optimized at every subiteration of seesaw: subiteration
1 optimizes θ (1) and β , subiteration 2 optimizes θ (2) and β , and so on. It is not clear
at this time whether such an idea could be included in the more general setting (not
necessarily bilinear) of this paper.

Finally, while the seesaw idea is described above for deterministic optimization,
it would also be of interest to evaluate whether seesaw could lead to improved con-
vergence rates in stochastic approximation algorithms, such as in stochastic gradi-
ent methods (a.k.a. Robbins–Monro stochastic approximation [SA]), finite-difference
SA, and simultaneous perturbation SA (e.g., Spall [17, Chaps. 5–7]). There is reason
to believe the advantage will carry over to the stochastic case because larger gain
values are known to also improve convergence rates in stochastic approximation (see
Spall [17, pp. 113–114]). The author has yet to formally pursue the extension to SA
algorithms. Even without the stochastic extension, however, seesaw provides advan-
tages in implementation and convergence for optimization problems encountered in
practice.
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