
The Bayesian Learning Rule

Mohammad Emtiyaz Khan
RIKEN Center for AI Project

Tokyo, Japan
emtiyaz.khan@riken.jp

H̊avard Rue
CEMSE Division, KAUST

Thuwal, Saudi Arabia
haavard.rue@kaust.edu.sa

Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout. The key idea
in deriving such algorithms is to approximate the posterior using candidate distributions estimated by
using natural gradients. Different candidate distributions result in different algorithms and further
approximations to natural gradients give rise to variants of those algorithms. Our work not only
unifies, generalizes, and improves existing algorithms, but also helps us design new ones.

1 Introduction

1.1 Learning-algorithms

Machine Learning (ML) methods have been extremely successful in solving many challenging problems
in fields such as computer vision, natural-language processing and artificial intelligence (AI). The main
idea is to formulate those problems as prediction problems, and learn a model on existing data to predict
the future outcomes. For example, to design an AI agent that can recognize objects in an image, we
can collect a dataset with N images xi ∈ RD and object labels yi ∈ {1, 2, . . . ,K}, and learn a model
fθ(x) with parameters θ ∈ RP to predict the label for a new image. Learning algorithms are often
employed to estimate the parameters θ using the principle of trial-and-error, e.g., by using Empirical
Risk Minimization (ERM),

θ∗ = arg min
θ

¯̀(θ) where ¯̀(θ) =
N∑
i=1

`(yi, fθ(xi)) +R(θ). (1)

Here, `(y, fθ(x)) is a loss function that encourages the model to predict well and R(θ) is a regularizer
that prevents it from overfitting. A wide-variety of such learning-algorithms exist in the literature to
solve a variety of learning problems, for example, ridge regression, Kalman filters, gradient descent, and
Newton’s method. These algorithms play a key role in the success of modern ML.

Learning-algorithms are often derived by borrowing and combining ideas from a diverse set of fields,
such as statistics, optimization, and computer science. For example, the field of probabilistic graphical
models [Koller and Friedman, 2009, Bishop, 2006] uses popular algorithms such as ridge-regression [Ho-
erl and Kennard, 1970], Kalman filters [Kalman, 1960], Hidden Markov Models [Stratonovich, 1965],
and Expectation-Maximization (EM) [Dempster et al., 1977]. The field of Approximate Bayesian Infer-
ence builds upon such algorithms to perform inference on complex graphical models, e.g., algorithms

1

ar
X

iv
:2

10
7.

04
56

2v
1

 [
st

at
.M

L
]

 9
 J

ul
 2

02
1

such as Laplace’s method [Laplace, 1986, Tierney and Kadane, 1986, Rue and Martino, 2007, Rue
et al., 2009, 2017], stochastic variational inference (SVI) [Hoffman et al., 2013, Sato, 2001], Variational
message passing (VMP) [Winn and Bishop, 2005] etc. Similarly, the field of continuous optimization
has its own popular methods such as gradient descent [Cauchy, 1847], Newton’s method, and mirror
descent [Nemirovski and Yudin, 1978] algorithms, and deep-learning (DL) methods use them to design
new optimizers that work with massive models and datasets, e.g., stochastic-gradient descent [Robbins
and Monro, 1951], RMSprop [Tieleman and Hinton, 2012], Adam [Kingma and Ba, 2015], Dropout
regularization [Srivastava et al., 2014], and Straight-Through Estimator (STE) [Bengio et al., 2013].
Such mixing of algorithms from diverse fields is a strength of the ML community, and our goal here is
to provide common principles to unify, generalize, and improve the existing algorithms.

1.2 The Bayesian learning rule

We show that a wide-range of well-known learning-algorithms from a variety of fields are all specific
instances of a single learning algorithm derived from Bayesian principles. The starting point, is the
variational formulation by Zellner [1988], which is an extension of Eq. 1 to optimize over a well-defined
candidate distribution q(θ), and for which the minimizer

q∗(θ) = arg min
q(θ)

Eq

[
N∑
i=1

`(yi, fθ(xi))

]
+ DKL[q(θ) ‖ p(θ)] (2)

defines a generalized posterior [Zhang, 1999, Catoni, 2007, Bissiri et al., 2016] in lack of a precise
likelihood. The prior distribution is related to the regularizer, p(θ) ∝ exp(−R(θ)), and DKL[· ‖ ·] is
the Kullback-Leibler Divergence (KLD). In the case where exp(−`(yi, fθ(xi))) is proportional to the
likelihood for yi, ∀i, then q∗(θ) is the posterior distribution for θ [Zellner, 1988] (see App. A).

The learning algorithms we will derive from the above Bayesian formulation, needs two components.

1. A (sub-)class of distributions Q to optimize over. In our discussion we will assume Q to be the
set of a regular and minimal exponential family

q(θ) = h(θ) exp [〈λ,T (θ)〉 −A(λ)]

where λ ∈ Ω ⊂ RM are the natural (or canonical) parameters in a non-empty open set Ω for which
the cumulant (or log partition) function A(λ) is finite, strictly convex and differentiable over Ω.
Further, T (θ) is the sufficient statistics, 〈·, ·〉 is an inner product and h(θ) is the base measure.
The expectation parameters are µ = Eq[T (θ)] ∈M, and is a (bijective) function of λ. Examples
later will include the multivariate Normal distribution and the Bernoulli distribution.

2. An optimizing algorithm, called the Bayesian learning rule (BLR), that locates the best candidate
q∗(θ) in Q, by updating the candidate qt(θ) with natural parameters λt at iteration t,

λt+1 ← λt − ρt∇̃λ
[
Eqt
(
¯̀(θ)

)
−H(qt)

]
. (3)

Here, H(q) = Eq[− log q(θ)] is the entropy and ρt > 0 is a sequence of learning rates. The updates

use the natural-gradients [Amari, 1998] (denoted by ∇̃λ),

∇̃λEqt(·) = F (λt)
−1
[
∇λEq(·)|λ=λt

]
= ∇µEq(·)|µ=∇λA(λt)

, (4)

which rescale the vanilla gradients ∇λ with the Fisher information matrix (FIM) F (λ) = ∇2
λA(λ)

to adjust for the geometry in the parameter space. The second equality follows from the chain

2

rule to express natural-gradients as vanilla gradients with respect to µ = ∇λA(λ). Throughout,
we will use this property to simplify natural-gradient computations. These details are discussed
in Sec. 2, where we show that the BLR update can also be seen as a mirror descent algorithm,
where the geometry of the Bregman divergence is dictated by the chosen exponential-family. We
also assume λt ∈ Ω for all t, which in practice might require a line-search or a projection step.

The main message of this paper, is that many well-known learning-algorithms, such as those used in
optimization, deep learning, and machine learning in general, can now be derived directly following the
above scheme using a single algorithm (BLR) that optimizes Eq. 2. Different exponential families Q
give rise to different algorithms, and within those, various approximations to natural-gradients that is
needed, give rise to many variants.

Our use of natural-gradients here is not a matter of choice. In fact, natural-gradients are inherently
present in all solutions of the Bayesian objective in Eq. 2. For example, a solution of Eq. 2 or equivalently
a fixed point of Eq. 3, satisfies the following,

∇µEq∗ [¯̀(θ)] = ∇µH(q∗), which implies ∇̃λEq∗ [−¯̀(θ)] = λ∗, (5)

for candidate with constant base-measure. This is obtained by setting the gradient of Eq. 2 to 0, then
noting that ∇µH(q) = −λ (App. B), and then interchanging ∇µ by ∇̃λ (because of Eq. 4). In other
words, natural parameter of the best q∗(θ) is equal to the natural gradient of the expected negative-loss.
The importance of natural-gradients is entirely missed in the Bayesian/variational inference literature,
including textbooks, reviews, tutorials on this topic [Bishop, 2006, Murphy, 2012, Blei et al., 2017,
Zhang et al., 2018a] where natural-gradients are often put in a special category.

We will show that natural gradients retrieve essential higher-order information about the loss land-
scape which are then assigned to appropriate natural parameters using Eq. 5. The information-matching
is due to the presence of the entropy term there, which is an important quantity for the optimality
of Bayes in general [Jaynes, 1982, Zellner, 1988, Littlestone and Warmuth, 1994, Vovk, 1990], and
which is generally absent in non-Bayesian formulations (Eq. 1). The entropy term in general leads to
exponential-weighting in Bayes’ rule. In our context, it gives rise to natural-gradients and, as we will
soon see, automatically determines the complexity of the derived algorithm through the complexity of
the class of distributions Q, yielding a principled way to develop new algorithms.

Overall, our work demonstrates the importance of natural-gradients for algorithm design in ML. This
is similar in spirit to Information Geometric Optimization [Ollivier et al., 2017], which focuses on the
optimization of black-box, deterministic functions. In contrast, we derive generic learning algorithms
by using the same Bayesian principles. The BLR we use is a generalization of the method proposed in
Khan and Lin [2017], Khan and Nielsen [2018] specifically for variational inference. Here, we establish
it as a general learning rule to derive many old and new learning algorithms. In this sense, the BLR
can be seen as a variant of Bayes’ rule, useful for generic ML problems.

1.3 Examples

To fix ideas, we will now use the BLR to derive three classical algorithms: gradient descent, Newton’s
method, and ridge regression. All of these are derived by choosing Q to be multivariate Gaussian.

1.3.1 Gradient descent

The gradient descent algorithm uses the following update

θt+1 ← θt − ρt∇θ ¯̀(θt),

3

using only the first-order information ∇θ ¯̀(θt) (the gradient evaluated at θt). We choose q(θ) =
N (θ|m, I), a multivariate Gaussian with unknown mean m and known covariance matrix set to I
for simplicity (general covariance case is given in Eq. 35). The natural and expectation parameters are
now both m, and the base measure is 2 log h(θ) = −P log(2π) − θTθ. We use the following simplified
form of the BLR, obtained by using the fact that ∇µH(q) = −λ−∇µEq(log h(θ)) (App. B), to get

λt+1 ← (1− ρt)λt − ρt∇µEqt
[
¯̀(θ) + log h(θ)

]
. (6)

By noting that ∇µEq[log h(θ)] = −λ, the update follows directly from the above BLR

mt+1 ←mt − ρt ∇mEq
[
¯̀(θ)

]∣∣
m=mt

. (7)

This update is gradient descent but over the expected loss Eq
[
¯̀(θ)

]
. We can remove the expectation

by using the first-order delta method [Dorfman, 1938, Ver Hoef, 2012] (App. C),

∇mEq
[
¯̀(θ)

]
≈ ∇θ ¯̀(θ)

∣∣
θ=m

.

With this, the BLR equals the gradient descent algorithm with mt as the iterate θt. The interpretation
is that if we give away the posterior averaging in the BLR and resort to a greedy approximation, we are
back to a non-Bayesian algorithm to minimize a deterministic function. The two choices, first of the
distribution Q and second of the delta method, give us gradient descent from the BLR.

1.3.2 Newton’s method

Newton’s method is a second-order method

θt+1 ← θt −
[
∇2
θ

¯̀(θt)
]−1 [∇θ ¯̀(θt)

]
. (8)

which too can be derived from the BLR by expanding the class Q to q(θ) = N (θ|m,S−1) with an
unknown precision matrix S. This example illustrates a property of the BLR: the complexity of the
derived algorithm is directly related to the complexity of the exponential family Q. Fixed covariances
previously gave rise to gradient-descent (a first-order method) and by increasing the complexity where
we also learn the precision matrix, the BLR reduces to a (more complex) second-order method.

The details are as follows. We use the simplified form Eq. 6 of the BLR. The base measure is a
constant, and the natural and expectation parameters divide themselves into natural pairs

λ(1) = Sm,

λ(2) = −1
2S,

µ(1) = Eq[θ] = m,

µ(2) = Eq[θθ>] = S−1 +mmT .
(9)

The natural gradients can be expressed in terms of the gradient and Hessian of ¯̀(θ),

∇µ(1)Eq[¯̀(θ)] = ∇mEq[¯̀(θ)]− 2
[
∇S−1Eq[¯̀(θ)]

]
m = Eq[∇θ ¯̀(θ)]− Eq[∇2

θ
¯̀(θ)]m, (10)

∇µ(2)Eq[¯̀(θ)] = ∇S−1Eq[∇θ ¯̀(θ)] =
1

2
Eq[∇2

θ
¯̀(θ)]. (11)

These are obtained by using the chain-rule, and two identities called Bonnet’s and Price’s theorem
respectively [Bonnet, 1964, Price, 1958, Opper and Archambeau, 2009, Rezende et al., 2014]; see App. D.
The expressions show that the natural gradients contain the information about the first and second-order
derivatives of ¯̀(θ).

4

The BLR now turns into an online variant of Newton’s method where the precision matrix contains
an exponential-smoothed Hessian average and is used as a pre-conditioner to update the mean,

mt+1 ←mt − ρtS−1
t+1Eqt

[
∇θ ¯̀(θ)

]
and St+1 ← (1− ρt)St + ρtEqt

[
∇2
θ

¯̀(θ)
]
. (12)

We can recover the classical Newton’s method in three steps. First, apply the delta method (App. C),

Eq
[
∇θ ¯̀(θ)

]
= ∇mEq[¯̀(θ)] ≈ ∇θ ¯̀(θ)

∣∣
θ=m

Eq
[
∇2
θ

¯̀(θ)
]

= 2∇S−1Eq[¯̀(θ)] ≈ ∇2
θ

¯̀(θ)
∣∣
θ=m

.
(13)

Second, set the learning rate to 1 which is justified when the loss is strongly convex or the algorithm is
initialized close enough to the solution. Finally, treat the mean mt as the iterate θt.

1.3.3 Ridge regression

Why do we get a second-order method when we increase the complexity of the Gaussian? This is due to
the natural gradients which, depending on the complexity of the distribution, retrieve essential higher-
order information about the loss landscape. We illustrate this now through the simplest non-trivial case
of Ridge regression where the loss is quadratic: ¯̀(θ) = 1

2(y −Xθ)>(y −Xθ) + 1
2δθ

>θ with δ > 0 as
the regularization parameter, and the solution is available in closed-form:

θ∗ = (X>X + δI)−1X>y.

We note that the expected-loss is linear in µ, Eq
[
¯̀(θ)

]
= −y>Xµ(1) + Tr

[
1
2

(
XTX + δI

)
µ(2)

]
, and

therefore the natural-gradients are given by,

∇µ(1)Eq
[
¯̀(θ)

]
= −XTy and ∇µ(2)Eq

[
¯̀(θ)

]
=

1

2

(
XTX + δI

)
. (14)

It is clear that they already contain parts of the solution θ∗, which is recovered by using Eq. 5

S∗m∗ = XTy, S∗ = XTX + δI.

and solving to get the mean m∗ = θ∗. By increasing the complexity of Q, natural-gradients can retrieve
appropriate higher-order information, which are then assigned to the corresponding natural parameters
using Eq. 5. This is the main reason why different algorithms are obtained when we change the class
Q. We discuss this point further in Sec. 3 when relating Bayesian principles to those of optimization.

1.4 Outline of the rest of the paper

A full list of the learning algorithms derived in this paper is given in Table 1. The rest of the paper is
organized as follows. In Sec. 2, we give two derivations of the BLR by using natural-gradient descent
and mirror descent, respectively. In Sec. 3, we summarize the main principles for the derivation of
existing optimization algorithms, and give guidelines based on entropy for the design of new multimodal-
optimization algorithms. In Sec. 4, we discuss the derivation of existing deep-learning algorithms, as
well as new algorithms for uncertainty estimation. In Sec. 5, we discuss the derivation of algorithms for
Bayesian inference for both conjugate and non-conjugate models. In Sec. 6, we conclude.

2 Derivation of the Bayesian Learning Rule

This section contains two derivations of the BLR. First, we interpret it as a natural-gradient descent
using a second order expansion of the KLD, which strengthens its intuition. Secondly, we do a more
formal derivation using a mirror-descent algorithm leveraging the connection to Legendre-duality and
where we can bypass the need for doing a second-order approximation of the KLD.

5

Table 1: A summary of learning algorithms derived from the BLR. Each algorithm is derived through
specific approximations of the posterior and natural-gradient. New algorithms are marked with “(New)”.
Abbreviations: cov. → covariance, STE → Straight-Through-Estimator, VI → Variational Inference,
VMP → Variational Message Passing.

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.

Optimization Algorithms

Gradient Descent Gaussian (fixed cov.) Delta method 1.3

Newton’s method Gaussian —–“—– 1.3

Multimodal optimization (New) Mixture of Gaussians —–“—– 3.2

Deep-Learning Algorithms

Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1

RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx.,
Hessian approx., square-root scal-
ing, slow-moving scale vectors

4.2

Dropout Mixture of Gaussians Delta method, stochastic approx.,
responsibility approx.

4.3

STE Bernoulli Delta method, stochastic approx. 4.5

Online Gauss-Newton (OGN)
(New)

Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in
Adam & no square-root scaling

4.4

Variational OGN (New) —–“—– Remove delta method from OGN 4.4

BayesBiNN (New) Bernoulli Remove delta method from STE 4.5

Approximate Bayesian Inference Algorithms

Conjugate Bayes Exp-family Set learning rate ρt = 1 5.1

Laplace’s method Gaussian Delta method 4.4

Expectation-Maximization Exp-Family + Gaussian Delta method for the parameters 5.2

Stochastic VI (SVI) Exp-family (mean-field) Stochastic approx., local ρt = 1 5.3

VMP —–“—– ρt = 1 for all nodes 5.3

Non-Conjugate VMP —–“—– —–“—– 5.3

Non-Conjugate VI (New) Mixture of Exp-family None 5.4

2.1 Bayesian learning rule as natural-gradient descent

Given the objective L(λ) = Eq[¯̀(θ)+log q(θ)] in Eq. 2, the classical gradient-descent algorithm performs
the following update:

λt+1 ← λt − ρt∇λL(λt). (15)

6

The insight motivating natural-gradient algorithms, is that the update Eq. 15 solves

λt+1 ← arg min
λ
〈∇λL(λt),λ〉+

1

2ρt
‖λ− λt‖22, (16)

revealing the implicit Euclidean penalty of changes in the parameters. The parameters λt parameterize
a probability distributions, and therefore their updates should be penalized based on the distance in
the space of distributions. Distance between two parameter configurations might be a poor measure
of the distance between the corresponding distributions. Natural-gradient algorithms use instead an
alternative penalty, and using the KLD [Martens, 2020, Pascanu and Bengio, 2013] we get

λt+1 ← arg min
λ
〈∇λL(λt),λ〉+

1

ρt
DKL[q(θ) ‖ qt(θ)], (17)

To obtain a closed form update, we use a second order expansion of the KLD-term using that the
Hessian is the Fisher information matrix of q(θ), F (λ), and we arrive at the natural-gradient descent
algorithm [Amari, 1998],

λt+1 ← λt − ρtF (λt)
−1 ∇λL(λt). (18)

The descent direction F (λt)
−1 ∇λtL(λt) in this case is referred to as the natural-gradient. This ar-

gument here is slightly different from the case maximum-likelihood estimation [Amari, 1998], but the
update still holds. This gives us the BLR update Eq. 3.

The following property is useful to compute natural gradients [Malagò et al., 2011, Raskutti and
Mukherjee, 2015],

∇̃λL(λ) = F (λ)−1 ∇λL(λ) = ∇µL̃(µ) (19)

which follows directly from the chain-rule using that µ = ∇λA(λ) and F (λ) = ∇2
λλA(λ) [Nielsen and

Garcia, 2009]. The L̃(µ) = L(λ) is a reparameterized function expressed in terms of µ, but we do not
have to explicitly compute this function; see Eqs. 10 and 11 for example.

2.2 Bayesian learning rule as mirror-descent

In this section we will derive the BLR using a mirror-descent formulation, similarly to [Raskutti and
Mukherjee, 2015], but for a Bayesian objective. In short, a mirror-descent step defined in the space of
µ equals a natural-gradient step in the space of λ (the update Eq. 18). This is a consequence of the
Legendre-duality between the spaces of λ and µ, and is related to the dual-flat Riemannian structures
[Amari, 2016] employed in information geometry. Unlike the previous derivation, this derivation is more
direct and obtained without any second-order approximation of the KLD, and it reveals that certain
parameterizations should be preferred for a natural-gradient descent over Bayesian objectives.

There is a duality between the space of λ and µ, since µ = ∇λA(λ) is a bijection. An alternative
view of this mapping, is to use the Legendre transform of A(λ),

A∗(µ) = sup
λ′∈Ω

〈µ,λ′〉 −A(λ′),

from which the mapping follows by setting the gradient of the right-hand-side to zero. The reverse
mapping is A(λ) = supµ′∈M 〈µ′,λ〉 −A∗(µ′), hence, λ = ∇µA∗(µ).

The expectation parameters µ provide a dual coordinate system to specify the exponential family
with natural parameter λ, and using µ we express q(θ) as [Banerjee et al., 2005] given below:

q(θ) = h(θ) exp [−DA∗(T (θ)‖µ) +A∗(T (θ))] (20)

7

where DA∗(µ1‖µ2) = A∗(µ1)−A∗(µ2)−〈µ1−µ2,∇µA∗(µ2)〉 is the Bregman divergence defined using
the function A∗(µ). The relationship between the Bregman and KL divergence is

DKL[q1(θ) ‖ q2(θ)] = DA∗(µ1‖µ2) = DA(λ2‖λ1). (21)

The Bregman divergence is equal to the KL divergence between the corresponding distributions, which
can also be measured in the dual space using the (swapped order of the) natural parameters. We can
then use these Bregman divergences to measure the distances in the two dual spaces.

The relationship with the KLD enables us to express natural gradient descent in one space as a
mirror descent in the dual space. More specifically, the following mirror descent update in the spaceM
is equivalent to the natural gradient descent Eq. 18 in the space of Ω,

µt+1 ← arg min
µ∈M

〈∇µL̃(µt),µ〉+
1

ρt
DA∗(µ‖µt). (22)

The proof is straight forward. From the definition for the Bregman divergence, we find that

∇µDA∗(µ‖µt) = λ− λt. (23)

Using this, if we take the gradient Eq. 22 with respect to µ and set it to zero, we get the BLR update.
The reverse statement also holds: a mirror descent update in the space Ω leads to a natural gradient

descent in the space ofM. From a Bayesian viewpoint, Eq. 22 is closer to Bayes’ rule since an addition
in the natural-parameter space Ω is equivalent to multiplication in the space of Q (see Sec. 5.1). Natural
parameters additionally encode conditional independence (e.g., for Gaussians) which is preferable from
a computational viewpoint (see Malagò and Pistone [2015] for a similar suggestion). In any case, a
reverse version of BLR can always be used if the need arises.

3 Optimization Algorithms from the Bayesian Learning Rule

3.1 First- and second-order methods by using Gaussian candidates

The examples in Sec. 1.3 demonstrate the key ideas behind our recipe to derive learning algorithms:

1. Natural-gradients retrieve essential higher-order information about the loss landscape and assign
them to the appropriate natural parameters,

2. These choices are both dictated by the entropy of the chosen class Q, which automatically deter-
mines the complexity of the derived algorithms.

These are concisely summarized in the optimality condition of the Bayes objective (derived in Eq. 5).

∇µEq∗ [¯̀(θ)] = ∇µH (q∗) (24)

From this, we can derive as a special case the optimality condition of a non-Bayesian problem over ¯̀(θ),
as in Eq. 1. For instance, for Gaussians N (θ|m, I), the entropy is constant. Therefore the right hand
side in Eq. 24 goes to zero, giving the condition shown on the left below,

∇mEq∗
[
¯̀(θ)

]∣∣
m=m∗

= 0
Bonnet’s thm.−−−−−−−−→ Eq∗

[
∇θ ¯̀(θ)

]
= 0

delta method−−−−−−−−→ ∇θ ¯̀(θ)
∣∣
θ=θ∗

= 0. (25)

The condition can also be derived from a fixed point of the BLR (in Eq. 7). The simplifications shown
at the right above are respectively obtained by using Bonnet’s theorem (App. D) and the delta method
(App. C) to finally recover the 1st-order optimality condition at a local minimizer θ∗ of ¯̀(θ). Clearly,

8

the above natural gradient contain the information about the first-order derivative of the loss, to give
us an equation that determines the value of the natural parameter m∗.

When the complexity of the Gaussian is increased to include the covariance parameters with candi-
dates N (θ|m,S−1), the entropy is no more a constant but depends on S, H(q) = −1

2 log |2πeS|. The
fixed-point of the BLR (in Eq. 12 now) to yield an additional condition, shown on the left,

∇S−1Eq∗
[
¯̀(θ)

]∣∣
S−1=S−1

∗
=

1

2
S∗

Price’s thm.−−−−−−−→ Eq∗
[
∇2
θ

¯̀(θ)
]

= S∗
delta method−−−−−−−−→ ∇2

θ
¯̀(θ)

∣∣
θ=θ∗

� 0. (26)

The simplifications at the right are respectively obtained by using Price’s theorem (App. D) and the
delta method (App. C) to recover the 2nd-order optimality condition of a local minimizer θ∗ of ¯̀(θ),
Here, � 0 denotes the positive-definite condition which follows from S∗ � 0. The condition above
matches the second-order derivatives to the precision matrix S∗. In general, more complex sufficient
statistics in q(θ) can enable us to retrieve higher-order derivatives of the loss through natural gradients.

The above is a simple method to obtain non-Bayesian solutions θ∗ while optimizing for a Bayesian
objective. Often such point estimates are justified as Dirac’s-delta posterior approximations, but this
is fundamentally flawed because the entropy of such distribution goes to −∞, making the Bayesian
objective meaningless; see Welling et al. [2008]. Including such degenerate distributions requires non-
trivial modifications to the class of exponential family, for example, see Malagò et al. [2011]. Our use of
the delta method is simpler. It is related to Laplace’s method (more detail in Sec. 4.4), and also to the
online-learning methods where the posterior mean is used for decision making [Hoeven et al., 2018].

3.2 Multimodal optimization by using mixtures-candidate distributions

It is natural to expect that by increasing the complexity of the class Q, we can obtain algorithms that go
beyond standard Newton-like optimizers. We illustrate this point by using mixture distribution to obtain
a new algorithm for multimodal optimization [Yu and Gen, 2010] where the goal is to simultaneously
locate multiple local minima within a single run of the algorithm Wong [2015]. Mixture distributions
are ideal for this task where individual components can be tasked to locate different local minima,
and diversity among them is encouraged by the entropy, forcing them to take responsibility of different
regions. Throughout this section, we should keep in mind that our goal is to simply illustrate the
principle, rather than to propose new algorithms that solve multimodal optimization in its entirety.

We will rely on the work of Lin et al. [2019b,a] who derive a natural-gradient update, similar to
Eq. 3, but for mixtures. Consider, for example, the finite mixture of Gaussians

q(θ) =
K∑
k=1

πkN (θ|mk,S
−1
k)

with mk and Sk as the mean and precision of the k’th Gaussian component and πk are the component
probabilities with πK = 1−

∑K−1
k=1 πk. In general, the FIM of such mixtures could be singular, making

it difficult to use natural-gradient updates. However, the joint q(θ, z = k) = πkN (θ|mk,S
−1
k), where

z ∈ {1, 2, . . . ,K} a mixture-component indicator, has a well-defined FIM which can be used instead.
We will now briefly describe this for the mixture of Gaussian case with fixed πk.

We start by writing the natural and expectation parameters of the joint q(θ, z = k), denoted by λk
and µk respectively. Since πk are fixed, these take very similar form to a single Gaussian case (Eq. 9),

λ
(1)
k = Skmk,

λ
(2)
k = −1

2Sk,

µ
(1)
k = Eq

[
1[z=k]θ

]
= πkmk,

µ
(2)
k = Eq

[
1[z=k]θθ

T
]

= πk
(
S−1
k +mkm

T
k

)
,

(27)

9

where λk = {λ(1)
k ,λ

(2)
k } and µk = {µ(1)

k ,µ
(2)
k }. With this, we can write a natural-gradient update for

λk, k = 1, . . . ,K, by using the gradient with respect to µk [Lin et al., 2019b, Theorem 3],

λk,t+1 ← λk,t − ρt∇µk
[
Eqt
(
¯̀(θ)

)
−H(qt)

]
, (28)

where λk,t denotes the natural parameter λ at iteration t and H(q) = Eq[− log q(θ)] is the entropy of
the mixture q(θ) (not the joint q(θ, z)). This is an extension of the BLR (Eq. 3) to finite mixtures.

As before, the natural gradients retrieve first and second order information. Specifically, as shown
in App. E, update for each k takes a Newton-like form,

mk,t+1 ←mk,t − ρS−1
k,t+1Eqk,t

[
∇θ ¯̀(θ) +∇θ log q(θ)

]
, (29)

Sk,t+1 ← Sk,t + Eqk,t
[
∇2
θ

¯̀(θ) +∇2
θ log q(θ)

]
, (30)

where qk,t(θ) = N (θ|mk,t,S
−1
k,t) is the k’th component at iteration t. The mean and precision of a

component are updated using the expectations of the gradient and Hessian respectively. The expectation
helps to focus on a region where the component has a high probability mass. Similarly to the Newton
step of Eq. 12, the first update is preconditioned with the covariance.

The update can locate multiple solutions in a single run, when each component takes the responsi-
bility of an individual minima. For example, for a problem with two local minima θ1,∗ and θ2,∗, the best
candidate with two components N (θ|m1,∗,S

−1
1,∗) and N (θ|m2,∗,S

−1
2,∗) satisfies optimality condition,

EN (θ|mk,∗,S
−1
k,∗)

[
∇θ ¯̀(θ) + r(θ)S1,∗(m1,∗ − θ) + (1− r(θ))S2,∗(m2,∗ − θ)︸ ︷︷ ︸

∇θ log q(θ)

]
= 0, (31)

for k = 1, 2, where we use expression for ∇θ log q(θ) from Eq. 69 in App. E, and r(θ) is the responsibility
function defined as

r(θ) =
πN (θ|m1,∗,S

−1
1,∗)

πN (θ|m1,∗,S
−1
1,∗) + (1− π)N (θ|m2,∗,S

−1
2,∗)

. (32)

Suppose that each component takes responsibility of one local minima each, for example, for θ sampled
from the first component, r(θ) ≈ 1, and for those sampled from the second component, r(θ) ≈ 0.
Under this condition, both the second and third term in Eq. 31 are negligible, and the mean mk,∗
approximately satisfies the first-order optimality condition to qualify as a minimizer of ¯̀(θ),

EN (θ|mk,∗,S
−1
k,∗)

[∇θ ¯̀(θ)] ≈ 0
delta method−−−−−−−−→ ∇θ ¯̀(θ)

∣∣
θ=mk,∗

≈ 0, for k = 1, 2 (33)

This roughly implies that mk,∗ ≈ θk,∗, meaning the two components have located the two local minima.
The example illustrates the role of entropy in encouraging diversity through the responsibility func-

tion. There remain several practical difficulties to overcome before we are ensured a good algorith-
mic outcome, like setting the correct number of components, appropriate initialization, and of course
degenerate solutions where two components collapse to be the same. Other mixture distributions
can also be used as shown in Lin et al. [2019b] who consider the following: finite mixtures of mini-
mal exponential-families, scale mixture of Gaussians [Andrews and Mallows, 1974, Eltoft et al., 2006],
Birnbaum-Saunders distribution [Birnbaum and Saunders, 1969], multivariate skew-Gaussian distribu-
tion [Azzalini, 2005], multivariate exponentially-modified Gaussian distribution [Grushka, 1972], nor-
mal inverse-Gaussian distribution [Barndorff-Nielsen, 1997], and matrix-variate Gaussian distribution
[Gupta and Nagar, 2018, Louizos and Welling, 2016].

10

4 Deep-Learning Algorithms from the Bayesian Learning Rule

4.1 Stochastic gradient descent

Stochastic gradient descent (SGD) is one of the most popular deep-learning algorithms due to its
computational efficiency. The computational speedup is obtained by approximating the gradient of the
loss by a stochastic-gradient built using a small subset M of M examples with M � N . The subset
M, commonly referred to as a mini-batch, is randomly drawn at each iteration from the full dataset
using a uniform distribution, and the resulting mini-batch gradient

∇̂θ ¯̀(θ) =
N

M

∑
i∈M
∇θ`(yi, fθ(xi)) +∇θR(θ), (34)

is much faster to compute. Similarly to the gradient-descent case in Sec. 1.3.1, the SGD step can
be interpreted as the BLR over a distribution q(θ) = N (θ|m, I) with the unknown mean m and the
gradient in Eq. 7 being replaced by the mini-batch gradient. The BLR update is extended to candidates
q(θ) = N (θ|m,S−1) with any fixed S � 0 to get an SGD-like update where S−1 is the preconditioner,

mt+1 ←mt − ρtS−1 ∇̂θ ¯̀(θ)
∣∣∣
θ=mt

. (35)

This is derived similarly to Sec. 1.3.1 but with λ = Sm, µ = m, and 2 log h(θ) = P log |2πS| − θTSθ.
The above BLR interpretation sheds light on the ineffectiveness of first-order methods (like SGD)

to estimate posterior approximations, This is a recent trend in Bayesian deep learning, where a pre-
conditioned update is preferred due to the an-isotropic SGD noise [Mandt et al., 2017, Chaudhari and
Soatto, 2018, Maddox et al., 2019]. Unfortunately, a first-order optimizer (such as Eq. 35) offers no clue
about estimating S. SGD iterates can be used [Mandt et al., 2017, Maddox et al., 2019], but iterates
and the noise in them are affected by the choice of S, which makes the estimation difficult. With our
Bayesian scheme, the preconditioner is estimated automatically using a second-order method (Eq. 12)
when we allow S as a free parameter. We discuss this next in the context of adaptive learning-rate
algorithms.

4.2 Adaptive learning-rate algorithms

Adaptive learning-rate algorithms, motivated from Newton’s method, adapt the learning rate in SGD
with a scaling vector, and we discuss their relationship to the BLR. Early adaptive variants relied on
the diagonal of the mini-batch Hessian matrix to reduce the computation cost [Barto and Sutton, 1981,
Becker and LeCun, 1988], and use exponential smoothing to improve stability [LeCun et al., 1998]:

θt+1 ← θt − α
1

st+1
◦ ∇̂θ ¯̀(θt), and st+1 ← (1− β)st + β diag[∇̂2

θ
¯̀(θt)], (36)

where a◦b and a/b denote element-wise multiplication and division respectively, and the scaling vector,
denoted by st, uses diag[∇̂2

θ
¯̀(θt)], which denotes a vector whose j’th entry is the mini-batch Hessian

∇̂2
θj

¯̀(θ) =
N

M

∑
i∈M
|∇2

θj
`(yi,f θ(xi))|+∇2

θj
R(θ).

Note the use of absolute value to make sure that the entries of st stay positive (assuming R(θ) to
be strongly-convex). The exponential smoothing, a popular tool from the non-stationary time-series
literature [Brown, 1959, Holt et al., 1960, Gardner Jr, 1985], works extremely well for deep learning and

11

is adopted by many adaptive learning-rate algorithms, e.g., the natural Newton method of Le Roux and
Fitzgibbon [2010] and the vSGD method by Schaul et al. [2013] both use it to estimate the second-order
information, while more modern variants such as RMSprop [Tieleman and Hinton, 2012], AdaDelta
[Zeiler, 2012], and Adam [Kingma and Ba, 2015], use it to estimate the magnitude of the gradient (a
more crude approximation of the second-order information [Bottou et al., 2016]).

The BLR naturally gives rise to the update Eq. 36, where exponential smoothing arises as a con-
sequence and not something we need to invent. We optimize over candidates of the form q(θ) =
N (θ|m,S−1) where S is constrained to be a diagonal matrix with a vector s as the diagonal. This
choice results in the BLR update similar to the Newton-like update Eq. 12,

θt+1 ← θt − ρt
1

st+1
◦ ∇θ ¯̀(θt), where st+1 ← (1− ρt)st + ρt diag(∇2

θ
¯̀(θt)), (37)

to obtain mt = θt and diag(St) = st. Replacing the gradient and Hessian by their mini-batch approxi-
mations and then employing different learning-rates for θt and st, we recover the update Eq. 36.

The similarity of the BLR update can be exploited to compute uncertainty estimates for deep-
learning models. Khan et al. [2018] study the relationship between Eq. 37 and modern adaptive learning-
rate algorithms, such as RMSprop [Tieleman and Hinton, 2012], AdaDelta [Zeiler, 2012], and Adam
[Kingma and Ba, 2015]. These modern variants also use exponential smoothing but over gradient-
magnitudes ∇̂θ ¯̀(θt) ◦ ∇̂θ ¯̀(θt), instead of the Hessian, e.g., RMSprop uses the following update,

θt+1 ← θt − α
1

√
vt+1 + c1

◦
[
∇̂θ ¯̀(θt)

]
, where vt+1 ← (1− β)vt + β

[
∇̂θ ¯̀(θt) ◦ ∇̂θ ¯̀(θt)

]
. (38)

There are also some other minor differences to Eq. 37, for example, the scaling uses a square-root to take
care of the factor 1/M2 in the square of the mini-batch gradient and a small c > 0 is added to avoid from
(near)-zero vt+1 [Khan et al., 2018, Sec. 3.4]. Despite these small differences, the similarly of the two
updates in Eqs. 37 and 38 enables us to incorporate Bayesian principles in deep learning. Uncertainty is
then computed using a slightly-modified RMSprop update [Osawa et al., 2019] which, which just a slight
changes in the code, can exploit all the tricks-of-the-trade of deep learning such as batch normalization,
data augmentation, clever initialization, and distributed training (also see Sec. 4.4). The BLR update
extends the application of adaptive learning-rate algorithms to uncertainty estimation in deep learning.

The Adam optimizer [Kingma and Ba, 2015] is inarguably one of the most popular optimizer, and
this too is closely related to a BLR variant which uses a momentum based mirror-descent. Momentum
is a common technique to improve convergence speed of deep learning [Sutskever et al., 2013]. The
classical momentum method is based on the Polyak’s heavy-ball method [Polyak, 1964],

θt+1 ← θt − α∇̂θ ¯̀(θt) + γt(θt − θt−1)

with a fixed momentum coefficient γt > 0, but the momentum used in adaptive learning-rate algorithms,
such as Adam, differ in the use of scaling with st in front of the momentum term θt − θt−1 (see Eq. 78
in App. F). These variants can be better explained by including a momentum term in the BLR within
the mirror descent framework of Sec. 2, which gives the following modification of the BLR (see App. F):

λt+1 ← λt − ρt∇̃λ
[
Eqt
(
¯̀(θ)

)
−H(qt)

]
+ γt(λt − λt−1).

For a Gaussian distribution, this recovers both SGD and Newton’s method with momentum. Variants
like Adam can then be obtained by making approximations to the Hessian and by using a square-root
scaling, see Eq. 81 in App. F.

Finally, we will also mention Aitchison [2018] who derive deep-learning optimizers using a Bayesian
filtering approach with updating equations similar to the ones we presented. They further discuss
modifications to justify the use of square-root in Adam and RMSprop. The approach taken by Ollivier
[2018] is similar, but exploits the connection of Kalman filtering and the natural-gradient method.

12

4.3 Dropout

Dropout is a popular regularization technique to avoid overfitting in deep learning where hidden units
are randomly dropped from the neural network (NN) during training [Srivastava et al., 2014]. Gal and
Ghahramani [2016] interpret SGD-with-dropout as a Bayesian approximation (called MC-dropout), but
their crude approximation to the entropy term prohibits extensions to more flexible posterior approxi-
mations. In this section, we show that by using the BLR we can improve their approximation and go
beyond SGD to derive MC-dropout variants of Newton’s method, Adam and RMSprop.

Denoting the j’th unit in the l’th layer by fjl(x) for an input x, we can write the i’th unit for the
l + 1’th layer as follows:

fi,l+1(x) = h

 nl∑
j=1

θijlzjlfjl(x)

 (39)

where the binary weights zjl ∈ {0, 1} are to be defined, nl is the number of units in the l’th layer, all
θijl ∈ R are the parameters, and h(·) is a nonlinear activation function. For simplicity, we have not
included an offset term.

Without dropout, all weights zjl are all set to be one. With dropout, all zjl’s are independent
Bernoulli variables with probability for being 1 equal to π1 (and fixed). If zjl = 0, then the j’th unit
of the l’th is dropped from the NN, otherwise it is retained. Let θ̃ijl = θijlzjl and let θ and θ̃ denote
the complete set of parameters. The training can be performed with the following simple modification
of SGD where θ̃ are used during back-propagation,

θt+1 ← θt − α∇̂θ ¯̀(θ̃t). (40)

This simple procedure has proved to be very effective in practice and dropout has become a standard
trick-of-the-trade to improve performance of large deep networks trained with SGD.

We can include dropout into the Bayesian learning rule, by considering a spike-and-slab mixture
distribution for θjl = (θ1jl, . . . , θnljl)

q(θjl) = π1N (θjl|mjl,S
−1
jl) + (1− π1)N (θjl|0, s−1

0 Inl) (41)

where the means and covariances are unknown, but s0 is fixed to a small positive value to emulate a
spike at zero. Further, we assume independence for every j and l, q(θ) =

∏
jl q(θjl). For this choice of

candidate distribution, we arrive in the end at the following update,

θjl,t+1 ← θjl,t − ρt S−1
jl,t+1

[
∇̂θjl ¯̀(θ̃t)

]
/π1, (42)

Sjl,t+1 ← (1− ρt)Sjl,t + ρt

[
∇̂2
θjl

¯̀(θ̃t)
]
/π1. (43)

The derivation in App. G uses two approximations. First, the delta method (Eq. 84, also used by Gal
and Ghahramani [2016]), and second, an approximation to the responsibility function (Eq. 32) which
assumes that θjl is far apart from 0 (can be ensured by choosing s0 to be very small; see Eqs. 85 and 86).

The update is a variant of the Newton’s method derived in Eq. 12. The difference is that the gradients
and Hessians are evaluated at the dropout weights θ̃t. By choosing Sjl,t to be a diagonal matrix as in
Sec. 4.2, we can similarly derive RMSprop/Adam variants with dropout. The BLR derivation enables
more flexible posterior approximations than the original derivation by Gal and Ghahramani [2016].

We can build on the mixture candidate model to learn also π1 and/or allow it to be different
across layers, although by doing so we leave the justification leading to dropout. Such extensions can

13

be obtained using the extension to mixture distribution by Lin et al. [2019b]. The update requires
gradients with respect to π1 which can be approximated by using the Concrete distribution [Maddison
et al., 2016, Jang et al., 2016] where the binary zjl is replaced with an appropriate variable in the unit
interval, see also Sec. 4.5 for a similar approach. Gal et al. [2017] proposed a similar extension but their
approach do not allow for more flexible candidate distributions. Our approach here extends to adaptive
learning-rate optimizers, and can be extended to more complex candidate distributions.

4.4 Uncertainty estimation in deep learning

Uncertainty estimation in deep learning is crucial for many applications, such as medical diagnosis and
self-driving cars, but its computation is extremely challenging due to a large number of parameters and
data examples. A straightforward application of Bayesian methods does not usually work. Standard
Bayesian approaches, such as Markov Chain Monte Carlo (MCMC), Stochastic Gradient Langevin Dy-
namics (SGLD), and Hamiltonian Monte-Carlo (HMC), are either infeasible or slow [Balan et al., 2015].
Even approximate inference approaches, such as Laplace’s method [Mackay, 1991, Ritter et al., 2018],
variational inference [Graves, 2011, Blundell et al., 2015], and expectation propagation [Hernandez-
Lobato and Adams, 2015], do not match the performance of the standard point-estimation methods
at large scale. On the ImageNet dataset, for example, these Bayesian methods performed poorly until
recently when Osawa et al. [2019] applied the natural-gradient algorithms [Khan et al., 2018, Zhang
et al., 2018b]. Such natural-gradient algorithms are in fact variants of the BLR and we will now discuss
their derivation, application, and suitability for uncertainty estimation in deep learning.

We start with the Laplace’s method which is one of the simplest approaches to obtain uncertainty
estimates from point estimates; see Mackay [1991] for an early application to NN. Given a minimizer
θ∗ of ERM in Eq. 1 (assume that the loss correspond to a negative log probability over outputs yi),
in Laplace’s method, we employ a Gaussian approximation N (θ|θ∗,S−1

∗) where S∗ = ∇2
θ

¯̀(θ∗). For
models with billions of parameters, even forming S∗ is infeasible and a diagonal approximation is often
employed [Ritter et al., 2018]. Still, Hessian computation after training requires a full pass through the
data which could be expensive. The BLR updates solve this issue since Hessian can be obtained during
training, e.g., using Eq. 37 with a minibach gradient and Hessian (indicated by ∇̂ below),

θt+1 ← θt − ρt
1

st+1
◦ ∇̂θ ¯̀(θt), with st+1 ← (1− ρt)st + ρt diag(∇̂2

θ
¯̀(θt)). (44)

where it is clear that st converges to an unbiased estimate of the diagonal of the Hessian at θ∗.
Using (diagonal) Hessian is still problematic in deep learning because sometimes it can be negative,

and the steps can diverge. An additional issue is that its computation is cumbersome in existing
software which mainly support first-order derivatives only. Due to this, it is tempting to simply use
the RMSprop/Adam update Eq. 38, but using (∇̂θj ¯̀(θt))

2 as Hessian approximation results in poor
performance as shown by Khan et al. [2018, Thm. 1]. Instead, they propose to use the following
Gauss-Newton approximation which is built from first-order derivatives but is more accurate,

∇̂2
θj

¯̀(θ) ≈ N

M

∑
i∈M

[
∇θj`(yi, fθ(xi))

]2
+∇2

θj
R(θ). (45)

The resulting algorithm is referred to as the online Gauss-Newton (OGN) in [Osawa et al., 2019, App. C].
The update Eq. 44 is similar to RMSprop, and can be implemented with minimal changes to the

existing software and many practical deep-learning tricks can also be applied to boost the performance.
Osawa et al. [2019] use OGN with batch normalization, data augmentation, learning-rate scheduling,
momentum, initialization tricks, and distributed training. With these tricks, OGN gives similar perfor-
mance as the Adam optimizer, even at large scale [Osawa et al., 2019], while yielding an estimate of the

14

𝜃∗ + 𝛿

Zero
gradient

Small +ve
gradient

Large –ve
gradient

Region with
a large loss

Loss

𝜃∗ − 𝛿 𝜃∗ 𝑚∗

𝑞∗(𝜃)

𝜃 →

(a)

Loss

Flat minima

Sharp minima

m⇤

<latexit sha1_base64="bTJ2K3qyuTKFYABHmWHanJ29DaA=">AAAB63icbVDLSgNBEOz1GeMrxqOXIUEQD2FXAuotoAePEcwDkiXMTmaTITOzy8ysEJb8ghcPinjVv/APPHnzb5xNctDEgoaiqpvuriDmTBvX/XZWVtfWNzZzW/ntnd29/cJBsamjRBHaIBGPVDvAmnImacMww2k7VhSLgNNWMLrK/NY9VZpF8s6MY+oLPJAsZASbTBK9U9QrlN2KOwVaJt6clGu5z4/i9Xup3it8dfsRSQSVhnCsdcdzY+OnWBlGOJ3ku4mmMSYjPKAdSyUWVPvp9NYJOrZKH4WRsiUNmqq/J1IstB6LwHYKbIZ60cvE/7xOYsILP2UyTgyVZLYoTDgyEcoeR32mKDF8bAkmitlbERlihYmx8eRtCN7iy8ukeVbxqpXLW5tGFWbIwRGU4AQ8OIca3EAdGkBgCA/wBM+OcB6dF+d11rrizGcO4Q+ctx839ZCh</latexit>

Initialization

𝜃∗,# 𝜃 →𝜃∗,$

𝑞∗(𝜃)

(b)

Figure 1: Two examples to illustrate the difference between the solution of the ERM objective (Eq. 1)
vs those of the Bayes objective (Eq. 2). Panel (a): When the minima lies right next to a ‘wall’, the
Bayesian solution shifts away from the wall to avoid large losses under small perturbation, which is due
to the condition Eq. 25. Panel (b): Given a sharp minima vs a flat minima, the Bayesian solution often
prefers the flatter minima, which is again due to the averaging property.

variance. The compute cost is only slightly higher, but it is not an increase in the complexity, rather
due to a difficulty of implementing Eq. 45 in the existing deep-learning software. Khan et al. [2019]
further propose a slightly better (but costlier) approximation based on the FIM the log-likelihood, to
get an algorithm they call the online Generalized Gauss-Newton (OGGN) algorithm. Both OGN and
OGGN algorithms are scalable BLR variants for Laplace’s method in deep learning.

OGN’s uncertainty estimates can be improved by using variational-Bayesian inference. This im-
proves over Laplace’s method by using the stationarity conditions (Eqs. 25 and 26) with an expectation
over q(θ) [Opper and Archambeau, 2009]. The variational solution is slightly different than Laplace’s
method and is expected to be more robust due to the averaging over q∗(θ) in Eqs. 25 and 26. Two
such situations are illustrated in Fig. 1, one corresponding to an asymmetric loss where the Bayesian
solution avoids a region with extremely high loss (Fig. 1(a)), and the other one where it seeks a more
stable solution involving a wide and shallow minima compared to a sharp and deep minima (Fig. 1(b)).
Such situations are hypothesised to exist in deep-learning problems [Hochreiter and Schmidhuber, 1997,
1995, Keskar et al., 2016], where a good performance of stochastic optimization methods is attributed
to their ability to find shallow minima [Dziugaite and Roy, 2017]. Similar strategies exist in stochas-
tic search and global optimization literature where a kernel is used to convolve/smooth the objective
function, like in Gaussian homotopy continuation method [Mobahi and Fisher III, 2015], optimization
by smoothing [Leordeanu and Hebert, 2008], graduated optimization method [Hazan et al., 2016], and
evolution strategies [Huning, 1976, Wierstra et al., 2014]. The benefit of the Bayesian approach is that
this kernel corresponds to q(θ) which adapts itself from data and is learned through the BLR.

Variational Bayesian version is obtain by simply removing approximation due to the delta method

15

from Eq. 44, going back to the original Newton variant of Eq. 12 (now with minibatch Hessians),

θt+1 ← θt − ρt
1

st+1
◦ Eqt

[
∇̂θ ¯̀(θ)

]
, with st+1 ← (1− ρt)st + ρt Eqt

[
diag(∇̂2

θ
¯̀(θ))

]
, (46)

where iterates qt(θ) = N (θ|θt,S−1
t) are defined with precision matrix St as a diagonal matrix with st

as the diagonal. The iterates converge to an optimal diagonal Gaussian candidate that optimizes Eq. 2.
Similarly to OGN, the update Eq. 46 can be modified to use the Gauss-Newton approximation

Eq. 45, which is easier to implement and can also exploit the deep-learning tricks to find good solutions.
The expectations can be implemented by a simple ‘weight-perturbation’,

Eqt [∇̂θ ¯̀(θ)] ≈ ∇̂θ ¯̀(θt + εt)

where εt ∼ N (ε|0,diag(st)) (multiple samples can also be used). The resulting algorithm is referred
to as variational OGN or VOGN by Khan et al. [2018]) and is shown to match the performance of
Adam and give better uncertainty estimates than both Adam, OGN, and other Bayesian alternatives
[Osawa et al., 2019, Fig. 1]. A version with the FIM of the log-likelihood is proposed in Khan et al.
[2019] (algorithm is called VOGGN). Variants that exploit Hessian structures using Kronecker-factored
[Zhang et al., 2018b] and low-rank [Mishkin et al., 2018] are also considered. All these are natural-
gradients methods, therefore BLR variants which enable uncertainty estimation in deep learning with
scalable Gaussian candidates.

4.5 Binary neural networks

Binary NNs have binary weights θ ∈ {−1,+1}P , hence we need to consider another class of the candidate
distributions than the Gaussian (we will choose Bernoulli). Binary NNs are natural candidates for
resource-constrained applications, like mobile phones, wearable and IoT devices, but their training is
challenging due to the binary weights for which gradients do not exists. Our Bayesian scheme solves this
issue because gradients of the Bayesian objective are always defined with respect to the parameters of
a Bernoulli distribution, turning a discrete problem into a continuous one. The discussion here is based
on the results of Meng et al. [2020] who used the BLR to derive the BayesBiNN learning algorithm and
connect it to the well known Straight-Through-Estimator (STE) [Bengio et al., 2013].

The training objective of binary NN involves a discrete optimization problem

min
θ∈{−1,+1}P

N∑
i=1

`(yi, fθ(xi)). (47)

In theory, gradient based methods should not work for such problems since the gradients with respect
to discrete variables do not exist. Still, the most popular method to train binary NN, the Straight-
Through-Estimator (STE) [Bengio et al., 2013], employs continuous optimization methods and works
remarkably well [Courbariaux et al., 2015]. The method is justified based on latent real-valued weights
θ̃ ∈ RP which are discretized at every iteration to get binary weights θ, while the gradients used to
update the latent weights θ̃, are computed at the binary weights θ, as shown below,

θ̃t+1 ← θ̃t − α
∑
i∈Mt

∇θ`(yi, fθt(xi)), where θt ← sign(θ̃t) (48)

It is not clear why the gradients computed at the binary weights help the search for the minimum of
the discrete problem, and many studies have attempted to answer this question, e.g., see Yin et al.
[2019], Alizadeh et al. [2019]. The Bayesian objective in Eq. 2 rectify this issue since the expectation

16

of a discrete objective is a continuous objective with respect to the parameters of the distributions,
justifying the use of gradient based methods.

We will now show that using Bernoulli candidate distributions in the BLR gives rise to an algorithm
similar Eq. 48, justifying the application of the STE algorithm to solve a discrete optimization problem.
Specifically, we choose q(θj = 1) = pj where pj ∈ [0, 1] is the success probability. We also assume a mean-

field distribution to get q(θ) =
∏P
j=1 q(θj). Since the Bernoulli distribution is a minimal exponential-

family with a constant base measure, we use the BLR in Eq. 6 with λj = 1/2 log(pj/(1 − pj)) and
µj = 2pj − 1, to get

λt+1 ← (1− ρt)λt − ρt∇µEqt

[∑
i∈Mt

`(yi, fθ(xi))

]
. (49)

The challenge now is to compute the gradient with respect to µ, but it turns out that approximating it
with the Concrete distribution [Maddison et al., 2016, Jang et al., 2016] recovers the STE step.

Concrete distribution provides a way to relax a discrete random variable into a continuous one such
that it becomes a deterministic function of a continuous random variable. Following Maddison et al.
[2016], the continuous random variable, denoted by θ̂(τ) ∈ (−1, 1), are constructed from the binary
variable θ ∈ {−1, 1} by using iid uniform random variables ε ∈ (0, 1) and using the function tanh(·),

θ̂(τ) = tanh

(
λ+ δ(ε)

τ

)
, where δ(ε) =

1

2
log

(
ε

1− ε

)
, (50)

with τ > 0 as the temperature parameter. As τ → 0, the function approaches the sign function used in
STE step (Eq. 48): θ̂(0) = sign(λ+ δ(ε)).

The gradient too can be approximated by the gradients with respect to the relaxed variables

∇µEq [`(yi, fθ(xi))] ≈ ∇µ`(yi, f
θ̂
(τ)(xi)) = s ◦

[
∇
θ̂
(τ)`(yi, f

θ̂
(τ)(xi))

]
, (51)

where we used chain rule in the last step and s is a vector of

sj = ∇µjθ
(τ)
j =

1

τ

[
1− (θ̂

(τ)
j)2

1− tanh2(λj)

]
.

By renaming λ by θ̃ and θ̂
(τ)

by θ, the rule in Eq. 49 becomes

θ̃t+1 ← (1− ρt)θ̃t − ρtst ◦

[∑
i∈Mt

∇θ`(yi, fθt(xi))

]
, where θt ← tanh

(
1

τ

(
θ̃t + δ(εt)

))
(52)

with st ← (1− θ2
t)/(τ(1− tanh2(θ̃t))), and εt is a vector of P iid samples from a uniform distribution.

Meng et al. [2020] refer to this algorithm as BayesBiNN.
BayesBiNN is similar to STE shown in Eq. 48, but computes natural-gradients (instead of gradients)

at the relaxed parameters θt which are obtained by adding noise δ(εt) to the real-valued weights θ̃t.
The gradients are approximations of the expected loss and are well defined. By setting noise to zero and
letting the temperature τ → 0, the tanh(·/τ) becomes the sign-function and we recover the gradients
used in STE. This limit is when the randomness is ignored and is similar to the delta method used
in earlier sections. The random noise δ(εt) and the non-zero temperature τ enables a softening of the
binary weights, allowing for meaningful gradients. BayesBiNN also provides meaningful latent θ̃ which
are now the natural parameters of the Bernoulli distribution.

17

Unlike STE, the updates employs a exponential smoothing which is a direct consequence of using the
entropy term in the Bayesian objective. With discrete weights, optimum of Eq. 47 could be completely
unrelated to an STE solution θ∗, for example, the one that yields zero gradients

∑
i∇θ`(yi, fθ∗(xi)) = 0.

In contrast, the BayesBiNN solution minimizes the well-defined Bayes objective of Eq. 2, whose optimum
is characterized by the optimality condition Eq. 24 directly relating the optimal θ̃∗ to the relaxed
variables θ∗:

θ̃∗
s∗
≈

N∑
i=1

∇θ`(yi, fθ∗(xi)). (53)

The BayesBiNN solution θ∗ is in general different from the one from the STE algorithm, but when
temperature τ → 0 we expect the two solutions to be similar whenever s∗ → ∞ (as the left-hand-side
in the equation above goes to zero). In general, we expect the BayesBiNN solution to have robustness
properties similar to the ones discussed for Fig. 1. The exponential smoothing used in BayesBiNN is
similar to the update of Helwegen et al. [2019] but their formulation lacks a well-defined objective.

5 Probabilistic Inference Algorithms from the Bayesian Learning Rule

Algorithms for inference in probabilistic graphical models can be derived from the BLR, by setting the
loss function to be the log-joint density of the data and unknowns. Unknowns could include both latent
variables z and model parameters θ. The class Q is chosen based on the form of the likelihood and
prior. We will first discuss the case the conjugate case, where BLR reduces to Bayes’ rule, and then
discuss expectation maximization and variational inference (VI) where structural approximations to the
posterior are usually employed.

5.1 Conjugate models and Bayes’ rule

We start with one of the most popular category of Bayesian models called exponential-family conjugate
models. We consider N iid data yi with likelihoods p(yi|θ) (no latent variables) and prior p(θ). The
loss is the negative of the log-joint density ¯̀(θ) = − log p(y,θ) where y = (y1,y2, . . . ,yN). Conjugacy
implies the existence of sufficient statistics T (θ) such that

p(yi|θ) ∝ exp
(
〈λ̃i(yi),T (θ)〉

)
, and p(θ) ∝ exp (〈λ0,T (θ)〉) ,

for some λ̃i(yi) (a function of yi), and λ0. The λ̃i(yi) is often interpreted as the sufficient statistics of
yi, but it can also be seen as the natural parameter of the likelihood with respect to T (θ). The posterior
is available in closed-form obtained by a simple addition of the natural parameters.

p(θ|y) ∝ exp

(
〈λ0 +

∑
i

λ̃i(yi),T (θ)〉

)
.

The natural parameter of the above is equal to the BLR solution in Eq. 5, now available in closed-form,

λ∗ = λ0 +
N∑
i=1

∇µEq∗ [log p(yi|θ)] (54)

The natural gradient automatically yields λ̃i(yi) because ∇µEq∗ [log p(yi|θ)] = λ̃i(yi). As an example,
we illustrate these quantities for ridge regression (Sec. 1.3.3) where yi is a real-valued scalar,

λ̃
(1)

i (yi) = yixi, λ̃
(2)

i (yi) = −1

2
xix

>
i , λ

(1)
0 = 0, λ

(2)
0 = −1

2
δI.

18

Using these in Eq. 54, the rhs is equal to Eq. 14. Using the definition of λ∗ and solving a system to
recover the mean and covariance yields the well-known Bayesian linear regression posterior.

For conjugate exponential-family models, the BLR yields the posterior obtained by Bayes’ rule.
This includes popular Gaussian linear models [Roweis and Ghahramani, 1999], such as Kalman fil-
ter/smoother, probabilistic Principle Components Analysis (PCA), factor analysis, mixture of Gaus-
sians, and hidden Markov models, as well as nonparameteric models, such as Gaussian process (GP)
regression [Rasmussen and Williams, 2006]. The natural-parameters are available in closed form. Note
that the solution also correspond to a single step of Eq. 6 with ρt = 1. From the computational
point of view, the BLR does not offer any advice to obtain marginal properties in general, and efficient
techniques, such as message passing, are required to compute natural gradients.

5.2 Expectation maximization

We will now derive Expectation Maximization (EM) from the BLR. EM is a popular algorithm for
parameter estimation with latent variables [Dempster et al., 1977]. Given the joint distribution p(y, z|θ)
with latent variables z and parameters θ, the EM algorithm computes the posterior p(z|y,θ∗) as well as
parameter θ∗ that maximizes the marginal likelihood p(y|θ). The algorithm can be seen as coordinate-
wise BLR updates with ρt = 1 to update candidate distribution that factorizes across z and θ,

qt(z,θ) = qt(z)qt(θ) ∝ e〈λt,T z(z)〉N (θ|θt, I), (55)

where θt denotes the mean of the Gaussian. The loss function is set to ¯̀(z,θ) = − log p(y, z|θ).
To ease the presentation, assume the likelihood, prior, and joint density can be expressed as

p(y|z,θ) ∝ exp
(
〈λ̃1(y,θ),T z(z)〉

)
, p(z|θ) ∝ exp (〈λ0(θ),T z(z)〉) ,

p(y, z|θ) ∝ exp (〈T yz(y, z),θ〉 −Ayz(θ)) , (56)

for some functions λ̃1(·, ·) and λ0(·) (similar to the previous section), and θ is assumed to be the natural
parameter of the joint. The likelihood and prior are expressed in terms of sufficient statistics T z(z)
while the joint is with T yz(·, ·) [Winn and Bishop, 2005]. The EM algorithm then takes a simple form
where we iterate between updating λ and θ [Banerjee et al., 2005],

E-step: λt+1 ← λ̃1(y,θt) + λ0(θt), M-step: θt+1 ← A∗yz
(
Eqt+1 [T yz(y, z)]

)
.

Here, A∗yz(·) is the Legendre transform, and qt+1(z) = p(z|y,θt+1) is the posterior found in the E-step.
The two steps are obtained from the BLR by using the delta method to approximate the expectation

with respect to qt(θ). For the E-step, we assume qt(θ) fixed, and use Eqs. 5 and 54 and the delta method,

λt+1 ← ∇µEqt(z)qt(θ)[−¯̀(z,θ)]
∣∣
µ=µt

= Eqt(θ)[λ̃1(y,θ) + λ0(θ)] ≈ λ̃1(y,θt) + λ0(θt)

For the M-step, we use the stationarity condition similar to Eq. 25 but now with the delta method with
respect to q(θ) (note that θt+1 is both the expectation and natural parameter),

∇θEqt+1(z)

[
¯̀(z,θ)

]∣∣
θ=θt+1

= 0
¯

A simple calculation using the joint p(y, z) will show that this reduces to the M-step.
The derivation is easily extended to the generalized EM iterations. The coordinate-wise strategy

also need not be employed and the BLR steps can also be run in parallel. A such scheme resembles
the generalized EM algorithm and usually converge faster. Online schemes can be obtained by using

19

stochastic gradients, similar to those considered in Titterington [1984], Neal and Hinton [1998], Sato
[1999], Cappé and Moulines [2009], Delyon et al. [1999]. More recently, Amid and Warmuth [2020] use
a divergence-based approach and Kunstner et al. [2021] prove attractive convergence properties using
a mirror-descent formulation similar to ours. Next, we derive a generalization of such online schemes,
called the stochastic variational inference.

5.3 Stochastic variational inference and variational message passing

Stochastic variational inference (SVI) is a generalization of EM, first considered by Sato [2001] for
the conjugate case and extended by Hoffman et al. [2013] to conditionally-conjugate models (a similar
strategy was also proposed by Honkela et al. [2011]). We consider the conjugate case due to its simplicity.
The model is assume to be similar to the EM case as in Eq. 56, but withN iid data examples yi associated
with one latent vector zi each and a conjugate prior p(θ|α) with α = (α1, α2) as prior parameters,

p(yi|zi,θ) ∝ exp
(
〈λ̃i(yi,θ),T i(zi)〉

)
, p(zi|θ) ∝ exp (〈λ0(θ),T i(zi)〉) ,

p(yi, zi|θ) ∝ exp (〈T yz(yi, zi),θ〉 −Ayz(θ)) , p(θ|α) = h0(θ) exp ([〈α1,θ〉 − α2Ayz(θ)]) . (57)

Due to conjugacy, each conditional update can be done coordinate wise. A common strategy is to
assume a mean-field approximation

q(z1, . . . ,zN ,θ) = q(θ)
∏
i

q(zi) ∝ eλ
(1)
0 −λ

(2)
0 Ayz(θ)

∏
i

e〈λi,T i(zi)〉,

where λi is the natural parameter of q(zi), and (λ
(1)
0 , λ

(2)
0) is the same for q(θ).

Coordinate-wise updates when applied to general graphical model are known as variational message
passing Winn and Bishop [2005]. These updates are a special case of BLR, applied coordinate wise with
ρt = 1. The derivation is almost identical to the one used for the EM case earlier, therefore omitted.
One important difference is that, we do not employ the delta method for q(θ) and explicitly carry
out the marginalization which has a closed-form expression due to conjugacy. The update for q(θ) is
therefore replaced by its corresponding conjugate update.

Stochastic variational inference employs a special update where, after every q(zi) update with ρt = 1,
we update q(θ) but with ρt < 1. Clearly, this is also covered as a special case of the BLR. The BLR
update is more general than these strategies since it applies to a wider class of non-conjugate models,
as discussed next.

5.4 Non-conjugate variational inference

Consider a graphical model p(x) ∝
∏
i∈I fi(xi) where x denotes the set of latent variables z and

parameters θ and fi(xi) is the i’th factor operating on the subset xi indexed by the set I. The BLR
can be applied to estimate a minimal exponential-family (assuming a constant base measure),

λt+1 ← (1− ρt)λt + ρt
∑
i∈I

λ̃i(µt), where λ̃i(µt) = ∇µEqt [log fi(xi)]|µ=µt
. (58)

where µt = ∇λA(λt). The setup is quite flexible and can represent for example a Bayesian network, a
Markov random field and a Boltzmann machine. We can also view this as an update over distributions,
by multiplying by T (x) followed by exponentiation,

qt+1(x) ∝ qt(x)(1−ρt)

[∏
i∈I

exp
(
〈λ̃i(µt),T (xi)〉

)]ρt
(59)

20

and at convergence

q∗(x) ∝
∏
i∈I

exp
(
〈λ̃i(µ∗),T (xi)〉

)
,

where q∗(x) is the optimal distribution with natural and expectation parameters as λ∗ and µ∗. This
update has three important features.

1. The optimal q∗(x) has the same structure as p(x) and each term in q∗(x) yields an approximation
to those in p(x),

fi(xi) ≈ ci exp
(
〈λ̃i(µ∗),T (xi)〉

)
for some constant ci > 0. The quantity λ̃i(·) can be interpreted as the natural parameter of the
local approximation. Such local parameters are often referred to as the site parameters in expec-
tation propagation (EP) where their computations are often rather involved. In our formulation
they are simply the natural gradients of the expected log joint density. See Chang et al. [2020,
Sec. 3.4 and 3.5] for an example comparing the two.

2. The update in Eq. 59 yields both the local λ̃i(·) and global λ parameters simultaneously, which
is unlike the message-passing strategies that only compute the local messages. In fact, Eq. 59 can
also be reformulated entirely in terms of local parameters (denoted by λ̃i,t+1 below),

λt+1 ←
∑
i∈I

λ̃i,t+1, where λ̃
(t+1)

i ← (1− ρt)λ̃
(t)

i + ρtλ̃i(µt), (60)

This formulation was discussed by Khan and Lin [2017] who show this to be a generalization of
the non-conjugate variational message passing algorithm [Knowles and Minka, 2011]. The form
is suitable for a distributed implementation using a message-passing framework. It is important
to note that the local approximations are optimal and therefore inherently superior to the local-
variational bounds, for example, quadratic bounds used in logistic regression [Jaakkola and Jordan,
1996, Khan et al., 2010, 2012, Khan, 2012], and also to the augmentation strategies [Girolami and
Rogers, 2006, Klami, 2015].

3. The update applies to both conjugate and non-conjugate factors, and probabilistic and deter-
ministic variables. Automatic differentiation tools can be easily be integrated since the update
does not make a distinction between those. All this makes the BLR an interesting candidate for
practical probabilistic programming [van de Meent et al., 2018].

We have argued that natural gradients play an important role for probabilistic inference, both for
conjugate models or within those using message-passing frameworks. Still, their importance is somehow
missed in the community. Natural gradients were first introduced in this context by Khan and Lin
[2017], Khan et al. [2018], although Salimans and Knowles [2013] also mention a similar condition
without an explicit reference to natural gradients. Sheth and Khardon [2016], Sheth [2019] discuss an
update similar to the BLR for a specific case of two-level graphical models. Salimbeni et al. [2018]
propose natural-gradient strategies for sparse GPs by using automatic differentiation which is often
slower (the original work by Hensman et al. [2013], is in fact a special case of the BLR). A recent
generalization to structured natural-gradient by Lin et al. [2021] is also worth noting.

We will end the section by discussing the connections of the BLR to the algorithms used in online
learning, where the loss functions are observed sequentially at every iteration t,

qt+1(θ) = arg min
q(θ)

Eq [`(yt, fθ(xt))] +
1

ρt
DKL[q(θ) ‖ qt(θ)].

21

The resulting updates are called Exponential-Weight (EW) updates [Littlestone and Warmuth, 1994,
Vovk, 1990], which are closely related to Bayes’ rule. [Hoeven et al., 2018] show that, by approximating
the first term by a surrogate (linear/quadratic) at the posterior mean (the delta method), many existing
online learning algorithms can be obtained as special cases. This includes, online gradient descent, online
Newton step, online mirror descent, among many others. This derivation is similar to the BLR which,
when applied here, is slightly more general, not only due to the use of expectated loss, but also because
the surrogate choice is automatically obtained by the posterior approximations.

An advantage of this connection is that the theoretical guarantees derived in online learning can be
translated to the BLR, and consequently to all the learning-algorithms derived from it. We will also
note that the local and global BLR updates presented in Eqs. 58 and 60 are similar to the ‘greedy’
and ‘lazy’ updates used in online learning [Hoeven et al., 2018]. The conjugate case discussed in earlier
sections are very similar to the algorithms proposed for online learning by Azoury and Warmuth [2001],
which are concurrent to a similar proposal in the Bayesian community by Sato [2001].

6 Discussion

To learn, we need to extract useful information from new data and revise our beliefs. To do this well, we
must reject false information and, at the same time, not ignore any (real) information. A good learning
algorithm too must possess these properties. We expect the same to be true for the algorithms that
have “stood the test of time” in terms of good performance, even if they are derived through empirical
experimentation and intuitions. If there exist an optimal learning-algorithm, as it is often hypothesized,
then we might be able to view these empirically good learning-algorithms as derived from this common
origin. They might not be perfect but we might expect them to be a reasonable approximation of the
optimal learning-algorithm. All in all, it is possible that all such algorithms optimize similar objectives
and use similar strategies on how the optimization proceeds.

In this paper we argue for two ideas. The first is that the learning-objective is a Bayesian one
and uses the variational formulation by Zellner [1988] in Eq. 2. The objective tells us how to balance
new information with our old one, resulting ultimately in Bayes theorem as the optimal information
processing rule. The power of the variational formulation, is that it also shows how to process the
information when we have limited abilities, for example, in terms of computation, to extract the relevant
information. The role of q(θ) is to define how to represent the knowledge, for which exponential families
and mixtures thereof, are natural choices that have shown to balance complexity while still being
practical manageable.

The second idea is the role the natural gradients play in the learning algorithms. Bayes’ rule in its
original form has no opinion about them, but they are inherently present in all solutions of the Bayesian
objective. They give us information about the learning-loss landscape, sometimes in the form of the
derivatives of the loss and sometimes as the messages in a graphical model. Our work shows that all
these seemingly different ideas, in fact, have deep roots in information geometry that is being exploited
by the natural gradients and then in the Bayesian Learning Rule (BLR) we proposed.

The two ideas go together as a symbiosis into the BLR. By a long series of examples from opti-
misation, deep learning, and graphical models, we demonstrate that classical algorithms such as ridge
regression, Newton’s method, and Kalman filter, as well as modern deep-learning algorithms such as
stochastic-gradient descent, RMSprop, and Dropout, all can be derived from the proposed BLR. The
BLR gives a unified framework and understanding of what various (good) learning algorithms do, how
they differ in approximating the target and then also how they can be improved. The main advantage
of the BLR, is that we now have a principled framework to approach new learning problems, both in
terms of what to aim for and also how to get there.

22

Acknowledgement

M. E. Khan would like to thank many current and past colleagues at RIKEN-AIP, including W. Lin,
D. Nielsen, X. Meng, T. Möllenhoff and P. Alquier, for many insightful discussions that helped shape
parts of this paper.

References

L. Aitchison. Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods.
arXiv preprint arXiv:1807.07540, 2018.

M. Alizadeh, J. Fernández-Marqués, N. D. Lane, and Y. Gal. An empirical study of binary neural
networks’ optimisation. ICLR, 2019.

S. Amari. Information geometry and its applications. Springer, 2016.

S-I. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.

E. Amid and M. K. Warmuth. Divergence-based motivation for online em and combining hidden variable
models. In J. Peters and D. Sontag, editors, Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence (UAI), volume 124 of Proceedings of Machine Learning Research, pages 81–90.
PMLR, 03–06 Aug 2020. URL http://proceedings.mlr.press/v124/amid20a.html.

D. F. Andrews and C. L. Mallows. Scale mixtures of normal distributions. Journal of the Royal
Statistical Society. Series B (Methodological), pages 99–102, 1974.

Katy S Azoury and Manfred K Warmuth. Relative loss bounds for on-line density estimation with the
exponential family of distributions. Machine Learning, 43(3):211–246, 2001.

A. Azzalini. The skew-normal distribution and related multivariate families. Scandinavian Journal of
Statistics, 32(2):159–188, 2005.

A. K. Balan, V. Rathod, K. P. Murphy, and M. Welling. Bayesian dark knowledge. In Advances in
Neural Information Processing Systems, pages 3438–3446, 2015.

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with bregman divergences. Journal of
Machine Learning Research, 6(Oct):1705–1749, 2005.

O. E. Barndorff-Nielsen. Normal inverse Gaussian distributions and stochastic volatility modelling.
Scandinavian Journal of statistics, 24(1):1–13, 1997.

A. G. Barto and R. S. Sutton. Goal seeking components for adaptive intelligence: An initial assessment.
Technical report, MASSACHUSETTS UNIV AMHERST DEPT OF COMPUTER AND INFORMA-
TION SCIENCE, 1981.

S. Becker and Y. LeCun. Improving the convergence of back-propagation learning with second order
methods. In Proceedings of the 1988 connectionist models summer school, pages 29–37, 1988.

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Z. W. Birnbaum and S. C. Saunders. A new family of life distributions. Journal of applied probability,
6(2):319–327, 1969.

23

http://proceedings.mlr.press/v124/amid20a.html

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

P. G. Bissiri, C. C. Holmes, and S. G. Walker. A general framework for updating belief distributions.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(5):1103–1130, 2016.
doi: 10.1111/rssb.12158. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.

12158.

D. M. Blei and J. D. Lafferty. A correlated topic model of science. The Annals of Applied Statistics,
pages 17–35, 2007.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians. Journal
of the American statistical Association, 112(518):859–877, 2017.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural networks.
In International Conference on Machine Learning, pages 1613–1622, 2015.

G. Bonnet. Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire.
In Annales des Télécommunications, volume 19, pages 203–220. Springer, 1964.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. arXiv
preprint arXiv:1606.04838, 2016.

M. Braun and J. McAuliffe. Variational inference for large-scale models of discrete choice. Journal of
the American Statistical Association, 105(489):324–335, 2010.

R. G. Brown. Statistical forecasting for inventory control. McGraw/Hill, 1959.

O. Cappé and E. Moulines. On-line expectation–maximization algorithm for latent data models. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):593–613, 2009.

O Catoni. Pac-bayesian supervised classification: The thermodynamics of statistical learning. institute
of mathematical statistics lecture notes—monograph series 56. IMS, Beachwood, OH. MR2483528,
5544465, 2007.

A. Cauchy. Méthode générale pour la résolution des systemes d’équations simultanées. Comp. Rend.
Sci. Paris, 25(1847):536–538, 1847.

P. E. Chang, W. J. Wilkinson, M. E. Khan, and A. Solin. Fast variational learning in state-space
gaussian process models. In 2020 IEEE 30th International Workshop on Machine Learning for Signal
Processing (MLSP), pages 1–6. IEEE, 2020.

P. Chaudhari and S. Soatto. Stochastic gradient descent performs variational inference, converges to
limit cycles for deep networks. In 2018 Information Theory and Applications Workshop (ITA), pages
1–10. IEEE, 2018.

M. Courbariaux, Y. Bengio, and J-P. David. Binaryconnect: Training deep neural networks with binary
weights during propagations. In Advances in neural information processing systems, pages 3123–3131,
2015.

B. Delyon, M. Lavielle, and E. Moulines. Convergence of a stochastic approximation version of the em
algorithm. The Annals of Statistics, 27(1):94–128, 1999.

24

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12158
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12158

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

R. A. Dorfman. A note on the delta-method for finding variance formulae. Biometric Bulletin, 1938.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

T. Eltoft, T. Kim, and T-W. Lee. Multivariate scale mixture of Gaussians modeling. In International
Conference on Independent Component Analysis and Signal Separation, pages 799–806. Springer,
2006.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in
deep learning. In International Conference on Machine Learning, pages 1050–1059, 2016.

Y. Gal, J. Hron, and A. Kendall. Concrete dropout. In Advances in neural information processing
systems, pages 3581–3590, 2017.

E. S. Gardner Jr. Exponential smoothing: The state of the art. Journal of forecasting, 4(1):1–28, 1985.

M. Girolami and S. Rogers. Variational Bayesian multinomial probit regression with Gaussian process
priors. Neural Computation, 18(8):1790–1817, 2006.

A. Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems, pages 2348–2356, 2011.

A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.

E. Grushka. Characterization of exponentially modified Gaussian peaks in chromatography. Analytical
Chemistry, 44(11):1733–1738, 1972.

A. K. Gupta and D. K. Nagar. Matrix variate distributions, volume 104. CRC Press, 2018.

E. Hazan, K. Y. Levy, and S. Shalev-Shwartz. On graduated optimization for stochastic non-convex
problems. In International Conference on Machine Learning, pages 1833–1841, 2016.

K. Helwegen, J. Widdicombe, L. Geiger, Z. Liu, K-T. Cheng, and R. Nusselder. Latent weights do
not exist: Rethinking binarized neural network optimization. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.

cc/paper/2019/file/9ca8c9b0996bbf05ae7753d34667a6fd-Paper.pdf.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI’13, page 282–290, Arlington,
Virginia, USA, 2013. AUAI Press.

J. M. Hernandez-Lobato and R. Adams. Probabilistic backpropagation for scalable learning of Bayesian
neural networks. In International Conference on Machine Learning, pages 1861–1869, 2015.

S. Hochreiter and J. Schmidhuber. Simplifying neural nets by discovering flat minima. In Advances in
neural information processing systems, pages 529–536, 1995.

S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

25

https://proceedings.neurips.cc/paper/2019/file/9ca8c9b0996bbf05ae7753d34667a6fd-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9ca8c9b0996bbf05ae7753d34667a6fd-Paper.pdf

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55–67, 1970.

D. Hoeven, T. Erven, and W. Kot lowski. The many faces of exponential weights in online learning. In
Conference On Learning Theory, pages 2067–2092. PMLR, 2018.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. The Journal of
Machine Learning Research, 14(1):1303–1347, 2013.

C. C. Holt, F. Modigliani, J. F. Muth, and H. A. Simon. Planning Production, Inventories, and Work
Force. Englewood Cliffs, 1960.

A. Honkela, T. Raiko, M. Kuusela, M. Tornio, and J. Karhunen. Approximate Riemannian conjugate
gradient learning for fixed-form variational Bayes. Journal of Machine Learning Research, 11:3235–
3268, 2011.

A. Huning. Evolutionsstrategie. optimierung technischer systeme nach prinzipien der biologischen evo-
lution, 1976.

T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and their
extensions. In International conference on Artificial Intelligence and Statistics, 1996.

E. Jang, S Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

E. T. Jaynes. On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9):939–952,
1982. doi: 10.1109/PROC.1982.12425.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engineering,
82(1):35–45, 03 1960. ISSN 0021-9223. doi: 10.1115/1.3662552. URL https://doi.org/10.1115/

1.3662552.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training for
deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

M. E. Khan. Variational Learning for Latent Gaussian Models of Discrete Data. PhD thesis, University
of British Columbia, 2012.

M. E. Khan and W. Lin. Conjugate-computation variational inference: converting variational inference
in non-conjugate models to inferences in conjugate models. In International Conference on Artificial
Intelligence and Statistics, pages 878–887, 2017.

M. E. Khan and D. Nielsen. Fast yet simple natural-gradient descent for variational inference in complex
models. In 2018 International Symposium on Information Theory and Its Applications (ISITA), pages
31–35. IEEE, 2018.

M. E. Khan, B. Marlin, G. Bouchard, and K. Murphy. Variational Bounds for Mixed-Data Factor
Analysis. In Advances in Neural Information Processing Systems, 2010.

M. E. Khan, S. Mohamed, B. Marlin, and K. Murphy. A stick-breaking likelihood for categorical data
analysis with latent gaussian models. In Artificial Intelligence and Statistics, pages 610–618. PMLR,
2012.

26

https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552

M. E. Khan, D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal, and A. Srivastava. Fast and scalable Bayesian
deep learning by weight-perturbation in Adam. In Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 2611–2620, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.
URL http://proceedings.mlr.press/v80/khan18a.html.

M. E. Khan, A. Immer, E. Abedi, and M. Korzepa. Approximate inference turns deep networks into
gaussian processes. In Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114, 2013.

A. Klami. Polya-gamma augmentations for factor models. In D. Phung and H. Li, editors, Proceedings
of the Sixth Asian Conference on Machine Learning, volume 39 of Proceedings of Machine Learning
Research, pages 112–128, Nha Trang City, Vietnam, 26–28 Nov 2015. PMLR.

D. A. Knowles and T. Minka. Non-conjugate variational message passing for multinomial and binary
regression. In Advances in Neural Information Processing Systems, pages 1701–1709, 2011.

D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.

F. Kunstner, R. Kumar, and M. Schmidt. Homeomorphic-invariance of em: Non-asymptotic convergence
in kl divergence for exponential families via mirror descent. In A. Banerjee and K. Fukumizu, editors,
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume
130 of Proceedings of Machine Learning Research, pages 3295–3303. PMLR, 13–15 Apr 2021. URL
http://proceedings.mlr.press/v130/kunstner21a.html.

P. S. Laplace. Memoir on the probability of the causes of events. Statistical science, 1(3):364–378, 1986.

N. Le Roux and A. W. Fitzgibbon. A fast natural newton method. In International Conference on
Machine Learning, 2010.

Y. LeCun, L. Bottou, and G. B. Orrand K-R. Müller. Efficient backprop. In Neural Networks: Tricks
of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop, page 9–50, Berlin, Heidelberg,
1998. Springer-Verlag. ISBN 3540653112.

M. Leordeanu and M. Hebert. Smoothing-based optimization. In Computer Vision and Pattern Recog-
nition, pages 1–8, 2008.

W. Lin, M. E. Khan, and M. Schmidt. Stein’s lemma for the reparameterization trick with exponential
family mixtures. arXiv preprint arXiv:1910.13398, 2019a.

W. Lin, M. E. Khan, and M. Schmidt. Fast and simple natural-gradient variational inference with
mixture of exponential-family approximations. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages 3992–4002. PMLR, 09–15 Jun 2019b. URL
http://proceedings.mlr.press/v97/lin19b.html.

27

http://proceedings.mlr.press/v80/khan18a.html
http://proceedings.mlr.press/v130/kunstner21a.html
http://proceedings.mlr.press/v97/lin19b.html

W. Lin, F. Nielsen, M. E. Khan, and M. Schmidt. Tractable structured natural-gradient descent using
local parameterizations. In Proceedings of the 38th International Conference on Machine Learning,
2021.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and computation,
108(2):212–261, 1994.

C. Louizos and M. Welling. Structured and efficient variational deep learning with matrix gaussian
posteriors. In International Conference on Machine Learning, pages 1708–1716, 2016.

D. Mackay. Bayesian Methods for Adaptive Models. PhD thesis, California Institute of Technology,
1991.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of discrete
random variables. arXiv preprint arXiv:1611.00712, 2016.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. In Advances in Neural Information
Processing Systems, pages 13153–13164, 2019.

L. Malagò and G. Pistone. Information geometry of the gaussian distribution in view of stochastic
optimization. In Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms
XIII, pages 150–162, 2015.

L. Malagò, M. Matteucci, and G. Pistone. Towards the geometry of estimation of distribution algorithms
based on the exponential family. In Proceedings of the 11th workshop proceedings on Foundations of
genetic algorithms, pages 230–242, 2011.

S. Mandt, M. D. Hoffman, and D. M. Blei. Stochastic gradient descent as approximate Bayesian
inference. Journal of Machine Learning Research, 18:1–35, 2017.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020. URL http://jmlr.org/papers/v21/17-678.html.

X. Meng, R. Bachmann, and M. E. Khan. Training binary neural networks using the bayesian learning
rule. arXiv preprint arXiv:2002.10778, 2020.

A. Mishkin, F. Kunstner, D. Nielsen M. Schmidt, and M. E. Khan. Slang: Fast structured covariance
approximations for bayesian deep learning with natural gradient. In Advances in Neural Information
Processing Systems 31. 2018.

H. Mobahi and J. W. Fisher III. A theoretical analysis of optimization by Gaussian continuation. In
AAAI Conference on Artificial Intelligence, pages 1205–1211, 2015.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. ISBN 0262018020,
9780262018029.

R. M. Neal and G. E. Hinton. A view of the em algorithm that justifies incremental, sparse, and other
variants. In Learning in graphical models, pages 355–368. Springer, 1998.

A. Nemirovski and D. Yudin. On cesaro’s convergence of the gradient descent method for finding saddle
points of convex-concave functions. Doklady Akademii Nauk SSSR, 239(4), 1978.

28

http://jmlr.org/papers/v21/17-678.html

F. Nielsen and V. Garcia. Statistical exponential families: A digest with flash cards. arXiv preprint
arXiv:0911.4863, 2009.

Y. Ollivier. Online natural gradient as a kalman filter. Electronic Journal of Statistics, 12(2):2930–2961,
2018.

Y. Ollivier, L. Arnold, A. Auger, and N. Hansen. Information-geometric optimization algorithms: A
unifying picture via invariance principles. Journal of Machine Learning Research, 18(18):1–65, 2017.

M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neural Computation,
21(3):786–792, 2009.

K. Osawa, S. Swaroop, M. E. Khan, A. Jain, R. Eschenhagen, R. E. Turner, and R. Yokota. Practical
deep learning with bayesian principles. In Advances in neural information processing systems, pages
4287–4299, 2019.

R. Pascanu and Y. Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5):1–17, 1964.

R. Price. A useful theorem for nonlinear devices having gaussian inputs. IRE Transactions on Infor-
mation Theory, 4(2):69–72, 1958.

G. Raskutti and S. Mukherjee. The information geometry of mirror descent. IEEE Transactions on
Information Theory, 61(3):1451–1457, 2015.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference
in deep generative models. In International Conference on Machine Learning, pages 1278–1286, 2014.

H. Ritter, A. Botev, and D. Barber. A scalable laplace approximation for neural networks. In Interna-
tional Conference on Learning Representations, 2018.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statist., 22(3):400–407, 9
1951. doi: 10.1214/aoms/1177729586. URL http://dx.doi.org/10.1214/aoms/1177729586.

S. Roweis and Z. Ghahramani. A unifying review of linear gaussian models. Neural computation, 11(2):
305–345, 1999.

H. Rue and S. Martino. Approximate Bayesian inference for hierarchical Gaussian Markov random
fields models. Journal of Statistical Planning and Inference, 137(10):3177–3192, 2007. Special Issue:
Bayesian Inference for Stochastic Processes.

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models using
integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society,
Series B, 71(2):319–392, 2009.

H. Rue, A. Riebler, S. H. Sørbye, J. B. Illian, D. P. Simpson, and F. K. Lindgren. Bayesian computing
with INLA: A review. Annual Reviews of Statistics and Its Applications, 4(March):395–421, 2017.
doi: 10.1146/annurev-statistics-060116-054045.

29

http://dx.doi.org/10.1214/aoms/1177729586

T. Salimans and D. A. Knowles. Fixed-form variational posterior approximation through stochastic
linear regression. Bayesian Analysis, 8(4):837–882, 2013.

H. Salimbeni, S. Eleftheriadis, and J. Hensman. Natural gradients in practice: Non-conjugate variational
inference in Gaussian process models. In International Conference on Artificial Intelligence and
Statistics, pages 689–697. PMLR, 2018.

M-A. Sato. Fast learning of on-line em algorithm. Technical report, ATR Human Information Processing
Research Laboratories, 1999.

M-A. Sato. Online model selection based on the variational Bayes. Neural Computation, 13(7):1649–
1681, 2001.

T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning rates. In International Conference on
Machine Learning, pages 343–351, 2013.

R. Sheth. Algorithms and Theory for Variational Inference in Two-Level Non-conjugate Models. PhD
thesis, Tufts University, 2019.

R. Sheth and R. Khardon. Monte carlo structured svi for two-level non-conjugate models. arXiv preprint
arXiv:1612.03957, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learn-
ing Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

R. L. Stratonovich. Conditional markov processes. In Non-linear transformations of stochastic processes,
pages 427–453. Elsevier, 1965.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum
in deep learning. In International conference on machine learning, pages 1139–1147, 2013.

T. Tieleman and G. Hinton. Lecture 6.5-RMSprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning 4, 2012.

L. Tierney and J. B. Kadane. Accurate approximations for posterior moments and marginal densities.
Journal of the American Statistical Association, 81(393):82–86, 1986.

D. M. Titterington. Recursive parameter estimation using incomplete data. Journal of the Royal
Statistical Society: Series B (Methodological), 46(2):257–267, 1984.

J-W. van de Meent, B. Paige, H. Yang, and F. Wood. An introduction to probabilistic programming.
arXiv preprint arXiv:1809.10756, 2018.

J. M. Ver Hoef. Who invented the delta method? The American Statistician, 66(2):124–127, 2012.

V. G. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop on Computational
Learning Theory, COLT ’90, pages 371–386, San Francisco, CA, USA, 1990. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-146-5.

C. Wang and D. M. Blei. Variational inference in nonconjugate models. Journal of Machine Learning
Research, 14(1):1005–1031, 2013.

30

http://jmlr.org/papers/v15/srivastava14a.html

M. Welling, C. Chemudugunta, and N. Sutter. Deterministic latent variable models and their pitfalls.
In Proceedings of the 2008 SIAM International Conference on Data Mining, pages 196–207. SIAM,
2008.

D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural evolution
strategies. Journal of Machine Learning Research, 15(1):949–980, 2014.

A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value of adaptive gradient
methods in machine learning. In Advances in Neural Information Processing Systems, pages 4151–
4161, 2017.

J. Winn and C. M. Bishop. Variational message passing. Journal of Machine Learning Research, 6
(Apr):661–694, 2005.

K-C. Wong. Evolutionary multimodal optimization: A short survey. arXiv preprint arXiv:1508.00457,
2015.

P. Yin, J. Lyu, S. Zhang, S. Osher, Y. Qi, and J. Xin. Understanding straight-through estimator in
training activation quantized neural nets. ICLR, 2019.

X. Yu and M. Gen. Introduction to evolutionary algorithms. Springer Science & Business Media, 2010.

M. D. Zeiler. ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

A. Zellner. Optimal information processing and Bayes’s theorem. The American Statistician, 42(4):
278–280, 1988. doi: 10.1080/00031305.1988.10475585. URL https://amstat.tandfonline.com/

doi/abs/10.1080/00031305.1988.10475585.

C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt. Advances in variational inference. IEEE transac-
tions on pattern analysis and machine intelligence, 41(8):2008–2026, 2018a.

G. Zhang, S. Sun, D. K. Duvenaud, and R. B. Grosse. Noisy natural gradient as variational inference.
arXiv preprint arXiv:1712.02390, 2018b.

Tong Zhang. Theoretical analysis of a class of randomized regularization methods. In Proceedings of the
Twelfth Annual Conference on Computational Learning Theory, COLT ’99, page 156–163, New York,
NY, USA, 1999. Association for Computing Machinery. ISBN 1581131674. doi: 10.1145/307400.
307433. URL https://doi.org/10.1145/307400.307433.

A Bayesian inference as optimization

Bayesian inference is a special case of the Bayesian learning problem. Although this follows directly
from the variational formulation by Zellner [1988], it might be useful to provide some more motivation.
Bayesian inference corresponds to a log-likelihood loss `(y, fθ(x)) = − log p(y|fθ(x)). With conditional
independent data and prior p(θ), the posterior distribution is p(θ|D) = p(θ)/Z(D)

∏N
i=1 p(yi|fθ(xi)).

The minimizer of the Bayesian learning problem recovers this posterior distribution. This follows directly

31

https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1988.10475585
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1988.10475585
https://doi.org/10.1145/307400.307433

from reorganizing the Bayesian objective Eq. 2:

L(q) = −Eq(θ)

[
N∑
i=1

log p(yi|fθ(xi))

]
+ DKL[q(θ) ‖ p(θ)] (61)

= Eq(θ)

log
q(θ)

p(θ)
Z(D)

∏N
i=1 p(yi|fθ(xi))

+ logZ(D) (62)

= DKL[q(θ) ‖ p(θ|D)] + logZ(D) (63)

Choosing q(θ) as p(θ|D) minimizes the above equation since Z(D) is a constant, and the KL divergence
is zero.

B Natural gradient of the entropy

Below, we show that ∇̃λH(q) = −λ when h(θ) is a constant, We rewrite the gradient with respect to
µ,

−∇λH(q) = F (λ)∇µEq[log q(θ)],

since that gradient has a simpler expression as shown below,

∇µEq[log q(θ)] = ∇µ [〈λ,µ〉 −A(λ)] +∇µEq[log h(θ)]

= λ+
(
∇2
λA(λ)

)−1
[µ−∇λA(λ)] +∇µEq[log h(θ)]

= λ+∇µEq[log h(θ)].

(64)

By scaling with the inverse of the FIM, we get −∇̃λH(q) = ∇̃λEq[log q(θ)] = λ+ ∇̃λEq[log h(θ)], which
for constant h(θ) reduces to λ.

C The delta method

In the delta method [Dorfman, 1938, Ver Hoef, 2012], we approximate the expectation of a function
of a random variable by the expectation of the function’s Taylor expansion. For example, given a
distribution q(θ) with mean m, we can use the first-order Taylor approximation to get,

Eq[f(θ)] ≈ Eq
[
f(m) + (θ −m)> ∇θf(θ)|θ=m

]
≈ f(m)

We will often use this approximation to approximate the expectation of gradient/Hessian at their
values at a single point (usually the mean). For example, by using the first-order Taylor expansion, we
approximate below the expectation of the gradient by the gradient at the mean,

Eq[∇θf(θ)] = ∇mEq[f(θ)]

≈ ∇mEq
[
f(m) + (θ −m)> ∇θf(θ)|θ=m

]
= ∇θf(θ)|θ=m , (65)

where the first line is due to Bonnet’s theorem (App. D) and the second line is simply the first-order
Taylor expansion. We refer to this as the first-order delta method. Similar applications has been used
in variational inference [Blei and Lafferty, 2007, Braun and McAuliffe, 2010, Wang and Blei, 2013].

32

Similarly, by using the second-order Taylor expansion, we approximate below the expectation of the
Hessian by the Hessian at the mean,

Eq[∇2
θf(θ)] = 2∇S−1Eq[f(θ)]

≈ 2∇S−1Eq
[
f(m) + (m− θ)> ∇θf(θ)|θ=m +

1

2
(m− θ)> ∇2

θf(θ)
∣∣
θ=m

(m− θ)

]
= 2∇S−1Tr

[
1

2
S−1 ∇2

θf(θ)
∣∣
θ=m

]
= ∇2

θf(θ)
∣∣
θ=m

, (66)

where the first line is due to Price’s theorem (App. D) and the second line is simply the second-order
Taylor expansion. We refer to this as the second-order delta method.

We also note that both the first and second-order approximation can be derived in much simpler
way by using a zeroth-order expansion where we do not expand the function inside at all,

Eq[∇θf(θ)] ≈ ∇θf(θ)|θ=m Eq[∇2
θf(θ)] ≈ ∇2

θf(θ)
∣∣
θ=m

.

In any case, these can be seen as simply approximating the expectations of a function with the function
value at a single point (the mean).

D Newton’s method from the BLR

We start with a summary of the Theorem’s of Bonnet’s and Price’s [Bonnet, 1964, Price, 1958], see also
Opper and Archambeau [2009], Rezende et al. [2014]. Let x be multivariate normal with mean µ and
covariance matrix C, f(x) a twice differentiable function where E|f(x)| < ∞, then the Bonnet and
Price’s results are

∂

∂µi
E [f(x)] = E

[
∂

∂xi
f(x)

]
and

∂

∂Cij
E [f(x)] = cijE

[
∂2

∂xi∂xj
f(x)

]
where cij = 1/2 if i = j and cij = 1 if i 6= j (since C is symmetric), respectively. Using these, we obtain
Eq. 10 and Eq. 11.

The following derivation is also detailed in Khan et al. [2018]. We now use the definitions of natural
and expectation parameters from Eq. 9 in the BLR Eq. 6. The base-measure is constant for the
multivariate Gaussian, hence

St+1mt+1 ← (1− ρt)Stmt − ρt∇µ(1)Eqt [¯̀(θ)]

St+1 ← (1− ρt)St + 2ρt∇µ(2)Eqt [¯̀(θ)].

The update for St+1 can be obtained using Eq. 11,

St+1 ← (1− ρt)St + ρtEqt
[
∇2
θ

¯̀(θ)
]
.

We can simplify the update for the mean using Eq. 10,

St+1mt+1 = (1− ρt)Stmt − ρt
{
Eqt)[∇θ ¯̀(θ)]− Eqt [∇2

θ
¯̀(θ)]mt

}
,

= St+1mt − ρtEqt [∇θ ¯̀(θ)],

and the update for mt+1 follows.

33

E Natural-gradient updates for mixture of Gaussians

The joint distribution q(θ, z) is a minimal-conditional exponential-family distribution [Lin et al., 2019b],
i.e., the distribution then takes a minimal form conditioned over z = k which ensures that the FIM is
non-singular. Details of the update are in Lin et al. [2019b, Theorem 3]. The natural and expectation
parameters are given in Lin et al. [2019b, Table 1]).

The gradients with respect to µk can be written in terms of mk and S−1
k as

∇
µ

(1)
k

Eq[¯̀(θ)] =
[
∇
µ

(1)
k

m>k

]
∇mk

Eq[¯̀(θ)] =
1

πk
∇mk

Eq[¯̀(θ)]

Hence we can utilize from the derivation of Newton’s method, Eq. 10 and Eq. 11, and do similarly as
in App. D, to achieve a Newton-like update for a mixture of Gaussians

mk,t+1 ←mk,t −
ρ

πk
S−1
k,t+1∇mk

Eqt
[
¯̀(θ) + log q(θ)

]
, (67)

Sk,t+1 ← Sk,t +
2ρ

πk
∇S−1

k,t
Eqt
[
¯̀(θ) + log q(θ)

]
. (68)

The gradients can be expressed in terms of the gradient and Hessian of the loss, similar to Bonnet’s
and Price’s Theorem in App. D, see [Lin et al., 2019a, Thm 6 and 7]. This gives

∇mk
Eq[f(θ)] = πkEN (θ|mk,S

−1
k)[∇θf(θ)],

∇S−1
k
Eq[f(θ)] =

πk
2
EN (θ|mk,S

−1
k)[∇

2
θf(θ)],

and hence the updates in Eqs. 29 and 30.
The gradient of log q(θ) = log

∑K
k=1 πkN (θ|mk,S

−1
k) were not spelled out explicit in Eqs. 67 and 68,

but are as follows,

∇θ log q(θ) =

K∑
j=1

rj(θ)Sj(mj − θ), (69)

∇2
θ log q(θ) =

K∑
j=1

rj(θ)

[
Ajj(θ)− Sj −

K∑
i=1

ri(θ)Aij(θ)

]
. (70)

Here, rk(θ) is the responsibility of the k’th mixture component at θ, q(z = k|θ)

q(z = k|θ) =
πkN (θ|mk,S

−1
k)∑K

j=1 πjN (θ|mj ,S
−1
j)

. (71)

and Aij(θ) = Si(mi − θ)(mj − θ)>Sj .
There are two natural situations that lead to simplifications, which can form the basis for various

approximations. First, is when θk = mk, then Aik(θk) = 0 for all i, leading to

∇θ log q(θk) =
∑
j 6=k

rj(θk)Sj(θj − θk), (72)

∇2
θ log q(θk) = −rk(θk)Sk +

∑
j 6=k

rj(θk)

Aii(θk)− Sj −
K∑

i=1,i 6=k
ri(θk)Aij(θk)

 , (73)

Second, when mixture components are far apart from each other, then the responsibility is approximately
zero for all j 6= k, leading to

∇θ log q(θk) ≈ 0, ∇2
θθ log q(θk) ≈ −Sk. (74)

34

F Deep learning algorithms with momentum

Momentum is a useful technique to improve the performance of SGD [Sutskever et al., 2013]. Mod-
ern adaptive-learning algorithms, such as RMSprop and Adam, often employ variants of the classical
momentum to increase the learning rate [Sutskever et al., 2013].

The classical momentum method is based on the Polyak’s heavy-ball method Polyak [1964], where
the current θt+1 − θt update is pushed along the direction of the previous update θt − θt−1:

θt+1 ← θt − α∇̂θ ¯̀(θt) + γ(θt − θt−1) (75)

with a fixed momentum coefficient γ > 0. Why this technique can be beneficial when using noisy
gradient is more transparent when we rewrite Eq. 75 as

θt+1 ← θt − α
t∑

k=0

γk∇̂θ ¯̀(θt−k) + initial conditions. (76)

Hence, the effective gradient is an average of previous gradients with decaying weights. This will smooth
out and reduce the variance of the stochastic gradient estimates.

Adaptive-learning rate algorithms, such as RMSprop and Adam, employ a variant of the classical
momentum method where exponential-smoothing is applied to the gradient ut+1 ← γut+(1−γ)∇̂θ ¯̀(θt)
which is used in the update while keeping the scaling unchanged [Graves, 2013, Kingma and Ba, 2015].
This gives the update

θt+1 ← θt − α
1

√
st+1 + c1

◦ ut+1. (77)

We can express this similar to Eq. 75, as [Wilson et al., 2017]

θt+1 ← θt − α(1− γ)
1

√
st+1 + c1

◦
[
∇̂θ ¯̀(θt)

]
+ γ

√
st + c1

√
st+1 + c1

◦ (θt − θt−1), (78)

showing a dynamic scaling of the momentum depending (essentially) on the ratio of st+1 and st. Al-
though this adaptive scaling is not counter-intuitive, it is a result of the somewhat arbitrary choices
made. Can we justify this from the Bayesian principles, and can derive the corresponding BLR? The
problem we face is provoked by the use of stochastic gradient approximations and the principles simply
state that we should compute exact gradients instead. This might appear as a deficiency in our main
argument but using our free will, we can resolves this issue in other ways.

It is our view that the natural way to include a momentum term in the BLR, is to this within the
mirror descent framework in Sec. 2. This will result in an update where the momentum term obey the
geometry of the posterior approximation. We propose to augment Eq. 22 with a momentum term

µt+1 ← arg min
µ∈M

〈∇µL(qt),µ〉+
1 + γt
ρt

DA∗(µ‖µt)−
γt
ρt
DA∗(µ‖µt−1) (79)

The last term penalizes the proximity to µt−1 where the proximity is measured according to the KL
divergence, following the suggestion by Khan et al. [2018] we may interpret this as the natural momentum
term. This gives a (revised) BLR learning rule with momentum,

λt+1 ← λt − ρt∇̃λ
[
Eqt
(
¯̀(θ)

)
−H(qt)

]
+ γt(λt − λt−1). (80)

This update will recover Eq. 75 and an alternative to Eq. 78. Choosing a Gaussian candidate distribution
N (θ|m, I) (the result is invariant to a fixed covariance matrix), we recover Eq. 75 after a derivation

35

similar as in Sec. 1.3.1. Choosing the candidate distribution N (θ|m, diag(s)−1), follow again previous
derivations (Newton’s method in Sec. 1.3.2) with mini-batch gradients, and result in the following update

θt+1 ← θt − ρt
1

st+1
◦
[
∇̂θ ¯̀(θt)

]
+

1

st+1
◦ (stθt − st−1θt−1),

st+1 ← (1− ρt)st + ρt diag
[
∇̂2
θθ

¯̀(θt)
]

+ γt(st − st−1).

(81)

Assuming st ≈ st−1 the last terms in the above two equations simplifies, and then by replacing st
by
√
st and adding a constant c, we can recover Eq. 78. This momentum-version of Eq. 37, not only

justifies the use of scaling vectors for the momentum, but also to the use of exponential-smoothing for
the scaling vectors itself.

G Dropout from the BLR

Deriving updates for mjl and Sjl with dropout is similar to the Newton variant derived for mixture of
Gaussian discussed in App. E. With dropout there are only two components where one of the component
has fixed parameters, hence one set of natural and expectation parameters per a weight vector θjl for
the j’th unit in l’th layer,

λ
(1)
jl = Sjlmjl,

λ
(2)
jl = −1

2Sjl,

µ
(1)
jl = Eq

[
1[zjl=1]θjl

]
= π1mjl,

µ
(2)
jl = Eq

[
1[zjl=1]θjlθ

T
jl

]
= π1

(
S−1
jl +mjlm

T
jl

)
,

We can reuse the update Eqs. 67 and 68 from App. E

mjl,t+1 ←mjl,t −
ρ

π1
S−1
jl,t+1∇mjl

{
Eqt
[
¯̀(θ)

]
+ Eqt [log q(θjl)]

}
, (82)

Sjl,t+1 ← Sjl,t+1 +
2ρ

π1
∇S−1

jl

{
Eqt
[
¯̀(θ)

]
+ Eqt [log q(θjl)]

}
. (83)

We have moved the expectation inside the gradient since the entropy term only depends on θjl. The
gradient of the loss ¯̀(θ) may depend on the whole θ, however.

By using appropriate methods to compute gradients, we can recover the dropout method. Specifi-
cally, for the loss term, we use the reparameterization trick [Kingma and Welling, 2013] and approximate
the gradients at the samples from q(θjl),

θjl = zjl(mjl + S
−1/2
jl ε1,jl) + (1− zjl)s

−1/2
0 ε2,jl

where zjl is a sample from Bernoulli distribution with probability π1, and ε1,jl and ε2,jl are two in-
dependent samples from standard normal distribution. Since weights are deterministic in dropout, we
need to ignore ε1,jl and ε2,jl to recover dropout from the BLR. The gradients are then evaluated at the
dropout mean m̃jl = zjlmjl (the delta method) which leads to the following gradient approximations:

∇mjl
Eqt [¯̀(θ)] ≈ ∇θjl ¯̀(θ̃)

∣∣∣
θ̃=m̃t

,

2∇S−1
jl
Eqt
[
¯̀(θ)

]
= ∇2

mjlm
>
jl
Eqt
[
¯̀(θ)

]
≈ ∇2

θ̃jlθ̃
>
jl

¯̀(θ̃)

∣∣∣∣
θ̃=m̃t

.
(84)

We will use these gradients for the loss term in Eqs. 82 and 83.

36

Gradients of log q(θjl) only depends on the variables involved in q(θjl), and we can use the delta
method similar to Eq. 33 in Sec. 3. We make the assumption that the two mixture components are
“not close” which is reasonable with dropout. With this assumption then the gradient respect to mjl

is approximately zero

∇mjl
Eq [log q(θjl)] = ∇mjl

∫
dθjl log q(θjl)

[
π1N (θjl|mjl,S

−1
jl) + (1− π1)N (θjl|0, s−1

0 Inl)
]

= π1∇mjl

∫
dθjl log q(θjl)N (θjl|mjl,S

−1
jl)

= π1EN (θjl|mjl,t,S
−1
jl,t)

[
∇θjl log q(θjl)

]
(Using Bonnet’s Theorem)

≈ π1∇mjl
log q(mjl,t) (Using the Delta approximation)

≈ 0. (85)

For the gradient with respect to S−1 we get

2∇S−1
jl
Eq [log q(θjl)] = ∇2

mjlm
>
jl
Eq [log q(θjl)]

= ∇mjl

[
π1EN (θjl|mjl,t,S

−1
jl,t)

[
∇θjl log q(θjl)

]]
(using first derivative wrt mjl)

= π1EN (θjl|mjl,t,S
−1
jl,t)

[
∇2
θjlθ
>
jl

log q(θjl)
]

(Using Bonnet’s theorem)

≈ π1∇2
mjlm

>
jl

log q(mjl,t) (Using Delta approximation)

≈ −π1Sjl,t, (86)

Using the gradient approximations Eqs. 84 to 86 in Eqs. 82 and 83, we get the

mjl,t+1 ←mjl,t −
ρ

π1
S−1
jl,t+1∇mjl

{
∇mjl

¯̀(m̃t) + 0
}
,

Sjl,t+1 ← Sjl,t+1 +
ρ

π1
∇S−1

jl

{
∇2

mjlm
>
jl

¯̀(m̃t)− π1Sjl,t

}
.

which reduces to the updates Eqs. 42 and 43.

37

	1 Introduction
	1.1 Learning-algorithms
	1.2 The Bayesian learning rule
	1.3 Examples
	1.3.1 Gradient descent
	1.3.2 Newton's method
	1.3.3 Ridge regression

	1.4 Outline of the rest of the paper

	2 Derivation of the Bayesian Learning Rule
	2.1 Bayesian learning rule as natural-gradient descent
	2.2 Bayesian learning rule as mirror-descent

	3 Optimization Algorithms from the Bayesian Learning Rule
	3.1 First- and second-order methods by using Gaussian candidates
	3.2 Multimodal optimization by using mixtures-candidate distributions

	4 Deep-Learning Algorithms from the Bayesian Learning Rule
	4.1 Stochastic gradient descent
	4.2 Adaptive learning-rate algorithms
	4.3 Dropout
	4.4 Uncertainty estimation in deep learning
	4.5 Binary neural networks

	5 Probabilistic Inference Algorithms from the Bayesian Learning Rule
	5.1 Conjugate models and Bayes' rule
	5.2 Expectation maximization
	5.3 Stochastic variational inference and variational message passing
	5.4 Non-conjugate variational inference

	6 Discussion
	A Bayesian inference as optimization
	B Natural gradient of the entropy
	C The delta method
	D Newton's method from the BLR
	E Natural-gradient updates for mixture of Gaussians
	F Deep learning algorithms with momentum
	G Dropout from the BLR

