Abstract
This review compares the conceptualization and practice of early real-space renormalization group methods with the conceptualization of more recent real-space transformations based on tensor networks. For specificity, it focuses upon two basic methods: the “potential-moving” approach most used in the period 1975–1980 and the “rewiring method” as it has been developed in the last five years. The newer method, part of a development called the tensor renormalization group, was originally based on principles of quantum entanglement. It is specialized for computing approximations for tensor products constituting, for example, the free energy or the ground state energy of a large system. It can attack a wide variety of problems, including quantum problems, which would otherwise be intractable. The older method is formulated in terms of spin variables and permits a straightforward construction and analysis of fixed points in rather transparent terms. However, in the form described here it is unsystematic, offers no path for improvement, and of unknown reliability. The new method is formulated in terms of index variables which may be considered as linear combinations of the statistical variables. Free energies emerge naturally, but fixed points are more subtle. Further, physical interpretations of the index variables are often elusive due to a gauge symmetry which allows only selected combinations of tensor entries to have physical significance. In applications, both methods employ analyses with varying degrees of complexity. The complexity is parametrized by an integer called
DOI: http://dx.doi.org/10.1103/RevModPhys.86.647
- Published 16 May 2014
- Received 28 January 2013
© 2014 American Physical Society