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The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition,
is one of the requirements for the detectability analysis of the stochastic block model in statistical inference.
In practice, however, there is no example demonstrating that we can know the model parameters beforehand,
and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the
expectation–maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability
threshold. Our analysis is not restricted to the community structure but includes general modular structures.
Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability
threshold is qualitatively different from the one with the Nishimori condition.
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I. INTRODUCTION

Graph clustering is a technique to detect a macroscopic law
of connectivity in a graph [1–5]. In other words, we expect
that each vertex in a graph belongs to a module (or modules)
and that the vertices in the same module are statistically equiv-
alent. We then let an algorithm infer the most likely module
assignments. In particular, the subset of the graph-clustering
problem that focuses on the detection of densely connected
(i.e., assortative) module is termed community detection. A
classic example of community detection is the detection of
social groups in a social network, wherein the vertices and
edges represent persons and friendships, respectively.

Often, the graph structures that are more general than the
assortative modules are detected using statistical inference
methods. In this approach, we infer the most-likely module
assignment for each vertex by fitting graph data using a
random graph model with a planted modular structure. The
stochastic block model (SBM) [6–11] is a canonical model
used for this purpose. The SBM is an extension of the Erdős-
Rényi random graph; each vertex in the SBM has a planted
module assignment and the vertices in the same module have
stochastically equivalent connection patterns. Thus, we can
generate the graph instances of various modular structures.

The model parameters of the SBM smoothly connect
the random graphs with a strong modular structure and the
Erdős-Rényi random graph. Interestingly, as the strength of
the modular structure decreases, before the SBM becomes
equivalent to the Erdős-Rényi random graph, a phase transition
occurs, and at this stage, it becomes impossible to infer
the planted module assignment. This critical point is called
the detectability threshold or the detectability limit [12–16].
The impossibility of inference stems from the fact that the
fluctuations of the graph instances are not negligible, so that
the graph instances generated from the SBM are statistically
indistinguishable from the those of the Erdős-Rényi random
graph. This is a fundamental problem in graph clustering, and
it offers an insight into the extent to which we should expect
algorithms to work. This is a characteristic phenomenon of
sparse graphs, i.e., graphs with a constant average degree, and

it cannot be observed in dense graphs. In the dense regime, in-
stead, another interesting problem called the recovery problem
[17–22] arises.

Throughout this paper, we focus on sparse undirected
graphs in the infinite size limit. We do not consider graphs
with self-loops and multiedges or the SBM wherein a vertex
belongs to multiple modules. Instead, we allow the graphs to
have multiple types of edges [23–29]. Thus, we will extend our
analysis to a variant of the SBM called the labeled stochastic
block model (labeled SBM). An instance of the labeled SBM
is shown in Fig. 1.

Several frameworks corresponding to algorithms such as
the greedy [11,30], Monte Carlo [31–34], and expectation–
maximization (EM) [35–40] algorithm are available for the
statistical inference of the SBM. We analyze the performance
of the EM algorithm, because it is scalable and suited for
theoretical analysis. In particular, we consider belief propaga-
tion (BP) as its module-assignment inference (E-step), and the
point estimate of the model parameters as its model-parameter
learning (M-step).

In this study, we derive the algorithmic detectability thresh-
old of the SBM using the EM algorithm. The detectability
threshold is often defined as the fundamental limit where all
polynomial-time algorithms fail; here, we distinguish such a
threshold as the theoretical limit of detectability. There are
two reasons why we focus on the algorithmic detectability
threshold.

The first reason is that it helps deriving a legitimate thresh-
old in practice. It is known that the Bayesian inference using BP
achieves the theoretical limit of detectability [13,38,41–43],
assuming that the correct values of model parameters are
known. Supported by this favorable property in theory and
the good scalability of the algorithm, BP was implemented
to solve various SBM variants [39,40,44–46]. On the other
hand, some non-Bayesian methods are known to be strictly
suboptimal, e.g., Refs. [47–49]. However, this is not a fair
comparison because the Bayesian inference with BP is not
an algorithmic detectability threshold; it can be regarded as
the EM algorithm without the M-step. In practice, we do not
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FIG. 1. An instance of the labeled SBM with two modules. The
red solid edges represent the edges with an assortative structure,
and the gray dashed edges represent the edges with a disassortative
structure.

know the planted model parameters beforehand, and there is
no guarantee that they can be learned precisely. In fact, the
performance of the EM algorithm generally depends on the
initial values of the model parameters. To the best of our
knowledge, the algorithmic detectability threshold that takes
into account both the E-step and M-step remains a mystery,
and we solve this problem analytically. The condition that the
planted values of model parameters are correctly learned is
often referred to as the Nishimori condition [38,50,51].

The second reason why we focus on the algorithmic de-
tectability threshold is that we need to observe the algorithmic
infeasibility through the analysis. In general, even if we have
data of extremely high dimensions, there exists a limit that
an algorithm can handle correctly. Then, the inference task is
algorithmically infeasible though it may be computationally
feasible. This difficulty can be depicted in the detectability
phase-diagram of the algorithm, whereas it cannot be observed
from the theoretical limit of detectability because of the
assumption of infinite learnability.

This paper is organized as follows. In Sec. II, we explain the
precise construction of the standard (i.e., binary label) SBM
and its analytically tractable parametrization. We then explain
the procedure of the EM algorithm (Sec. III) and the behavior
of its M-step (Sec. IV). From Sec. V, we extend the SBM
to the labeled SBM. After explaining how the formulation of
the standard SBM is modified in the labeled SBM in Sec. V,
we derive the algorithmic detectability threshold in Sec. VI.
In Sec. VII, we present the detectability phase diagrams for
some specific cases. In Sec. VIII, we discuss the algorithmic
infeasibility as a physical consequence of the algorithmic
detectability threshold. Finally, Sec. IX is devoted to the
summary and discussion. While we focused on a limited case
of the same problem in Ref. [52], in this study, we extend the
results therein as general as possible.

II. STANDARD SBM

We first explain how the standard SBM is generated. We
consider the set of vertices V with |V | = N and denote
the number of modules as q. For each vertex, we assign
a module label σ ∈ {1, . . . ,q} with probability p(σ |γ ) =
γσ independently and randomly, where γ is an array that
determines the relative size of each module. We denote an
array of module assignments as σ . Given σ , an undirected

edge is generated between vertices i and j independently
with probability p(Aij = 1|σi,σj ,c) = cσiσj

/N , where Aij is
the adjacency matrix element with Aij = 1 if i and j are
connected, and Aij = 0 if they are not connected (or connected
via a nonedge). The matrix c is called the affinity matrix. It is
a q × q matrix and is of O(1) so that the resulting graph is
sparse. We denote an edge between vertices i and j as (i,j ),
the set of edges as E, and the number of edges as L. Thus, the
likelihood of the standard SBM is as follows:

p(A,σ |γ ,c) = p(σ |γ )p(A|σ ,c)

=
N∏

i=1

γσi

∏
i<j

(cσiσj

N

)δAij ,1(
1 − cσiσj

N

)δAij ,0

. (1)

The model parameters to be learned in the SBM are γ and c,
and the set of module assignments σ is the latent variable that
is to be inferred, given the adjacency matrix A.

Although the SBM is very flexible, it is sometimes dif-
ficult to treat it analytically. Therefore, it is common to
restrict the affinity matrix to the simple community structure
cσσ ′ = cin for σ = σ ′, and cσσ ′ = cout otherwise. However, this
parametrization largely restricts the graph ensemble that the
SBM can originally express. Therefore, we instead consider
the following affinity matrix [16,46]:

c = �c W + cout11�, (2)

where �c ≡ cin − cout, 1 is a column vector with all elements
equal to unity. W is an indicator matrix in which Wσσ ′ = 1
represents the densely connected module pair, and Wσσ ′ =
0 otherwise; the simple community structure is the special
case where W is the identity matrix. While this model is
parametrized only by cin and cout, it can express various
modular structures by the choices of W , which is the input.
We focus on undirected graphs, and thus, W is symmetric.

As the SBM has the average degree c = γ �cγ , the affinity
matrix of Eq. (2) can also be parametrized by c and �c.
Note that because both cin and cout are non-negative, �c/c

is bounded as

− 1

1 − �
� �c

c
� 1

�
, (3)

where we defined � ∈ (0,1) as � ≡ γ �Wγ . In the following
paragraphs, we consider the average degree c as the input
and parametrize the strength of the modular structure by a
normalized parameter x ∈ [0,1] that linearly interpolates the
maximum and minimum values of �c/c:

x = �

[
1 + (1 − �)

�c

c

]
. (4)

The graph exhibits assortative and disassortative structures
when x > � and x < �, respectively.

III. STATISTICAL INFERENCE OF THE SBM

In principle, the model parameters γ and c are learned
by maximizing the marginalized log-likelihood p(A|γ ,c) =∑

σ p(A,σ |γ ,c) and the set of module assignments σ is
determined by the posterior distributionp(σ |A,γ ,c). However,
because their exact computation is demanding, we use the EM
algorithm for approximation.
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Using the variational expression, log p(A|γ ,c) can be ex-
pressed as

log p(A|γ ,c) = Eψ

[
log

p(A,σ |γ ,c)

ψ(σ )

]
+DKL[ψ(σ )||p(σ |A,γ ,c)], (5)

where ψ(σ ) is our estimate of the module-assignment distri-
bution, and Eψ [· · · ] is the corresponding average. The second
term DKL(P ||Q) represents the Kullback–Leibler divergence
of distributions P and Q. Equation (5) indicates that if
our estimate ψ(σ ) coincides with the posterior distribution
p(σ |A,γ ,c), then the model parameters can be learned by
maximizing the first term of Eq. (5). Note that this is a double-
optimization problem because p(σ |A,c) is conditioned on c.
Therefore, the EM algorithm iteratively updates the module-
assignment inference (E-step) and the model-parameter learn-
ing (M-step). We use the hat notation for the estimated
(learned) value of the model parameter. Note also that we do
not explicitly need the whole joint distribution of σ . Because
the SBM only has pair-wise interactions, as confirmed from
the calculation of the M-step, we only need to calculate the
one-point and two-point marginals of the posterior estimates.

Although the E-step can be performed in various ways,
we employ the BP algorithm. It solves for the marginal
distributions of module assignments based on the tree approx-
imation [38,53–55]. This approximation is justified because
we consider the sparse graphs, which are locally treelike. We
estimate the marginal distributionψi

σ of the module assignment
of vertex i as follows:

ψi
σ = γ̂σ

Zi

∏
�/∈∂i

(
1 −

∑
σ�

ψ�→i
σ�

ĉσ�σ

N

) ∏
k∈∂i

(∑
σk

ψk→i
σk

ĉσkσ

)

� γ̂σ

Zi
exp

[
−

N∑
�=1

∑
σ�

ψ�
σ�

ĉσ�σ

N

] ∏
k∈∂i

(∑
σk

ψk→i
σk

ĉσkσ

)
,

(6)

where ∂i represents the neighboring vertices of i; Zi is the
normalization factor; and we use the sparse approximation.
In the factor of neighboring vertices, ψk→i

σ represents the
marginalized distribution of vertex k with missing knowledge
of edge (i,k). Although the elements {ψk→i

σ } in Eq. (6) are
correlated to each other, in general, we can treat them inde-
pendently when the graph is treelike. Analogously to Eq. (6),
ψ

i→j
σ is calculated as

ψi→j
σ � γ̂σ

Zi→j
exp

[
−

N∑
�=1

∑
σ�

ψ�
σ�

ĉσ�σ

N

]

×
∏

k∈∂i\j

(∑
σk

ψk→i
σk

ĉσkσ

)
, (7)

where k ∈ ∂i\j is the set of neighbors of i where vertex j

is excluded, and Zi→j is a normalization factor. Note that
Eq. (7) constitutes of a set of closed equations, and so we
can iteratively update the values of {ψi→j

σ }. The BP algorithm
updates equation (7) until convergence, and it calculates the
complete marginal ψi

σ by Eq. (6).

We next explain the M-step. Because we consider the
affinity matrix c that is parametrized by c and �c, the only
parameter that we need to update is �c and γ . From Eqs. (1)
and (2), the extremum point of the first term of Eq. (5) can be
calculated analytically. Following Ref. [46], we obtain

�ĉ = N2

2

N
∑

(i,j )∈E Eψ

[
Wσiσj

] − c
∑

i<j Eψ

[
Wσiσj

]
∑

i<j Eψ

[
Wσiσj

] ∑
i<j

(
1 − Eψ

[
Wσiσj

]) .

(8)

Here we have

Eψ

[
Wσiσj

] =
∑
σiσj

Wσiσj

ψ
i→j
σi

ĉσiσj
ψ

j→i
σj∑

σiσj
ψ

i→j
σi

ĉσiσj
ψ

j→i
σj

= [c + �ĉ(1 − �̂)]Xij

c + �ĉ(Xij − �̂)
, (9)

where we defined Xij ≡ ψ i→jWψ j→i�; ψ i→j is the row
vector (ψi→j

1 , . . . ,ψ
i→j
q ). As often assumed [38,46,56], if

there is no macroscopic fluctuation with respect to the number
of vertices in each module, we can approximate that

2

N2

∑
i<j

Eψ

[
Wσiσj

] � γ̂ �W γ̂ = �̂. (10)

Using Eqs. (9) and (10), Eq. (8) is rewritten as

�ĉ(t+1) = c

�̂(1 − �̂)

[〈
(c + �ĉ(t)(1 − �̂))Xij

c + �ĉ(t)(Xij − �̂)

〉
E

− 1

]
,

(11)

where 〈Yij 〉E ≡ L−1 ∑
(i,j )∈E Yij . Here, we introduced super-

script (t) to indicate the t th update.
For estimating each element in γ , the extremum condition

of the first term of Eq. (5) readily yields

γ̂σ = 1

N

N∑
i=1

ψi
σ . (12)

IV. TRANSIENT DYNAMICS OF THE M-STEP

The transient dynamics of the M-step is the key to deriving
the algorithmic detectability threshold. The trajectories of the
model parameter updates for the standard SBM are exemplified
in Fig. 2(a). The vertical axis represents the total variation � ≡∑

σ,σ ′ |cσσ ′ − c| from the mean value c ≡ ∑
σ,σ ′ cσσ ′/q2; � =

0 indicates the uniform structure. An important observation
here is that the model parameter estimate is not attracted
directly to the planted value. Instead, they are attracted to the
point of uniform structure first. The EM algorithm encounters
the algorithmic detectability threshold during this transient
regime.

To gain a deeper insight about the nonlinear update equa-
tion (11), we express it in terms of x̂:

x̂(t+1) = x̂(t)

〈
Xij

�̂ + x̂(t)−�̂

1−�̂
(Xij − �̂)

〉
E

. (13)

Note that when ψ i→j = γ̂ for any (i,j ), i.e., when BP does
not provide any additional knowledge compared to the prior
distribution, we have Xij = �̂, so x̂ will not be updated. Here,
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(a)

(b) (c)

FIG. 2. (top) (a) Learning curves of the model parameters that
indicate the strength of the modular structures. The vertical axis
represents the total variation � of the affinity matrix elements cσσ ′

from the mean value c. The horizontal axis represents the number of
steps in the EM algorithm. We considered examples for the SBMs
with a simple community structure (circles) and a bipartite structure
(rectangles), as shown in the inset. To detect these structures, we did
not use the affinity matrix restricted to Eq. (2); instead, we used the
one with full degrees of freedom. (bottom) Second-order expansions
of the right-hand side of Eq. (14) with the first moments (b) 〈ξij 〉 = 0
and (c) 〈ξij 〉 = 0.2 (gray curves). For the other parameters, we set
� = 0.5 and 〈ξ 2

ij 〉 = 0.9. The dashed line represents x̂(t+1) = x̂(t). The
arrows in each figure show the update process of x̂(t) schematically.

we introduce the normalized deviation ξij ≡ (Xij − �̂)/�̂ and
rewrite Eq. (13) as

x̂(t+1) = x̂(t)

〈
1 + ξij

1 + x̂(t)−�̂

1−�̂
ξij

〉
E

. (14)

Because we usually have no prior information about the dis-
tribution of the marginals, it is common to set ψ i→j uniformly
random; i.e., 〈ξij 〉E = 0 and 〈ξ 2

ij 〉E > 0 at the beginning of the
algorithm. (In Appendix D, we show that this condition may
be relaxed for the case of equally sized modules.)

Because the estimate of the module sizes γ̂ are also updated
concurrently, the M-step can be very complicated in general.
Fortunately, however, the update dynamics for γ̂ can be
neglected for the analysis in this study. When we derive the
detectability threshold in Sec. VI, we need to restrict ourselves
to the case of equal-size modules. In that case, as shown in
Appendix D, the distribution ψ i→j is kept randomized during
the transient regime, and it yields the estimate that the module
sizes are equal.

The specific shape of Eq. (14) is shown in Fig. 2(b). The
fixed points x̂(t+1) = x̂(t) are located at x = 0,1, and x = �̂.
The former two fixed points indicate the parameters of the
bipartite graph and the graph with completely disconnected
modules, respectively. The last fixed point indicates the pa-
rameter of the uniform random graph. From Fig. 2(b), we can
confirm that x = 0 and x = 1 are unstable fixed points, while
x = �̂ is a stable fixed point. Note that Eq. (14) is independent
of the input graph during the transient regime. Moreover,
because Eq. (14) corresponds to an arbitrary modular structure,
this tendency holds irrespective of the specific structure that
we assume in the model. Therefore, the M-step of the EM
algorithm exhibits universal dynamics at the beginning of the
algorithm. When the transient regime is over, the dynamics is
no longer universal, and x̂ moves toward the planted value as
long as it is detectable [Fig. 2(c)].

V. LABELED SBM

Before we consider the algorithmic detectability threshold,
we extend the standard SBM to the labeled SBM that has p

types of edges, i.e., Aij = α ∈ {0, . . . ,p}; α = 0 represents the
nonedge. We denote the set of α edges as Eα , and therefore,
E = ∪p

α=1Eα (|Eα| = Lα , L = ∑p

α=1 Lα). Analogously to
Eq. (1), the likelihood of the labeled SBM can be expressed as

p(A,σ |γ ,cα) =
N∏

i=1

γσi

∏
i<j

p∏
α=0

(
cα
σiσj

N

)δAij ,α

, (15)

where the affinity matrix element cα
σiσj

with respect to α edges

obeys the normalization constraint N−1 ∑p

α=0 cα
σσ ′ = 1 for any

σ and σ ′. We denote the average degree and the strength of
the modular structure of α edges as cα and �cα , respectively
(
∑

α>0 cα = c). We also denote the fraction of α-edges as Pα ,
i.e., Pα ≡ cα/c.

Corresponding to the likelihood Eq. (15), we can extend
the BP update equation (7) to the one for the labeled SBM in
a straightforward manner, as follows:

ψi→j
σ = γσ

Zi→j

∏
�∈[∂i\j ]0

(
1 −

∑
α>0

∑
σ�

ψ�→i
σ�

ĉα
σ�σ

N

)

×
∏
α>0

∏
k∈[∂i\j ]α

(∑
σk

ψk→i
σk

ĉα
σkσ

)

� γσ

Zi→j

∏
α>0

ϕi→j
α,σ , (16)

where ϕ
i→j
α,σ is the α-edge generalization of Eq. (7),

ϕi→j
α,σ = exp

[
−

∑
�

∑
σ�

ψ�
σ�

ĉα
σ�σ

N

] ∏
k∈[∂i\j ]α

(∑
σk

ψk→i
σk

ĉα
σkσ

)
.

(17)

The vertex k ∈ [∂i\j ]α is a neighbor of i such that (i,k) ∈ Eα

and k �= j .
It is also straightforward to generalize Eq. (14) to the labeled

SBM. Because the variables of different edge labels are not
directly coupled, we can treat them separately. We can define
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xα analogously to x in Eq. (4), and for each label α,

x̂(t+1)
α = x̂(t)

α

〈
1 + ξα

ij

1 + x̂
(t)
α −�̂α

1−�̂α
ξα
ij

〉
α

, (18)

where 〈Yij 〉α ≡ L−1
α

∑
(i,j )∈Eα

Yij . Corresponding to Wα for

each α, �̂ and Xij are generalized to �̂α ≡ γ̂ �Wα γ̂ and
X

ij
α ≡ ψ i→jWαψ j→i�. Accordingly, we defined ξα

ij ≡ (Xij
α −

�̂α)/�̂α .

VI. DETECTABILITY THRESHOLD

We now derive the algorithmic detectability threshold of
the EM algorithm. As in other inference-based detectability
analyses, here, we need to impose further restrictions. We
hereafter focus on the case where the module size is equal,
i.e., γσ = 1/q for any σ , and the average degree of each
module is equal, i.e.,

∑
σ ′ Wσσ ′ = a (a = const.) for any σ .

In addition, we assume that the W matrix is common for all α.
In other words, while the edges of different types may indicate
assortative and disassortative structures, they share the same
planted modules.

The undetectable phase can be characterized as the phase in
which we cannot retrieve any information about the planted
module assignments through the BP update equation (16). In
the present setting, it is equivalent to the condition where the
factorized state is a stable fixed point of BP [38,43,55]. The
factorized state has the form ψ i→j such that ψ

i→j
σ = 1/q for

any σ and (i,j ); i.e., the state exhibits no signal of a likely-
module assignment for any vertex.

A. Instability of the factorized state

The instability condition of the factorized state in a sparse
graph, which is often termed the Kesten–Stigum bound,
can be analyzed using the framework of tree reconstruction
[38,43,55,57]. We assume that the graph is a tree and evaluate
whether perturbations from the leaves are significant or negligi-
ble for the inference of the root vertex. We denote v0 as the root
vertex and vi as the descendant vertices in ith generation. When
the vertices at distance d are perturbed as εd , the variation δψv0

σv0

of the marginal probability at the root vertex v0 is expressed as
follows:

δψv0
σv0

(εd ) =
∑

v1∈∂v0

∑
σv1

δψv0
σv0

δψ
v1→v0
σv1

δψv1→v0
σv1

=
∑

v1∈∂v0

∑
σv1

δψv0
σv0

δψ
v1→v0
σv1

∑
v2∈∂v1\v0

∑
σv2

δψv1→v0
σv1

δψ
v2→v1
σv2

δψv2→v1
σv2

=
∑

(v1,v
′
1)∈E

∑
σv1

δv′
1v0

δψv0
σv0

δψ
v1→v′

1
σv1

∑
(v2,v

′
2)∈E

∑
σv2

δv′
2v1 (1 − δv′

1v2 )
δψ

v1→v′
1

σv1

δψ
v2→v′

2
σv2

δψ
v2→v′

2
σv2

=
∑

(v1,v
′
1)∈E

∑
σv1

δv′
1v0

δψv0
σv0

δψ
v1→v′

1
σv1

∑
(v2,v

′
2)∈E

∑
σv2

Bv1→v′
1,v2→v′

2
T

v1→v′
1,v2→v′

2
σv1 σv2

. . .
∑

(vd ,v′
d )∈E

∑
σvd

Bvd−1→v′
d−1,vd→v′

d
T

vd−1→v′
d−1,vd→v′

d
σvd−1 σvd

ε
vd→v′

d
σvd

, (19)

where we defined the nonbacktracking matrix B [58] and the
transfer matrix T as

Bi→i ′,j→j ′ = δij ′(1 − δi ′j ) (i → i ′,j → j ′ ∈ E), (20)

T i→i ′,j→j ′
σiσj

= δψi→i ′
σi

δψ
j→j ′
σj

. (21)

In general, Eq. (19) cannot be expressed as the tensor product
of matrices B and T , because T depends on the edge label.
However, because we assume that all the affinity matrices cα

share the common W matrix, the transfer matrix T for each
edge type differs only by a constant factor. Then, we can
express Eq. (19) as

δψv0
σv0

(εd ) � [(B ′ ⊗ T ′)dεd ](v0→v′
0),σv0

. (22)

In the case of a simple community structure, when the pertur-
bation from the factorized state is considered [38,58,59], the
elements of B ′ and T ′ are

B ′
i→i ′,j→j ′ = �ĉα

qcα

Bi→i ′,j→j ′ (α = Ajj ′), (23)

T ′
σiσj

= δσiσj
− 1

q
. (24)

For inferring the general modular structure, we analyze the
BP algorithm of the transformed basis � i→j ≡ ψ i→jW as
considered in Ref. [46]. In this case, the transfer matrix T ′
is given by

T ′
σiσj

= Wσiσj
− �. (25)

From Eq. (22), the instability condition attributed to the
perturbation is determined by the eigenvalues of T ′ and B ′.
Note that because the unit vector 1 is a leading eigenvector of
W , we have |λ1(T ′)| = |λ2(W )|, where λ1(T ′) is the leading
eigenvalue of T ′ and λ2(W ) is the second-leading eigenvalue
of W , which may be degenerated with the leading eigenvalue.
Therefore, unless all the elements in the leading eigenvector of
B ′ have the same sign, the instability condition of the factorized
state, i.e., the detectable region is determined by

|λ2(W )||λ1(B ′)| > 1. (26)
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When all the elements in the leading eigenvector of B ′ do have
the same sign, e.g., the sign of �cα is the same for all α, the
leading eigenvector is unrelated to the modular structure. In this
case, the second-leading eigenvalue determines the detectable
region; i.e.,

|λ2(W )||λ2(B ′)| > 1. (27)

The eigenvalue of B ′ that we should refer to is determined
by the boundary of the spectral band, which we denote as λb,
and the isolated eigenvalue, which we denote as λiso. Note
that the eigenvalues of B ′ changes dynamically because it is
a function of the estimated value of the model parameters.
When we initially assume a strong modular structure, i.e., large
values of |�ĉα|, |λ2(W )||λb| > 1 holds. Then, the spectral
band shrinks because of the universal dynamics of the M-step,
until |λ2(W )||λb| reaches unity. (For a specific example, see
Sec. VII A and Fig. 4.) At this stage, the factorized state
stabilizes if there is no isolated eigenvalue that is correlated
to the planted modular structure. As we mentioned earlier,
x̂α will no longer be updated once the factorized state is
achieved. Hence, |λ2(W )||λb| = 1 determines the values of
�ĉα that we should refer to at the detectability threshold.
Given this estimate, the factorized state becomes unstable when
|λ2(W )||λiso| > 1 is satisfied. Hence, the boundary condition
of the detectable phase is given by

|λ2(W )||λb| = 1, |λ2(W )||λiso| = 1. (28)

These two conditions coincide when the model parameters are
correctly learned (i.e., the Nishimori condition), i.e., �ĉα =
�cα for all α.

B. Spectral band

We first consider the boundary λb of the spectral band. By
applying the result derived by the cavity method in Ref. [60],
we have

|λb| = 1

q
√

c

√∑
α>0

|�ĉα|2
Pα

. (29)

In terms of x̂α ,

|λb| =
√

c

q�(1 − �)

√∑
α>0

Pα|x̂α − �|2. (30)

As shown in Appendix C, this can also be derived as an
upper bound of the spectral band by using the method of
types. In the case of two equally sized modules with a
simple community structure under the Nishimori condition,
the condition |λ2(W )||λb| = 1 yields√∑

α>0

|�cα|2
Pα

= 2
√

c. (31)

This threshold is equal to the one derived in Ref. [23].
As presented in Fig. 3, however, the numerical experiment
shows that the actual boundary where the EM algorithm fails
(open circles) does not coincide with Eq. (31) (dashed ellipse).
Instead, the undetectable region can be well characterized by
the shaded region; its boundary is the algorithmic detectability
threshold that we will derive in Sec. VII A. In addition, we can

FIG. 3. Detectability phase-diagram of the two equally sized (q =
2) labeled SBM with two types of edges (p = 2). Each axis represents
the normalized strength of the modular structure xα (α ∈ {1,2}). The
center of the diagram represents the uniform random graph, while the
edges of the diagram represent the strongly modular graphs. The size
of the graph is N = 10 000. The average degree of each edge type
is c1 = 3 and c2 = 5. The shaded region represents the undetectable
region, i.e., the region where the inferred module assignments by the
EM algorithm are uncorrelated to the planted assignments. The dashed
ellipse represents the detectability threshold under the Nishimori
condition. (The ellipse becomes a circle when the average degrees
of both edge types are equal.) On the other hand, the shaded region
represents the undetectable region of the EM algorithm, and its
boundary is the algorithmic detectability threshold that we derived.
The circles represent the phase boundary obtained by the numerical
experiment; each point represents the average over five samples.

confirm that the condition |λ2(W )||λb| = 1 coincides with the
threshold obtained in Ref. [46] under the Nishimori condition
for the standard SBM with general modular structures.

C. Isolated eigenvalues

Next, we solve for the isolated eigenvalue λiso. Given
a graph, the eigenvalue equation of B ′ with respect to an
eigenvector vi→j with an eigenvalue λ is

λvi→j =
∑

k∈∂i\j

�cα

qcα

∣∣∣∣
α=Aik

vk→i . (32)

As the edge label Aik is stochastically determined by the
planted module assignments, we denote the eigenvector ele-
ment together with the planted module assignments σi and σk

as v
(σk,σi )
k→i .

Note that the nonbacktracking matrix is an oriented matrix,
i.e., when Bi→j,j→k = 1, then Bj→k,i→j = 0. According to
Ref. [60], the isolated eigenvalue of an oriented matrix can be
obtained by solving the eigenvalue equation of the averaged
quantities (Eq. (S59) in Ref. [60]). Because the eigenvector
statistics have dependency on the module assignment in the
present case, we letuσ = 〈vσ

i→j 〉be the ensemble average of the
eigenvector element with module assignment σ with respect
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to vertex i. The isolated eigenvalue can be obtained by solving
the equation for uσ .

Taking the ensemble average of the eigenvector elements
and the configuration average, we have

λuσ =
N−2∑
k=1

∑
σ ′

p(σk = σ ′)EA,σ ′

[
�cα

qcα

]
uσ ′

. (33)

The probability p(σk = σ ′) that the neighboring vertex k

belongs to module σ ′ is given as γσ ′ , and

EA,σ ′

[
�cα

qcα

]
=

∑
α>0

�cα

qcα

p(α|σ,σ ′)

=
∑
α>0

�cα

qcα

cα
σσ ′

N
(34)

is the configuration average for given σ ′, and p(α|σ,σ ′) is the
probability that a neighboring vertex in module σ ′ is connected
to a vertex in module σ via an α edge.

Making use of the fact that the module sizes are equal, we
have

λuσ =
∑
σ ′

Jσ ′σ uσ ′
, Jσσ ′ ≡ 1

q

∑
α>0

cα
σ,σ ′

�ĉα

qcα

. (35)

The matrix J can be expressed using W , and the eigenvalues
of Eq. (35) are written as follows:

λ+ = a�J + qJout �J =
∑
α>0

�cα

q
√

cα

�ĉα

q
√

cα

λ− = λ2(W )�J, Jout = 1

q

∑
α>0

cα
out

�ĉα

qcα

. (36)

The eigenvector that corresponds to λ+ in Eq. (36) is pro-
portional to a unit vector. Thus, λ− is the eigenvalue that we
referred to λiso; i.e.,

λiso = λ2(W )
∑
α>0

�cα

q
√

cα

�ĉα

q
√

cα

. (37)

In terms of xα and x̂α ,

λiso = λ2(W )

[q�(1 − �)]2

∑
α>0

cα(xα − �)(x̂α − �). (38)

In summary, the algorithmic detectability threshold is deter-
mined by Eq. (28) in which, λb and λiso are given by Eqs. (29)
and (37), respectively.

VII. DETECTABILITY PHASE DIAGRAMS

In this section, we draw detectability phase diagrams for
some specific cases. Note that the algorithmic detectability
threshold of the EM algorithm depends on the initial condition,
i.e., we need to specify the initial estimates of the model
parameters. As we will see for each example, the trajectory
of the set of estimated model parameters is crucial to the
geometry of the undetectable phase. In the following examples,
we always set the number of edge types p = 2.

A. Community structure with q = 2

We first derive the phase boundary of the shaded region in
Fig. 3. This is a case of two equally sized modules (q = 2),
and W is equal to the identity matrix (i.e., |λ2(W )| = 1); this
is often referred to as the symmetric SBM. Figure 4(a) shows
the trajectories of the estimate (x̂1,x̂2) for various instances of
the labeled SBMs. All the planted model parameters are in the
detectable region.

We set the initial estimate (x̂1,x̂2) nearly at the corner of
the (x1,x2) plane, (0.1,0.9). An example of the corresponding
spectrum of the weighted nonbacktracking matrix B ′ is shown
in Fig. 4(i); upon setting the initial condition as shown, the
boundary of the spectral band exceeds 1. As described in
Secs. IV and VI A, x̂α of each α is attracted toward the point of
the uniform graph at equal rates until it satisfies the condition
|λb| = 1 [Fig. 4(ii)], or equivalently, |x̂α − 1/2| = (2

√
c)−1 for

both α. Given these estimates, the condition |λiso| = 1 yields
p∑

α=1

Pα

∣∣∣∣xα − 1

2

∣∣∣∣ = 1

2
√

c
. (39)

This is the boundary of the shaded region in Fig. 3. In terms of
�cα , Eq. (39) is

∑
α>0 |�cα| = 2

√
c.

Thereafter, when the graph is in the detectable region,
(x̂1,x̂2) moves to the planted value. The spectrum ofB ′ is shown
in Fig. 4(iii). On the other hand, as shown in Fig. 4(b) (circles
and squares), (x̂1,x̂2) does not reach the planted value in the
undetectable region; provided that (x̂1,x̂2) is initially located in
the detectable region, it gets stuck when |λb| = 1 is satisfied.

A value of model parameter that exhibits a strong modular
structure is empirically known as a better choice for the
initial model parameter. Indeed, when (x̂1,x̂2) is initially
located deep in the undetectable region, the estimate does not
move at all [triangles in Fig. 4(b)]. This can be understood
as the algorithmic detectability threshold; the condition
|λ2(W )||λb| � 1 is already satisfied at the beginning of the
algorithm, and there is no isolated eigenvalue of B ′ that satisfies
|λ2(W )||λiso| > 1. Similarly, although (x̂1,x̂2) is initially
located in the undetectable region, when |λ2(W )||λiso| > 1 is
satisfied, then the estimate moves successfully to the planted
value [diamonds in Fig. 4(b)].

In the standard SBM, as long as the initial estimate of
the model parameters is in the detectable region, we can
confirm that there is no distinction between the algorithmic
threshold and the threshold under the Nishimori condition;
the undetectable region is given by |�c1| < q

√
c1 in the case

of a binary label α ∈ {0,1}. This is consistent with Theorem
3 of Ref. [41] that the model parameters are asymptotically
learnable for q = 2.

The dependence of the initial estimate of the model pa-
rameters was also examined numerically in Ref. [38] for the
standard SBM. If we substitute the value corresponding to the
critical point ε� in Fig. 5 (left) in Ref. [38] into Eq. (37), we
obtain |λiso| = 1. In addition, according to Eq. (29), this result
corresponds to the case where we start the algorithm with
|λb| < 1; thus, the critical point ε� was actually the algorithmic
detectability threshold.

B. Community structure with q = 3

When � = 1/2 as in Sec. VII A, we observed that the rate of
attraction of x̂α toward the point of the uniform random graph
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(a) (b)

FIG. 4. (Top) Trajectories of parameter learning based on the M-step of the EM algorithm for various planted values of (x1,x2). This plot
shows the upper-left region of the phase diagram shown in Fig. 3, and we consider the same labeled SBM as in Fig. 3. The arrows show the
directions in which the estimated parameters move. (a) The trajectories of the estimates (x̂1,x̂2) for the case that the planted values (x1,x2) (shown
in open symbols) are in the detectable region. The trajectory for the graph with the planted value (x1,x2) = (0.1,0.6) is represented by blue
circles; (x1,x2) = (0.45,0.8) is represented by yellow squares; (x1,x2) = (0.45,0.9) is represented by red diamonds; and (x1,x2) = (0.1,0.8) is
represented by green triangles, respectively. In all cases, the initial estimate is set as (x̂1,x̂2) = (0.1,0.9). The dotted line represents the line
with slope −1. (b) The trajectories of the estimates (x̂1,x̂2) in other cases. The trajectories with the planted values (x1,x2) = (0.15,0.55) (red
circles) and (x1,x2) = (0.45,0.72) (cyan squares) are the cases in which the planted values (shown in open symbols) are in the undetectable
region though the initial estimates are set as (x̂1,x̂2) = (0.1,0.9). The trajectories with the planted values (x1,x2) = (0.1,0.6) (orange diamonds)
and (x1,x2) = (0.45,0.9) (purple triangles) are the cases in which (x̂1,x̂2) is initially located in the undetectable region [(x̂1,x̂2) = (0.45,0.55)],
though the planted values are in the detectable region. (Bottom) Spectra of the weighted nonbacktracking matrix B ′ in the complex plane with
N = 500 corresponding to (i) (x̂1,x̂2) = (0.1,0.9), (ii) (x̂1,x̂2) = (0.323,0.677), and (iii) (x̂1,x̂2) = (0.1,0.6). The solid line (red) represents the
circle with radius |λb|.

is equal (or almost equal) for all α. As an example showing that
this is not the case, let us consider the simple community struc-
ture with three equally sized modules. The results are shown in
Fig. 5. The value of � is 1/3, and the update equation of (x̂1,x̂2)
is no longer symmetric with respect to α. As a consequence, the
rate of attraction in the transient dynamics of x̂α differs depend-
ing on whether we set x̂α < � or x̂α > � at the beginning of the
algorithm.

Once we determine the point where the estimate x̂ hits the
boundary of the spectral band, we can derive the detectability
threshold by |λiso| = 1. Note that the resulting detectability
phase-diagram has more detectable region in the upper-right
side than the lower-left side; this reflects the fact that the edges
within a module are more informative than the edges between
modules when q > 2.

C. Noncommunity structure

In the previous examples, we focused on the cases with
|λ2(W )| = 1. In this section, we describe the case of a non-
community structure such that the |λ2(W )| dependence of
the detectability threshold is actually observed. We consider
the graph with the matrix W shown in Fig. 6(a); i.e., q = 4,
� = 1/2, λ2(W ) = √

2. As in Sec. VII A, we set the initial
condition that |x̂α − 1/2| = const. for any α. All estimates x̂α

are attracted toward the center of the phase space at equal rates
until they satisfy the condition |λ2(W )||λb| = 1, which yields
|x̂α − 1/2| = 1/

√
2c. Given these estimates, the condition

|λ2(W )||λiso| = 1 yields
p∑

α=1

Pα

∣∣∣∣xα − 1

2

∣∣∣∣ = 1√
2c

. (40)
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(a) (b) (c)

FIG. 5. Behavior of the EM algorithm in the simple community structure with three modules. The average degree of each edge-type is
c1 = 3 and c2 = 5. We consider two types of edges (p = 2). (a) Second-order expansion of the right-hand side of Eq. (14) with 〈ξij 〉 = 0; the
dashed line represents x̂(t+1) = x̂(t). In the inset, W matrix where cin and cout are represented by black and white, respectively. (b) Detectability
phase-diagram. The dashed ellipse, shaded region, and circles represent the detectability threshold under the Nishimori condition, undetectable
region of the EM algorithm, and results of the numerical experiments (the average is taken over five samples), respectively, as shown in Fig. 3.
(x1,x2) = (1/3,1/3) represents the point of the uniform random graph. (c) Trajectories of (x̂1,x̂2) with various initial values in the phase space.
The trajectory for the graph with the planted value (x1,x2) = (0.3,0.7) corresponds to the blue circles; (x1,x2) = (0.9,0.4) corresponds to the
yellow squares; (x1,x2) = (0.8,0.2) corresponds to the red diamonds; and (x1,x2) = (0.15,0.05) corresponds to the green triangles. As in Fig. 4,
the planted values are shown by open symbols. The dashed lines represent the lines with slopes −1/3, 1, and −3. For the numerical experiments,
we use the labeled SBMs with N = 15 000.

The detectability phase diagram and the trajectories of the
estimate (x̂1,x̂2) are shown in Figs. 6(b) and 6(c), respectively.

To obtain the results shown in Fig. 6, although we could
have used the EM algorithm with the restricted affinity matrix
in Eq. (2), we used the affinity matrix of full degrees of freedom
instead. We can confirm that the boundary of the detectability
phase diagram is still very accurate, and thereby, the restriction
of the affinity matrix that we imposed for analytical tractability
does not have a crucial effect after all.

VIII. ALGORITHMIC INFEASIBILITY

In this section, we focus on the case described in Sec. VII A;
for this case, we discuss the physical consequence of the
distinction between the algorithmic detectability threshold,
Eq. (39), and the detectability threshold under the Nishimori
condition, Eq. (31).

Suppose that we have an instance of the standard SBM,
whose edges indicate the assortative structure. However, the
planted structure is undetectable by the EM algorithm because

(a) (b) (c)

FIG. 6. Behavior of the EM algorithm in a noncommunity structure with two modules. The average degree of each edge type is c1 = 3
and c2 = 5. (a) W matrix where cin and cout are represented by black and white, respectively. We consider two types of edges (p = 2). (b)
Detectability phase diagram. The dashed ellipse, shaded region, and circles represent the detectability threshold under the Nishimori condition,
undetectable region of the EM algorithm, and results of the numerical experiments (the average is taken over five samples), respectively, as
in Fig. 3. (x1,x2) = (1/2,1/2) represents the point of the uniform random graph. (c) Trajectories of x̂α with various initial values in the phase
space. The trajectory for the graph with the planted value (x1,x2) = (0.4,0.9) corresponds to the blue circles; (x1,x2) = (0.9,0.8) corresponds
to the yellow squares; (x1,x2) = (0.8,0.1) corresponds to the red diamonds; and (x1,x2) = (0.35,0.1) corresponds to the green triangles. As in
Fig. 4, the planted values are shown by open symbols. The dashed lines represent lines with slopes −1 and 1. For the numerical experiments,
we use the labeled SBMs with N = 4 000.
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the graph is too sparse. To improve this situation, we can add
some edges of a new type to the existing graph.

Because we obtain more information about the planted
structure by adding these edges of a new type, in principle, the
structure is more likely to be detectable. Then, the question
arises whether such a prescription always strengthens the de-
tectability and whether is it even better to introduce yet another
type of edges. In practice, the above statements are not true. An
algorithm does not always perform better because it becomes
more difficult to learn higher-dimensional model parameters.
In other words, excessively higher-order information will be,
at some point, algorithmically infeasible to extract.

This infeasibility can also be explained in the reverse way:
There are cases where discarding edges of one type improves
the detectability. To observe this behavior, we identify a region
of the undetectable phase in the phase diagram of p = 2 where
the corresponding graph becomes detectable upon discarding
the edges of α = 2. Because the undetectable region of α = 1
is given by ∣∣∣∣x1 − 1

2

∣∣∣∣ <
1

2
√

3
, (41)

we can readily see that the striped region in Fig. 7(a) is the
phase where algorithmic infeasibility can be observed.

The improvement of the performance is confirmed in
Fig. 7(b). This is a set of vertical histograms with respect
to the overlap, the fraction of correctly classified vertices.
Each histogram shows the distribution of overlaps for the
given average degree c2 of α = 2. As we increase c2, at some
point, the graph will enter the undetectable region; according to
Eq. (39), the critical value is c2 ≈ 2.54. Indeed, the numerical
experiment shows that the overlaps tend to be high for c2 � 2
(blue) and tend to be close to 0.5, i.e., not better than chance, for
c2 � 3 (red). Note that our analytical results are of N → ∞.
Thus, there is a chance to retrieve the information of the planted
modules even for c2 � 3 because of the finite-size effect and
vice versa. Note also that if we make the average degree c2 even
larger (c2 � 55.46 in the current case), the planted modules
eventually become detectable again.

Importantly, the detectability threshold ofα = 1, Eq. (41), is
tangent to the detectability threshold under the Nishimori con-
dition (dashed ellipse). Therefore, the emergence of the phase
that exhibits the algorithmic infeasibility is a consequence of
the algorithmic detectability threshold.

IX. SUMMARY AND DISCUSSION

In this study, we derived the algorithmic detectability
threshold of the labeled SBM by using the EM algorithm.
Although we restricted the parameters to enable analytical
calculation, our result is applicable to more than two mod-
ules, arbitrary number of edge types p, and general modular
structures. Our result offers another aspect to the detectability
threshold in statistical inference. Although BP is known to
achieve the theoretical limit of detectability in some situations,
the EM algorithm that uses BP in its E-step cannot achieve that
limit unless a special initial condition is chosen. This difference
stems from the learnability of the model parameters. This is
also a crucial difference between graph clustering and the tree
reconstruction problem. Although they are closely related with

O
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(a)

(b)

FIG. 7. (a) Same detectability phase-diagram as in Fig. 3. The
striped region represents the undetectable region that becomes de-
tectable when the edges of α = 2 are discarded. (b) Vertical his-
tograms of the overlap distribution. The same labeled SBM as that in
Fig. 7(a) is considered, and the instances with N = 10 000, c1 = 3,
and (x1,x2) = (0.85,0.45) are generated. The histograms of various
values of c2 are horizontally aligned (30 samples for each histogram).
The ones in the detectable phase, i.e., c2 � 2, are indicated in blue,
while the ones in the undetectable phase, i.e., c2 � 3, are in red. The
white points (connected via dashed lines) indicate the medians of
overlaps. The population of the success and failure changes at the
critical value that we estimated.

regard to detectability, in the tree reconstruction problem, the
Markov transition matrix is given as an input, i.e., the problem
of learnability is absent.

Note that the result obtained considering the instability
of the factorized state is not a proof of the detectability
threshold. (See, e.g., Refs. [24,41,42] for a detailed discussion.)
Nevertheless, as we observed in Sec. VII, our analysis predicts
the behavior of numerical experiments very accurately. We also
did not analyze the emergence of the so-called hard phase that
typically appears when the number of modules q is large. The
analysis in this study deals with the dynamics of the model
parameter for a given graph. On the other hand, reports on
sample-averaged dynamics of the EM algorithm are available
in literature [61–64], mainly in the context of image restoration.
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In general, the phase boundary that we derived (e.g., the
boundary of the shaded region in Fig. 3) is a simplex that
is tangent to the detectability threshold under the Nishimori
condition (e.g., the dashed ellipse in Fig. 3), and the tangent
point depends on the initial estimate of x̂α . Note that the
EM algorithm encounters this limitation when the critical
conditions that we derived, as shown in the Appendix, are met
in the transient regime. In other words, for example, when
the planted sizes of modules are very different, the transient
regime will be too short, and the M-step trajectory becomes
very complicated. This implies that it is usually impossible
to track the behavior of the EM algorithm, and it is rather
surprising that there is a class of the SBM (and it is not too
restricted) for which we can derive the algorithmic detectability
threshold analytically.

Although our analysis here deals with graph clustering using
the SBM, we expect that the strategy here can be applied to
other models, particularly in machine learning. We hope that
the analysis of algorithms utilizing the geometry of the phase
diagram offers deeper insights to various kinds of problems.
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APPENDIX A: RATE OF ATTRACTION IN THE M-STEP
TRANSIENT DYNAMICS

The example given in the main text shows the equal rate
of attraction for each x̂α toward the point of the uniform
graph. This implies that higher-order moments 〈ξk

ij 〉 (k > 2)
are absent or negligible. This can be explained as follows.
Suppose we set the initial values of the model parameters
x̂1 = ε and x̂2 = 1 − ε. In general, their rates of attraction
toward the point of the uniform random graph are not equal.
However, when � = 1/2 and the higher-order moments of
ξij are zero, the update equation (14) is invariant under the
transform x̂(t+1) → 1 − x̂(t+1) and x̂(t) → 1 − x̂(t), indicating
that they are attracted at equal rates.

APPENDIX B: POSSIBILITY TO IMPROVE
THE LEARNABILITY

One might wonder whether we can improve the learnability
of the model parameters by tuning the EM algorithm. For
example, the algorithm may achieve better learnability if we
can control the speed of model-parameter learning.

As a matter of fact, our implementation of the EM algorithm
is not a precise implementation. In principle, the EM algorithm
requires iterations until convergence for every E-step, and then,
we stop the algorithm when the M-step converges. Here, we
need to introduce a convergence criterion for each of iteration
and a cutoff for the number of iterations. Note, however,
that unless the convergence in the E-step is extremely quick,
this legitimate implementation of the EM algorithm with the
large iteration cutoff will be very time consuming. Thus, it is

reasonable to set a small value of the iteration cutoff. Here
we set this cutoff as 1. In other words, the model parameters
are updated for every sweep of BP. Moreover, we do not set
a convergence criterion for the M-step. Instead, we use the
convergence of the E-step with respect to the previous update;
thus, we only need one convergence criterion.

Although we also tested the performance of the legitimate
implementations that have the iteration cutoffs of 10 and 100,
we did not observe any improvement. The insensitivity to the
implementation detail can be interpreted from the analysis in
Appendix D; even if we start from a nonuniform distribution
of the module-assignment estimate that may be positively
correlated to the planted assignment, the transient dynamics
randomizes that distribution.

It is also common to introduce a parameter called the
learning rate η (< 1) to control the update rate of model
parameters. The update equation of the estimate x̂η with the
learning rate η is written as follows:

x̂(t+1)
η = (1 − η)x̂(t+1)

0 + η x̂
(t+1)
1

= x̂(t)
η

[
1 + η

(〈
1 + ξij

1 + x̂(t)−�
1−�

ξij

〉
− 1

)]
. (B1)

While the learning rate slows down the update of x̂ by defini-
tion, it does not alter the fixed points. As far as we tested, again,
we did not observe any improvement in performance. We there-
fore conclude that the algorithmic detectability threshold we
derived can hardly be improved by tuning the implementation.

APPENDIX C: DERIVATION OF THE BOUNDARY OF
THE SPECTRAL BAND

Here, we derive an upper bound of the spectral band of the
weighted nonbacktracking matrix B ′. This is an extension of
the derivation in Ref. [58] for an unlabeled graph. The bound
here coincides with the threshold obtained in Ref. [23], as
derived using the large deviation technique; however, we use
the method of types [65].

As discussed in Ref. [58], we consider the following relation
with respect to the eigenvalues {λ�} of the nonbacktracking
matrix:

2L∑
�=1

|λ�|2d � trBd (Bd )�

=
∑
vi→j

∑
vw→x

|vi→jB
dvw→x |2. (C1)

In the case of the unweighted edges, the sum over vw→x can
be interpreted as the number of the nonbacktracking paths
that reach edge (i,j ) by exactly d steps. When the graph is
treelike, it is approximately cd .

We generalize the above argument to the weighted non-
backtracking matrix B ′. First, given the population P =
{P1, · · · ,Pp} of the number of labeled edges, we denote the
fraction of paths that have the empirical distribution, i.e., the
type, P̃ = {P̃1, · · · ,P̃p} ∈ P , along a path of distance d as
ρd [P̃ : P ]. When d � 1, we can approximately write it as

ρd [P̃ : P ] =
(

d

dP̃1 · · · dP̃p

) ∏
α>0

P dP̃α

α ∼ e−dD(P̃ ||P ), (C2)
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EM step EM step

FIG. 8. Planted Wα matrices (two left panels) and evolution of the deviation from the uninformative module-assignment distribution (two
right panels). In each Wα matrix, the colored elements represent Wα

σσ ′ = 1, and the white elements represent Wα
σσ ′ = 0. In the right panels, the

mean value 〈ξα
ij 〉 is represented as a white line, and its standard deviation Std[ξα

ij ] is shown as a colored tie. The top panels correspond to the
example given in Sec. VII A, i.e., the simple community structure with q = 2, and we set (x1,x2) = (0.1,0.6) as the planted model parameters.
The middle panels correspond to the example given in Sec. VII B, i.e., the simple community structure with q = 3, and we set (x1,x2) = (0.8,0.2)
as the planted model parameters. The bottom panels correspond to the example given in Sec. VII C, i.e., the general structure of Fig. 6(a), and
we set (x1,x2) = (0.8,0.1) as the planted model parameters.

where D(P̃ ||P ) is the Kullback–Leibler divergence of distri-
butions P̃ and P . Using this quantity, we can express a part of
Eq. (C1) as

∑
vw→x

|vi→jB
′dvw→x |2

= cd
∑
P̃∈P

ρ[P̃ : P ]
∏
α>0

∣∣∣∣�ĉα

qcα

∣∣∣∣
2dP̃α

=
(∑

α>0 |�ĉα|
q
√

c

)2d ∑
P̃∈P

ed[D(P̃ ||P )−2D(P̃ ||Q)], (C3)

where we defined Qα = |�ĉα|/∑
α>0 |�ĉα|. In the limit d →

∞, the law of large numbers ensures

∑
P̃∈P

ed[D(P̃ ||P )−2D(P̃ ||Q)] ∼
(∑

α>0

Q2
α

Pα

)d

. (C4)

Hence, from Eqs. (C1), (C3), and (C4), we have

1

2L

2L∑
�=1

|λ�|2d �
[

1

q2c

∑
α>0

|�ĉα|2
Pα

]d

. (C5)

Therefore, λ2
b is estimated as

λ2
b � 1

q2c

∑
α>0

|�ĉα|2
Pα

, (C6)

and this is equal to Eq. (29). Note that the fact that we
consider the general modular structure does not comes into
play here owing to the assumption that the expected degree
of each vertex does not depend on the module to which it
belongs.

APPENDIX D: RANDOMIZATION OF THE MODULE
ASSIGNMENT DISTRIBUTIONS

Here, we show that the module assignment distributions are
randomized during the transient dynamics. We present three
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cases of the labeled SBM as examples: the simple community
structure with q = 2 and q = 3, and the general modular
structure of Fig. 6(a). In all cases, we set the number of labels
p = 2 and choose a corner of the phase space for the initial
estimate of each x̂α .

In Fig. 8, each panel shows the evolution of 〈ξα
ij 〉, i.e., the

mean deviation of the module assignment distributions from
the uninformative ones, and its standard deviations. The left

and right panels represent the evolutions with respect to α = 1
and α = 2, respectively. To make the randomization process
visible, we set 〈ξα

ij 〉 �= 0 at the beginning of the algorithm,
unlike our assumption in the main text. We can confirm that
in all cases, 〈ξα

ij 〉 quickly approaches zero, stays there for
a moment, and eventually converges to a nontrivial value.
These results indicate that the assumption 〈ξα

ij 〉 = 0 during the
transient dynamics is indeed correct.
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