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SUMMARY

While single-cell gene expression experiments pre-
sent new challenges for data processing, the cell-
to-cell variability observed also reveals statistical
relationships that can be used by information theory.
Here, we use multivariate information theory to
explore the statistical dependencies between triplets
of genes in single-cell gene expression datasets. We
develop PIDC, a fast, efficient algorithm that uses
partial information decomposition (PID) to identify
regulatory relationships between genes. We thor-
oughly evaluate the performance of our algorithm
and demonstrate that the higher-order information
captured by PIDC allows it to outperform pairwise
mutual information-based algorithms when recov-
ering true relationships present in simulated data.
We also infer gene regulatory networks from three
experimental single-cell datasets and illustrate how
network context, choices made during analysis,
and sources of variability affect network inference.
PIDC tutorials and open-source software for esti-
mating PID are available. PIDC should facilitate the
identification of putative functional relationships
and mechanistic hypotheses from single-cell tran-
scriptomic data.

INTRODUCTION

Precisely controlled patterns of gene expression are essential for

the survival and reproduction of all life forms. Development pro-

vides the canonical example, where changes in gene regulation

determine the path by which a complex multicellular organism

emerges from a single fertilized egg cell. Intricate networks of

transcriptional activators and repressors have evolved to regu-

late the spatial and temporal expression of genes, enabling

organisms to adjust transcription levels in response to environ-

mental, developmental, and physiological cues (Trapnell et al.,

2014; Harrington et al., 2014; Rue and Martinez Arias, 2015,

Moris et al., 2016; Gouti et al., 2015; Göttgens, 2015). Elucidating
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the structure of such gene regulatory networks (GRNs) has been

a central goal of much recent systems biology research (De Smet

and Marchal, 2010; Oates and Mukherjee, 2012; Thorne and

Stumpf, 2012, 2013; Siegenthaler and Gunawan, 2014; Oates

et al., 2014; Huang and Zi, 2014; Young et al., 2014), and it is

now becoming a pivotal stepping stone in dissecting the molec-

ular contributions of complex diseases (Boyle et al., 2017).

The structure of GRNs alone does not fully constrain their

function (Ingram et al., 2006), but it serves as an important start-

ing point for further analysis. The simplest mathematical repre-

sentations of GRNs are static, undirected graphs, where each

node represents a gene, and edges depict relationships between

transcription factors and their targets. Although by this definition

the GRN encapsulates every transcriptional regulatory relation-

ship that could occur within a given organism, this is not a very

helpful perspective: clearly, it is not the case that every possible

interaction does occur in every cell — for example, the down-

stream interactions of a transcription factor only occur when it

is expressed — hence we can define subsets of the GRN that

are active in particular cells and contexts. The structure and

dynamics of these active GRN subsets give rise to distinct

mRNA expression profiles, and it has been suggested that char-

acteristic expression profiles in different cell types (and under

different conditions) result from different stable states of the

GRN (Clevers et al., 2017; Huang, 2010; Moris et al., 2016;

Moignard et al., 2015).

The introduction of efficient high-throughput expression

assays has driven interest in network inference methods that

apply statistical approaches to identify likely regulatory relation-

ships between genes based on their expression patterns and po-

tential GRN structures. In addition to correlation-based networks

(perhaps the simplest way of identifying putative relationships),

Gaussian graphical models, (dynamical) Bayesian networks,

regression analyses, and information theoretical approaches

have been used for network inference from population-level

data (Penfold and Wild, 2011; Penfold et al., 2015; Bonneau

et al., 2006; Margolin et al., 2006a; Villaverde et al., 2013, Villa-

verde et al., 2013; Liang and Wang, 2008, Madar et al., 2010;

Hill et al., 2012; Lebre et al., 2010, Beal et al., 2005; Schafer

and Strimmer, 2005, Vinciotti et al., 2016). Combiningmultiple in-

ferred networks to form a community or ensemble prediction

often confers slight but consistent improvements in the quality

of the predicted network (Hill et al., 2016; Marbach et al., 2010,
mber 27, 2017 ª 2017 The Authors. Published by Elsevier Inc. 251
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Figure 1. Network Inference from Single-Cell Data

Single-cell transcriptomic data quantify mRNA species present inside individual cells. By considering pairs (or triplets, quadruplets, etc.) of mRNA species, we

can test for statistical relationships among them. These dependencies may reflect coordinated gene expression of these pairs (or groups) of genes, resulting from

gene regulatory interactions or co-regulation. Once such sets of genes that jointly change in expression are known, other statistical, bioinformatic, or text-mining

analyses can be used to identify likely transcriptional regulators for these sets of genes. By iterating such in silico analyses with further, targeted experimental

studies, we can, in principle, build up a representation of the gene regulatory network.
2012), but how to best combine and weight different methods to

form a consensus prediction is poorly understood. Given our

current understanding, a reasonable approach to generate

such ensemble predictions would be to include information

derived using different classes of inference algorithms (since

these are known to show different biases; Marbach et al.,

2012) but also to ensure that within each class, we develop

the best-performing algorithm based on a given statistical

methodology.

More recently, the increasing availability of single-cell expres-

sion data has led to the development of several computational

and statistical approaches aimed at gaining new insight into

cell fate decisions and transitions between cell states (Pina

et al., 2015; Moignard et al., 2015; Rue and Martinez Arias,

2015; Moris et al., 2016; Bendall et al., 2014; Trapnell et al.,

2014). Identifying the associated changes in transcriptional state

and regulatory interactions that contribute to controlling these

processes are key aims of many single-cell transcriptomic

studies (Kharchenko et al., 2014; Ocone et al., 2015; Moignard

et al., 2015; Pina et al., 2015; Trapnell et al., 2014; Bendall

et al., 2014). Several pseudotemporal ordering algorithms have

been developed that aim to place cells in an inferred temporal

order based on similarities in their transcriptional states (Trapnell

et al., 2014; Bendall et al., 2014; Haghverdi et al., 2016; Reid and

Wernisch, 2016; Setty et al., 2016), since true single-cell tempo-

ral data (where large numbers of genes are assayed) are not

feasible to collect at present. These methods often make strong

assumptions about developmental processes (which have been

questioned; Moris et al., 2016) and, in most cases, uncertainties

in the inferred order are likely to affect and bias downstream

analyses. Network inference methods, in contrast, explore sta-

tistical dependencies between genes (from the observed distri-

butions of expression levels across a given population of cells)

and identify those that may be indicative of functional relation-

ships, without necessarily making such strong assumptions

about the nature of cell transitions; each inferred edge is a

hypotheses that can be tested. Information theoretical

measures, in particular, are particularly parsimonious in the as-

sumptions that they make (Kinney and Atwal, 2014) compared

with, e.g., ordinary differential equation (ODE)-based regression

approaches or simple graphical models. However, network
252 Cell Systems 5, 251–267, September 27, 2017
inference using single-cell data (Figure 1) remains relatively un-

explored with only a few notable examples (e.g., Ocone et al.,

2015; Moignard et al., 2015; Filippi and Holmes, 2017) extending

beyond simple, potentially simplistic, correlation-based ana-

lyses (Bacher and Kendziorski, 2016; Moignard et al., 2013; Ko-

lodziejczyk et al., 2015; Pina et al., 2015; Stegle et al., 2015),

perhaps due to the difficulties of directly applying and interpret-

ing the results of existing methods designed to deal with popu-

lation-level data.

Single-cell data are notoriously complex and present new

challenges for statistical analysis: technical noise is difficult to

distinguish from genuine biological variability, the relative contri-

butions and impact of different sources of noise are poorly

understood, and numerous factors contribute to the biological

heterogeneity observed within cell populations (Stegle et al.,

2015; Pierson and Yau, 2015; Gr€un and van Oudenaarden,

2015; Bacher and Kendziorski, 2016; Liu and Trapnell, 2016;

Buettner et al., 2015). However, these data also offer substantial

advantages over population-level data that we can exploit in

order to learn about the structure of GRNs governing the

observed changes in gene expression. Firstly, datasets are

large, routinely comprising expression measurements from hun-

dreds or thousands of cells, and continuing advances in single-

cell technologies will allow further increases in sample sizes

(Macosko et al., 2015; Klein et al., 2015). In addition, single-cell

data inherently provide the variability required to detect statisti-

cal relationships between gene expression profiles (interpreted

as putative functional relationships), whereas population-based

studies need to introduce this variability by observing cell popu-

lations under different conditions, e.g., using time-series or

perturbation studies (Marbach et al., 2010, 2012; Penfold and

Wild, 2011; Oates and Mukherjee, 2012). While we can collect

single-cell time-series data, even data collected at one time

point will contain variability due to (1) asynchrony of cells within

a population (in terms of progression through a biological pro-

cess), and (2) biological heterogeneity and often the presence

of multiple cell (sub)types.

Here, we introduce an information-theory-based GRN infer-

ence algorithm designed to make use of these features of

single-cell data. Information theory provides a set of measures,

chiefly among them mutual information (MI), that allow us to



Box 1. Information Theoretic Measures

The entropy, H(X), quantifies the uncertainty in the probability distribution, p(x), of a random variable X. For a discrete random var-

iable, the entropy is given by

HðXÞ= �
X
x˛X

pðxÞlogpðxÞ (Equation 1)

which ismaximal for a uniform distribution. If we consider themRNA expression level of a gene to be the variable X, then a gene that

is expressed differently across a set of cells will have a higher entropy than amore consistently expressed gene.When considering

the relationship between X and a second random variable, Y, we quantify the information that one variable provides about the other

using the MI:

IðX;YÞ=
X
x˛X

X
y˛Y

pðx; yÞlog
�

pðx; yÞ
pðxÞpðyÞ

�

=HðXÞ+HðYÞ � HðX;YÞ
(Equation 2)

This quantifies the difference between the joint entropy, H(X,Y), and the joint entropy assuming independence of X and Y,

H(X) + H(Y), and thus provides a non-negative, symmetric measure of the statistical dependency between the two variables.

For a pair of genes with more co-ocoordinated expression, their observed joint entropy will be lower, and hence they will have

higher mutual information. Given a third variable, Z, the conditional mutual information (CMI),

IðX;Y jZÞ=HðX;ZÞ+HðY ;ZÞ � HðX;Y ;ZÞ � HðZÞ ; (Equation 3)

quantifies the information between X and Y given knowledge of Z. This tells us the extent to which knowing the expression of one

gene additionally informs us about the expression of a second gene, given that we already know the expression of a third gene.

A number of MVI measures have been defined that aim to quantify the statistical dependencies between three or more variables,

but there is little consensus as to the most appropriate metric (Timme et al., 2014). Arguably, the most widely used is interaction

information (McGill, 1954), which for three genes quantifies the extra information between any two of the genes X, Y, and Z, when

the third is known compared with when it is not known:

IIðX;Y ;ZÞ= IðX;Y jZÞ � IðX;YÞ= IðX;ZjYÞ � IðX;ZÞ= IðY ;ZjXÞ � IðY ;ZÞ : (Equation 4)

Interaction information has received much criticism since it can be (1) zero between dependent variables, when MI and CMI are

equal but non-zero, and (2) negative, when MI is greater than CMI. The problem is that, despite its name, interaction information is

not a quantity of information between a set of variables; rather it quantifies the balance betweenMI and CMI. In fact, MVI is difficult

to summarize with a single quantity, because there are different ways in which information can be shared by three or more

variables.

An important recent development in information theory is the introduction of PID (Williams and Beer, 2010). In the three-variable

case, PID considers the information provided by a set of source variables (or genes), S = {X, Y}, about another target variable, Z,

partitioned into redundant, synergistic, and unique information. Redundant information is the portion of information about Z that

can be provided by either variable in S alone; the unique contribution from X (or Y) is the portion of information provided only by X

(or onlyY); and the synergistic information is the portion of information that is only provided by knowledge of both X andY. Thus, the

PID between the set S and the target variable Z is equal to the sum of the four partial information terms,

IðX;X;YÞ=SynergyðZ;X;YÞ+UniqueYðZ;XÞ
+ UniqueXðZ;YÞ+RedundancyðZ;X;YÞ ; (Equation 5)

whereUniqueY(Z;X) is the unique information between source variable X and target variableZwhen the other source variable isY. In

the context of gene expression, the terms source and target do not imply any mechanistic assumptions; rather, they refer to quan-

tifying to what extent knowledge of the source genes informs us about the target gene.

To calculate the PID terms, the redundant information is first calculated using the specific information, Ispec, which quantifies the

information provided by one variable about a specific state of another variable (Deweese and Meister, 1999; Timme et al., 2014).

The ‘‘state’’ of a gene in a given cell refers to which discrete bin its mRNA level falls within, once we have discretized the expression

data. If we consider the information provided by X about state z of variable Z,

(Continued on next page)
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Box 1. Continued

Ispecðz;XÞ=
X
x˛X

pðxjzÞ
�
log

�
1

pðzÞ
�
� log

�
1

pðzjxÞ
��

: (Equation 6)

If we consider S = {X, Y} and a target variable Z, the redundant contribution is calculated by comparing the amount of information

provided by each variable within S about each state of the target Z,

RedundancyðZ;X;YÞ=
X
z˛Z

pðzÞmin
S

Ispecðz;SÞ : (Equation 7)

The unique information terms can be calculated from the redundant information and the pairwise MI, via the relationship,

IðX;ZÞ=UniqueYðZ;XÞ+RedundancyðZ;X;YÞ : (Equation 8)

In other words, the pairwise MI between two variables can be partitioned into a redundant and unique component, given a third

variable; it is this relationship that we exploit further in the Results section. We note that although PID is not a symmetric measure,

UniqueY(Z;X) + Redundancy (Z;X, Y) will be equal to UniqueY(X;Z) + Redundancy(X;Z,Y) because MI is symmetric.

Finally the synergistic information can be calculated via the interaction information (Equation 4), which turns out to be the difference

between the synergistic and redundant information:

IIðX;Y ;ZÞ=SynergyðZ;X;YÞ � RedundancyðZ;X;YÞ : (Equation 9)
characterize statistical dependencies between pairs or groups of

random variables without making assumptions about the nature

of the dependencies (Cover and Thomas, 2012; McMahon et al.,

2014). MI has considerable advantages over simpler measures

such as (Pearson) correlation, as it is capable of capturing com-

plex non-linear and non-monotonic dependencies, and reflect-

ing the dynamics between pairs or groups of genes (Mc Mahon

et al., 2015; Uda et al., 2013). Calculating MI involves estimating

pairwise joint probability distributions, generally requiring den-

sity estimation (Kraskov et al., 2004; Steuer et al., 2002) or

data discretization, and the accuracy of these estimates de-

pends on the sample sizes. Single-cell datasets are sufficiently

large to allow us to accurately estimate probability distributions

between more than two variables, and thus capitalize on recent

developments in multivariate information (MVI) theory. Quanti-

fying the information between three or more variables has long

been problematic, and the most widely used measures, such

as interaction information, are known to have serious flaws

(Timme et al., 2014). The recently introduced partial information

decomposition (PID) both explains and solves its predecessors’

problems and provides a meaningful measure of MVI (Williams

and Beer, 2010); PID and other measures are described in detail

in Box 1. Our algorithm uses PID to analyze the statistical

relationships between triplets of variables to generate undi-

rected networks highlighting putative functional interactions be-

tween genes.

In this paper, we describe an inference algorithm based on the

MVI measure PID and use extensive in silico analyses to demon-

strate (1) the consistent improvement over existing algorithms

based on pairwise MI, and (2) the suitability of this method for

analyzing single-cell data, before illustrating its application to

several experimental datasets. Such in silico analyses are critical

for quantitatively assessing network inference approaches as,

unlike with real biological systems, we have knowledge of the
254 Cell Systems 5, 251–267, September 27, 2017
‘‘true’’ GRN underlying the observed data. These results demon-

strate that the larger sample sizes of single-cell data are vital for

ourmethod and that they profoundly improve the performance of

information-based methods in general. We thoroughly explore

the factors that influence algorithm performance — in particular

the choice of discretization algorithms and probability distribu-

tion estimators — in order to provide evidence-based guidelines

for the use of information-theory-based methods for network

inference. We emphasize the importance of considering the

different sources of heterogeneity within single-cell data so

that we can take advantage of the variation of interest — e.g.,

that associated with progression through a biological process

such as differentiation. Our examples using experimental data

demonstrate how our inference method can be combined with

existing computational and statistical methods (e.g., clustering

and dimensionality reduction) to infer networks from carefully

chosen subsets of single-cell data in order to address particular

questions about cellular processes. We consider three single-

cell transcriptomic datasets here and additionally refer to

a related manuscript (Stumpf et al., 2017 [this issue of Cell

Systems]), in which we use our framework to infer changing reg-

ulatory subnetworks over the course of neural progenitor devel-

opment in mouse embryos, and to suggest candidate genes for

maintaining cellular states and driving state transitions. Finally,

we provide a fast, open-source implementation of our methods

to enable easy application to other single-cell datasets.

RESULTS

PID Profiles in Synthetic Data
We first investigate the usefulness of PID for inferring network

edges using data generated from in silico models. We use sto-

chastic simulations from simple directed 3-node networks of

varying topologies and estimate PID values (redundant,
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synergistic, and unique information, defined in Box 1) from these

simulated data. Simulations were generated from two model

definitions, based on thermodynamic or mass-action kinetics,

both commonly used in systems biology to represent gene regu-

lation, as described in STAR Methods. A distinctive pattern is

apparent in networks with a single directed edge between two

genes (‘‘one-edge’’ topology; Figure 2A) — the unique informa-

tion between the two connected genes is notably higher than

both the unique information between unconnected genes and

the redundancy values between all three genes. With increasing

numbers of edges within the network, this pattern is lost; this

makes sense intuitively as with higher connectivity we expect

to see increased synergistic or redundant contributions (Figures

2A and S1). Note that the pattern can only be observed under

simulation conditions that generate variability in the observed

variables (i.e., statistical relationships are not detectable when

the system is at steady state; Figure S1).

To explore whether this pattern also occurs for triplets of

nodes embedded in large networks, we consider time-series

expression data simulated from five different 50-gene networks

generated by GeneNetWeaver (Schaffter et al., 2011). This soft-

ware generates stochastic simulations from dynamical models

that represent transcription and translation using a thermody-

namic approach, with network structures that are inspired by

known gene connectivity patterns in Escherichia coli and

Saccharomyces cerevisiae (Figure 2B), and it has become a

standard tool for performance evaluation of network inference

algorithms (Schaffter et al., 2011; Marbach et al., 2010, 2012).

PID values are estimated from these data for every triplet of

genes within the networks, and each triplet is classified accord-

ing to its topology — six topological arrangements are possible

given the model assumptions (maximum of one edge between

each pair of nodes, no self-regulation, and no feedback loops).

Mean PID values are calculated for each group, and the same

distinctive pattern (high unique versus redundant contributions

for connected genes) is apparent for triplets with a single

directed edge (Figure 2C). As with the 3-node simulations, the

pattern is lost in topologies with more connections; however,

the ‘‘unconnected’’ and ‘‘one-edge’’ topologies are by far the

most prevalent in all networks — comprising 64.4%–93.2%

and 6.3%–29.7% of all triplets, respectively, and jointly

comprising over 90% of triplets in every network (Table S1 and

Figure S2).
Figure 2. PID Profiles for Three-Gene Networks

(A) Mean PID values for three-gene networks with different topologies. PID va

topologies illustrated above each plot; the models used for simulation assumed

network, 12 PID values were calculated from the simulated data— there are four P

a redundant, synergistic, and two unique contributions (Equation 5 in Box 1). Ea

different initial conditions (error bars indicate 1 SD), with the horizontal axis labels

with gene X as the target, consisting of the redundancy (R), unique contributions f

dashed gray lines in the one-edge plot indicate the unique PID values that are us

assumed to be activating, the additional stimulating ligand targeted gene X, an

simulations (with different randomly sampled initial conditions); results obtained

Figure S1.

(B) Visualizations of the directed 50-node networks, produced by GeneNetWeav

GeneNetWeaver networks used in this study are shown in Figure S2.

(C) Mean PID profiles for gene triplets in the 50-gene S. cerevisiae 1 network. Ev

classes (based on the known connectivity of genes, as indicated in network diagr

across triplets with the same topology, with the horizontal axis labels indicating
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Examining in silico data from a 10-gene network suggests

that the relative size of the unique information compared with

the redundancy — i.e., the proportion of MI accounted for by

the unique contribution (Equation 8 in Box 1) — is more infor-

mative than the absolute unique information (Figure 3A). Using

data from the 50-node networks, we confirm that this is the

case more generally. We take all triplets of the unconnected

and one-edge topologies (with each gene being able to take

part in multiple triplets); then for each triplet, treating each

gene in turn as the target, we estimate (1) the redundant infor-

mation between all three genes, (2) the unique information

between one source gene and the target, and (3) the unique in-

formation between the second source gene and the target. We

plot the ratio of unique information to MI (the sum of unique and

redundant information) for each pair of genes in each triplet and

find that this ratio is higher in general between connected pairs

(Figure 3B).

Incorporating PID into an Inference Algorithm
In a network of n genes, given a pair of genes X and Y, there are

n � 2 gene triplets involving the pair. The MI between X and Y,

I(X;Y), is unaffected by the choice of the third gene, Z, because

MI is a pairwise measure, but the unique information between

X and Y, UniqueZ(X;Y), varies depending on Z. Furthermore,

the difference between I(X;Y) and UniqueZ(X;Y) is equal to the

redundancy between all three genes (Equation 8), meaning that

we can regard the ratio UniqueZ(X;Y)/I(X;Y) as capturing the pro-

portion of MI that is accounted for by unique information

between X and Y, as opposed to redundant information between

all three genes.We note that the vastmajority of all possible gene

triplets in our E. coli and S. cerevisiae networks are of the uncon-

nected or one-edge topology (Table S1), and that the ratio

UniqueZ(X;Y):I(X;Y) is higher between connected pairs in a

one-edge triple (Figure 3B). Therefore, we would expect that

if X and Y are connected, then most of the triplets made with

X, Y, and all n � 2 possible Z in turn, would be of the one-edge

topology — and likewise if X and Y are unconnected, then

most triples involving X and Y would be of the unconnected

topology — so UniqueZ(X;Y)/I(X;Y) would in general be higher

if X and Y were connected.

We define the proportional unique contribution (PUC) between

two genes X and Y as the sum of this ratio calculated using every

other gene Z in a network (where S is the complete set of genes):
lues are calculated using data simulated from three-gene networks with the

mass action (green) or thermodynamic (orange) kinetics. For each three-gene

ID contributions with each gene treated as the target gene in turn, consisting of

ch line graph shows the mean PID values calculated from simulations using

indicating the PID contribution, e.g., the first four values show the PID values

rom gene Y (Y) and gene Z (Z), and the synergistic contribution (S). The vertical

ed as the basis for our inference algorithm. Here, all regulatory interactions are

d the values indicated are the mean PID values calculated from five sets of

with models that include both activating and inhibitory regulation are shown in

er (Schaffter et al., 2011); node degree distributions for the 50- and 100-node

ery triplet of nodes (genes) in the network was assigned to one of six possible

ams above each plot). Each line graph shows the mean PID values calculated

the PID contribution.
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Figure 3. Demonstration of Unique Information in In Silico Networks

(A) PID values are estimated from data simulated from a 10-gene in silico network (top) using GeneNetWeaver (Schaffter et al., 2011). Each line graph shows PID

values estimated using genes 1 and 7 as the sources, and each of the remaining genes in turn as the target (graph titles, GX, indicate the target gene). Four PID

values are given in each graph— the redundancy (R), the unique information between gene 1 and the target (G1), the unique information between gene 7 and the

target (G7), and the synergy (S). Themutual information between two genes is the sum of their unique information and the redundancy (Equation 8). The ratio of the

unique information to the mutual information tends to be higher between pairs of connected genes (dashed vertical lines indicate the unique contributions for

connected genes).

(B) Ratio of unique information to mutual information in triples with the two most common topologies, within the 50-gene network, S. cerevisiae 1. For each gene

triple of the unconnected and one-edge topologies (see Table S1 for topology frequencies), we calculate the unique information values between each pair of

genes and their mutual information. The ratios of unique information to mutual information are higher in general for the connected pair; the same pattern was

observed in all networks. The boxes show the quartiles (the median is indicated in red) and the whiskers extend to (Q1 – 1.53 IQR) and (Q3 + 1.53 IQR) or to the

minimum or maximum data point if these are closer.
uX;Y =
X

Z˛SyfX;Yg

UniqueZðX;YÞ
IðX;YÞ +

X
Z˛SyfX;Yg

UniqueZðY ;XÞ
IðX;YÞ ;

(Equation 10)

this measuremay be thought of as capturing themean propor-

tion of MI between two genes X and Y that is accounted for by

the unique information. Note that the PID unique measure is

not symmetric, so for each pair of genes we consider each as

the target in turn (hence we include both UniqueZ(X;Y) and

UniqueZ(Y;X) terms in Equation 10).

In our network inference algorithm (Figure 4A), the redundancy

and unique information contributions are first estimated for every

gene triplet, then the PUC is calculated for each pair of genes in

the network (Equation 10). Finding a threshold for defining an

edge at this stage is problematic, because the distributions of

PUC scores differ between genes (see Figure 4B), thus setting

a global threshold for PUC scores across thewhole network risks

biasing the results by factors such as expression variability. This

was previously observed with MI and led to the development of

measures that take into account the network context, central to

the context likelihood of relatedness (CLR) algorithm (Faith et al.,
2007; Watkinson et al., 2009). A similar solution is employed

here: an empirical probability distribution is estimated from the

PUC scores for each gene, and the confidence of an edge be-

tween a pair of genes is given by

c=FXðuX;Y Þ+FY ðuX;YÞ ; (Equation 11)

where FX(U) is the cumulative distribution function of all the PUC

scores involving gene X (here, we assume either a Gamma or

Gaussian empirical probability distribution). This effectively iden-

tifies the most important interactions per gene, rather than just

taking the highest pairwise scores across the whole network.
Algorithm Performance
We compare our algorithm against several common information-

theory-based network inference methods, and thus briefly sum-

marize these existing approaches in Box 2. All methods start

from the pairwise MI matrix and then use it in different ways.

Even compiling the MI matrix is, however, fraught with potential

problems: the manner in which data are treated (e.g., discretiza-

tion) and the estimator used for the entropy and MI both affect
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Figure 4. The PIDC Inference Algorithm

(A) Schema of the PIDC inference algorithm. PID

values are estimated for every gene triplet (with each

gene treated as the target gene in turn), and from

these the PUC, uX,Y, is estimated for every pair of

genes. For each gene, X, an empirical distribution,

fX(u), is estimated from its PUC scores with all other

genes. The confidence of an edge between a pair of

genes depends on the corresponding cumulative

distribution functions, FX(u), for each gene within the

pair (i.e., the blue shaded areas); these confidence

scores are used to rank all possible network edges.

(B) Example empirical distributions of PUC scores by

gene. Gamma distributions were fitted to the PUC

scores (Equation 10) for each gene in a 50-node in

silico network (for each gene X, a PUC score, uX,Y, is

obtained for that gene paired with each other gene Y

in the network). Due to the variability of these distri-

butions, using a universal threshold for inferring

edges is problematic, thus we use the cumulative

probability distributions for each gene to obtain a

final confidence score for network edges. (Colors are

to aid distinguishing the distributions.)
the performance of the algorithms (Simoes and Emmert-Streib,

2011; Zhang and Zheng, 2015). When comparing different ap-

proaches, it is therefore important to ensure that discretization

and estimation of MI are done identically. Without this, it be-

comes impossible to disentangle the relative strengths and

weaknesses of the different approaches that are based on and

interpret MI values. In the STAR Methods, we discuss the

different estimators and discretization approaches that we use

and which are implemented in the InformationMeasures.jl pack-

age (see Software section). Our comparisons with existing

methods thus always start from the same MI matrix.

Undirected networks are inferred from in silico datasets

(described in the STAR Methods) for five 50-gene networks

and five 100-gene networks using ARACNE, CLR, MI (relevance

networks), MRNET (Meyer et al., 2008), and the PID-based algo-

rithm, PID and context (PIDC). We also include results for the raw

PUC score, without the network context step. Accuracy of the

inferred networks is evaluated using the area under the preci-

sion-recall curve (AUPR), rather than the receiver operating char-

acteristic curve (AUROC), which is inappropriate for judging

network inferencemethods as real networks are typically sparse;

see STAR Methods for definitions and a more detailed discus-

sion (Murphy, 2012).

PIDC performs favorably compared with the other algorithms

(Figure 5), particularly in the larger networks. The raw PUC score

outperforms the raw MI score, indicating the value of higher-or-

der information; and CLR outperforms the other MI-based ap-

proaches, indicating the value of network context, in agreement

with the previous comparisons (Figures 5A and 5C). This effect is

robust to simulated technical noise (Figure 5B) and becomes
258 Cell Systems 5, 251–267, September 27, 2017
more evident the larger the number of

‘‘cells’’ in the dataset (Figure 5A); as real

data become more accurate and sample

sizes increase, we expect the performance

of PIDC/PUC to improve as the estimation

of three-dimensional dependencies be-
comes more accurate. Also, unlike CLR, it was designed to cap-

ture higher-order dependencies and to distinguish between

direct and indirect interactions (Williams and Beer, 2010).

Application to Single-Cell Data
The extensive analyses using simulated data are necessary to

validate our algorithm and provide quantitative comparisons

with existing methods. When working with real experimental da-

tasets, we of course do not know the true underlying network,

and thus rely on identifying relationships that are consistent

with our current biological knowledge about the systems we

are studying. Here, we apply our algorithm to three published

experimental datasets and, in a related manuscript (Stumpf

et al., 2017), illustrate how it can be used as part of a thorough

modeling analysis of neuronal differentiation of mouse embry-

onic stem cells.

Psaila et al. (2016) used single-cell qPCR (sc-qPCR) to study

megakaryocyte-erythroid progenitors (MEP) during human

hematopoiesis. Their analysis revealed the existence of subpop-

ulation structure in this class of cells: two groups of cells are

primed preferentially for a particular cell fate — megakaryocytic

(MK-MEP) or erythroid (E-MEP) — while a third group of multi-

potent progenitors (Pre-MEP) retain somemyeloid differentiation

capacity (Figure 6A). Here, we apply our PIDC algorithm to their

complete dataset and infer a candidate network that depicts

statistical dependencies among the analyzed genes (Figure 6B).

Given we are interested in genes involved in differentiation pro-

cesses, we also consider networks inferred using overlapping

subsets of the data and color each edge in Figure 6B according

to their presence in these additional networks. Edges that are



Box 2. MI-Based Algorithms

Relevance networks (Butte et al., 2000) use theMI estimates (or, in some cases, correlation) in order to detect edges. As there is no

reliable universal way of determining the statistical significance of MI values, a threshold is typically chosen to determine which

edges are present. This fails to account for the fact that MI may be increased for nodes X and Z even though they only indirectly

interact via an intermediate node Y. The Data Processing Inequality (DPI) allows us to sort out some of these cases by virtue of the

relationship

IðX;ZÞ%minðIðX;YÞ; IðY ;ZÞÞ ; (Equation 12)

which holds whenever X, Y, and Z form aMarkov Chain. Post-processing of theMI values using the DPI is at the core of the popular

ARACNE algorithm (Margolin et al., 2006a, 2006b). Thresholds on the pairwise MIs are used to identify likely dependent pairs X, Z;

MI values above the threshold are then considered with every possible other node Y in light of the DPI.

Given that MI values are affected by a number of factors, including especially the variability of each individual random variable, any

global a priori threshold may be highly problematic: it will give rise to false positives as well as false negatives. In the CLR algorithm

(Faith et al., 2007; Watkinson et al., 2009), the MI between X and Z is considered against all MI values for pairings of X and Zwith all

other variables Y. Thus, the threshold for each pair will reflect the variabilities of both genes, as well as their relative levels of sta-

tistical dependence on other genes.MRNET (Meyer et al., 2007) aims to identify a minimally redundant but maximally explanatory

set of variables/predictors for each target gene X in a greedy manner.

There have been attempts at using conditional mutual information (Equation 3), interaction information (Equation 4), or related con-

cepts, for network inference (although not applied to single-cell data) (Watkinson et al., 2009; Villaverde et al., 2013, 2014; Liang

and Wang, 2008; Zhao et al., 2016). These would have to deal with the known difficulties (Timme et al., 2014) of interpretation

(which do not arise in relation to PID-based measures), which may explain the lack of their widespread uptake.
present in the network constructed using Pre-MEP and E-MEP

cells, but not that based on Pre-MEP and MK-MEP cells, are

colored red (i.e., erythroid-specific edges), and the reverse

(megakaryocytic specific) are shown in blue (edges present in

both, or just in the original complete network are shown in

gray). Consistent with existing knowledge about these two line-

ages, we see a cluster dominated by blue edges that comprises

known megakaryocytic genes (e.g., CD9, LOX, VWF, NFIB,

CD61, TGFB1) and a cluster with several red edges comprising

known erythroid genes (e.g., CD36, KLF1, LEF1, CNRIP1,

TMOD1, ANK1, DHRS3) (Psaila et al., 2016). Networks based

on pairwise MI scores from the same data show skewed degree

distributions withmany nodes unconnected (Figures 6C and 6D).

We next consider an sc-qPCR dataset comprising expression

measurements of selected genes during early embryonic devel-

opment (from oocyte to 64-cell blastocyst stages) (Guo et al.,

2010); Figure 6E shows the resulting inferred network. We again

infer additional networks using subsets of these data — here we

use overlapping subsets of ‘‘early’’ and ‘‘late’’ cells to reveal any

temporal dependencies in the detected interactions. A number

of known relationships between genes are apparent in the

network, e.g., upregulation of Cdx2 and Gata3 transcription fac-

tors (TFs) during the 8-cell to morula transition is identified as an

edge in the early network; while the co-expression of primitive

endoderm specific TFs Creb312 and Sox17 is detected as an

edge in the late network (consistent with the appearance of

distinct cell types, including primitive endoderm cells, in the

blastocyst). A cluster of known pluripotency and reprogramming

factors is also identified in the network (Pou5f1, Nanog, Esrrb,

Klf2, and Klf4) — Sox2, another key reprogramming factor, is

not connected with these genes but is known to be up-regulated

later than the other factors (Guo et al., 2010).

Moignard et al. (2015) studied embryonic hematopoietic

development and used sc-qPCR data to develop a Boolean
network model of the GRN underlying blood development. In

Figure 6F, we compare the networks inferred from these same

data using PIDC and MI — we find the inferred PIDC network

shares a higher number of edges with the Boolean network

model than the network constructed using MI values alone.

Although we, of course, do not know the true structure of the

GRN in this case (this is only feasible when using in silico data),

the Boolean model was shown to capture key cell states

observed experimentally and generated several experimentally

validated predictions (Moignard et al., 2015), thus we use this

as a benchmark to indicate the biological plausibility of our

inferred networks.

In a related companion paper (Stumpf et al., 2017), we apply

our PIDC algorithm to sc-qPCR data collected from cells under-

going differentiation from a pluripotent ground state toward a

committed neuronal lineage, via a primed epiblast-like state.

A total of 547 cells were sampled at seven time points spanning

7 days; we analyze expression measurements of 74 genes,

including known regulators of pluripotency and neuronal differ-

entiation (see (Stumpf et al., 2017) for details). We first assign

the cells to three robust groups that correspond with develop-

mental stage (using k-means clustering) and then infer networks

using data from all the cells or from overlapping subsets contain-

ing cells at earlier or later stages of development. Comparing the

networks obtained using different subsets of cells allows us to

observe any temporal dependencies in the inferred interactions.

Using an unsupervised community detection algorithm, we find

that the network of inferred (co-)regulatory relationships contains

several communities (or modules) of genes displaying high

connectivity within each community. Three of these communities

show distinct temporal dependencies in connectivity and

comprise genes known to play roles at different stages of differ-

entiation. Our analysis thus identifies modules of genes that

undergo coordinated changes in expression as cells progress
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Figure 5. Performance Comparison of Information Theory Network Inference Algorithms

(A) AUPR is calculated for several algorithms applied to ten in silico datasets, generated from five 50-gene and five 100-gene networks, using Bayesian blocks

discretization and the maximum likelihood estimator. The PID-based algorithm PIDC and the raw PUC score perform well in general, as does CLR. All algorithms

perform better with larger datasets, but for the larger networks, this improvement is more marked in the algorithms that consider higher-order information or

network context, suggesting that these are important principles for inferring networks from single-cell data.

(B) Dropouts are simulated from themedium-sized 100-node datasets: the lowest 20% (low rate) or 50% (high rate) of expression values for each gene each have

a 50% probability of being set to 0. Relative performance of the algorithms is the same in the presence of dropouts, although the performance of all algorithms

deteriorates with a higher proportion of dropouts.

(C) Violin plots of AUPR scores for all algorithms from all datasets demonstrate the value of higher-order information (PUC improves on MI; PIDC improves on

CLR) and of network context (CLR improves on MI; PIDC improves on PUC); x indicates 50-gene network; * indicates 100-gene network; + indicates 100-gene

network with dropouts; size indicates number of cells in the dataset. All algorithms used are described in Box 2 and Results, with MI indicating the use of

mutual information scores alone to rank edges (i.e., MI relevance network); the R package minet was used for the existing inference algorithms (Meyer

et al., 2008).
through development and putative gene interactions that may be

involved in regulating these transitions in cell state.

Guidelines and Limitations
Any comparative analysis of information-based GRN inference

algorithms is influenced by a number of decisions, in particular:

(1) how the data are discretized, (2) the choice of MI estimator,

and (3) the metric used to evaluate performance. We discuss

the impact of each of these decisions and offer guidelines for

future analyses, before discussing the use of single-cell RNA

sequencing (scRNA-seq) datasets.

The information measures described here all rely on estimates

of discrete probability distributions. Normalized mRNA expres-

sion data are generally continuous, but estimating the distribu-

tions for continuous random variables is fraught with problems.
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Several algorithms and heuristics have been developed to dis-

cretize data and estimate empirical probability distributions

from the resulting discrete frequencies. We investigated two

methods for discretization, along with four MI estimators, as

described in STAR Methods.

All estimators produce fairly accurate estimates of joint en-

tropies for up to two uniformly distributed random variables,

but in higher dimensions, performance varies according to

the distribution (Tables S2 and S3), making it difficult to identify

the most appropriate estimator for experimental data. Rank

agreement between the estimators is good when the data are

discretized using Bayesian blocks, however, diminishing the

importance of the choice of estimator (Figure S4). In light of

these findings we advise using Bayesian blocks (an adaptive

discretization algorithm that allows variable-width bins), and
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since the underlying distribution is usually unknown, we favor

the maximum likelihood estimator due to its simplicity.

The choice of discretization method and estimator influences

the performance of the inference algorithms, with effects varying

depending on the algorithm and on the true network (Figure S3).

Sampling frequency and dataset size also have an effect (Fig-

ure 5A), with performance increasing in line with dataset size

and decreasing in larger networks and with a higher rate of tech-

nical dropout errors (Figure 5B). Due to the number of influential

factors, we advise caution when interpreting the results of this or

any such comparison as an exhaustive exploration of these fac-

tors is not feasible; however, we note that the PIDC algorithm

performs well in general across the many tested combinations

of discretization methods, estimators, and datasets.

The metric used to evaluate algorithms also affects their

apparent performance, evident here in the higher scores for

AUROC than AUPR (Figure S3B). This is a well-documented

phenomenon, caused by the true negatives (unconnected

node pairs) in a GRN vastly outnumbering the true positives

(edges); for example, the E. coli 1 100-gene network contains

125 edges and 4,825 unconnected pairs (Table S1). AUROC

equally rewards the prediction of an edge and a non-edge,

meaning that the score for any algorithm that mostly (or even

exclusively) predicts non-edges will be misleadingly inflated,

however well or badly it predicts edges. AUPR is therefore the

more meaningful measure, despite AUROC being widely used

(Murphy, 2012).

Here, we have illustrated the application of our method using

several single-cell qPCR datasets; scRNA-seq experiments

generate much larger datasets comprising expression mea-

surements for thousands of genes. When analyzing these

data, a subset of (up to hundreds of) genes should first be

selected — both to make the network inference analysis

computationally tractable (see Software section) but also

to aid in interpreting the results. There are many potential
Figure 6. Application of the PIDC Inference Algorithm to Experimental

(A) Illustration of the relationship between the three subpopulations of MEP cells

retain some potential to differentiate into other cell types (myeloid cells); E-MEP

differentiation, respectively (for details, see Psaila et al., 2016).

(B) Network inferred using the PIDC algorithm from the complete set of data from

connected by these edges are shown). Edge colors indicate whether these e

(comprising data from Pre-MEP cells combined with either E-MEP or MK-MEP

network but not the Pre-MEP andMK-MEP network (i.e., erythroid specific), while

present in both networks, or only in the network constructed using all the data, a

(C) Comparison of the networks inferred from the data from Psaila et al. (2016) usin

edges are shown).

(D) Percentage of nodes that are connected in networks inferred from the Psaila et

possible edges, according to their rank). These results show that networks inferre

MI (red); i.e., MI networks show more skewed degree distributions.

(E) PIDC interaction network inferred using early embryonic development data (ooc

top 5% of putative interactions detected using the PIDC algorithm on the complete

an early subset that includes all cells collected from oocyte up to 32-cell E3.5 blas

64-cell E4.25 blastocyst stages. Edge colors indicate temporal dependencies of th

the early network but not the late network, blue indicates the converse (late

dependencies (i.e., only present in the network constructed using the complete

(F) Comparison of networks inferred using hematopoietic development data in

transcription factors to infer a Boolean network model of blood development; we s

by an edge if those genes are either directly linked, or linked via one Boolean ope

sets of update rules are not connected here). We used our PIDC algorithm or MI a

data and compare the edges identified in each of these three networks (number
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approaches to selecting gene subsets, depending on the pur-

pose of the analysis and the level of existing knowledge about

the specific system being studied. We may wish to select

genes likely to be involved in the process of interest based

on prior knowledge (and/or functional annotations of genes)

such as known TFs, similar to the way that genes are selected

for analysis in qPCR experiments. However, we can also make

use of the huge array of statistical and computational methods

that have been developed to analyze scRNA-seq experiments

and select subsets of genes based on their observed gene

expression patterns (Bacher and Kendziorski, 2016; Stegle

et al., 2015; Gr€un and van Oudenaarden, 2015; Liu and Trap-

nell, 2016). For example, we could select those showing higher

than expected levels of expression variability, those that show

differential expression between cell states or over time (using

the results of clustering or pseudotemporal ordering algo-

rithms), or cluster genes by similar expression profiles and

select representative genes from each cluster. As is the case

for other network inference algorithms, genes with no variability

in mRNA expression are uninformative and should always be

removed prior to analysis. In addition, due to the prevalence

of zeros and lack of sensitivity of single-cell experiments,

many genes (particularly those expressed at low levels) will

not be reliably detected so we can also exclude those without

detectable expression in a large proportion of cells.

Software
A new open-source package for estimating MVI measures is im-

plemented in the Julia programming language (Bezanson et al.,

2014). The package, named InformationMeasures.jl supports

information measures such as entropy, MI, conditional mutual

information (CMI), and PID; the maximum likelihood, Miller-

Madow, Dirichlet, and shrinkage estimators; and the Bayesian

blocks, uniform width, and uniform count discretization

methods.
Datasets

: Pre-MEP cells are enriched for erythroid/megakaryocyte progenitors but still

and MK-MEP cells are strongly biased toward erythroid and megakaryocyte

Psaila et al. (2016) (the top 2.5% of edges are shown; for clarity, only nodes

dges are also detected in networks constructed using subsets of the data

cells). Red edges indicate those that are present in the Pre-MEP and E-MEP

blue edges indicate the reverse scenario (i.e., megakaryocytic specific); edges

re shown in gray.

g our PIDC algorithm or MI relevance networks (in both cases, the top 2.5% of

al. (2016) data as the threshold for edge inclusion is varied (from 0% to 100%of

d using PIDC (black) tend to be better connected than networks inferred using

yte to E4.25 blastocyst stages); seeGuo et al. (2010). Graph edges indicate the

dataset. Networks are also inferred using two overlapping subsets of the data:

tocyst stages, and a late subset including cells collected from 16-cell morula to

e identified relationships; red indicates an edge ranks in the top 5%of edges in

but not early), while gray indicates relationships without specific temporal

dataset, or present in both the early/late networks).

Moignard et al. (2015). The authors used single-cell expression data for 20

how a simplified representation of their model, where nodes (genes) are linked

ration or set of update rules (genes linked in their model via a chain of multiple

lone to infer networks of putative interactions between genes using these same

s of shared edges are indicated by the Venn diagram).
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Figure 7. Speed of MI and PIDC Calculations Using the Julia Programming Language

(A) Comparison of the times taken to calculate a matrix of pairwise MI values using the R package minet (Meyer et al., 2008) and our Julia package In-

formationMeasures.jl. Input data were simulated expression values for up to 1,000 genes, with 700 values per gene (equivalent to 700 cells, the same as our

medium-sized in silico dataset). Data were discretized using the uniform width algorithm, because Bayesian blocks was not available via minet, and times were

measured using inbuilt functions in R and Julia.

(B) Times taken to calculate the MI matrix in the Julia programming language with larger numbers of cells for networks of different sizes. Data were discretized

using the recommended Bayesian blocks algorithm, which has a much greater complexity than the uniform width algorithm, but produces better estimates.

(C) Time taken to infer networks of varying sizes using the PIDC algorithm implemented in Julia. Networks were inferred for simulated datasets of up to 1,000

genes, with 700 expression values per gene.
Julia was chosen for its speed (Figure 7A), clear mathematical

syntax, growing availability of libraries, and good integration with

other languages. The existing Discretizers.jl package is used to

implement the discretization methods; in some of our initial ana-

lyses we used the AstroML Python implementation of the

Bayesian blocks algorithm (Vanderplas et al., 2012; Scargle

et al., 2013). In order to meet a wide range of requirements,

the package can be used simply for discretizing data or to calcu-

late information measures using pre-discretized data or proba-

bility distributions that have been estimated elsewhere.

A Julia package implementing PIDC and other inference algo-

rithms is available, alongwith tutorials andour simulateddatasets

at https://github.com/Tchanders/network_inference_tutorials.

Our algorithm has complexity O(n3) in the number of genes, but

the speed of our Julia implementation means that inference

time is comparable with widely used implementations of the

lower-complexity algorithms (Figure 7A). The complexity in the

number of cells depends on the discretization method: the rec-
ommended Bayesian blocks method scales less well than the

uniform width method but nevertheless produces results for

several thousands of cells for a network of hundreds of genes

within a practically useful timescale (Figures 7B and 7C).

DISCUSSION

Here, we have introduced a network inference algorithm based

on PID (Williams and Beer, 2010; Timme et al., 2014), an easily

interpretable MVI measure that allows us to explore statistical

dependencies between multiple genes in detail. Our PIDC algo-

rithm identifies putative functional relationships between genes

based on the unique contribution to pairwise MI (Equation 8)

combined with information about the local network context of

each gene. We use extensive performance comparisons (Fig-

ure 5) to demonstrate the value of using both higher-order infor-

mation measures and network context and to illustrate that the

large sample sizes provided by single-cell data are critical to
Cell Systems 5, 251–267, September 27, 2017 263
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our algorithm’s success. Like other studies (Simoes and Em-

mert-Streib, 2011; Olsen et al., 2009; Hausser and Strimmer,

2009), we find that the methods chosen to discretize data and

estimate entropies and probability distributions affect algorithm

performance considerably (Figure S3) — too often, the impact of

these choices has been ignored. A fast, open-source software

package provides an easy way for users to explore such factors

when applying our method.

Although single-cell data have many potential advantages

over bulk transcriptomic data for network reconstruction ap-

proaches — particularly sample size, inherent variability, and

ability to detect subpopulation structure — they also pose

notable challenges. Technical noise and other biological sources

of heterogeneity (e.g., transcription stochasticity, other cellular

processes) can, to some extent, impede our ability to detect

informative statistical dependencies; there are clear theoretical

benefits of using information theory methods when we expect

the observed dependencies to be complex and non-linear. The

relative contributions of different sources of noise and variation

are still poorly understood, and good noise models are lacking

(Bacher and Kendziorski, 2016; Fu and Pachter, 2016).We there-

fore relied on a simple model of dropout events to mimic the

zero-rich nature of these data in our simulations — as expected,

technical noise reduces our ability to recover the true network

structure (Figure 5B). The best-performing algorithms, PIDC

and CLR, both aim to capture the most important interactions

for each node in turn, rather than the highest dependencies

across the whole dataset. This leads to well-connected inferred

graphs (e.g., Figure 6C) but can also help to address the influ-

ence of potential confounding factors (such as the cell cycle)

when working with single-cell data. Variation in cell-cycle stage

causes large-scale changes in cell transcriptional states (Buett-

ner et al., 2015; Scialdone et al., 2015; McDavid et al., 2014) —

and we would expect it to induce stronger statistical depen-

dencies among the affected genes. However, using empirical

distributions to take network context into account (as in PIDC

and CLR) will at least partly mitigate the influence of any such

confounding factors.

Integrating our method with other single-cell analyses allows

us to select subsets of cells and genes that are most informative

about our specific biological questions. Firstly, there are many

sources of biological heterogeneity in single-cell data so it is

important to focus on the variation of interest, e.g., when study-

ing developmental processes, we should aim to analyze collec-

tions of data where we expect cell differentiation to be the major

source of variation. We can use established methods for

analyzing the subpopulation structure of single-cell data —

such as clustering, dimensionality reduction, and pseudotempo-

ral ordering algorithms (Bacher and Kendziorski, 2016; Stegle

et al., 2015; Gr€un and van Oudenaarden, 2015; Liu and Trapnell,

2016) — e.g., to identify distinct cell subtypes or alternative dif-

ferentiation pathways. Here, we have shown how this allows us

to focus on functional relationships involved in developmental

transitions and the relative timing of transcriptional changes.

For example, in Stumpf et al. (2017), we use clusters of develop-

mentally similar cells to examine how the activity of (co-)regula-

tory relationships changes during development, making initial

steps toward defining mechanistic models of neural differentia-

tion — the network structure and temporal information allow us
264 Cell Systems 5, 251–267, September 27, 2017
to suggest candidate genes for maintaining cell states or driving

developmental transitions. Although scRNA-seq generates data

for thousands of genes, we recommend selecting meaningful

subsets for network inference — either based on biological

knowledge or by using gene expression variability and patterns

(Bacher and Kendziorski, 2016; Trapnell et al., 2014; Haghverdi

et al., 2016, Reid andWernisch, 2016, Setty et al., 2016; Kharch-

enko et al., 2014; Korthauer et al., 2016; Vallejos, 2016; Finak

et al., 2015). Data imputation methods (e.g., van Dijk et al.,

2017) or average expression measurements over small groups

of similar cells may help address the challenges of noise and

low coverage.

For any statistical approach, it is important to consider the

potential limitations. Many are general to network inference

approaches aiming to reconstruct GRN structure from mRNA

profiles and are discussed in depth elsewhere (Penfold and

Wild, 2011; Marbach et al., 2012; Villaverde and Banga, 2013;

Oates and Mukherjee, 2012), but it is worth emphasizing a

few key points that affect how we should interpret and use

our results. Firstly, we can only detect relationships where there

is sufficient variability in gene expression observed under the

chosen experimental conditions. Functional interactions are

only detectable if they induce changes in transcriptional state

that persist over a reasonable timescale — we will not, for

example, detect rapidly fluctuating changes, as the transient

changes in mRNA levels will not result in observed statistical

dependencies across cells. As well as functional regulatory re-

lationships, we are likely to also identify co-regulatory relation-

ships where genes under the influence of the same regulator

show coordinated expression changes. Without making further

assumptions, or using perturbation or temporal data, we

cannot distinguish causal relationships; however, in many in-

stances it will still be informative to learn which sets of genes

respond in a coordinated manner. In cases where the assump-

tions made by pseudotemporal ordering algorithms (Trapnell

et al., 2014; Bendall et al., 2014; Haghverdi et al., 2016, Reid

and Wernisch, 2016, Setty et al., 2016; Moris et al., 2016) are

justified, we can potentially use this information to infer causal-

ity and directionality of gene interactions (Villaverde et al., 2013,

2014; Zoppoli et al., 2010; Opgen-Rhein and Strimmer, 2007). It

is of course unrealistic to expect every cell to follow precisely

the same route through transcriptional space; we do instead

make the modest assumption that there are key changes in

transcriptional state that must occur in order for cells to

respond appropriately to environmental and developmental

cues, and that these will be subject to conserved regulatory

mechanisms.

Methods for exploring high-throughput single-cell datasets

and identifying putative functional relationships between genes

are clearly needed. As with all network inference methods, we

cannot expect to reconstruct the exact structure of the underly-

ing biological networks but instead view such methods as tools

to explore the data; generate hypotheses; represent the current

state of understanding; and guide further experiments, model

development, and analyses. Validating or invalidating these

hypotheses experimentally may, of course, lead to revised

network models — like any mathematical model, it should be

subject to refinement as new facts are assembled and new in-

sights are gained.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ann C.

Babtie (a.babtie@imperial.ac.uk).

METHOD DETAILS

Discretization Algorithms
In order to use the entropy estimators described here, continuous datasets must first be discretized. A number of algorithms exist to

define the total number and boundaries of the resulting partitions (or bins). One common simple approach is to use bins of equal

width, with the number of bins determined heuristically; e.g., here, we use the nearest integer to the square root of the size of the

dataset,
ffiffiffi
n

p
(Mosteller and Tukey, 1977). A more sophisticated approach is the Bayesian blocks algorithm (Scargle et al., 2013),

in which the number andwidths of bins are chosen by optimizing a fitness function, without constraining the bins to be of equal width.

Estimators
When a dataset is large enough, the empirical frequencies can be considered to be an approximation of the true probabilities, referred

to here as the maximum likelihood approach. For sparser datasets, a number of methods have been developed either for estimating

the probability distribution from a set of frequencies, such as the Dirichlet estimator and the shrinkage estimator, or for estimating the

entropy directly, as in the Miller-Madow estimator (Hausser and Strimmer, 2009; Paninski, 2003).

The Dirichlet estimator refers to a group of Bayesian estimators that take a Dirichlet distribution as prior but each with different

parameters (Agresti and Hitchcock, 2005; Hausser and Strimmer, 2009). There is no consensus on the best parameters to use,

despite several proposed alternatives (Hausser and Strimmer, 2009); here, we use the same parameter, 1, for each bin unless other-

wise stated.

The shrinkage estimator is also Bayesian, compromising between the observed frequencies, unbiased but with a high variance,

and a prior (or target) distribution, biased but with low variance (Hausser and Strimmer, 2009). The estimate is affected by both

the choice of target distribution and the weight given to the target (or shrinkage intensity). In the current analysis, the optimal

shrinkage intensity is calculated as described in Hausser and Strimmer (2009), and the target distribution is the uniform distribution.

The Miller-Madow estimator is an entropy bias correction that does not estimate the probability distribution, and therefore cannot

be meaningfully applied to higher-order information measures. Despite this, it has been applied for the comparison of different MI-

based algorithms (Meyer et al., 2008), and so it is included in this analysis, with the caveat that its meaning is unclear.

Simulation of In Silico Three-Gene Network Data
We considered six three-gene topologies (Figure S1) and used the Gillespie algorithm (Gillespie, 1977) to generate stochastic sim-

ulations of gene expression time-course data using two alternative model definitions (based on thermodynamic or mass-action

kinetics). In both cases, we include an additional activating stimulus that is present from halfway through the simulation time course.

This additional stimulus acts to perturb the system away from a steady state, driving changes in gene expression that are necessary

for relationships between genes to be observable. This section describes these model and simulation details.

The first thermodynamic model includes seven species: mRNA (xi) and protein (yi) corresponding to three genes (i = 1, 2, 3), and a

stimulating ligand (s) which targets a selected gene. We define the following reaction types with associated propensities:

Reaction Propensity
xi/[ lxi
yi/[ lyi

xi/xi + yi riðxiÞ
[/xi fiðy; sÞ

to represent mRNA decay, protein decay, translation, and transcription, respectively, where l is the protein/mRNA decay rate, trans-

lation is modeled according to saturation kinetics (with maximum rate atranslation), i.e.,

riðxiÞ=atranslation,
1

1+ ðki
�
xjÞ

;

and transcription rates depend on the concentration of any regulating proteins (including the stimulating ligand s if present) accord-

ing to the relationship

fiðy; sÞ=atranscription,
XM
m= 0

amPfSmg ;
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where atranscription is a constant transcription rate,M is the total number of possible states Sm for gene i (either unbound or bound by

one or two regulating proteins), and am is the relative activation rate for each state. The probability of each state, P{Sm}, depends on

the concentrations of the regulating proteins, modeled according to standard thermodynamic principles (see e.g., Marbach et al.,

2010 for details). For example, if a gene has two possible regulators (proteins yj,yk), we calculate the mean activation of transcription

of the target gene i using the function,

fiðyÞ=
a0 +ajcj +akck +ajkcjck

1+cj +ck +cjck

;

where cj = (yj/kj), kj is the dissociation constant, and the possible states of the gene are unbound, bound by yj or yk alone, or by both yj
and yk. For our models, the maximum number of regulators for a given gene is three (proteins yj and yk plus the stimulating ligand s),

but we assume a maximum of two regulators can bind the gene at any one time (so we consider the gene states with each possible

pair of ligands bound but not a state with all three bound).

For the thermodynamic model, we simulated time courses from time 0 to 1,000, with the stimulating ligand s present from time 500

at a constant level of 20 molecules, and recorded the system state at 41 equally spaced intervals. We repeated the simulations

25 times — and calculated PID scores using the resulting data (i.e., 1,025 data points or cells were used to calculate each PID

measure)— with the stimulus targeting each of the three genes in the network in turn (75 simulations in total, 3 sets of PID scores).

We randomly sample initial mRNA (xi) and protein (yi) levels from a U(0,5) distribution; we perform simulations for five different

initial conditions and plot the mean PID profiles from these five different conditions in Figures 2A and S1. Model parameters

are l = 0.02, atranscription = 2, atranslation = 2, and ki = 50 (for all i = 1, 2, 3). Relative activation rates for transcription, am, depended

on the number of activating and inhibiting regulators present in each possible state Sm:am = 0.1 (for the unbound state, i.e., basal

transcription), 0.001 if an inhibitor was bound (we assumed inhibition dominated activation), and 5 if only activating regulators

were bound.

The secondmass-actionmodel that we consider also includes seven species: genes (gi) andmRNA/protein (xi) for i = 1, 2, 3 and the

stimulating ligand s. We assume that protein and mRNA concentrations are equal (i.e., translation is instantaneous) and, unlike our

first model, assume that a gene can only be bound by a single protein at any time. The possible reactions and associated propen-

sities are

Reaction Propensity
gi/gi + xi ktxn,xi
xi/[ kdecay,xi

gi + xj/gixj kon,gi,xj
gixj/gi + xj koff,gixj
gixj/gixj + xi kregulated,gixj

for basal transcription and protein decay, protein binding and unbinding from a target gene, and transcription from a gene bound to

a regulating protein, respectively (where gixj indicates gene i is bound by regulating protein j).

For the mass-action model, we simulated time courses from time 0 to 400, with the stimulating ligand present from time 200 at a

constant level of 20molecules, and recorded the system state at 21 equally spaced time points.We repeated the simulations 50 times

with the stimulating ligand targeting each gene to give a total of 1,050 data points (cells) that are used to calculate PID measures. We

initiated simulations with two copies of each gene (gi = 2), no stimulating ligand, and initial mRNA/protein levels sampled from a uni-

form distribution (xi�U(0, 50)); we perform simulations for five different initial conditions and calculate the mean PID profiles from

these five conditions (plotted in Figures 2A and S1). Model parameters are ktxn = 1,kdecay = 0.05, kon = 0.01, koff = 0.25,

and kregulated = 10 or 0.1 for activating and inhibiting regulation, respectively. Information measures were calculated from these

data using the MATLAB package written by Timme et al. (2014), following discretization with the AstroML implementation of the

Bayesian blocks algorithm (Vanderplas et al., 2012; Scargle et al., 2013).

Simulation of In Silico GeneNetWeaver Network Data
Data are simulated using GeneNetWeaver (Schaffter et al., 2011), a software package that generates stochastic simulations from in

silico networks that are designed to be representative of real biological network structures (they are created by extracting subnet-

works from known E. coli and S. cerevisiae transcriptional networks). This software has become a common tool for simulating

gene expression data — including its use as part of several DREAM (Dialogue on Reverse Engineering Assessment and Methods)

network inference competitions (Schaffter et al., 2011; Marbach et al., 2010, 2012) — which aims to provide unbiased datasets

that do not favor particular inference methods and networks that retain characteristics of real GRNs. We compare the network infer-

ence algorithms using ten networks, five with 50 genes and five with 100 genes; for each network size, there are two E. coli and three

S. cerevisiae networks, with average node degrees ranging from 1.19 edges per node to 5.51 edges per node.

GeneNetWeaver uses dynamical models that consider mRNA transcription and translation processes and generates time-series

simulations using stochastic differential equations to model dynamical noise and a mixed normal and log-normal model to represent

microarray noise. To mimic single-cell data, we simulated thousands of time-series experiments for each network, using the default

settings, with mRNAmeasurements generated according to the default settings and the default time points: times 0 to 1,000, in steps

of 50. We sampled a single time point from each time series, representing a single cell: for the large datasets, we sampled 100 cells
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from each of the time points (2,100 cells in total); for the medium datasets, we sampled 100 cells from time 0 onwards in time steps

of 150 (700 cells); and for the small datasets, we sampled 20 cells from all time points between 0 and 300 (140 cells). Where the data-

set size is unspecified, we have used the medium datasets. For our initial exploration of PID measures, we also used data simulated

from a 10-gene network (shown in Figure 3A); in this case we again used the temporal sampling scheme for medium datasets.

In order to test the robustness of our method to zero-inflated data, typical of single-cell experiments, we further simulated dropout

datasets. Zero measurements appear to be a combination of technical errors and genuine lack of expression due to stochasticity or

biological state and are more common in transcripts with low abundance (Kharchenko et al., 2014; Brennecke et al., 2013). We simu-

lated dropout events at two rates, such that expression values in the lowest 50% (high rate) or 20% (low rate) for each gene had a 50%

probability of being recorded as 0.

Network Inference Performance Metrics and Comparisons
AUROC and AUPR curves are calculated by comparing the inferred networks (which assign a score to every potential network edge)

with the true network used to simulate data and identifying the numbers of correctly (and incorrectly) assigned edges as the threshold

for edge inclusion is varied. AUROC is calculated from the area under the ROC curve, which is a plot of the false-positive rate (FPR) on

the x axis versus the true-positive rate (TPR) on the y axis. AUPR is the area under the curve for a plot of precision (y axis) versus recall

(equal to TPR) on the x axis. These quantities are calculated as

TPRðorrecallÞ= TP

TP+ FN

FPR=
FP

FP+TN

Precision=
TP

TP+FP
;

(Equation 13)

where TP and FP indicate the numbers of true and false positives, and TN and FN are true and false negatives. For networkswhere the

number of negatives is much greater than the number of positives, AUPR is considered a better metric for comparing algorithm per-

formance (Murphy, 2012; Davis and Goadrich, 2006).

We use these scores to compare the performance of our method relative to existing inference algorithms (Figures 5 and S3). We

used the implementations in the R package minet for the existing inference algorithms (Meyer et al., 2008); we used the default or

suggested parameters within this package except for the tolerance, t, for ARACNE for whichwe either used the default (for the results

in Figure S3) or 0.1 (for the results in Figure 5) as recommended in the original publication describing this algorithm (Margolin

et al., 2006a).

Methods for Analysis of Real Datasets
Published Datasets

We analyzed three published qRT-PCR datasets to illustrate our network inference algorithm. Normalized Ct values from Psaila et al.

(2016) were subtracted from the assumed maximum, 40, and the resulting dCt values (for 87 genes and 681 cells) were used in our

analyses. Normalized dCt values fromMoignard et al. (2015) are used directly for our analyses; we used data from the 20 genes they

represent in their network model and 3,934 cells. Raw Ct data from Guo et al. (2010) are treated as described by the original authors

(dCt values are calculated assuming a limit of detection of 28 and normalized on a cell-wise basis by subtracting themean expression

of housekeeping genes Actb andGapdh; all values corresponding to expression below the limit of detection are set to�15); we used

data from 46 genes (i.e., we excluded the housekeeping genes used for normalization) and 442 cells.

DATA AND SOFTWARE AVAILABILITY

The InformationMeasures.jl package is available from https://github.com/Tchanders/InformationMeasures.jl.

A Julia package for running the PIDC, PUC, CLR, and MI algorithms is available from https://github.com/Tchanders/

NetworkInference.jl.

Tutorials and simulated datasets are available from https://github.com/Tchanders/network_inference_tutorials.
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