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While many recently proposed methods aim to detect network communities in large datasets, such as
those generated by social media and telecommunications services, most evaluation (i.e. benchmarking)
of this research is based on small, hand-curated datasets. We argue that these two types of networks
differ so significantly that, by evaluating algorithms solely on the smaller networks, we know little about
how well they perform on the larger datasets. Recent work addresses this problem by introducing social
network datasets annotated with meta-data that is believed to approximately indicate a ‘ground truth’
set of network communities. While such efforts are a step in the right direction, we find this meta-data
problematic for two reasons. First, in practice, the groups contained in such meta-data may only be a
subset of a network’s communities. Second, while it is often reasonable to assume that meta-data is related
to network communities in some way, we must be cautious about assuming that these groups correspond
closely to network communities. Here, we consider these difficulties and propose an evaluation scheme
based on a classification task that is tailored to deal with them.
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1. Introduction

Community structure is thought to play a key role in the formation and function of many systems, and so
it comes as no surprise that hundreds of papers are currently published on the topic every year. However,
in the literature it is commonly observed that although many community detection methods exist, we do
not know which ones work best on real network datasets containing more than a few dozen nodes [1–5].

Evaluation (also known as benchmarking) is the task of measuring how well an algorithm detects
the desired set of communities in a network. Evaluation is often carried out on either synthetic net-
works which, by construction, have communities planted in them, or on small empirical networks like
Zachary’s Karate Club, which have clearly visible community structure. Evaluation based on larger
empirical network data has proved challenging because it is often difficult to define a priori which com-
munities are desired. This challenge has led to a lack of evaluation on large empirical networks that
has been recognized as a ‘a serious limit of the field’ [1] and means that it may take several years for a
serious flaw of a community detection algorithm to be identified [6].

The case of modularity maximization [7] illustrates the problems caused by our limited ability to
evaluate detection methods on larger empirical networks. As the most popular class of community detec-
tion technique, modularity maximization has received the greatest amount of scrutiny by the scientific
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20 C. LEE AND P. CUNNINGHAM

community, which has found that modularity function Q suffers from a resolution limit [6,8,9] and
exhibits extreme degeneracies [2]. In their detailed evaluation of modularity-based methods on synthetic
and metabolic network data, Good et al. [2] find that these problems are so acute that, aside from small
networks that contain only few modules, ‘modularity maximization can only provide a rough sketch of
some parts of a network’s modular organization’, and that ‘the output of any modularity maximization
procedure should be interpreted cautiously in scientific contexts’.

Years went by before these problems were recognized, and in the meantime modularity-based meth-
ods became widely used in practice. These limitations went unrecognized in part because, as we explain
in Section 2, the small networks used for detailed evaluation differ from larger empirical networks
in: (1) the uniformity of coverage in the dataset, (2) the extent to which social contexts overlap and
(3) orders of magnitude of size. Thus, the performance of a method on smaller datasets such as Zachary’s
Karate Club provides little indication of the performance on larger datasets generated by social media
sites. While synthetic network generators can provide benchmarks on larger networks, it is impossible
to know how closely synthetic networks resemble empirically observed networks.

We therefore have a strong motivation to develop standard benchmarks based on large, empirical
social networks, but devising such benchmarks is not straightforward. In Section 2, we point out that
while synthetic networks and small empirical networks like Zachary’s Karate Club have an exhaustive
set of desired communities associated with them, in larger social media datasets we merely have access
to looser proxies of such a set. This means that evaluation on large social media data is not simply a
scaled-up version of evaluation on small datasets, but requires a new evaluation framework.

In this paper, we introduce such a framework, one which depends on the availability of meta-data
that is known to be a proxy for community structure. The type of meta-data we consider here consists
of node attributes, e.g. the age of each node (our approach could also be extended to other types of
meta-data, such as group assignments or edge attributes, but we do not consider such cases here). The
evaluation framework we propose, which is described in Section 4, is based on a machine learning task.
The basic assumption we make is that if a community detection algorithm is functioning well, then a
classifier should be able to use the set of detected communities to infer missing values of a node attribute
that is closely related to community structure. In other words, this evaluation scheme measures to what
extent the detected communities, on the whole, can be used to infer meta-data.

A community detection algorithm can fail in many different ways; for example, it may only detect
a subset of the desired communities (i.e. suffer from low recall), or it may detect all of the desired
communities but also several spurious communities (suffer from low precision). An ideal evaluation
scheme would be able to detect each of these deficiencies and even suggest the cause, such as that a
method tends to merge or split communities. However, in Section 3 we point out that because meta-data
is only a loose, incomplete proxy for community structure, any evaluation based on such meta-data
will only be able to measure recall and not precision. Thus, if an algorithm detects many spurious
communities in addition to finding all of the desired communities, this deficiency will not be detected
by the evaluation framework we propose here.

We have created a reference implementation of this evaluation framework on the Facebook100
dataset [10,11], which contains 100 friendship networks that have meta-data which is well suited for
the evaluation. In Section 5, we use this reference implementation to perform some example bench-
marks, demonstrating how the evaluation framework can be used to reveal that two popular commu-
nity detection algorithms (the Louvain method of modularity maximization and InfoMap) both fail to
detect the smaller-scale community structure. We hope that this implementation, whose source code we
have made public, will be a useful tool for other researchers who wish to evaluate new and existing
algorithms.
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EFFECTIVE EVALUATION ON LARGE SOCIAL NETWORKS 21

2. Motivation: mined data differs from purpose-gathered data

From the 1940s to the 1990s, the datasets used to evaluate community detection algorithms were gen-
erally purpose-gathered networks for research by experts who had first-hand knowledge of the social
system with which the dataset was associated. Examples include Moreno’s early datasets dating back
to the 1920s [12,13], the Southern Women dataset [14], Sampson’s Monks [15] and Zachary’s Karate
Club [16]. Through their close observation, the researchers who collected this data were able to group
the nodes into communities based on events such as crises or social gatherings. During this time, net-
work datasets tended to be small (with fewer than 500 nodes, and often fewer than 50 nodes) and
well-studied (in [17], Freeman synthesizes the findings of 21 methodological studies on the Southern
Women’s network alone).

A new era of work on community detection began in the late 1990s, caused in part by a new type of
mined social network data that was extracted, for example, from mobile communication records or Face-
book interactions [1]. Figure 1 displays an example of both a purpose-gathered and a mined network.
While mined data still represents social networks, we posit that it differs from purpose-gathered data in
important ways. Our motivation is not to claim that one type of data is superior to the other; rather, we
wish to show that, for the purpose of evaluating the effectiveness of community detection methods, it
makes sense to distinguish between the two. In particular, we contend that even if an algorithm works
well on purpose-gathered datasets like Zachary’s Karate club, we may nevertheless have little idea of
how well it performs on mined datasets.

Here, we summarize three important differences between the two types of data related to (1) unifor-
mity of coverage, (2) overlapping social contexts and (3) size:

1. With regard to uniformity of coverage, we observe that a purpose-gathered dataset’s careful cura-
tion tends to ensure that sufficient information is gathered on each participant, or at least on most
participants. In mined datasets, on the other hand, it is not uncommon for the majority of users to
have very low activity levels and thus, arguably, be left out of the dataset entirely. Many mined
datasets contain a large proportion of these low-degree nodes, leading Leskovec et al. [18] to
characterize them in terms of whiskers and cores.

(a) (b)

Fig. 1. On the left is a network which is typical of hand-curated datasets gathered by a researcher in the field. On the right is an
example of a mined dataset. We show that the structure of the communities in these two types of networks differs in important
ways. (a) Zachary’s Karate Club [16]. (b) Facebook friendships at Caltech [11]. Colour figures can be viewed on the online version
of this paper.
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22 C. LEE AND P. CUNNINGHAM

2. Concerning overlapping social contexts, we point out that the purpose-gathered datasets typically
cover only one social context, such as activity in a club, at home or in the workplace. In contrast,
mined data from services like Facebook combines interactions from several social contexts, such
as personal and professional life, jumbling them together. By combining several contexts into one
network, a typical node may belong to several communities, leading to a condition which has
been called pervasive overlap and which has been shown to cause many community detection
algorithms to perform poorly [19–23].

3. Finally, the size of mined datasets is often several orders of magnitude larger than purpose-
gathered datasets. This is an important difference between the two types of data because the
performance of many community detection methods, such as those based on modularity maxi-
mization, has been shown to decrease as the size of the network increases [6].

Any one of these differences may cause an algorithm that works well on purpose-gathered datasets to
perform poorly on mined datasets. In one sense, researchers recognized that new types of data required
new approaches: the emergence of mined datasets inspired many new methods for community detec-
tion. Indeed, the field of community detection enjoyed booming popularity as more physicists, computer
scientists and social scientists developed these new methods, perhaps motivated by the potential discov-
eries that could be made in the mined data [24,25].

However, modern community detection methods have in many cases not been evaluated on modern
social network data: rather than evaluating these new methods on the mined datasets for which they
were designed, the new methods were often evaluated on the old, purpose-gathered datasets or synthetic
benchmark networks [7,26–29].1 Thus, we know that many of the new community detection methods
work well on datasets like Zachary’s Karate Club or the Southern Women’s dataset, but we do not know
how well they work on larger, digitally extracted datasets.

2.1 Existing work on evaluation

Our point in the preceding paragraphs is that evaluation on large mined social network datasets is
lacking. However, much work has gone into evaluating these methods on other types of large, mined
datasets, such as biological and synthetically created networks, and here we briefly review that work.

Community detection methods have been evaluated on diverse types of data. For example, the Gene
Ontology and other annotation can be used to evaluate the modules found in protein–protein interaction
networks [30] and product categorizations can be used to annotate the network of products co-purchased
on Amazon.com [5]. See [19] for an example of thorough benchmarking of community detection meth-
ods on many types of large, mined datasets.

The introduction of synthetic network generators such as the planted partition model in [28,31] and
its generalization, the Lancichinetti-Fortunato-Radicchi model (LFR) specified in [32,33], have also
driven progress in evaluation. In these synthetic benchmarks, a network is artificially created and a
known set of ‘ground truth’ communities (i.e. the set of communities one desires an algorithm to detect)
is planted into it; see [20,34–36] for comparative evaluations based largely on synthetic benchmarks.

1 In some of these papers, a larger social network was evaluated (such as the co-authorship network on arXiv), but these
lacked the ground truth or meta-data necessary for a proper evaluation. These larger networks were typically employed only for
comparing something other than how well the algorithm identifies all relevant community structure, such as which algorithm gets
the highest modularity or runs quickest.
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EFFECTIVE EVALUATION ON LARGE SOCIAL NETWORKS 23

The advantage of this approach is that because the ground-truth set of communities is known, the eval-
uation procedure is clear-cut. The disadvantage of this approach is that synthetic networks may differ
from empirical networks in important but unknown ways—if the field depends too heavily on synthetic
benchmarks, then it may develop methods that work well on synthetic data but poorly on real-world
data.

There is thus a clear need for benchmarks based on mined social network data. Two recent papers
from Yang and Leskovec acknowledge this need and contribute large social network datasets with meta-
data which they claim approximates a ground truth of network communities [4,5]. Similarly, a high-
quality ensemble of 100 Facebook networks was released by Traud et al. [11], which includes node
attributes that are considered to be closely related to community structure. If we are to make progress
in detecting community structure in modern datasets, then it is imperative that we design benchmarks
based on such data. We feel that the papers from Yang and Leskovec, while a step in the right direction,
are problematic because they treat the meta-data as a ground truth, and do not sufficiently acknowl-
edge the deficiencies from which the meta-data may suffer. We now proceed to describe some of these
deficiencies and how they complicate evaluation.

3. Imperfections in meta-data: incompleteness and nesting

We have so far motivated this paper with the observation that if we want to measure how well commu-
nity detection algorithms perform on modern mined networks, then we must evaluate them on similar
mined networks rather than on small, hand-curated datasets. We now discuss the problem of carrying
out evaluation with mined data for which no perfect ground truth exists.

The famous opening lines to Tolstoy’s Anna Karenina state that ‘Happy families are all alike; every
unhappy family is unhappy in its own way’. This is also true of the meta-data used to evaluate clustering
algorithms, which can be deficient in many different ways. Depending on the exact nature of these
deficiencies, one may need to use a completely different evaluation scheme in order to achieve effective
evaluation. Here, we focus on the case in which we have an attribute which we assume is closely related
to community structure, but which suffers from two deficiencies: incompleteness and nesting. Before
describing these deficiencies in detail, it will be useful to establish some terminology.

3.1 Terminology

We will define the true communities as the ideal output of a community detection algorithm.2 We will
use the term meta-data as a catch-all for all of the node attributes. The meta-data associated with a
network often contain many attributes, where each maps nodes to some class. For example, the gender
attribute maps each node to a single class (i.e. a value), such as male or female. If we run a community
detection algorithm on a network, it returns a list of communities which we will call the found com-
munities. Note that both an attribute and a set of found communities map each node to zero or more
classes, so it is possible to measure the similarity between the two.

2 One might object to such an idea, and argue that there is no objectively correct set of true communities in a network—that
depending on the purposes for which one wishes to use them, there may be several valid, yet distinct, sets of communities in
the same network. This is a reasonable objection, but here we simply assume that there is one set of communities that is most
generally useful for a wide range of purposes, and this is what is meant we refer to the true communities. While this assumption
may seem dogmatic, it underpins the most of the literature on community detection, and it is not an assumption which we will
debate here.

 at Staats- und U
niversitaetsbibliothek B

rem
en on February 18, 2014

http://com
net.oxfordjournals.org/

D
ow

nloaded from
 

http://comnet.oxfordjournals.org/
http://comnet.oxfordjournals.org/


24 C. LEE AND P. CUNNINGHAM

Fig. 2. When we evaluate the accuracy of a community detection algorithm, the attribute data we use may contain only a subset
of the true communities. In this case, we cannot demand that each found community corresponds to an attribute class, and so we
cannot measure the algorithm’s precision. We can, however, demand that each of the attribute classes corresponds to one of the
found communities, and so we can measure the algorithm’s recall. Colour figures can be viewed on the online version of this paper.

When we describe the quality of a set of found communities, we will do so in terms of precision
and recall. Precision measures the fraction of the found communities that exist in the true commu-
nities, whereas recall measures the fraction of true communities that exist in the found communities.
For example, imagine a situation where there are 100 true communities, but a community detection
algorithm finds only 10 of these (and no extraneous communities): in this case, the precision is 100%
while the recall is 10%.

3.2 Incompleteness and its consequences

Let us imagine that we have a collegiate social network that we want to use to evaluate the quality of
a community detection algorithm. Assume that in addition to the social network, we have data on the
dormitory (henceforth, dorm) attribute, which maps each student to the dorm he or she lives in. For now
let us assume that each dorm exactly corresponds to a true community (we will relax this assumption
below). Let us also assume that we know that in addition to those based around dorms, there are network
communities formed by other aspects of social life, such as hobbies and academic pursuits. However,
in this imaginary scenario, we do not have data on these other attributes. The right-hand side of Fig. 2
depicts this situation. Thus, the dorm attribute is an incomplete enumeration of the true communities.

Now imagine that we run a community detection algorithm on this network and are left with a set of
found communities, represented by the circles contained within the ‘Found Communities’ set in the left
half of Fig. 2 (shaded blue online). Given that the dorm attribute is incomplete, one might ask whether it
is even possible to evaluate the quality of the found communities. In the terminology defined above, we
are able to measure the recall of the community detection algorithm, but not its precision. That is, for
each dorm, we know that there should be a matching found community—if there is not, we can say that
the algorithm failed to detect a community it should have detected. However, if a found community has
no matching dorm, then the situation is ambiguous. It could be that the found community is spurious
and does not correspond to a true community, or it may be that while it is a true community, it is not a
dorm.
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EFFECTIVE EVALUATION ON LARGE SOCIAL NETWORKS 25

Any evaluation scheme based on an attribute that is incomplete in this way, including the scheme
we propose below, will have the following limitation: while it may be able to measure an algorithm’s
recall, it cannot measure its precision. Given that this problem has plagued the related field of clustering
for decades [37], researchers wishing to evaluate community detection algorithms with mined data may
have to simply accept this limitation.

3.3 Network communities may be nested in attribute classes

The example above included a collegiate social network as well as knowledge of each node’s dorm, and
for simplicity’s sake we assumed that each dorm corresponded exactly to a network community—this
is similar to Yang and Leskovec’s assumption that user-defined groups correspond to network commu-
nities [4,5]. In practice, however, this may be a bad assumption. Even if we have an attribute such as
dorm that we know to be closely related to the formation of network communities, it may be that there
is not a one-to-one correspondence between the two. In particular, network communities may be nested
within the attribute’s classes. For example, it could be that within each dorm, each incoming freshman
class forms its own network community. In this case, the network communities would correspond to the
intersection of the dorm and year attributes.

Figure 3 indicates that this example of nesting is not only a hypothetical problem, but one which
exists in real data, in this case the University of Chicago’s Facebook friendship network from the Face-
book100 dataset [11].3 On the face of it, it seems reasonable to set up a benchmark in which the goal of
the community finding algorithm is to detect the ‘houses’ (residential housing units), which are indicated
with solid boxes along the diagonal (coloured blue online). According to the University of Chicago web-
site, ‘each house represents a tight-knit community of students, resident faculty masters and residential
staff, who live, relax, study, dine together at House Tables, engage, socialize and learn from each other’.

However, the bottom panel of Fig. 3 suggests that while houses are indeed closely related to com-
munity structure, they do not correspond to network communities. In fact, there may be several times
more network communities than houses, and in general each house is several times larger than a net-
work community. In most cases, a single house appears to contain many separate, densely connected
subgraphs (indicated by the dashed boxes along the diagonal, coloured brown online) which seem to
be network communities. While we have highlighted only a few of these subgroups, if one zooms into
the top panel of Fig. 3 and carefully examines the houses along the diagonal, one can observe that in
general each house seems to contain many cohesive subgraphs.

4. A classification-based evaluation to cope with imperfect meta-data

We have just described two deficiencies which mined datasets may suffer from: incompleteness and
nesting. We now propose that by utilizing an evaluation framework which incorporates a machine learn-
ing classifier, one can measure the recall of a community detection algorithm, as defined in Section 3.1.

3 To create this figure, we have first taken the Facebook friendship network of the University of Chicago and arranged the
adjacency matrix such that all of the nodes that belong to the same dormitory are placed in contiguous blocks, indicated by the
solid boxes along the diagonal, coloured blue online. Within each block, the nodes are arranged according to the communities
found on the subgraph induced by the nodes in the block. Furthermore, the blue blocks themselves are ordered according to the
communities found in the ‘meta-graph’ formed by collapsing each of the blue blocks into a single meta-node and aggregating links
between the meta-nodes. For both the subgraph and the meta-graph, the Louvain method of community detection was used [38].
We note that although the Louvain method is in part responsible for this ordering, it has received a large amount of assistance
by our first partitioning the network by dorm, and that without this assistance, the method is not nearly as effective at detecting
cohesive subgraphs.
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26 C. LEE AND P. CUNNINGHAM

Fig. 3. Upper pane: the adjacency matrix of the University of Chicago, with house membership highlighted (in colour and
zommable online). Lower pane: a zoomed-in region suggests that subcommunities exist within houses, and that macro-structure
exists between houses. Colour figures can be viewed on the online version of this paper.

The basic idea behind this evaluation scheme is that, with a bit of simple logic, one can map network
communities to attribute classes, even if communities are nested within attribute classes, and even if the
attribute classes are an incomplete enumeration of network communities. Thus, if an algorithm detects
a good set of communities, then a machine learning classifier should be able to discover this mapping.

An example is illustrated in Fig. 4. We represent the mapping from node to found community using
the community assignment matrix X (sometimes called the indicator matrix), and we represent the
attribute that we use for evaluation as a vector y. The purpose of the classifier is, given both X and y, to
learn a bit of logic that allows it to map one row of X to the correct value in y. If the classifier is able
to learn this logic, then we can assume that at least some of the found communities are indeed closely
related to the attribute, as we expect them to be.

Because we assume that the attribute we use for evaluation is incomplete, many of the true commu-
nities are not relevant for inferring the attribute value—hence, a good classifier should learn to ignore the
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EFFECTIVE EVALUATION ON LARGE SOCIAL NETWORKS 27

Fig. 4. A machine classifier can detect which network communities are relevant for inferring an attribute. Colour figures can be
viewed on the online version of this paper.

‘Other Communities’ columns on the right hand side of matrix X in Fig. 4 (highlighted in pink online).
Many classifiers are designed to deal with the problem of ignoring irrelevant features by performing fea-
ture selection. Also, due to the nesting issue described in Section 3.3, the classifier should not assume a
one-to-one correspondence between the attribute classes and the communities, but rather should be able
to flexibly learn more complex mappings between. In this case, the classifier should learn to map nodes
belonging to any of the communities represented by the first three columns of X to the same attribute
value. A classifier is capable of learning such relationships if it has an expressive hypothesis space.

Thus, the classifier we choose for our evaluation framework should both perform well at feature
selection and have a hypothesis space expressive enough to account for the fact that some network
communities may be subsets or supersets of the classes referred to by the attribute. There are many
classifiers that fulfil these requirements, including ensemble techniques based on decision trees, such as
random forests or stochastic gradient boosting. For those unfamiliar with supervised machine learning,
we recommend [39].

We can now propose our meta-data-based evaluation procedure:

1. Select an empirical network and a node attribute thought to be related to community structure.
The attribute classes do not need to correspond exactly to communities—it can suffer from
incompleteness and nesting. Represent this attribute as a column vector y, with one row for
each node.

2. Run the community detection algorithm on the network and create a community assignment
matrix X, as in Fig. 4. Order the rows so that they correspond to y.

3. Randomly remove a fraction of the rows X along with their corresponding class labels from y.

4. Train a classifier on the remaining data in X and y.

5. Measure the accuracy of the classifier using the data that was set aside in 4.

Steps 4 and 6 involve ‘holding out’ some data from the classifier and using it to test the accuracy of the
classifier. We note that this is the standard way of measuring a classifier’s accuracy. By performing this
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28 C. LEE AND P. CUNNINGHAM

procedure many times and choosing different data to hold out each time, a technique known as k-fold
cross-validation, one can arrive at a better estimate of the classifier’s accuracy.

After following this procedure, the community detection algorithm is assigned a score: the accuracy
with which the classifier can infer missing attribute values. The accuracy of a classifier can be measured
in many ways, but we propose the simplest measure of accuracy, which is simply the percentage of
predictions that are correct.

A crucial question is how we ought to interpret the scores: when is the accuracy high enough for us to
say that an algorithm has performed well, and when is it low enough for us to say that one has performed
poorly? The answer is that, in most cases, the absolute value of the accuracy is not very meaningful,
and that the accuracy of a method becomes meaningful only when compared with the accuracy of other
methods, or of the same method with different parameter settings. In a few exceptional cases where we
know that the node attributes are highly correlated to obvious community structure, we may be able to
say that an algorithm should be able to score near 100% accuracy, but such datasets will be the exception.
The empirical example we present in the following section demonstrates how the relative value of the
accuracy can be meaningfully interpreted. There we see that some community detection methods allow
classifiers to attain substantially higher accuracy than others. We also see that the methods with lower
performance can be improved by tweaking their parameters.

There are some important limitations and drawbacks to this classification-based evaluation. First
and foremost, it can only measure recall, and not precision, as mentioned above. In other words, this
procedure will in theory not punish an algorithm for detecting many bogus communities.4 Additionally,
this evaluation scheme is appropriate only for the case where a classifier can work out the relation
between community structure and node attributes. This should work fine for the case where network
communities are rather cleanly nested within attribute classes (as was the case for the example of the
University of Chicago data in Section 3), but more complicated relationships may not be discovered
by the classifier. Furthermore, if an attribute is not in fact related to the set of true communities at
all (imagine eye colour or, in some cases, gender), then the results of the evaluation will be spurious
and misleading. Thus, the evaluation proposed here is only appropriate where one has strong a priori
knowledge that the desired community structure is related to the attribute whose value is being inferred.

Another downside is that setting up such classification tasks is rather complicated, and this makes
replication challenging. One must ensure that the classifier performs well both at feature selection and
at learning the relationships between network communities and the attribute used for evaluation. If the
classifier does not perform well at these two tasks, then we can conclude little from the evaluation: if
the resulting classification accuracy is low, then one will not know whether it was because the network
communities are uninformative with respect to the attribute (and thus a bad set of communities), or
whether the classifier was to blame. Further complexity creeps in when one evaluates the performance
of a classifier, which typically involves k-fold cross-validation. In practice, yet another complication
is added by computational complexity: depending on the classifier one uses, the size of the network
and the number of communities found, it can be computationally expensive to train a classifier. These
difficulties can be mitigated by sharing the source code to an easily extensible implementation of the
evaluation scheme.

4 Machine learning classifiers cannot perform feature selection perfectly, and thus are generally adversely affected by a large
number of irrelevant features. Thus, in practice, if a method find a many bogus communities, the classifier’s accuracy will drop.

 at Staats- und U
niversitaetsbibliothek B

rem
en on February 18, 2014

http://com
net.oxfordjournals.org/

D
ow

nloaded from
 

http://comnet.oxfordjournals.org/
http://comnet.oxfordjournals.org/


EFFECTIVE EVALUATION ON LARGE SOCIAL NETWORKS 29

5. An empirical example using the Facebook100 dataset

We now provide a concrete example of the classification-based evaluation framework proposed in
Section 4. Here, we provide a high-level description of the evaluation and results, leaving some of
the details for the appendix. Those seeking even more detailed information, or those seeking to repli-
cate the evaluation with other community detection methods, should refer to the public source code
repository. This repository is provided to the research community at large with the aim of allowing it to
easily benchmark any algorithm in a replicable manner.5

We begin by describing the data used for the evaluation. In Section 3.3, we illustrated an example
with a Facebook network representing acquaintanceship at the University of Chicago. This network
came from a larger dataset, the Facebook100 dataset from Traud et al. [10,11], which includes Face-
book data on 100 collegiate networks. The Facebook100 networks range in size from 769 nodes and
17k edges to 36k nodes and 1.6 m edges, and have many desirable characteristics that make the dataset
a good candidate for becoming a ‘gold standard’ for evaluating community detection methods: (1) they
come directly from Facebook and are not biased by sampling; (2) they cover universities, which, being
‘formally defined groups with well-defined labels’, are reasonably coherent social systems, and there-
fore avoid issues related to the boundary specification problem [40]; (3) at the time of collection, Face-
book was popular at universities and so coverage of the social systems is high and, crucially, (4) the
datasets include two node attributes which are thought to be related to community structure: dorm and
year of graduation.

We now turn our attention to the algorithms evaluated. We benchmark four community detection
algorithms: the Louvain method of modularity maximization [38], the InfoMap method of map equation
maximization [41], the Link Community (LC) method [19] and the Greedy Clique Expansion (GCE)
algorithm [21]. We choose the Louvain method and InfoMap because they are perhaps the two currently
most popular methods of community detection. We include the LC method and GCE because they both
claim to handle the case of overlapping communities particularly well, and we have reason to believe
that in the Facebook data most nodes could belong to multiple communities. For further details on the
implementations and parameter settings used, see the appendix.

Our evaluation is limited to the forty networks with the fewest nodes because, performing the eval-
uation on many of the larger networks, the classifier took prohibitively large amounts of CPU time. In
Table 1, we summarize how well each method performs across all 40 networks on both the dorm and
year attributes with a histogram, as well as the mean value of these histograms.

We now explain the meaning of these histograms; let us do so by considering the example of the
top-left histogram, which shows how well the GCE method performed on the dorm attribute. To create
this histogram, we began by running the GCE algorithm on each of the 40 networks and then, for each
network, followed the five-step procedure outlined in Section 4. Note that in step 3 of this procedure, we
held out a random sample containing 10% of the data. For each network, we were left with an estimate
of the accuracy with which a classifier could infer the dorm attribute. It could be the case that if we
had held out a different 10% sample of the data, this estimate would differ, so for good measure we
performed this procedure three times on each network, holding out a different 10% sample each time.6

For each of the 40 networks, we were left with three estimates of the accuracy. The histogram includes
all 120 of these estimates, and indicates how well the community detection method allows the classifier

5 The repository can be found at https://github.com/conradlee/network-community-benchmark.
6 We thus carried out three of the folds of 10-fold cross validation. We did not carry out the other seven due to the computational

expense.
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Table 1 Each community detection algorithm is run on 40 Facebook networks. Then, for each
combination of network and algorithm, a classifier is trained to infer the dorm attribute based
on the found communities, and the accuracy of this classifier is recorded. The first column of
histograms displays the distribution of this accuracy across all 40 networks. The mean value
of the histogram is reported in the next column. The second column of histograms reports the
same distribution for the year attribute. The range of each histogram on the x-axis is from a
0% classifier accuracy to 100% classifier accuracy. Some summary statistics for the UChicago
network is presented in the final two columns—see the main body of text for details.

Dorm accuracies Year accuracies UChicago stats

Method Histogram Mean Histogram Mean Median smallest # Comms

GCE 47.0 65.0 43 266

InfoMap 32.7 57.2 171 114

Louvain 25.4 60.0 1016 27

LC 27.9 38.5 4 10

GCE combined 53.4 75.3 22 890

Louvain combined 50.8 73.6 59 278

LC combined 44.7 61.3 5 15731

to infer the dorm attribute in general across all 40 networks. Each mean value in Table 1 is simply the
average value of the histogram to the left of it. For details on the classifier used, see the appendix.

In addition to these histograms, we provide some additional statistics related to how each community
detection method performed on the University of Chicago network (the right-most two columns, under
the heading UChicago Stats). To calculate the median smallest column, for each node we first recorded
the size of the smallest community it belonged to, and then we took the median of this distribution. The
# Comms columns simply shows the number of communities found by each algorithm on the UChicago
network. Our previous discussion of this network as well as the visualization of the adjacency matrix in
Fig. 3 provided us with a basic understanding of the communities network, allowing us to treat it as a
case study. While we cannot claim to know the true set of communities in that network, we can at least
say that we would expect a community detection algorithm to find at least 100 communities, and that
most nodes will belong to at least one community which has fewer than 100 members.

We now turn our attention to interpreting the results presented in Table 1. Let us begin by considering
the top four rows, in which we ran each of the four community detection algorithms in the usual manner.
We see that GCE has the best performance on inferring values for both the dorm and year attributes;
in particular, it performs substantially better than the other methods on the dorm inference task. The
UChicago stats indicate that the Louvain and InfoMap methods detected a smaller number of larger
communities, whereas GCE tended to find more and smaller communities. In particular, the Louvain
method detected only 27 communities, and placed most nodes only in communities with more than
1000 nodes. The LC method also behaved strangely on the UChicago network and several of the other
networks: the vast majority of the communities found were singleton communities (containing one edge
and two nodes—as we mention in the appendix, these are filtered out before classification occurs), and
only 10 of the communities detected in the UChicago network contained four or more nodes. It appears
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that the LC method, which is based on cutting a hierarchical clustering, made the cut too low (i.e. too
close to the leaves of the dendrogram).

These results indicate the cause of the Louvain method’s generally poor performance: in all but the
smallest networks it missed the fine-grained community structure. To test this hypothesis out, we also
tried two variations of the Louvain method which have been proposed as improving the method’s ability
to detect structure at all relevant scales. In the appendix, we show that one of these generalizations—
based on the parametrized definition of modularity proposed in [42]—does indeed allow the Louvain
method to detect smaller-scale structure and improve the classification accuracy.

This improved accuracy suggests that when a community detection method is run only once with the
default settings, it may only detect the communities at one scale and that the method may thus fail to find
relevant structure at other scales. In the appendix, we also outline a final experiment in which, for each
of the three methods with a resolution parameter, we create a combined set of communities by merging
communities found using various values of the resolution parameter. The results are presented in the
final three rows of Table 1, and they indicate that this merging heuristic based on several runs of the
algorithm significantly improves classification accuracy. This result leads us to suspect that the methods
benchmarked here, when run with their default settings, fail to detect communities at all relevant scales.
This finding is noteworthy because two of the methods, InfoMap (we used the hierarchical variant) and
the Louvain Method, both claim to detect community structures at all relevant scales but in fact do not
appear to be capable of doing so on this Facebook data.

6. Conclusion

The example evaluation presented in the previous section illustrates how the evaluation framework pro-
posed here can reveal problems that community detection algorithms encounter when run on mined
datasets that are much larger than Zachary’s Karate Club. As we described in the introduction, modu-
larity’s problems have already been described elsewhere, as have some of InfoMap’s [43]; so we do not
wish to claim that we are discovering these problems for the first time here. However, these problems
were only discovered years after modularity and InfoMap had been proposed. We believe that if better
evaluation tools had been available, then even before the creators of these methods published them, it
might have been clear that something about these methods was not functioning properly, at least on
a particular class of empirical data such as Facebook networks. We hope that the evaluation scheme
provided here, along with the open-source implementation based on the Facebook100 data, will provide
the community detection community with such an evaluation tool.

We conclude by noting that while the evaluation framework proposed here was based on the task
of inferring missing node attributes, we could construct conceptually similar benchmarks based on
different tasks. One natural example would be to use network communities to perform supervised link
prediction [44]; this is a natural fit because presumably the processes responsible for link formation are
closely related to the processes which form network communities. Another possibility would be to use
network communities to compress the network: because communities are believed to account for many
of the edges in a network (and a lack of community structure should indicate a sparse region of the
network), they should also be relevant for lossless compression of a graph [45].

There are likely many such tasks for which one could make a case that community structure should
be highly relevant. By compiling a collection of these tasks, and measuring how well community detec-
tion algorithms perform on the various tasks, we might find that some community detection algorithms
are generally more useful for these tasks than others.
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Appendix

The purpose of this appendix is to provide additional details on the empirical evaluation carried out in
Section 5 of the main text. For those interested in further details and replicating our experiments, we
have put the source code necessary to run these experiments into a public repository so that the research
community at large can benchmark their own algorithms in a replicable manner.

Implementations and parameter values used. We used the author’s implementation of the Lou-
vain method,7 which allows for both flat and hierarchical partitions, both of which will be considered
below. We also used the author’s implementation of the InfoMap algorithm8 presented in [41], which is
designed to detect hierarchical community structure. Likewise, we used the author’s C++ implementa-
tion of LC, which can detect either a flat or hierarchical clustering, both of which will be tested below.9

Because LC often found vast numbers of extremely small communities, we removed all communities
containing fewer than four nodes or three edges. For GCE, we used the author’s implementation,10 and
set the value of the resolution parameter α to 1.5, as this value was recommended for the Facebook data
in previous work. We should note that, because GCE has a resolution that has been tuned to this type of
data, it has an unfair advantage over the other algorithms; however, in the latter part of this section we
also try to optimally tune the resolution parameters of the other methods.

Classifier. Some of the community detection methods benchmarked here detect thousands of com-
munities on these networks; so it is essential that the chosen classifier is good at selecting relevant
features in situations with thousands of features; otherwise our benchmark may be biased against meth-
ods which detect many communities. After experimenting with several classifiers and feature selection
schemes, we found that an ensemble method called stochastic gradient boosting both performed best
and was least sensitive to large numbers of communities. In particular, we use the implementation pro-
vided in the Python package scikit-learn [46], with the learning rate set to 0.005 and the number of trees
set to 1000.11

7 https://sites.google.com/site/findcommunities/.
8 http://www.tp.umu.se/rosvall/code.html.
9 https://github.com/bagrow/linkcomm.
10 https://sites.google.com/site/greedycliqueexpansion/.
11 There were two more parameter values to set: we required at least five examples for a split in a decision tree (i.e. the

max_samples_subsplit parameter= 5) and set the subsampling rate to 0.4. We arrived at these values through experimentation,
choosing those values which maximized the performance of the classifier.
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Table A1 Performance of variations of the Louvain method of modularity maximization—the left-most
column indicates the value of ‘Markov time’ used. Markov time is a resolution parameter; when set to
1.0, the original definition of modularity is recovered. The second column indicates whether a flat cut
was used on the dendrogram, or all inner nodes of the dendrogram were used as communities

Louvain parameters Dorm accuracies Year accuracies UChicago stats

Markov time Multi-level Histogram Mean Histogram Mean Median smallest # Comms

1.0 25.4 60.0 1016.0 27
1.0 � 27.2 61.1 923.0 97
0.5 � 33.5 62.2 231.0 151
0.2 � 42.7 63.5 93.0 254

The Louvain method and multi-scale community detection. To further investigate whether the Lou-
vain method’s poor performance is due to missing communities at the smallest scale, we perform addi-
tional experiments. The scores for the Louvain method presented in Table 1 are based on the optimal flat
partitioning. However, as the Louvain method is based on an agglomerative, hierarchical clustering, one
can also include communities from all levels of the dendrogram, not just the flat cut which optimizes
modularity. Blondel et al. [38], the authors of the Louvain method, claim that the method ‘unfolds a
complete hierarchical community structure for the network’, which suggests that the algorithm should
detect community structures on all scales. In the second row of Table A1, we present the results when
communities detected at all levels are used. We note that the accuracy increases slightly, and that the
number of communities found increases—for example, on the University of Chicago network, the num-
ber of communities increased from 27 to 97.

The findings of [42] indicate that, to find community structure at all resolutions, the very definition
of modularity should be parametrized with a parameter called ‘Markov time’. We test this claim by
checking whether such a parametrized version of modularity can yield fine-grained communities that
improve accuracy. We use the implementation by Renault Lambiotte, which is fortunately based on
the very same implementation of the Louvain method and so allows for direct comparison.12 We set
the resolution parameter to 0.5 and 0.2, which are values that should detect community structure on a
smaller scale than the unparametrized version of modularity used above, which implicitly sets this value
to 1.0. For each of these values, we extract all communities from the dendrogram, as described in the last
paragraph. We observe that when the Markov time is decreased, the number of communities detected
increases and the accuracy increases significantly for the dorm attribute. As the dorm attribute is more
closely associated with finer-scale community structure, this indicates that the resolution parameter does
indeed help to find community structure on a smaller scale.

This finding suggests that when modularity maximization techniques are used, then in order to find
community structure at smaller scales, it is not enough simply to use a hierarchical clustering tech-
nique and make cuts at all levels in the resulting dendrogram. Rather, the very definition of modularity
itself must be parametrized with a resolution parameter. While there is much theoretical literature on
‘resolution limit’ inherent in modularity, here we find strong empirical evidence of this limit.

Our findings here also place the results of Traud et al. [11] into doubt. They analysed the com-
munity structure in the Facebook100 network using a modularity maximization technique, but paid no

12 Available at http://www.lambiotte.be/codes.html.
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consideration to the resolution limit. Traud et al. found that, in larger universities, year of graduation
was more relevant for community structure than dormitory assignment. Our results indicate that this
finding is likely not inherent in the data, but rather due to a limitation of modularity maxmimization
techniques: in larger networks, a naïve application of these techniques does not detect finer-grained
communities.

The importance of a resolution parameter for modularity raises the question of whether InfoMap
could also perform better if its objective function, the Map Equation, were parametrized with a reso-
lution parameter. As mentioned above, while the implementation of InfoMap that we used is designed
to detect community structure at all relevant resolutions, it tended to detect only larger communities.
This problem was anticipated by recent work in [43], which also suggests a solution called the ‘Markov
Sweeping Map Equation’, which is parametrized with the Markov time t. This solution embeds the Map
Equation in the context of a Markov process that takes place on the graph. A linearization of such a dif-
fusion process provides a natural dynamical parametrization of the original Map Equation, in which the
original formulation of Rosvall et al. can been seen as the special case where the Markov time t = 1.
This parametrization is analogous to the linearized diffusion process proposed for modularity, the so-
called stability framework [42,47]. However, since a public implementation of the lineraized Markov
Sweeping Map equation framework is pending at the time of writing, a comparison with this Markov
Sweeping Map equation will be postponed to future work.

Combining multiple runs to find structure at all scales. Leaving InfoMap aside, each of the three
other algorithms has a resolution parameter: for the Louvain method, we have the Markov time; for
the LC method we have the threshold at which to cut the hierarchical clustering of edges, and GCE
has a parameter α which is built into its local objective function. To detect communities at all scales,
one could run the algorithm multiple times using different values for the resolution parameter, and
then combine the results. In our final experiment, we check whether such a procedure increases the
performance on the benchmark. We combine runs of the Louvain method where the Markov time is
set to t = 0.1, t = 0.2, . . . , t = 1.0; we combine runs of LC where the threshold for the cut is set to each
integer-valued percentage point between 1 and 100 and we combine runs of GCE where α is set to 0.8,
1.0, 1.3, 1.5, 1.7 and 2.2.

When combining several runs of a community detection algorithm, the resulting set of communities
can contain a very large set of near-duplicate communities. For example, in a single run, the LC method
finds over 100000 communities on some of the Facebook100 networks, and so when several runs are
combined, this number can reach into the millions. The vast majority of these millions of communities
are near-duplicates of other communities, an undesirable property in most settings, and one which in the
current context makes the training of the classifier computationally expensive. When we combine sev-
eral runs of an algorithm, we therefore remove the near-duplicates by following the procedure outlined
in Section 2 of [21], setting ε to 0.5; this technique basically removes communities that have a Jaccard
similarity of >0.5 with any communities of equal or lesser size.

The results of this final experiment are displayed in the last three rows of Table 1. We see that each
method has benefitted by combining the results of multiple runs at different settings of the resolution
parameter.

We now wrap up this demonstration benchmark with a summary of our findings. Many community
detection techniques strive to be parameter-free so that they can automatically detect communities with-
out requiring a user to experiment with different parameter values [1]. While this is a worthy goal, the
results of this section indicate that to achieve good performance, one must tweak the resolution param-
eter of every method tested here. If we compare the results in the first four rows of Table 1 with those in
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last three rows, we see that if one simply trusts the algorithm to automatically set the resolution param-
eter, then the method may in practice struggle to find structure at all relevant levels. For example, the
naive application of the Louvain method produces a set of communities which allow a classifier to infer
the dorm attribute with an accuracy of only 25.6%, whereas by combining multiple runs with different
values of the Markov time parameter, one can obtain an accuracy of 50.4%. This dramatic increase in
performance (as well as our analysis above) indicates that the naive application of the algorithm failed
to detect much of the finer-grained community structure.
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