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Accessing the network through which a propagation dynamics diffuses is
essential for understanding and controlling it. In a few cases, such information
is available through direct experiments or thanks to the very nature of propa-
gation data. In a majority of cases however, available information about the
network is indirect and comes from partial observations of the dynamics, ren-
dering the network reconstruction a fundamental inverse problem. Here we
show that it is possible to reconstruct the whole structure of an interaction
network and to simultaneously infer the complete time course of activa-
tion spreading, relying just on single epoch (i.e. snapshot) or time-scattered
observations of a small number of activity cascades. The method that we
present is built on a belief propagation approximation, that has shown impress-
ive accuracy in a wide variety of relevant cases, and is able to infer interactions
in the presence of incomplete time-series data by providing a detailed model-
ling of the posterior distribution of trajectories conditioned to the observations.
Furthermore, we show by experiments that the information content of full cas-
cades is relatively smaller than that of sparse observations or single snapshots.

1. Introduction

Much effort has been devoted recently to the inverse problem of reconstructing the
topology of a network from time-series of a dynamical process acting on it [1-4].
When observation of the full time-series of the process is available, the problem
can be, and has been, recast into relatively simple terms, since a sequence of
time-consecutive states of a pair of nodes gives direct information about the poten-
tial interaction between them. In many cases, however, the set of available
observations is much sparser, possibly on a much slower time scale than that of
the dynamics, and often skipping the initial stages of the propagation which
would give precious information about the initial condition. In particular, in an
observation consisting of a single snapshot of the system there is no direct infor-
mation about the interaction of nodes, as evidence of interaction indeed comes
from variation of the state of nodes in time. Examples of important applications
in which such a complete measurement of dynamical quantities in a full time-
series is inaccessible are second messenger cascades in a cell, rapid-firing neuron
cascades in the human brain during epileptic seizures or in the context of epidemic
and/or information spreading in a network of individuals. In all these examples,
typically, there is no information about which was the first active node, little is
known about the underlying networks of contacts, which may even be dynami-
cally changing over time and moreover an observation of the full time-series is
prohibitive or plainly impossible.

Even though direct experimental data about contact networks in diverse
contexts are being collected at a fast rate [5-7], there are some strong experimental
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and technical limitations to this collection, sometimes due to
privacy protection regulations or concerns. However, knowl-
edge of propagation networks would have a large list of
benefits. First, it may allow one to understand the propagation
process better, including finding entry-points (e.g. the so-called
index case or patient zero in epidemiological jargon) of an
ongoing epidemic. Second, it may allow one to devise strategies
to control the process in various ways, for example, hindering
the propagation (e.g. targeted vaccination) or favouring it
(e.g. in the context of maximizing information diffusion on
social networks, in viral or targeted advertising, etc.). In this
respect, a number of computational studies have introduced
optimization methods based on message-passing that address
the problem of containing [8] or maximizing spreading [9,10].

Recently, several approaches have been proposed for the
problem of deducing the propagation network from time-
series, based on Bayesian approaches [3,11,12] (we also mention
[13,14] where computations are based on efficient dynamic
message-passing equations), maximum-likelihood approach
[3], compressed sensing schemes [15], genetic [16] and dynamic
programming algorithms [17], tensor decomposition [18] or on
Monte Carlo sampling [19]. We also mention [20,21] in which
the network inference is performed model-free, namely without
any a priori knowledge about the dynamic rules and the kind
of interaction among nodes. These methods all share the need
for observations at consecutive epochs. An attempt to infer a
network from a single snapshot is proposed in [22] where the
authors, using a topology-based method, limit the set
of possible candidate networks to d-dimensional grids or
Erdos—Rényi (ER) graphs.

Despite this recent progress, in most contexts the available
observations of each cascade are sparse, noisy and especially
discontinuous in time. One example is the problem of infer-
ring functional contacts in signalling pathways, in which
interacting proteins generate cascades of phosphorylation
which eventually transmit signals from the cell membrane
to the nucleus. Observations come in general from gene
expression data, and the network to be inferred is a sub-
network of a large-scale protein—protein interaction (PPI)
network, also known as interactome. Although several exper-
imental and computational approaches are able to identify
candidate links of these networks, they lack in distinguishing
false positive (FP) from true positive (TP) links [23-25] that
seems to be a challenging task. Social science and epidemio-
logy offer another interesting domain of application, as one
generally tries to infer the network of social contacts (even
through the Web [26,27]) from a limited amount of sparse
and noisy observations of some propagation histories.

Here we present a Bayesian technique that allows one to
uncover the complete functional structure (including its topology
and parameters) of a network from a limited amount of single
snapshots of the state of the network cascades. We assume that
the dynamics is well described by progressive propagation
models like susceptible—infected (SI), susceptible—infected—-
recovered (SIR), independent cascades and variants, including
models with hidden variables (e.g. representing latency times).
Reversible processes, like susceptible—infected—susceptible epi-
demics, cannot be treated by our algorithm as, in this case, the
probability space of a single-site trajectory can grow exponen-
tially with the time horizon, making the method impractical.
Note that these models have absorbing states (all states with no
individuals in state I), that limit severely the amount of infor-
mation that it is possible to retrieve from a single time-series.

Starting from a functional parametrization of the posterior n

probability distribution of propagation trajectories, our tech-
nique builds on a message passing procedure that allows one
to compute, and then maximize, the likelihood of a given
network structure. This computation can be performed effi-
ciently thanks to belief propagation (BP), which is proven to
be exact for tree graphs and has been successfully used in a
variety of problems in general graphs with loops. Upon con-
vergence, the parameters allow one to identify both the
network and the sources of the infection for each cascade
with great accuracy. We called this method gradient ascent
belief propagation (GABP).

Although the proposed inference machinery is very general,
we focus on the well-known SIR [28] model, which describes
those diseases in which infected individuals become immune
to future infections after recovery (such as measles, rubella,
chicken pox and generic influenza) or the interaction dynamics
among proteins. We also propose some results using the SI
model when dealing with the spreading of rumour and
information over a network. In particular, we evaluate the per-
formances of GABP comparing our results to a ground-truth
when dealing with synthetic cascades of both synthetically
generated and real-world networks; we also use real cascades
measurements and apply our method for inferring the graph
structure underlying several websites that have published the
same trend topic [29].

Our minimal model of activity propagation in a network
is very simple: if a node i is active (infected) at time f, it
has a finite probability \; to activate (or infect) any of its
neighbours j, which will in turn be active at time ¢ + 1. Exclu-
sively in the SIR model, an active node will recover in each
time-step with a (generally site-dependent) recovery prob-
ability u;. Once recovered, nodes do not become active
anymore, and will not be able to infect other nodes. This
will result in a propagation throughout the network, that
we call a cascade.

Let us then suppose that a number M of statistically
independent realizations (or cascades) of the SIR dynamics can
be observed. In the prototypical situation, the complete history
of the propagation is unavailable and we do not assume any a
priori knowledge about the network structure: all we can
observe is, for each cascade, a number of ‘frozen” snapshots of
a wavefront of the activity at a given time T, when all the
states of the nodes in the network can be assessed to a reasonable
extent of accuracy. Our aim is to identify the hidden network
structure and the set of transmission probabilities for each
link. Our method could in principle accommodate cases with
different types and/or amount of information (including even
partial and noisy observations from previous time-steps)
but we limit ourselves to consider a limit ‘worst’ case in
which a single snapshot of nodal states, per cascade, is observed.
Figure 1 shows a cartoon representation of the problem.
Each column represents an epidemic process that evolves in
time ¢ (the evolution of nodal states is shown in the rows of
figure 1). What we observe is the collection of final states
within the ampoule, for all the cascades.

We underline that if the states of the nodes were known for
the whole process, namely the time-series of all the states, esti-
mating the infection and recovery probabilities reduces to an
easier problem, as the likelihood of the parameters has a
closed expression that can, in principle, be climbed by local gra-
dient algorithms. Here we consider cases in which we reduce
the observations of each epidemic at a specific time T: the
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Figure 1. Cartoon representation of the network reconstruction problem: M
independent cascades starting from different sources (highlighted in the first
frame of each vertical stripe) are represented, with time flowing downward.
Infected nodes are red, susceptible nodes are blue and recovered nodes are
purple. The GABP algorithm is provided a set of M snapshots taken T time
steps after the cascade onset: the goal is to reconstruct the functional inter-
actions in the network G as well as to identify the source of each cascade.
(Online version in colour.)

past states of the nodes are unknown dynamical variables over
which we need to consider all their possible realizations.

2. Results
2.1. A static formulation of the dynamical process

Reconstructing the unknown connectivity structure of the net-
work is inevitably coupled to that of tracing back in time the
entire history of the spreading process for each cascade m €
{1, ..., M}, which in turn results in the identification of the
sources of diffusion. Our approach builds on computing a
joint posterior probability distribution over all cascades that
are compatible with the observations, and then maximizing
the likelihood of interaction parameters of the network at the
same time. To set our notation, let us consider a weighted
undirected graph G= (V, E, A, ) with a number |V| of
nodes, where A = {\;j};jcr play the role of edge-dependent
infection probabilities in an SIR stochastic model, and that
is also equipped with a set 0= {u,};,cy of site-dependent
recovery probabilities. For directed graphs, we allow par-
ameters \; # )\ﬁ_ Focusing, for the moment, on a single
cascade, at any point in time each node i will be in one of
three possible states: susceptible (S), infected (I) and recov-
ered/removed (R). The state of node i at time f in each
cascade m is represented by a variable x;(t) € {S, I, R}, with ¢
in some discrete set. At each time step (e.g. a day) of the sto-
chastic dynamics, an infected node i can first spread the
disease to each susceptible neighbour j with given probability
\jj, then recover with probability ;. Each cascade is defined by
the set of vectors x"(t), with m labelling the cascade, and we
assume that for each cascade the initial state x™(0) is composed
of just one infected node i, with all the other nodes in the
network being in the susceptible state. We will assume that
we have access to the state of the nodes in the networks only
T™ =T steps after the initiation of each cascade.

Let us consider a node i which gets infected at its infection
time f;: since it has a finite probability to pass the disease to a
neighbour j in each time step, this results in a stochastic trans-
mission delay s;;. In addition, the individual i recovers at time
t; + g, with g; a stochastic recovery delay. Owing to the irrever-
sibility of the spreading process, each cascade is fully specified
by the quantities {t; gi}iev and {s;} e for each node and

each link in the network. It is then possible to construct a [ 3 |

simple static graphical model representation of the dynamical
process for each cascade on the grounds of the following
simple observation: the time at which a given node i gets
infected only depends on the infection times of its neighbours
j, and the infection delays of these nodes. Infection times t; > 0
are related by the deterministic equations

ti=1+min{t; +s;}, (2.1)
jEOI

which are a set of |V| constraints encoding the infection
dynamics, involving only local quantities at each node. Once
the initial condition x(0) and stochastic quantities s;; and g;
are thrown independently from their own distributions,
the infection times are given deterministically by virtue of
equation (2.1).

This observation was exploited in a series of works [9,30,31]
to develop a fully Bayesian method for approximating the
whole probability distribution of the time evolution of the
system, conditioned on some observations, and was originally
used to identify the origin of the epidemic outbreak in SIR and
similar models. The method is built on a BP approximation
(see Methods), which is exact on tree graphs and has proven
successful in general networks with loops.

What if the underlying network is unknown, and so are
the epidemic parameters {\j, u;}? In a maximum-likelihood
approach, one needs to define the quantity P({x"(T)}|
{Aij}, {i;})), namely the likelihood of epidemic parameters with
respect to observations, and then be able to maximize over the
relevant parameters. Note that in a fully Bayesian framework,
incorporating a priori information on the network topology
or epidemic parameters is straightforward: it would lead
to adding a log-prior term f, , = log PA({A;}) + log P, ({u;})
to the log-likelihood to obtain a log-posterior. The log-
likelihood of the parameters coincides with the so-called
free-entropy of the system L({\;}, {i,;}) = log P({x"(T)}|
{Aij), {wh) = —f({Aij), {;}), which can be computed, consist-
ently with the BP approximation, employing the Bethe
decomposition (see Methods).

The BP method for the (cavity) marginal distributions
of infection times can be then interleaved with simple log-
likelihood climbing steps in a gradient ascent (GA) scheme,
leading to a unique set of equations that are solved by iteration.
In this setting, the computation of the gradient of the log-like-
lihood relies only on local updates involving the BP cavity
messages. Ultimately, all the information has to be processed
locally at each node. That, in addition to other simplifications,
entails a huge reduction of computational time, making the
analysis of large-scale networks feasible efficiently (see
Methods). One starts from a flat assignment of the parameters,
and the initial fully connected network gets progressively
pruned by means of the GA updates, eventually leading to a
reconstructed network strongly resembling the real one.

2.2. Reconstructing random networks

We start by investigating three basic random network struc-
tures, namely random regular (RR), ER and Barabasi—Albert
(BA) scale-free networks: an impressive level of accuracy may
be reached with a small number M of observations. In an
RR network, each node is connected at random with a fixed
number of neighbours in the networks, whereas in the ER
graph the number of neighbours is Poisson distributed.
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Figure 2. (a) Reconstruction accuracy in three types of random networks using GABP and MI. Each curve is an average over 30 random instances of the area under
the ROC curve, as a function of the number of observed cascades M at time T = 5. Epidemic parameters, N; = 0.6 and w; = 0.4, are the same for all the three
types of networks. The size of the network is |V| = 50. Red curve: RR graphs with degree d = 4; light blue curve: BA (scale-free) networks with average degree
d, = 4; blue curve: ER graphs with average degree d,, = 4. Triangular and circular marks show GABP and MI results, respectively. (b) Identification of initial
spreaders. Each filled curve is the histogram of the rank of the true patient zero i’ at M = 150 for the three types of network. Histograms refer to 30
random instances, thus considering a total of 30 x 150 = 4500 independent cascades. (c) Reconstruction accuracy versus connectivity. The blue curve is the
area under the ROC curve in different instances of RR graphs of size |V| = 50 with increasing degree d. In each case, M = 50 cascades are observed at time
T=17. Recovery rate is fixed to u; = 0.4, N is scaled down as degree increases in order to keep the size of epidemics roughly constant. Inset: area under
the ROC curve as a function of the number of observed cascades M in a random regular graph with degree d = 10 (corresponding to the red point at the

end of the blue curve in the main plot). (Online version in colour.)

Scale-free networks, on the other hand, possess a power-law
degree distribution, and are known to capture some key
ingredients of many real networks encountered in practical
applications (for a review, see [32]).

As a first step, a random graph is constructed, and a set of
M cascades are simulated, each one being an independent
realization of the stochastic SIR process with a random initial
source ij'. GABP is then run until the parameters \; and w;
reach a stable value. Since the goal of the inference is twofold,
we use two different measures of the inference performance.
For each cascade m, the nodes in the network are ranked in
decreasing order with respect to the estimated probability
of being the origin of the observed epidemic: the ability to
identify the sources of the spreading is easily quantified by
the rank of i, namely the position of i in the ordered list.

On the other hand, a simple method for quantifying the
accuracy of network reconstruction is the receiver operating
characteristic (ROC) curve, namely a plot of the TP rate against
the FP rate in a binary classification problem. Constructing the
ROC curve in the present case is very easy: the inferred values
of \;; are ranked in decreasing order, and one step upward in
the ROC is taken if the link is present in the original graph
(TP) or one step rightward if the link is absent (FP). The area
under the ROC curve is a good indication of the discrimination
ability: areas close to one signal a good discrimination between
true links and non-existent links. The reconstruction perform-
ances are compared to those of an empirical correlations
based method. For each possible couple of nodes we compute,
at the time of the observation T, the probability of having an
edge (i, j) as the mutual information (MI) between node i and
J; details of the calculations are reported in the Methods section.
As for the case of parameters \;;, we construct ROC curves and
we compute ROC areas from the set of correlation measures m;;.

We report in figure 22 a systematic investigation of the
reconstruction performances of GABP and MI in the three
types of random networks with an increasing number of
cascades M. The parameters of the infection are A = 0.6 and
uw=04 for all the experiments (except when differently
noted). These parameters seem to ensure a reasonable infection
size at the observation time in a way that we can use sufficient

information for inferring the network.! For all values of M
GABP outperforms the MI method as the ROC areas associated
with the GABP predictions are notably greater than the one
obtained from MI. In the case of BA graphs, we notice smaller
values of the ROC areas because, for these values of the par-
ameters of the SIR dynamics, we observe huge epidemics in
which at time T almost all nodes are infected or recovered.
This efficient spreading is caused by the presence of hubs that
easily infect a good portion of the network in one time-step.
In this regime and even for large value of M, there is not suffi-
cient information to fully recover the true links of the graphs.

The ability to identify the sources of spreading (patient
zero) is easily quantified by the rank rg") of the true patient
zero i in each of the M cascades: if M is high enough so that
enough information is conveyed on the underlying network
structure, GABP is able to successfully identify most of the
true initial spreaders in each cascade. This can be seen in
figure 2b, that shows the distribution of rgm) for a value of
M =150 in the three types of random networks considered
here, which is fairly concentrated on low values of rgm).

The reconstruction performance is expected to be substan-
tially related to the density of the network. This can be
investigated by systematically varying the degree of connec-
tivity of a network, as is shown in figure 2c, where the
performance of GABP is assessed in a RR graph of size
|V| =50 with an increasing connectivity degree d, from d =
4 to 10. The accurate reconstruction of denser networks
requires, consequently, a larger number of cascades M.

As can be seen in figure 3a, the distribution of inferred
values of true links rapidly separates from the one of non-
existent ones, that concentrates around vanishing values
even for a very small number of observations. The strict sep-
aration of the two distributions confirms the results from the
area under the ROC curve.

It is worth noting that GABP achieves a good level of recon-
struction accuracy in a very small number of steps. The
dynamics of the inferred A;; as a function of iterations of the
algorithm is exemplified in figure 3b. Even after a very small
number of iterations, true links are clearly distinguished from
non-existent ones, as can be seen from the steep rise of the
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Figure 3. GABP rapidly identifies true links. (a) Average value of N for true links (blue) versus non-existent ones (red) as a function of the number of observed
cascades in an RR graph with size [V| = 50, A; = 0.6, w; = 0.4 and d = 4; shaded areas correspond to the intervals between the 10th and the 90th percentile
in each distribution. (b) The thin lines represent the A;; values of a random subset of 200 links in the case with M = 200 cascades as a function of iterations of the
GABP algorithm; black thick line: area under the ROC curve. (Online version in colour.)
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Figure 4. Reconstruction performance of GABP in the network of retweets (|V| = 96) with increasing number of independent cascades M. Epidemic parameters are
Nj =05 and w; = 0.4, observation time T = 5. (a,c) Blue curve: area under ROC curve in the case where the state of the networks is fully observed at each time
t € {1,..., T} for each cascade m. Red curve: area under ROC curve in the case where the network is observed only at time T in each cascade. (b,d) Average value
of A for true links (green) versus non-existent ones (red) as a function of the number of observed cascades in the standard case (observation at time T only);
shaded areas correspond to the intervals between the 5th (10th in (d)) and the 95th (90th in (d)) percentile in each distribution. (Online version in colour.)

area under the ROC curve as a function of iterations: we
observe that this kind of behaviour is quite general and not
restricted to the case M = O(|V)).

2.3. Reconstructing real networks

We tested the GABP algorithm on two different real inter-
action networks on which information about contacts is
available for validation purposes. The first dataset consists
of a network of Twitter retweets [33,34]: the network is com-
posed of |V| =96 nodes, which represent Twitter users,
linked through |E| =117 edges corresponding to retweets
(these were collected from various social and political
hash-tags). The average degree of a node in the network is
day =2, with a minimum degree of 1 and a maximum

degree of 17. Figure 4a,b shows the reconstruction perform-
ance in the retweet network using two different observation
paradigms: in the single-observation-per-cascade paradigm
(which we considered as the standard case), the node state
is available only once per cascade, whereas in the whole-
cascade paradigm all nodes are observable at all times. In
the first algorithm, the number of cascades coincides with
the number of observations O while in the whole-
cascade reconstruction the number of observations is still O
but the number of available cascades is normalized with
respect to the number of time-steps, namely O/T . We simu-
late several spreading cascades with infection probability
\;j=0.5 and recovery probability w;=0.4. It is apparent
that an extremely accurate reconstruction is achievable with
a number of cascades M quite small compared with |V| and
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Figure 5. Pictorial representation of the GABP performance in Zachary’s Karate Club network with an increasing number of cascades M. An edge is thrown between
node i and node j if \; in non-zero, the width of the edge being proportional to the value A;. True links are coloured in black, red links are not present in the

original network. (Online version in colour.)
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Figure 6. (a) Reconstruction performance of GABP in the Zachary’s Karate Club network with different numbers M of independent cascades. M is on the y-axis. The
links are on the x-axis, ordered in such a way that the first 78 are the true links in the original graph. The colour intensity is proportional to the value A for each
putative link (i, j) at increasing values of M. (b) Area under the ROC curve (y-axis) for increasing total observations (see text) of the entire networks (x-axis, scale as
in the left part). The blue curve corresponds to a single final observations per cascade at time 7 = 5, the light-blue curve shows the case in which cascades are fully

observed. (Online version in colour.)

furthermore it is worth noting that when a number of
possible observations is fixed, considering many cascades at
a single time instead of the full time-series of a smaller
number of cascades leads to better predictions.

We repeat the same experiment using an SI dynamics
with true infection probability \;=0.3; figure 4c shows
that as for the SIR case few cascades suffice to reach a very
high value of the area under the ROC curve and that the
single-observation paradigm has to be preferred to the
whole-cascade one when few observations are available. As
for the SIR results, the value of the infection probability is
correctly estimated for a large number of cascades and the
presence of a link (characterized by a non-zero \;) is clearly
detectable after about 100 cascades as shown in figure 44.

As another illustrative example, in figure 5 we show a pic-
torial representation of the reconstruction of the Zachary’s
Karate Club network, a small social network which consists
of |V| =34 nodes and |E| = 78 edges, documenting the pair-
wise interactions over the course of three years among
members of a university-based karate club. In this case, we
simulated up to M =102 cascades and investigated the
performance of the inference method with homogeneous par-
ameters A = 0.3 and p = 0.4 at increasing M. In figure 5, links
not present in the actual graph are coloured in red, and
appear clearly distinguished from the true ones (coloured in
black) even for very small values of M.

For a more thorough representation of the reconstruction
process in the Karate Club network, we show in figure 6a a
colour intensity plot of the dynamics of inference as the
number of cascades is increased: true links are immediately
identified, as the ROC area indicates (figure 6b, blue curve).

It is very interesting to note that, while observing cas-
cades in their entirety clearly conveys a lot of information
on the network structure, if the total number of observations

Table 1. Properties of the interactomes. This table shows the name of the
organisms, the number of nodes and edges of the PPl networks and the
name of the public datasets supported by PSICQUIC.

organism \l |E| dataset name
Caenorhabditis elegans 372 400 MINT [37]
Drosoph//amelanogaster e e wn
Homo sapiens 801 1190 BHF-UCL
Saccharomyces cerevisiae 185 1476 UniProt [38]

of the full state of the network is constrained, distributing
these observations far apart in time (or better, on inde-
pendent cascades) pays better. This is clearly shown in
figure 6b by the difference in the area under the ROC curve
between the whole cascade (light-blue curve) scenario and
the single-observation-per-cascade paradigm.

2.4. Detecting false positive links in protein—protein
interaction networks

A challenging problem in reconstructing PPI networks con-
sists in discriminating between TP and FP links. We show
in this section how GABP algorithm can be used as a post-
processing method to tackle this issue.

In our experiments, we consider as ground-truth networks
the giant components of five interactomes of the PSICQUIC
dataset [35] available in the software Cytoscape 3.5.1 [36]
(properties are summarized in table 1), while contact cascades
are synthetically simulated with infection parameters A = 0.8
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Figure 7. Plots of the ROC areas for GABP and MI in predicting TP links of five different interactomes. Each row corresponds to a different v, the fraction of extra
edges, while each column to one of the five studied interactomes. Subplots show the areas under the ROC curves as a function of the number of cascades M for

GABP (blue line) and MI (red line). (Online version in colour.)

and p = 0.3. To the true networks, we add Z = «|E| extra
edges, for o € [0.2, 0.5], that mimic the presence of FP inter-
actions. This step is performed in a ‘scale-free” fashion: we
first pick a node i with probability proportional to its
degree and then we connect it to a node j & 0i chosen uni-
formly at random. We then simulate M € [3, 150]
cascades on the true network and, from the final obser-
vations (at time T =05), we try to infer the transmission
parameters \;; associated with both TP and FP edges of the
extended graph that, at variance with the cases examined
before, is not a fully connected graph. We compare our
reconstructions to the ones obtained by an MI-based
method. In figure 7, we plot the areas under the ROC
curves as a function of the number of cascades of the five
interaction networks. Each row of the main figure corre-
sponds to the extreme values of o= {0.2, 0.5}. For all
organisms, the areas under the ROC curves of GABP results
are significantly larger than those of MI reconstructions and
they reach values above 0.9 even when few cascades are
available, i.e. M =10. Quite surprisingly, performances
seem to be independent of «, i.e. the number of extra
edges, suggesting that our method is quite robust in detect-
ing FP links when the extended graph to be pruned has a
reasonable number of edges.

To underline the performances of GABP, we show in
figure 8a the Mus musculus interactome containing the TP
(green links) and 80 FP edges (red links). The retrieved net-
work for an increasing number of cascades is plotted in
figure 8b; edge thickness is proportional to the inferred
values of \;; for GABP and to m;; for ML It is worth noting
that, for very few cascades (M = 3), both GABP and MI are
able to recognize almost all true links but GABP misclassifies
fewer FP than MI. When M increases, GABP detects all true
edges as the associated \; significantly increase and it incor-
rectly classifies only few FP edges that, in any case, exhibit
values of the infection parameters close to zero and negligible
if compared to the ones associated with TP links. On the con-
trary, MI distributes the weights over all the edges and, for
large M, it is not able to sharply distinguish the two sets of
links as some of the FP edges have values of m;; comparable
to those of TP links.

2.5. Reconstructing the website influence network
through trend topic cascades

Epidemic spreading is also a good model for describing trend
topic dynamics in ‘information” networks such as the World
Wide Web. In [29], the authors present a huge dataset contain-
ing more than 10° webpages that from August 2008 to April
2009 were involved in about 2 x 10® tracked trend topics.
With each cascade they associate a temporal window in
which the news was ‘viral’, a representative sentence appear-
ing in all the tracked articles and the list of webpages
publishing the topic within the temporal window. In [3], they
try to infer the links among the webpages using the full time-
series of the spreading events.

In this section, we show how to use GABP to infer influence
sub-network links from only the final observations of some
selected trend topic cascades. Within the SI model formalism,
each website (the nodes of our graph) will be characterized by
the state ‘I’ if it participates to the cascade or ‘S’ otherwise;
webpages that have published in the same day are considered
as ‘infected” in the same time-step. The size of the network
makes the use of the entire dataset impractical. We therefore
analyse single cascades that (a) contain a keyword of our
choice in the representative sentence; (b) the number of web-
pages involved in the epidemics is larger than a certain
threshold (usually 5-10) and (c) the whole spreading event
does not last more than T days (usually 10—20). These three con-
ditions are able to isolate sub-sets of nodes labelled by our
chosen keyword. We show in figure 9 the sub-network structure
of the nodes participating to cascades that contain the word
‘Korea’. Edge thickness and colour are proportional to the
values of the inferred infection probabilities, with the most infec-
tious links having the darkest and thickest arrows. Node sizes
instead reflect the degree of the nodes. A giant component is
clearly visible in the centre of the picture, where edge colour
and thickness are inhomogeneous. Several disconnected cliques
are also apparent on the sides. These homogeneously connected
nodes are observed only once in a unique cascade: our algorithm
thus predicts a ‘flat” assignment of small \;; for all possible links
of the disconnected components, since there is not enough infor-
mation to discriminate between zero and non-zero infection
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Figure 9. Reconstruction of website influence network participating in 30 trend topic cascades having the word ‘Korea” in the representative sentence. The number

of nodes is 269 while the number of edges is 2306. (Online version in colour.)

probabilities. This is less evident in figure 10 for tag ‘iPhone’.
Other reconstructed networks are shown in the electronic sup-
plementary material.

2.6. Inferring transmission probabilities

Let us now briefly consider a slightly different application of
the general formalism presented so far. Suppose that the
underlying network structure is known but little or any infor-
ijs which
are, in the general case, inhomogeneous. Our method can be

mation is available on the transmission probabilities A

easily accommodated so as to provide the maximum likelihood
estimation of the quantities \;;. Starting from an initial assign-
ment of the coupling parameters (we used \;; = 0.5) defined
over a known topology, one seeks a fixed point of the coupled
BP and gradient equations using GABP.

As an example, we consider an RR graph of size |V| =20
with degree d =4, and evaluate the inference performance
with increasing number of cascades M. Figure 11a shows the
value of the mean square error MSE = 3o (Ajj — )\f-jme)z /|E|
between the inferred transmission probabilities \;; and the true
ones, )\;F]-me. To better appreciate the quality of the inference, we
show a scatter plot for two different values of M in figure 11b.

2.7. Mutual information based pruning

GABP is an iterative algorithm where fixed-point equations
are efficiently updated until convergence as explained in
the Discussion section and in the electronic supplementary
material. The epidemic parameters are inferred through an
expectation maximization (EM) scheme (see also the elec-
tronic supplementary material) which does not affect the
performances of the method. The running time is thus gov-
erned by the O(T|E'|) operations of the main BP algorithm,
where |E'| is the number of candidate edges. In all the cases
we have considered so far, no a priori knowledge of the net-
work structure is assumed and therefore this number scales
as |V\2, except for the PPI networks in which, along with
the existing edges, we consider Z additional FP links, |E'| =
|E| + Z. We show in this section how to reduce the number
of parameters to be inferred by pruning the network of all
possible connections.

Consider the case in which two variables appear to be
correlated (e.g. their mutual information is very large). This
can be a direct effect due to the presence of a link between
the two or an indirect effect carried by paths that connect the
two nodes (either exploiting other mediator nodes or because
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Figure 10. Webpage networks publishing trend topics containing the word ‘iPhone’. Here M = 91, |V| = 562 and |£| = 3831.
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Figure 11. Reconstructing spreading couplings in inhomogeneous networks. (a) Mean squared reconstruction error MSE = ZK/. (A — )\}j’”e)2 /|E| in a random
regular graph of size || = 20 and degree d = 4, as a function of the number of observed cascades M. The network structure is known in advance. The spreading
couplings )\}j'“e have been extracted randomly from the homogeneous distribution in the interval [0, 1]. The state of the network is observed only at time T = 5 for
each cascade. (b) Scatter plot of reconstructed transmission probabilities N; versus true spreading couplings )\,‘.j’“e for the cases M =20 and M = 400,
corresponding to the golden and green points in (a), respectively. (Online version in colour.)

co-infections are the consequence of a single initial event). As an example, we consider here M = 50 cascades spread-
From pure correlation evaluation, we cannot distinguish ing in an RR graph of |V| = 50 nodes and fixed degree d = 6.
the two cases. However, if two variables are uncorrelated, the We take as candidate edges E' a certain percentage of the
presence of a link is unlikely. most correlated links (computed via (4.15)) among all
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the possible ones. When |E’| reaches 800 edges, 65% of the
possible edges, we achieve an area under the ROC curve of
0.84, which is equivalent to the one obtained when considering
all connections.

3. Discussion

We have presented a new method that allows one to recon-
struct a hidden network from limited information of
activity propagations, and showed that the reconstruction
performance is extremely accurate even when the number
of snapshot observations is very small. This scheme can be
effectively applied to the detection of FP links in PPI net-
works even when the number of candidate false edges is
comparable to the effective number of TP contacts. In this
particular case, it suffices very few independent cascades to
correctly classify the great majority of the links.

There are several advantages of this approach over existing
ones. The main one is that several inference problems can be
treated under a unique formulation. Our technique can be
easily extended to incorporate effects of unreliable observations,
taking into account noisy measurements, and/or cases where
susceptible nodes cannot be distinguished from recovered
ones [31]. When a complete list of contact times between
nodes is available, the construction of an equivalent network
of time-dependent infection probability is straightforward,
and the current approach has been proven to be effective.

Owing to the generality of the Bayesian method, the
described technique is capable of dealing with a wide variety
of irreversible spreading processes on networks. A possible
simple generalization is to the (random) bootstrap percolation
case where each node gets activated when the aggregated input
from neighbours overcomes an intrinsic stochastic activation
threshold of the node. These models are widely used to
describe the features of dynamical processes in neuronal
networks, and we consider this an exciting research direction.

4, Methods

4.1. Graphical model formulation of the spreading
process

Let us first consider a single cascade on a network with a fixed top-
ology. For a fixed initial configuration x(0), a realization of the
stochastic process can be generated by drawing randomly a set
of infection transmission delay s;; for all pairs (ij) and the recovery
times g; of each node i. The recovery times {g;} are independent
random variables extracted from the geometric distributions
Gi(gi) = mi(1 — w)*, the delays {s;} are conditionally indepen-
dent random variables distributed according to a truncated
geometric distribution

A(l _ A..)S!/,
ij(sijlgi) = { (11], Ai],)glfﬂ

Note that we concentrate in the value s;; = oo the mass of the distri-
bution beyond the hard cut-off g; imposed by the recovery time.
The joint probability distribution of infection and recovery times
conditioned on the initial state is easily written as

P(t, gx(0) = Y P(s|g)P(tx(0), s, 8)P(g)

sij < gi

sij = oo. @.1)

= Z H wij(sijlgi) H it (b skitkeon)Gi(g)),  (42)
s i i

where
Pi(ti, s switkeoi) = 08 1[x:(0) # I](1 + Eg}{tk +su))  (4.3)

is a characteristic function which imposes on each node i the
dynamical constraint of equation (2.1).

Using the Bayes formula, the posterior probability of the
initial configuration given an observation at time T reads

POIXT) o< Y~ P(DIt, 8P, gxOYP((O)  (44)

tg
=> [Tei[[wgmd, (4.5)

tgs ij i

where P(x(0)) = [[; %(xi(0)) is a factorized prior on the initial
infection with

¥(xi(0)) = ¥8(xi(0), I) + (1 — %)8(xi(0), 5) (4.6)

for a generally small constant y (we do not allow state (R) at time
0). Note that the network state x(t) is a deterministic function of
the set of infection and recovery times (t, g), so that we obtain

PNt g) = [ [ &t g x(T) “7)

with L= =S t<t]+xt) =Lt <t<ti+g]+]
[xi(t) =R, ti + g < t]. Note that assuming x;(0) € {(S), (I)},
then ¢;(t;, {tx Ski}rea:) could be also rewritten equivalently as
&(ti, gi, xi(0)[8(t; 1 + mingea; {t + si)) + 8(t;, 0)].
introduce a set of observational weights ", one for each obser-

Now, if we
vation m, together with a set of priors ", the posterior
distribution of the initial states conditioned to observations,
because of the assumption of independence, will be proportio-
nal to the product over all the single probability weights
for each cascade P(x*M(0)|x"M(T)) o ]_[},\n/[:1 Z::l*,g PE™T)|E", g™)
PE", g"x"(0))P(x"(0)) that taking into account equation (4.5)
will take the form

M
PO MM o [T 3 [Tep[Turarva’,  @8)

m=1¢",gnsm i<j

where all the factors have been labelled with an extra cascade
index m and x“™(T)= (x"(T))m=1, ... m- Since we have no a
priori information on the graph topology, the product in the
term [, i runs over all the possible pairs i and j in the set
V, meaning that we always work in the setting of a fully con-
nected network with weights {\;}. If the number of cascades
M is large enough, the non-zero elements of the matrix {\;}
will signal, upon convergence of the GABP algorithm, the true
links in the original graph, their value being informative of the
heterogeneity of infection probabilities. The same holds for the
set of recovery parameters {u;}. Note that for \; =0, (4.1)
imposes the condition s;; = o, meaning that (ij) can be ignored
in (2.1), effectively pruning the link from the equations.

4.2. Belief propagation approach
Given a high-dimensional probability distribution M(z) with a
locally factorized interaction structure, computing marginals and
aggregated quantities may be addressed with the use of a message
passing procedure built on a cavity approximation for locally tree-
like graphs [39-41]. In the present problem, we obtain a full set of
(cavity) marginal probabilities over the set of all the possible cas-
cades compatible with the observations. BP is proven to be exact
on tree graphs, and has been successfully employed on general
loopy graphs under mild regularity conditions [9,42].

To briefly describe the essence of the method, let us consider
a probability distribution over the variables z = {z;} that has the
following factorized form:

M) = 5 T xte, 9)
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where each y, is called a compatibility function, or factor. We
write z, = {z;};cp, as the set of variables it depends on, da the
subset of indices of variables in factor x,, and accordingly 0i
will be the subset of factors that depend on z;. BP equations are
a set of self-consistent equations for the so-called cavity messages
(or beliefs), a set of single-site probability distributions which are
associated with each directed link in the graphical model repre-
senting the joint distribution of equation (4.9). The general
form of the BP equations is the following:

1
Pu—i@ =5 > xalz) [ mj-x @), (4.10)
Tz »/ean\i] jEda\i
My, (zi) = H Py —i2i) (4.11)
Zia bedi\a
and miz) = - prﬁ,(z) 4.12)
' pedi

where the terms Z;,, Z,; and Z; are local partition functions, ser-
ving as normalizers. To solve equations (4.10) and (4.11), an
iterative procedure is typically used, where the cavity messages
are initialized with uniform distributions and they are asynchro-
nously updated until convergence to a fixed point (see [39,41]
for an introduction). The BP equations can be thought of as
local update rules for messages in a so-called factor graph, a
bipartite graph where each term y, is associated with a factor
node, connected to all the variable nodes in the set z, it depends
on. A naive implementation of the BP scheme at the level of
equation (4.8) would simply not work, since the corresponding
graphical model has a loopy structure both at local and global
scale. It is however possible to construct a disentangled factor
graph by means of a re-parametrization of the cavity messages.
We provide a brief description of this procedure in the electronic
supplementary material, Methods. For a thorough discussion, we
refer the reader to previous works [30,31]. Here we just want to
stress that the modified factor graph is an enriched dual version
of the original graph, whence the particular appeal of the
method. In particular, this implies that BP provides the exact
Bayesian solution when the underlying network is acyclic.

While the computation of equation (4.11) is straightforward,
the sum in equation (4.10) generally involves a number of steps
growing exponentially with the size of 0a. An efficient
implementation of the BP equations for the posterior distribution
is given in the electronic supplementary material, Methods. Once
BP converges, equation (4.12) can be used to compute the mar-
ginal probability P(t! =0 | {x"(T)}), which brings a posterior
estimation of the probability for the node i to be active at time
t =0 in the mth cascade.

4.3. Network reconstruction algorithm

We employ an alternating optimization scheme in which BP is
coupled to a maximum-likelihood strategy, implemented with
a GA method. In the BP phase, the network parameters {)\ij,
w;} are kept fixed and a solution is searched iteratively for
equations (4.10) and (4.11). At this stage, the source can be
located independently for each cascade looking at the single-
site marginals P(x}*(0)|{x"(T)}). In the maximum likelihood
phase, the log-likelihood of network parameters is maximized
by means of a simple GA procedure. The gradient may be
computed efficiently in the BP approximation. The likelihood
PUX™(T)}{Aj}, {m}) with respect to the network parameters is

M

Z(h tmh =

m=1x"(0)t",g"

The logarithm of this quantity (log-likelihood) corresponds to the
negative free energy of the model L({A;j}, {n;}) = —f({Ai}, {m})

log Z({Aj}, {n;}), and can be expressed as a sum of local
terms depending only on the BP messages (see electronic

PO(D)IE", g")PE", g" X" (0)P(x"(0)).

supplementary material, Methods). BP updates for the distri-
bution in equation (4.8) are then coupled to GA updates with
respect to each network parameter, that take the form

Aij — Ajj + ESTC,-, (4.13)
and

i Myt Ea—ui (4.14)
with € a small multiplier parameter (we found e =10"* yields

good results and stable convergence and used this value for all
our simulations). The results presented in this work have been
obtained by interleaving one BP step with a GA step: this simple
scheme suffices to provide good joint estimates for the patient
zero in each cascade, together with a remarkably good reconstruc-
tion of the underlying network. An alternative method would
consist of applying an EM scheme, in which alternatively BP
equations are iterated to convergence (BP step) and parameters
are fully optimized for fixed BP messages (EM step). However,
the EM step requires the maximization of a high-order polynomial
that must be solved numerically in any case (e.g. in a GA scheme).
We obtained faster convergence by alternating single GA and BP
steps rather than alternating full convergence cycles of both steps.

4.4. Mutual information

For comparison, we tried to reconstruct the networks of interest
using correlation-based measures. At the observation time, we
have computed the probabilities of observing edges (i, j) as the
mutual information between nodes i and j:

fi(ei(T), x(T))
mij = [%Zx)f‘](x: , xi(T)) 1 f]xle,(x],(T)) , (4.15)

where fj;, f; are empirical probabilities computed as

fi(xi(T), x;(T)) MZ BT, (T O (T, x(T) (4.16)

and
1
filxi(T)) = M Z 81, x(T)- (4.17)

Data accessibility. Retweet data are openly available at http://network
repository.com/rt_retweet.php. Interactome networks are openly
available as part of the PSICQUIC dataset in Cytoscape 3.5.1
(https://cytoscape.org/), and the memetracker phrase cluster data
are available at http://www.memetracker.org/data.html.
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Endnote

!Suppose of observing some spreading cascades in a network where the
infection probability is very small (or the recovery probability is huge in
the SIR model). At the observation times the majority of nodes might
not have been touched by any of the spreading events and thus no
information can be extracted on a huge fraction of the edges. At the
same time, a huge infection probability in the SI (SIR) model may let
the epidemics propagate so fast that at the observation time all nodes
are in the ‘I state ('R’ state). Also in this case, there is no way of inferring
the epidemic parameters with this type of observations.
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