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INRIA-Microsoft Research Joint Centre
Palaiseau, France

Abstract

We consider the problem of community detection from observed interactions between
individuals, in the context where multiple types of interaction are possible. We use labelled
stochastic block models to represent the observed data, where labels correspond to inter-
action types. Focusing on a two-community scenario, we conjecture a threshold for the
problem of reconstructing the hidden communities in a way that is correlated with the true
partition. To substantiate the conjecture, we prove that the given threshold correctly iden-
tifies a transition on the behaviour of belief propagation from insensitive to sensitive. We
further prove that the same threshold corresponds to the transition in a related inference
problem on a tree model from infeasible to feasible. Finally, numerical results using belief
propagation for community detection give further support to the conjecture.

1 Introduction

Community detection consists in the identification of underlying clusters of individuals with
similar properties in an overall population. It is relevant in vastly diverse contexts such as
biology and sociology, where one might want to classify proteins or humans respectively, based
on their interactions. Most methods assume interactions to be described by a graph, whose
edges represent pairs of individuals known to interact. They then amount to graph clustering,
with potentially distinct flavours: assortative communities see more interactions within than
across communities, while the opposite holds in the disassortative case.

The stochastic block model provides a versatile model of community structure, allowing
representation of diverse scenarios and analytical comparison of candidate algorithmic detection
procedures. In this model, nodes are partitioned into blocks, and an edge is present between
any two nodes with a probability depending only on the blocks to which each of the two nodes
belong. Despite its simplicity, this model already displays rich behaviours, some of which are
not yet fully understood. One phenomenon of practical interest consists in a phase transition
from a situation where the graph of interactions does not reveal any structure, to one where
it reflects some of the underlying structure. In the latter case, algorithmic procedures such as
belief propagation can perform non-trivial classifications of nodes.

The simplest example of this situation consists in a model with n nodes partitioned into two
equal-size blocks, and where two nodes are connected with probability a/n or b/n depending
on whether they belong to the same block or not. Then it is known that the Condition

(a− b)2 > 2(a+ b) (1)
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is necessary for reconstruction, i.e. cluster in a way correlated with the true partition. Mossel
et al. [1] have indeed shown that, if it is violated, then the distribution of the observed graph
is absolutely continuous with respect to that of an unstructured fully symmetric random graph
without underlying block structure. When this condition holds, it is conjectured by Decelle et
al. [2] that the underlying block structure can at least partially be recovered by belief propa-
gation. Beyond their theoretical interest, such threshold phenomena also have some practical
implications: they indicate what amount of downsampling or perturbation of original data can
be tolerated before all useful information is lost.

Three elements support the conjecture that under Condition (1) community detection is
possible. First, Decelle et al. [2] show that it implies sensitivity of belief propagation to noise.
Second, it is known to correspond to a certain reconstruction threshold for a model of infinite
random trees, whose structure locally resembles that of the stochastic block model. Third,
numerical evaluations indicate the ability of belief propagation to retrieve some of the underlying
structure under (1).

In the present work, we initiate an investigation of similar phenomena in the more general
context of labelled stochastic block models. In such models the observation of an interaction be-
tween any two individuals is enriched with a label which represents that interaction’s particular
type. Many applications of community detection naturally feature such labels. Protein-protein
chemical reactions may be exothermic or endothermic; (movie-user) associations in collabora-
tive filtering typically come with user ratings; email exchanges may be cold, formal, or familiar;
etc.

Our main contribution consists in a generalization of Condition (1) describing the transition
from unidentifiable to identifiable to the context of labelled stochastic block models. Specifi-
cally, after introducing necessary notation and our main conjecture in Section 3, we show in
Section 4 that our generalized condition corresponds to the transition between insensitivity to
sensitivity in belief propagation. We then show in Section 5 that it also coincides with the
reconstruction threshold for the corresponding labelled tree model. The conjecture is further
validated numerically in Section 6 where belief propagation is shown to achieve useful detection
only above the threshold. Conclusions are drawn in Section 7.

2 Related Work

Several works address community detection in the un-labelled stochastic block model. The
two main approaches are based on belief propagation and spectral methods. Spectral methods
typically ensure consistent reconstruction in regimes with high (ω(1)) average degree. An early
reference is McSherry [3]. More recently Rohe et al. [4] use Laplacian spectra, and address
growing numbers of communities, but still require high (ω(1)) connectivity. Decelle et al. [2]
rely on belief propagation, and heuristically determine a threshold for detectability in a “sparse”
regime, where node degrees are of order 1.

The related problem of tree reconstruction has initially been considered by Evans et al.
[5], who identified a threshold on the tree’s mean degree above which reconstruction is feasible
through a simple “census” method. This threshold was later shown to correctly identify the
onset of “robust reconstruction” by Janson and Mossel [6]. We refer to [7] for a survey of this
area.

A complete understanding of the relation between thresholds for community detectability
in block models and reconstrruction in associated tree models is still missing. See, however,
Gerschenfeld and Montanari [8] for conditions under which the two thresholds coincide. For
the symmetric two-community case, Mossel et al. [1] show that the threshold for community
detectability is at least as large as that for tree reconstruction; Coja-Oghlan [9] determines an
upper bound on the threshold for community detection, that is believed to be loose.

In contrast, to the best of our knowledge the problem of community detection and tree
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reconstruction in the labelled case has not been explicitly considered in the literature.

3 Model description and main conjecture

In the sequel we focus on the simplest non-trivial labelled stochastic block model, which is
defined as follows. A total of n nodes are split into two equal-size blocks, namely block 0 and
block 1. The type of any given node i ∈ {1, . . . , n} refers to the block it belongs to, and is
denoted by σi ∈ {0, 1}. Any two nodes i, j are related with probability a/n if σi = σj , and
with probability b/n otherwise, where a, b are two positive constants. Furthermore, given any
two related nodes i, j, one observes a label Lij taking its values in some finite set L. Label Lij
is drawn from distribution {µ(`)}`∈L if σi = σj , and from distribution {ν(`)}`∈L otherwise.

Note that the present model generalizes the one studied in Mossel et al. [1], to which it
reduces when the labels do not bring extra information relative to the types of the underlying
nodes, that is when µ(`) ≡ ν(`). In this context, we make the following conjecture:

Conjecture: In the labelled stochastic block model with two symmetric blocks, connectivity
parameters a, b > 0 and label distributions µ, ν, reconstruction is infeasible if τ < 1, while it is
feasible when τ > 1, where the threshold value τ is defined as

τ := λ
∑
`∈L

aµ(`) + bν(`)

a+ b

(
aµ(`)− bν(`)

aµ(`) + bν(`)

)2

, (2)

and λ := (a+ b)/2 is the mean degree in the corresponding block model.
Note that this extends the conjecture made for the un-labelled case in [1], as the Condition

τ > 1 simplifies to (1) when µ(`) ≡ ν(`). We will now establish several results supporting this
conjecture.

4 Phase transition for belief propagation sensitivity

We first introduce a labelled tree which can be coupled with the original graph, see Proposition
5.2 in [1] (the only difference here is the addition of labels on edges). Consider the following
random tree version of the reconstruction problem. Starting from a root node r with type
σr ∈ {0, 1}, consider a branching process with the following characteristics. Each node i with
type σi gives birth to a number of children of type t = σi with Poisson distribution Poi(a/2)
and to a number of children of type t = 1− σi with Poisson distribution Poi(b/2). Conditional
on the types (t, t′) of a (parent-child) pair (i, j), a label Lij is attached to the edge (i, j), drawn
independently of everything else with distribution µ if t = t′, and with distribution ν if t 6= t′.

Consider now such a tree up to depth d, that we denote Td. For each node i ∈ Td, denote
by Td(i) the subtree rooted at node i, together with its labels. Let Xi = P(σi = 1|Td(i)), and

Ri :=
Xi

1−Xi
·

Bayes formula entails that

Ri =
∏

j child of i

Xjaµ(Lij) + (1−Xj)bν(Lij)

Xjbν(Lij) + (1−Xj)aµ(Lij)
·

This readily reduces to a recursion in terms of the random variables Rj :

Ri =
∏

j child of i

Rjaµ(Lij) + bν(Lij)

Rjbν(Lij) + aµ(Lij)
·
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It also follows at once from these expressions that if one starts from uniform beliefs (X = 1/2
or equivalently R = 1 on the leaves), then uniform beliefs constitute a fixed point.

Following Decelle et al. [2], we introduce the following notion of robustness to noise for this
fixed point:

Definition 1. Assume that belief ratios R for leaf nodes at depth less than d are fixed to 1.
The belief ratio Rr at root r is then determined by induction from the belief ratios Rj of nodes
at depth d, i.e. j ∈ ∂Td, through a map Fd: Rr = Fd(Rj , j ∈ ∂Td).

The infinitesimal sensitivity χ(d) of the root belief Rr to noise at depth d is defined as

χ(d) = lim
ε→0

1

ε2
Var (Fd(1 + εξj , j ∈ ∂Td)|Td) , (3)

where the ξj are i.i.d. unit variance random variables. The fixed point R ≡ 1 is then said to be
insensitive to noise if limd→∞ χ(d) = 0, and sensitive to noise if limd→∞ χ(d) = +∞.

With these definitions at hand, we are ready to state the following

Theorem 1. Let τ be defined by expression (2). Then the fixed point R ≡ 1 is insensitive to
noise if τ < 1 and sensitive to noise if τ > 1.

Before we prove the theorem, let us comment on the implications. As conjectured in Decelle
et al. in the case of un-labelled data, community detection is infeasible in an instance which is
insensitive to noise, while it is feasible (i.e. some reconstruction classifying correctly more than
half the nodes) in an instance that is sensitive to noise. This leads us to state the conjecture in
Section 3.

Before proving Theorem 1 we need a technical result. Consider thus a branching process
with Poisson offspring distribution with mean λ for some λ > 1. In addition, each parent-child
edge in the corresponding branching tree is endowed with a real weight. All weights W are
sampled in an i.i.d. fashion with moment generating function: ϕ(θ) = E

[
eθW

]
<∞.

We let N(d) denote the number of descendants in the d−th generation. We further let
N+(d, s) (resp. N−(d, s)) denote the number of such descendants whose sum of weights along
the path from the ancestor to them is larger (resp. smaller) than ds.

Let us now introduce the so-called rate function h as follows. First, we let

h0(x) := sup
y∈R

(xy − log(ϕ(y))) .

This is the so-called Cramér transform of the weights distribution, which by Cramér’s theorem
determines the behaviour of large deviations of empirical means (1/d)

∑d
t=1Wt of i.i.d. weights

from their expectation w̄ := ϕ′(0). Let now w− and w+ be defined as{
w+ = inf{x ≥ w̄ : h0(x) ≥ log λ},
w− = sup{x ≤ w̄ : h0(x) ≥ log λ}.

We then let

h(x) :=

{
h0(x) if x ∈ [w−, w+],
+∞ otherwise.

(4)

We are now ready to state the following

Theorem 2. For any x ≥ w̄, x 6= w+, on the event that the branching process survives indefi-
nitely, one has the almost sure convergence

lim
d→∞

(
N+(d, x)

)1/d
= λe−h(x). (5)

Similarly, for all x ≤ w̄, x 6= w−, on the event that the branching process survives indefinitely,
one has

lim
d→∞

(
N−(d, x)

)1/d
= λe−h(x). (6)
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Proof. We only prove (5), as the other property (6) is shown similarly. Consider first the case
where x > w+. The expectation of the summation in (5) reads

EN+(d, x) = λdP

(
d∑
1

Wt ≥ xd

)
.

Chernoff’s bound implies that this is no larger than ed(log λ−h0(x)). Being an integer-valued
random variable, the summation is then positive only with probability at most ed(log λ−h0(x)).
By Borel-Cantelli’s lemma, it is then positive only for finitely many d’s. Thus the limit in (5)
is 0, as announced.

The case where x ∈ [w̄, w+) follows from a general result for branching random walks [10].
Indeed consider the random measure on R:

Z(d) =

N(d)∑
i=1

δ(Xi),

where Xi is the sum of the weigths along the path from the ancestor to the i-th individual in
generation d. Note that we have N+(d, x) = Z(d)[xd;∞).

It is well-known that

M (d)(x) := (λϕ(x))−d
∫
exyZ(d)(dy),

is a positive martingale and hence has an almost sure limit M(x) as d tends to infinity. For
x ∈ (w−, w+), as shown in [10], the limit M(x) is stricly positive if the process survives. Then
Theorem 4 in [10] implies that for any fixed 0 < h as d tends to infinity:(

Z(d)[xd− h, xd+ h]
)1/d

→ λe−ho(x).

This clearly gives a lower bound to (5). The upper bound is easily obtained by the following
argument:

N+(d, x) = Z(d)[xd,∞) ≤
∫
eθ(y−xd)Z(d)(dy)

= e−θxdM (d)(θ)λdϕ(θ)d,

minimizing over θ < w+ (which ensures that limd→∞M
(d)(θ) = M(θ) > 0) gives the desired

result.

Let us now prove Theorem 1. We first determine an expression for the infinitesimal sensi-
tivity χ(d). Using linearization, we have that

χ(d) =
∑

j∈F(d)

∏
(uv)∈path (j∼r)

(
∂

∂R

Raµ(Luv) + bν(Luv)

aµ(Luv) +Rbν(Luv)

∣∣∣∣
R=1

)2

.

The derivative in the above formula reads

∂

∂R

Raµ(Luv) + bν(Luv)

aµ(Luv) +Rbν(Luv)

∣∣∣∣
R=1

=
aµ(Luv)− bν(Luv)

aµ(Luv) + bν(Luv)
· .

Let us denote the absolute value of this expression by eWuv for some suitably defined weight
Wuv, so that

χ(d) =
∑

j∈F(d)

exp

 ∑
(uv)∈path (r∼j)

2Wuv

 .
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Note that in the present model, thanks to symmetry between the two classes 0, 1, the labels
Luv are i.i.d., with probability distribution P(L = `) = aµ(`)+bν(`)

a+b .
We are thus in the setup of Theorem 2, with a dsitribution for the weights suitably derived

from this label distribution and the transform W = log(|aµ(L)− bν(L)|/(aµ(L) + bν(L)).
We then have, from Theorem 2, applying the Laplace method, the exponential equivalent:

1

d
logχ(d) ∼ log λ+ sup

x∈R
(2x− h(x)). (7)

Consider the modified expression supx(2x − h0(x)), and let x∗ denote the point attaining this
supremum. By convexity of h0 and the fact that it achieves its minimum at w̄, necessarily
x∗ ≥ w̄. This supremum equals log Ee2W by convex duality. Note also that x∗ ≤ 0, since the
support of the distribution of W is in R−. Consider first the case where τ > 1, or equivalently,

log λ+ log Ee2W > 0.

We then have h0(x
∗) = 2x∗ − log Ee2W < log λ by the above condition, so that h0(x

∗) = h(x∗).
Thus the logarithmic equivalent (7) reads log(τ) and is strictly positive. We thus have sensitivity
to perturbations.

Consider next the case where τ < 1, i.e. log Ee2W < − log λ. In that case, the logarith-
mic equivalent (7) is upper-bounded by log(τ) and is thus strictly negative. Insensitivity to
perturbations follows.

5 Phase transition for reconstructability on labelled trees

In this section, T is an infinite tree with types σ ∈ {0, 1} on its vertices and labels L on its
edges. To have consistent notation with previous section, a child has the same type as its
parent with probability a

a+b . Given that the child has the same type as its parent, its label is
distributed as µ(`), otherwise it is distributed according to ν(`). Note that if T is a realization
of a Galton-Watson tree with offspring distribution Poi

(
a+b
2

)
conditioned on non-extinction,

we get exactly the same tree model as in the previous section. In this section, the underlying
tree is fixed (i.e. non-random) so that the only randomness considered here is associated with
the types of the vertices and the labels of the edges.

We denote by P0 and E0 the probability distribution and expectation conditional on the
labels of the edges of the tree. We define the function ε : L → [0, 1/2] by

ε(`) =
bν(`)

aµ(`) + bν(`)
.

a If j is a child of i, we have

P0 (σi 6= σj) = ε(Lij).

We now give an alternative description of the random types of the vertices of the tree when
the labels of the edges are known, i.e. conditionally on the labels. At the root r of the tree
T a binary random variable is chosen uniformly at random. This type is then propagated,
with error, throughout the tree as follows: the child j of the vertex i receives the type of i
with probability 1 − ε(Lij), and the opposite type with probability ε(Lij). These events at
the vertices are statistically independent. This model has been studied in information theory,
mathematical genetics and statistical physics when the function ε is constant. We refer to [5]
for references.

Suppose we are given the types that arrived at the d-th level ∂Td of the tree T . Observing the
labels of the edges and using optimal reconstruction strategy (maximum likelihood), the prob-
ability of correctly reconstructing the original type at the root is denoted by (1 + ∆(T , d)) /2,
where clearly ∆(T , d) ≥ 0.
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For an infinite tree T , we denote by λ = lim supd |∂Td|1/d its growth rate. Note that our
notation is consistent with the previous section, as in the case where T is a realization of a
Galton-Watson tree with offspring distribution Poi

(
a+b
2

)
, λ = a+b

2 a.s. We still define τ by the
expression (2). Adapting the argument of [5], we are able to show:

Theorem 3. Let T be an infinite labelled tree with root r as defined above. Consider the problem
of reconstructing the type of the root σr from the types at the d-th level ∂Td of T and the labels
on the tree.

1. If τ > 1 then infd≥1 ∆(T , d) > 0;

2. If τ < 1 then infd≥1 ∆(T , d) = 0.

Proof. Following [5], we derive a lower bound for ∆(T , d) in terms of the effective electrical
conductance from the root r to ∂Td and an upper bound which is the maximum flow from r to
∂Td for certain edge capacities. We refer to [11] for background on these notions.

For the conductance lower bound, we follow Section 5 of [5] and for each edge (i, j), j a

child of i, we define θij = 1− 2ε(Lij) =
aµ(Lij)−bν(Lij)
aµ(Lij)+bν(Lij)

and then assign the resistance

Rij = (1− θ2ij)
∏

(uv)∈path (r∼j)

θ−2uv ,

where path (r ∼ j) is the path from the root r to node j. We also define for each vertex i

Θi =
∏

(uv)∈path (r∼i)

θuv.

By Theorem 1.2’ and 1.3’ of [5], we have

∆(T , d) ≥ 1

1 +Reff(r ↔ ∂Td)
and ∆(T , d)2 ≤ 2

∑
i∈∂Td

Θ2
i ,

where Reff(r ↔ ∂Td) is the effective resistance between the root r and the d-th level of the tree.
We first prove our second claim. Note that

E0

[
θ2uv
]

=
∑
`

aµ(`) + bν(`)

a+ b

(
aµ(`)− bν(`)

aµ(`) + bν(`)

)2

=
τ

λ
,

so that we have for τ < 1,

E0

∑
i∈∂Td

Θ2
i

 = |∂Td|
(τ
λ

)d
→ 0,

as d tends to infinity. Hence by Fatou’s lemma, we have

lim inf
d

∑
i∈∂Td

Θ2
i = 0 a.s.,

and our second claim holds.
Our first claim will hold, once we prove that for τ > 1, we haveReff(r ↔∞) = supd≥1Reff(r ↔

∂Td) < ∞. This fact follows indeed from a computation done in [12]. Define the resistance
R′ij =

∏
(uv)∈path (r∼j) θ

−2
uv . Note that in our framework the labels of the edges are i.i.d. with

distribution aµ(`)+bν(`)
a+b . In particular the random variables θuv are also i.i.d. and since θuv ≤ 1,

we have min0≤x≤1 E0

[
θ2xuv
]

= E0

[
θ2uv
]

so that by Theorem 1(i) of [12], for τ > 1, we have
R′eff(r ↔ ∞) < ∞ a.s. Since Ruv ≤ R′uv, we have by Rayleigh’s monotonicity law (see [11]),
Reff(r ↔∞) ≤ R′eff(r ↔∞) <∞ a.s.
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6 Numerical results

Figure 1: Overlap Q as a function of the parameter ε (left: a = b; right a < b)

We now investigate numerically the validity of our proposed conjecture. We consider first a
labelled stochastic block model with two symmetric blocks where the connectivity parameters
are identical, i.e. a = b, so that community detection can only succeed based on the labels. We
assume for simplicity only two labels + and − and define the distributions µ(+) = p for edges
among nodes of the same type and ν(+) = q for edges between nodes of different type for two
parameters p, q ∈ [0, 1]. In this case, Condition (1) does not hold, yet reconstruction may still
be feasible depending on the values of p and q. In order to validate our conjecture that if the
value τ given in (2) is greater than 1, reconstruction may be feasible, we parametrize p = 1

2 + ε
and q = 1

2 − ε, which leads to the simplified condition for reconstruction:

ε >
1

2
√
a
. (8)

We characterize the success of the reconstruction using the overlap metric introduced by
Decelle et al. in equation (5) of [2], which we repeat below:

Q({σi}, {σ̂i}) = max
π

1
n

∑
i δσi,π(σ̂i) −maxt nt

1−maxa na
, (9)

where σi denotes the original assignment of types to nodes i = 1 . . . n, σ̂i, denotes the estimated
assignment, t denotes communities, and nt is the size of community t. In our setup, t = 0
or 1 and nt = n/2. Since types may be assigned in different order in the estimate, we vary
over all permutations π(σ̂i) of σ̂i and take the one with maximum overlap. This overlap metric
ranges from 0 to 1, equating zero when classification is no better than assigning all nodes to a
fixed class (or equivalently, assigning nodes to a randomly chosen type). We generate a labelled
stochastic block model graph with the parameters given above and n = 5000 nodes. Then,
we use the standard sum–product belief propagation algorithm to infer the types of the nodes
based on the labels. We vary both the density, i.e. a = b, and ε. All plotted values are averages
over several different seeds.

In Fig. 1 (left), we plot the overlap metric Q against ε on the x-axis for a = b given by 2,
5, 10. For each curve, we indicate the threshold (8) as a vertical line in the same style as the
corresponding curve. We observe that to the left of the threshold, Q remains around zero and
the variation may be attributed to the initial conditions and small-scale effects. To the right of
the threshold, however, Q increases steadily.

For comparison, in Fig. 1 (right), we provide the same metric but with a < b given by
(a, b) = (1, 3), (4, 6), (8, 12). Accordingly, belief propagation can now exploit both edges as
well as their labels and the corresponding curves are shifted towards the left, along with the
threshold of ε where τ = 1, again indicated by a vertical line for each curve.

It is interesting, that even for reasonably small scales, belief propagation consistently fails
below the threshold, with overlap close to zero, yet achieves positive overlap above the threshold.
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7 Concluding remarks

We have initiated an analysis of community detection in the context of labelled interactions.
We have formulated a conjecture on when detectability is feasible, in the form of Condition
(2). While restricted to the two symmetric communities case, this condition is already useful in
determining how the availability of labels affects detectability. A natural extension will consider
richer scenarios with more communities, where our techniques can potentially characterize the
corresponding transition thresholds. On the theoretical front, we have established that two
phase transitions, namely sensitivity of belief propagation, and tree reconstructability, coincide
in the case of labelled trees. The main outstanding question there is to validate our conjecture
that these thresholds characterize the onset of community detectability.
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