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Identifying microbial drivers in biological phenotypes with a Bayesian Network Regression model

Abstract

1. In Bayesian Network Regression models, networks are considered the predictors of continuous

responses. These models have been successfully used in brain research to identify regions in

the brain that are associated with specific human traits, yet their potential to elucidate microbial

drivers in biological phenotypes for microbiome research remains unknown. In particular, microbial

networks are challenging due to their high-dimension and high sparsity compared to brain networks.

Furthermore, unlike in brain connectome research, in microbiome research, it is usually expected that

the presence of microbes have an effect on the response (main effects), not just the interactions.

2. Here, we develop the first thorough investigation of whether Bayesian Network Regression models

are suitable for microbial datasets on a variety of synthetic and real data under diverse biological

scenarios. We test whether the Bayesian Network Regression model that accounts only for interaction

effects (edges in the network) is able to identify key drivers (microbes) in phenotypic variability.

3. We show that this model is indeed able to identify influential nodes and edges in the microbial

networks that drive changes in the phenotype for most biological settings, but we also identify

scenarios where this method performs poorly which allows us to provide practical advice for domain

scientists aiming to apply these tools to their datasets.

4. BNR models provide a framework for microbiome researchers to identify connections between

microbes and measured phenotypes. We allow the use of this statistical model by providing an

easy-to-use implementation which is publicly available Julia package at https://github.com/

solislemuslab/BayesianNetworkRegression.jl.

Keywords: High-dimensional, Influential edges, Influential nodes, Microbiome, Networks, Sparsity

Introduction

Microbial communities are among the main driving forces of biogeochemical processes in the biosphere. For one,

many critical soil processes such as mineral weathering and soil cycling of mineral-sorbed organic matter are governed

by mineral-associated microbes (Fierer et al., 2012; Whitman et al., 2018; Cates et al., 2019; Kranz and Whitman,

2019; Whitman et al., 2019). Additionally, plant and soil microbiome drive phenotypic variation related to plant

health and crop production (Allsup and Lankau, 2019; Rioux et al., 2019; Lankau et al., 2022, 2020). Lastly, the

human gut microbiome plays a key role in the regulation of human health and behaviour (Young, 2017; Dupont et al.,

2020; Siddiqui et al., 2021) and similar host-microbe associations have been studied for lung (Sulaiman et al., 2020;

Stavropoulou et al., 2021) or skin microbiome (Callewaert et al., 2020). Understanding the composition of microbial

communities and how these compositions shape specific biological phenotypes is crucial to comprehend complex

biological processes in soil, plants and humans alike.
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Standard approaches to study the connection between microbial communities and biological phenotypes rely on

abundance matrices to represent the microbial compositions (Kunin et al., 2008; Holmes et al., 2012; Sankaran and

Holmes, 2018; Holmes, 2019; Martin et al., 2020; Minot and Willis, 2019; Sankaran and Holmes, 2019; Williamson

et al., 2019). Different experimental settings are defined and then microbial compositions are measured (as abundances)

on each experimental setting. Next, the abundance matrices are used as input in a regression-type (or machine-learning)

analysis to relate the microbial community to phenotypes of interest.

This standard pipeline, however, has limitations to find real connections between microbes and phenotypes. Many

times, these standard approaches focus on the relationship between a single microbial operational taxonomic unit

(OTU) and the phenotype, adjusting for possible confounders like soil mineral characteristics. An OTU is a group of

closely related organisms, an abstraction of the classic system of biological classification which allows us to specify a

given level of relatedness between species in each group. This univariate procedure has multiple assumptions that are

violated by the complexity of the microbiome and can lead to elevated type-I error rates as well as reduced power. For

example, univariate analyses of individual OTUs ignore correlations and interactions among the microbial communities,

which could lead to power loss if the tested OTU is weakly correlated with an unmeasured relevant OTU. In contrast,

high-dimensional regression models allow the inclusion of multiple microbial OTUs simultaneously (Xia et al., 2013;

Lin et al., 2014; Tang and Chen, 2019; Grantham et al., 2020; Subedi et al., 2020), yet these models can be complicated

by multicollinearity (Zou and Hastie, 2005) or instability due to overfitting. Furthermore, standard regression analyses

rarely account for interactions among microbes or ignore potential epistasis (Cordell, 2009; McKinney et al., 2009;

Fan et al., 2011; Mckinney and Pajewski, 2012) among genes across the microbiome that can reduce power if not

properly modeled (Kraft et al., 2007; Broadaway et al., 2015). Finally, microbial OTUs are usually represented as

relative abundances (compositional data) which is restricted to sum to 1 and this affects how proportions behave in

different experimental settings (e.g. changes in proportions in the microbial composition does not necessarily reflect

actual biological changes in the interactions (Blanchet et al., 2020)).

Given that relative abundances only provide a snapshot of the composition of the community at the specific time of

sampling and do not account for correlations between microbes, microbial interaction networks have been recently

preferred to represent microbial communities (Hsu et al., 2019; Zhou et al., 2020; Zhang et al., 2020; Benidire et al.,

2020). Yet models to connect a microbial network to a biological phenotype remain unknown. On one side, recent years

have seen an explosion of methods to infer microbial networks from a variety of data types (Peixoto, 2019; Fang et al.,

2017; Kurtz et al., 2015a; Friedman and Alm, 2012), including the increasingly popular Bayesian Networks (Sazal

et al., 2020; Ramazi et al., 2021). However, these methods aim to reconstruct one microbial network and do not attempt

to connect this network to any biological phenotypes. On the other side, novel statistical theory has been developed to

study samples of networks (Durante et al., 2017; Durante and Dunson, 2018; Guha and Guhaniyogi, 2021), yet again,

these methods do not aim to understand the connection between the networks and a phenotype of interest. There has

only been a handful of new methods that aim to identify associations between a sample of networks (predictors) and

a phenotype (response) via a regression framework (Ma et al., 2022; Wang et al., 2019; Guha and Rodriguez, 2021).
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These methods, however, have only been studied for brain connectome networks which, unlike microbial networks, are

intrinsically dense, and thus, methods to find associations between a sample of microbial networks and a biological

phenotype remain unknown.

In this paper, we introduce a Bayesian Network Regression (BNR) model that uses the microbial network as the

predictor of a biological phenotype (Fig. 1). This model intrinsically accounts for the interactions among microbes and

is able to identify influential edges (interactions) and influential nodes (microbes) that drive the phenotypic variability.

While the model itself is not new (Ma et al., 2022; Wang et al., 2019; Guha and Rodriguez, 2021), it has only been

studied for brain connectome networks, and thus, its applicability to microbial networks which are inherently more

high-dimensional and sparser has not been studied. Here, we test the BNR model on a variety of simulated scenarios

with varying degrees of sparsity and effect sizes, as well as different biological assumptions on the effect of the microbes

on the phenotype such as additive effects, interactions effects or functional redundancy (Rosenfeld, 2002). We show that

this model is able to identify influential nodes and edges in the microbial networks that drive changes in the phenotype

for most biological settings, but we also identify scenarios where this method performs poorly which allows us to

provide practical advice for domain scientists aiming to apply these tools to their datasets. In addition, we implement the

method in an open-source publicly available and easy-to-use new Julia package (BayesianNetworkRegression.jl)

with online documentation and step-by-step tutorial which will allow scientists to easily apply this model on their own

data. The computational speed and efficiency of the package makes it suitable to meet the needs of large datasets.

MAP

1

PP(influential)

Bayesian Network Regression

Figure 1: Graphical abstract. Samples contain a measured phenotype (e.g. height in plants) yi and a microbial
network as predictor which is converted into its adjacency matrix Ai. The Bayesian Network Regression model infers
the regression coefficient matrix B with its maximum a posteriori (MAP) and the posterior probability of being an
influential node for every node.

Main contributions. The Bayesian Network Regression (BNR) model is not new (Ma et al., 2022; Wang et al., 2019;

Guha and Rodriguez, 2021), yet its applicability to microbial datasets has never been explored. Here, we develop the
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first thorough investigation of whether BNR models are suitable for microbial datasets on a variety of synthetic data

that was generated under realistic biological scenarios. We also test the BNR model on real soil microbiome data and

validate the findings with the published results (Wagg et al., 2019). In addition, we introduce a novel Julia package

(BayesianNetworkRegression.jl) with extensive documentation that implements the BNR model and has broad

applicability for the microbiome research community.

Materials and methods

Model and priors

We use the Bayesian Network Regression model initially defined in Guha and Rodriguez (2021) to elucidate associations

between microbial drivers and biological phenotypes. We present below the theoretical details of the model and priors

for the sake of completeness.

Let yi denote the scalar continuous phenotype for sample i and let Ni be the network that represents the microbial

community in sample i. In this work, we assume that these networks have already been estimated and will be assumed

to be known without error. That is, at this stage, we do not propagate statistical error in the inference of the microbial

network (but see Discussion). For each microbial network, we can compute its adjacency matrix Ai ∈ RV×V where V

represents the number of nodes in the microbial network. The diagonal of the adjacency matrix Ai describes the nodes

themselves - either the quantity of the node in the sample or presence/absence indicators. While Guha and Rodriguez

(2021) assume that all networks must have the same nodes (as is the case for brain connectome networks), here we

allow different networks to have different nodes so that V represents the total number of nodes that appear in at least

one network.

The network regression model is then defined as

yi = µ+ ⟨Ai,B⟩F + ϵi

where µ ∈ R is the overall mean effect, ϵi ∼ N(0, τ2) is the error term, B ∈ RV×V is the symmetric network

coefficient matrix, and ⟨·⟩F represents the Frobenius inner product.

Given the symmetric structure of the predictor Ai, we can rewrite this model with a design matrix X where the ith

row of X is set to be the upper triangle of the ith adjacency matrix Ai (including the diagonal) so that X ∈ Rn×q with

q = V (V+1)
2 , where q is the number of nodes and edges in the network (that is, the number of elements in the upper
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triangle of the matrix, including the diagonal):

Ai =


ai,1,1 ai,1,2 ... ai,1,V

...
. . . ...

...

ai,V,1 ai,V,2 ... ai,V,V


V×V

X =


a1,1,2 a1,1,3 ... a1,1,V a1,2,3 ... a1,2,V ... a1,V+1,V

...
...

...
...

...
...

...
...

...

an,1,2 an,1,3 ... an,1,V an,2,3 ... an,2,V ... an,V+1,V


n×q

.

The responses y ∈ Rn then follow a Normal distribution y ∼ N
(
µ+ Xγ, τ2In

)
with an overall mean µ ∈ R, regression

coefficients γ ∈ Rq and error variance τ2 ∈ R. Here, In represents the identity matrix of dimension n. We note that the

regression coefficients of this model (γkl) represent the effect of the edge in the microbial network between node k and

node l (interaction effects) in the response and they are connected to the original regression coefficient matrix B as

bij = γij/2. Unlike the original model (Guha and Rodriguez, 2021) that assumes that there are no main effects for the

presence of the microbes in the sample, it is not appropriate for microbial research where the phenotype is expected to

be affected by both the presence of the microbes and their interactions. Thus, we extend the model to include main

effects.

The prior for the regression coefficients γ ∈ Rq is given by

γkl ∼ N(uT
kΛul, τ

2skl) (1)

where u1, . . . ,uV ∈ RR are latent variables corresponding to each of the V nodes, Λ ∈ RR×R is equal to

diag(λ1, ..., λR) for λi ∈ {−1, 0, 1} and skl ∈ R is a scale parameter. We note that the effect of the interaction

between node k and node l on the response is positive if uT
kΛul > 0 (or similarly, negative if uT

kΛul < 0 or zero if

uT
kΛul = 0). R ∈ N is the dimension of the latent variable u (and therefore the latent dimension of the node space)

and is a hyperparameter chosen by the user. We find in our simulations that it has a strong effect in the floating-point

stability of the implementation (specifically, an R value which is too high will cause floating-point errors such as

catastrophic cancellation – see Simulations).

The matrix Λ governs which entries in the latent variables uk ∈ RR are informative and we set the following prior:

λr ∼


0 with probability π̃1r

1 with probability π̃2r

−1 with probability π̃3r

for each r ∈ {1, . . . , R} and with hyper prior (π̃1r, π̃2r, π̃3r) ∼ Dirichlet(rη, 1, 1) for η > 1. Note that the probability

of 0 in the Dirichlet is governed by the index r (and η) which is meant to bias inference towards lower dimensional-
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representations of the latent variable u. These π̃ parameters control the sparsity of the regression coefficient matrix B.

It is traditionally assumed that only a subset of microbes in the sample are key drivers of the phenotype.

To determine which nodes are influential (non-zero effect on the response), we set a spike-and-slab prior (Ishwaran and

Rao, 2005):

uk ∼

N(0,M) if ξk = 1

δ0 if ξk = 0

where δ0 is the Dirac-delta function at 0, M ∈ RR×R is a covariance matrix, 0 is an R-dimensional vector of zeros,

and ξ ∈ {0, 1}V is a column vector of dimension V where each value denotes whether that node is influential on the

response or not. Note that uk ∈ RR for each k ∈ {1, ..., V }. We assume that ξk ∼ Bernoulli(∆) with hyper priors

∆ ∼ Beta(a∆, b∆) for a∆, b∆ ∈ R and M ∼ InverseWishart(v, IR) for v ∈ R.

Lastly, the prior for the scale parameters (s ∈ Rq) is given by skl ∼ Exp(θ/2) with hyper prior θ ∼ Gamma(ζ, ι)

for shape ζ ∈ R and rate ι ∈ R, and the prior for the overall mean (µ) and error variance (τ2) is assumed to be

non-informative π(µ, τ2) ∝ 1
τ2 .

Table 4 in the Appendix contains all parameters in the model and their descriptions.

Posteriors

The posterior distribution of the overall mean and the error variance are given by

µ|y,X, γ, τ2 ∼ N

(
1Tn (y − Xγ)

n
,
τ2

n

)
(2)

τ2|y,X, µ, γ,W,D ∼ InverseGamma[(n/2 + V (V + 1)/4),

1

2
(y − µ1n − Xγ)T (y − µ1n − Xγ) + (γ − W)T D−1(γ − W)] (3)

where 1n is an n-dimensional vector of ones, W ∈ Rq is a vector given by

W =



uT
1 Λu2

...

uT
1 ΛuV

...

uT
V ΛuV


and D ∈ Rq×q is a diagonal matrix with the vector of scale parameters s in the diagonal.
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The posterior distributions for the scale parameters (skl) and their hyper parameter (θ) are given by

skl|γkl,u,Λ, τ2, θ ∼ GeneralizedInverseGaussian
[
1

2
,
(γkl − uT

kΛul)
2

τ2,
, θ

]
(4)

θ|s ∼ Gamma

[(
ζ +

V (V + 1)

2

)
,

(
ι+
∑
k<l

skl
2

)]
. (5)

The posterior distribution for the regression coefficients (γ) is given by

γ|y,X,D,W, µ, τ2 ∼

N
(
(XT X + D−1)−1(XT (y − µ1n) + D−1W), τ2(XT X + D−1)−1

)
. (6)

Next, for the auxiliary variables, the posterior distribution of the latent variables (uk) is given by

uk|wuk
,muk

,Σuk
∼ wuk

δ0(uk) + (1− wuk
)N(uk|muk

,Σuk
) (7)

where

wuk
=

(1−∆)N(γk|0, τ2Hk)

(1−∆)N(γk|0, τ2Hk) + ∆N(γk|0, τ2Hk + U∗
kMU∗T

k )
(8)

for γk = (γ1k, ..., γk−1,k, γk,k+1, ..., γkV ) ∈ Rq, and N(x|m, v) corresponding to the Gaussian PDF evaluated on x

for mean m and covariance v, ∆ given by

∆|a∆, b∆, ξ ∼ Beta

[(
a∆ +

V∑
k=1

ξk

)
,

(
b∆ +

V∑
k=1

(1− ξk)

)]
, (9)

Hk = diag(s1k, ..., sk−1,k, sk,k+1, ..., skV ) ∈ R(V−1)×(V−1), U∗
k = (u1 : ... : uk−1 : uk+1 : ... : uV )

TΛ ∈

R(V−1)×R, 0 is the (V − 1)-dimensional vector of zeros, and matrix M sampled from the posterior distribution:

M|u,Λ, v ∼ InverseWishart

IR +
∑

k:uk ̸=0

ukΛuT
k

 ,

(
v +

V∑
k=1

1(uk ̸= 0)

) (10)

where 1(·) is the indicator function and IR is the identity matrix of dimension R.

In addition, the posterior mean (muk
) and posterior covariance matrix (Σuk

) are defined as

muk
=

1

τ2
Σuk

U∗T
k H−1

k γk

Σuk
=

(
1

τ2
U∗T

h H−1
k U∗

k + M−1

)−1

.

The posterior probability of the vector ξ is given by

ξk|wuk
∼ Bernoulli(1− wuk

) (11)
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with the same definition of wuk
as in Eq. 8.

The posterior distribution of the λr values is given by

λr|γ,u,Λ,D ∼


0 with probability p1r

1 with probability p2r

−1 with probability p3r

(12)

with

p1r =
π̃1rN(γ|W0, τ

2D)

π̃1rN(γ|W0, τ2D) + π̃2rN(γ|W1, τ2D) + π̃3rN(γ|W−1, τ2D)

p2r =
π̃2rN(γ|W1, τ

2D)

π̃1rN(γ|W0, τ2D) + π̃2rN(γ|W1, τ2D) + π̃3rN(γ|W−1, τ2D)

p3r = 1− p1r − p2r

where N(x|m, v) corresponds to the Gaussian PDF evaluated at x for mean m and covariance v and

W0 =
[
uT
1 Λ0u2, ...,uT

1 Λ0uV , ...,uT
V Λ0uV

]T ∈ Rq,

Λ0 = diag(λ1, ..., λr−1, 0, λr+1, ..., λR) ∈ RR×R,

W1 =
[
uT
1 Λ1u2, ...,uT

1 Λ1uV , ...,uT
V Λ1uV

]T ∈ Rq,

Λ1 = diag(λ1, ..., λr−1, 1, λr+1, ..., λR) ∈ RR×R,

W−1 =
[
uT
1 Λ−1u2, ...,uT

1 Λ−1uV , ...,uT
V Λ−1uV

]T ∈ Rq,

Λ−1 = diag(λ1, ..., λr−1,−1, λr+1, ..., λR) ∈ RR×R.

Lastly, the posterior distribution of the hyper parameters (π̃1r, π̃2r, π̃3r) is given by

(π̃1r, π̃2r, π̃3r)|η,Λ ∼

Dirichlet

(
rη +

R∑
r=1

1(λr = 0), 1 +

R∑
r=1

1(λr = 1), 1 +

R∑
r=1

1(λr = −1)

)
(13)

where again 1(·) represents the indicator function.

The main parameters of interest are the regression coefficients γ which represent the effect of the interactions among

microbes on the response and the parameters ξ that represent whether each of the V microbes are influential on the

response or not. We obtain the posterior probability that a node is influential by taking the mean of ξ over the samples.

Samples of the posterior distributions are obtained using Gibbs sampling as described in the next section.

Gibbs Sampling

We sample the posterior distributions using Gibbs sampling as described in Algorithm 1.

9



Identifying microbial drivers in biological phenotypes with a Bayesian Network Regression model

Algorithm 1: Posterior Gibbs Sampling
Result: MCMC samples of the posterior distribution of parameters of interest
Initialization;
while not enough samples do

Sample τ2|y,X, µ, γ,W,D ∼ InverseGamma (Eq. 3);
Sample ξ|wuk

∼ Binomial (Eq. 11);
for k in 1 : V do

Sample uk|wuk
,muk

,Σuk
∼ ξk × Normal (Eq. 7);

end
Sample γ|y,X,D,W, µ, τ2 ∼ Normal (Eq. 6);
Sample skl|γkl,u,Λ, τ2, θ ∼ GeneralizedInverseGaussian (Eq. 4);
Sample θ|s ∼ Gamma (Eq. 5);
Sample ∆ ∼ Beta (Eq. 9);
Sample M|u,Λ, v ∼ InverseWishart (Eq. 10);
Sample µ|y,X, γ, τ2 ∼ Normal (Eq. 2);
for r in 1 : R do

Sample λr|γ,u,Λ,D ∼ [0, 1,−1] (Eq. 12);
Sample (π̃1r, π̃2r, π̃3r)|η,Λ ∼ Dirichlet (Eq. 13);

end
end

Open-source software

We released a Julia package to perform the sampling scheme which provides posterior estimates and convergence

statistics for the Bayesian Network Regression model available as BayesianNetworkRegression.jl at the GitHub

repository https://github.com/solislemuslab/BayesianNetworkRegression.jl. In addition, we provide

all reproducible scripts for the simulation study (described in the next section) in the GitHub repository https:

//github.com/samozm/bayesian_network_regression_imp.

Simulations

One of the main objectives of this manuscript is to test the applicability of the Bayesian Network Regression model

when facing sparse data that is ubiquitous in microbiome research. There are two main sources of sparsity: 1) the matrix

of regression coefficients B is assumed to be sparse (sparsity controlled by π) which means that there are few microbial

drivers that affect the phenotype and 2) the data matrix is sparse (represented by the adjacency matrix Ai with sparsity

controlled by the number of sampled microbes k) because we do not have complete sampling of all microbes. We test

different levels of sparsity both on the regression coefficient matrix B (π = 0.3, 0.8) and in the adjacency matrices Ai

(k = 8, 15, 22 sampled microbes out of 30 total). In addition, we test two levels of effect sizes (µ = 0.8, 1.6) so that

the entries in the regression coefficient matrix B are distributed N(µ, σ = 1.0). For all simulation cases, all possible

combinations of parameter values are tested.

We split the simulations into two scenarios: 1) theoretical simulations (graphical description in Fig. 2) and 2) realistic

simulations (graphical description in Fig. 3). We describe both scenarios next.
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12
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14
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21

22
23
24
25
26
27
28
29
30

True

Simulated 30-taxon phylogenetic tree

if both i,j are infuential nodes (microbes).
P(influential node) = 

n random
samples of k 

microbes

Adjacency matrix
(inverse of

phylogenetic
distance)

Simulated
phenotypes

Figure 2: Description of theoretical simulations. We simulate a 30-taxon phylogenetic tree as the representation of
the true microbial community, and then select k microbes per sample with which to build an adjacency matrix (Ai) per
sample. The phenotype yi is then computed as the Frobenius product of the sample adjacency matrix (Ai) and the true
matrix of regression coefficients B plus Gaussian noise.

Theoretical simulations. We simulate a 30-taxon phylogenetic tree using the rtree function from the R package ape

(Paradis and Schliep, 2019) that randomly splits edges until the desired number of leaves is attained. This tree represents

the true community of microbes. We generate the true matrix of regression coefficients (B ∈ R30×30) by flipping a

biased coin for every entry bij to determine if the edge connecting nodes i and j is an influential edge. We vary the

probability of influential node as π = 0.3, 0.8 as already mentioned above. If the edge is indeed set as influential, the

entry bij is sampled from a Normal distribution with mean µ = 0.8 or 1.6 and variance equal to 1.0.

For each sample, we randomly select k (set as 8, 15, or 22) microbes out of the 30 total microbes. We build the

adjacency matrix for that sample using the phylogenetic distance between microbes. That is, the entry aij is equal to

the inverse of the phylogenetic distance between microbe i and microbe j if both microbes are present in the sample

(and zero otherwise). Diagonal entries aii are set to zero - we do not consider the presence-absence of microbes in

the theoretical simulations. Note that we are not estimating the phylogenetic tree for a given sample given that we are

not simulating genetic sequences, and thus, we are ignoring estimation error in the phylogenetic pipeline at this point.

Future work will incorporate this type of error to assess its implications downstream (see Discussion).

For each sample, we calculate the phenotype yi as the Frobenius inner product between B and the adjacency matrix

for that sample Ai plus a Gaussian random error with mean zero and variance of 1.0. Because the generation of the

phenotype follows the same model as the Bayesian Network Regression, we denote this scenario as “theoretical".
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We vary the sample size as n = 100, 500. The whole simulation process is illustrated in Fig. 2 and the mathematical

details are described in the Appendix.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Simulated 30-taxon phylogenetic tree

n random
samples of k 

microbes

True main effects

Phylogenetic Random

Additive model

Interaction model

Functional redundancy model
: subset of microbes in sample i

: Adj. matrix
(inverse of phylogenetic distance)

Figure 3: Description of realistic simulations. We simulate a 30-taxon phylogenetic tree as the true microbial
community, and then select k microbes per sample (Si = {mi1 , ...,mik}) with which to build an adjacency matrix (Ai)
per sample. The phenotype yi is computed under three models: additive, interaction or functional redundancy. Within
each model, there are two options for the generation of the true microbial effects: randomly sampled independently of
other microbes or phylogenetically-informed in which related microbes have similar effects on the phenotype. For the
case of n = 50, we performed data augmentation to reach n = 200 samples.

Realistic simulations. Again, we simulate a 30-taxon phylogenetic tree which represents the true community of

microbes using the rtree function from the R package ape (Paradis and Schliep, 2019) that randomly splits edges

until the desired number of leaves is attained. For each microbe, we simulate its true effect on the phenotype under

two settings: 1) random in which each microbe has an effect bi that is distributed according to the Normal distribution

with mean µb = 0.8 or 1.6 and variance of 1.0 independently of other microbes, and 2) phylogenetic in which we

simulate the whole vector of microbial effects b as a Brownian motion on the phylogenetic tree using the Julia package

PhyloNetworks (Solís-Lemus et al., 2017). That is, b ∼ N(µb130,Σ) where µb = 0.8 or 1.6, 130 is a 30-dimensional

vector of ones, and Σ is the covariance matrix imposed by the phylogenetic tree. In this last setting, microbes that are

closely related have similar effects on the phenotype. In the random setting, the main effects of each microbe on the

phenotype are generated without regard to the relationships between them.

The generation of the sample adjacency matrices (Ai) is the same as in the theoretical scenario, with the exception

that we now include an indicator for whether the microbe is in each sample. Namely, for each sample, we randomly

select k (set as 8 or 22) microbes out of the 30 total microbes. We build the adjacency matrix for that sample using the

phylogenetic distance between microbes. That is, for i ̸= j, the entry aij is equal to the inverse of the phylogenetic

distance between microbe i and microbe j if both microbes are present in the sample (and zero otherwise). For each

microbe i, aii is set to one if microbe i is in the sample and zero otherwise.
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For the computation of the phenotype, we test three settings:

Additive model. The phenotype yi is computed as the sum of effects bi for the influential microbes (ξj = 1) that are

present in the sample plus Gaussian noise. As before, each microbe is considered influential with probability π = 0.3,

or 0.8.

Interaction model. In addition to the main effects already described in the additive model, the phenotype also contains

interaction terms ajl × bjl, with bjl ∼ N(0.4, 1.0) if microbes j and l are both influential and ajl as the inverse of

phylogenetic distance between microbes j and l if both are in the sample. Since the interaction term is positive, this

model is sometimes referred to as a super-additive model.

Functional redundancy model. Here, we assume that the effect of the microbes on the phenotype is not unbounded.

That is, different microbes can have the same function, and thus, the phenotype is not affected by both microbes at

the same time. We model this mathematically by imposing a threshold L on the phenotype after it was computed

following the interaction model. In this setting, we cannot impose the same threshold on all combinations of µb and

π because the phenotype values will have different ranges. Therefore, we utilize different thresholds for each setting

to try to guarantee that not all response values will be capped: L = 3 for the π = 0.3, µ = 0.8 case, L = 7 for the

π = 0.3, µ = 1.6 case, L = 22 for the π = 0.8, µ = 0.8 and L = 30 for π = 0.8, µ = 1.6. Values of L were chosen

so that some but not all responses were capped.

Because the phenotype is not computed using the Frobenius product directly (as in the theoretical simulations), but

instead it is generated based on biologically reasonable settings (additive, interaction and functional redundancy models),

we denote these scenarios as “realistic". The whole simulation process is illustrated in Fig. 3 and the mathematical

details are described in the Appendix.

We vary the sample size as n = 50, 500, 1000. For the case of n = 50, we perform Gaussian data augmentation to

increase sample size to n = 200. This simulation scenario is included to justify the application of the model on the real

dataset which has 50 samples. For each of the 50 true samples, an augmented sample is created. First, to generate the

response, an offset is generated from N(0, s2P /4), where s2P is the sample variance of the response in the 50 original

samples. To generate augmented microbiome data, each microbe is present in the augmented sample with probability

0.9 if it was in the original sample or 0.1 if it was not, independently of other microbes. This augmentation technique

preserves the underlying relationship between the graph nodes and edges in the original sample while adding a small

amount of noise to both the network and the response.

MCMC convergence

For each simulation setting, we run three MCMC chains and assess convergence using the R̂ convergence criterion

proposed in Vehtari et al. (2019). We consider convergence to have been unambiguously achieved if R̂ ≤ 1.01 for all of

the γ and ξ variables as suggested in Vehtari et al. (2019). For all cases, half of generated samples are discarded as

burn-in. A minimum of 10,000 total samples and a maximum of 800,000 total samples are generated for the theoretical
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simulations, while a minimum of 5,000 total generated samples and a maximum of 600,000 generated samples are

generated for the realistic simulations. A total of 6 theoretical simulation cases (out of 108) and 14 realistic simulation

cases (out of 144) fail to achieve a R̂ ≤ 1.01, but all achieve R̂ ≤ 1.1 (Tables 1 and 2). We accept this as reasonable

evidence they have achieved convergence, noting that every dimension of both ξ and γ variables achieves this R̂ value.

See Results for information on computing times.

µ π R k Data sample size R̂(ξ) R̂(γ)
1.6 0.3 5 22 100 1.05 1.06
1.6 0.8 5 22 100 1.04 1.02
1.6 0.3 5 8 500 1.00 1.02
0.8 0.3 7 15 500 1.06 1.06
0.8 0.8 7 22 100 1.01 1.02
0.8 0.3 9 15 500 1.07 1.01

Table 1: Maximum R̂ values for theoretical simulation cases that did not achieve R̂ ≤ 1.01 for all γ and ξ variables.

µ π R k Data sample size Simulation type R̂(ξ) R̂(γ)
1.6 0.3 5 22 50 redundant random 1.02 1.01
0.8 0.3 7 22 1000 redundant phylo 1.06 1.06
0.8 0.3 7 22 1000 redundant random 1.02 1.03
0.8 0.3 7 22 1000 interaction random 1.02 1.01
0.8 0.3 7 22 1000 redundant phylo 1.09 1.00
0.8 0.3 7 22 1000 redundant random 1.02 1.03
0.8 0.3 7 22 500 redundant phylo 1.02 1.06
0.8 0.3 7 22 500 redundant phylo 1.03 1.01
1.6 0.3 7 22 1000 redundant random 1.10 1.04
1.6 0.3 7 22 1000 interaction phylo 1.04 1.01
1.6 0.3 7 22 1000 redundant phylo 1.08 1.00
1.6 0.3 7 22 1000 redundant random 1.02 1.00
1.6 0.3 7 22 500 redundant random 1.05 1.03
1.6 0.8 7 22 1000 additive phylo 1.00 1.02

Table 2: Maximum R̂ values for theoretical simulation cases that did not achieve R̂ ≤ 1.01 for all γ and ξ variables.

Connections of Bacterial Microbiome to Phosphorous Leaching

We re-analyze the experimental data collected by Wagg et al. (2019) to study the fungal-bacterial interactions in soil

microbiome and how they are connected to specific biological phenotypes. In this experiment, a soil diversity gradient

was produced by filtering inoculum through different meshes from less than 5mm to less than 0.001mm, in order to

create various microbial networks. In addition, a number of indicators of soil microbiome functions were collected, of

which we focus on phosphorous leaching as our response. Following Wagg et al. (2019), we construct the microbiome

network for each sample as follows:

1. Remove all OTUs occurring fewer than 40 samples in the dataset

2. Construct a "meta-network" using data from all samples. This is done with the R package Spiec-Easi (Kurtz

et al., 2015b).
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3. For each sample, construct a "sample network" from the meta-network by including only edges between OTUs

appearing in that sample. An OTU appears in a sample if its relative abundance is different than zero. If an

edge does not appear in the sample, its edge value is set to 0. If an OTU appears in the sample its "node value"

(edge between the node and itself) is set to 1, and 0 otherwise.

After removal of OTUs than do not appear in at least 40 samples, the resulting meta-network contains 90 OTUs, for

a model matrix of dimension X ∈ R50×4005 given that the experiment collected 50 samples. Our simulation results

indicate that this number of samples will likely not be enough to achieve the necessary statistical power to detect

influential microbes or edges. Therefore, we employ data augmentation to generate 150 more samples, for a total of

200 samples. We use the same data augmentation technique described previously (Realistic Simulations) with one

change. Because phosphorous leaching must always be positive, if the augmented response is negative a new value

for the augmented response is generated from 1
15χ

2
3 (i.e. one draw from a chi-square distribution with 3 degrees of

freedom, divided by 15) to guarantee all response values are positive. The original phosphorous leaching values range

from 0.0040 to 0.6840, with a mean of 0.1593 mg/L. The augmented phosphorous leaching values range from 0.0066 to

0.6760 with a mean of 0.1900 mg/L. For the original data, sample sizes of distinct OTUs range from 52 to 90 with a

mean number of OTUs per sample of 82. For the augmented data, samples sizes of distinct OTUs range from 55 to 84

with a mean number of OTUs per sample of 75. Much of the sparsity in the data comes from the relationships between

OTUs, rather than the number of OTUs collected in each sample. Only about 2% of the entries in the meta-matrix are

non-zero.

MCMC convergence

As in the simulation study, we run three MCMC chains and assess convergence using the R̂ convergence criterion

proposed in Vehtari et al. (2019). We again aim for R̂ ≤ 1.01 for all of the γ and ξ variables as a cutoff value that

signifies convergence. We are not able to achieve this value, but we find that 100,000 burn-in followed by 100,000

samples (200,000 total generations) give us R̂(ξ) ≤ 1.02 and R̂(γ) ≤ 1.017. We accept this as reasonable evidence of

convergence.

Results

Theoretical Simulations

Fig. 4 shows the posterior probability of being an influential node (key microbe) (bottom pane in each plot) as well

as the credible interval for the estimated main effect of each microbe (top pane of every plot) for (a) n = 100 and (b)

n = 500. Each plot corresponds to a pair of effect size (µ = 0.8, 1.6) and sparsity (π = 0.3, 0.8) at k = 8 sampled

microbes in the regression coefficient matrix B (see Appendix Fig. 9 for the k = 22 case) with latent dimension R = 7.

Each plot is also separated in non-influential microbes (left) and true influential microbes (right). Posterior probability

for a node is calculated as the mean of the ξ value for that node across retained Gibbs samples. We expect the model
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to identify true influential microbes by tall bars on the right side of the pane (high estimated posterior probability

of influential node) and non-influential microbes as short bars on the left side of the pane (low estimated posterior

probability of influential node). For smaller sample size (n = 100), the effect sizes need to be larger (µ = 1.6) for the

nodes to be accurately detected as influential (tall bars in bottom-right panes in each plot). For a larger sample size

(n = 500), the model has a high PP for truly influential nodes (tall bars in bottom-right panes in each plot) and a low PP

for non-influential nodes (short bars in bottom-left panes in each plot) regardless of the values of k, µ, π. There seem to

be no major differences in the performance of the method in terms of regression coefficient sparsity (π) or adjacency

matrix sparsity (k) with the exception that for smaller effect sizes (µ = 0.8) in small sample size setting (n = 100), less

sparsity in A (k = 22) improves the detection of influential nodes compared to k = 8. The coloring of the intervals

(and the corresponding posterior probability bars) indicates whether the nodes are found to have a significant effect on

the response by the main coefficient at the 10% level (credible intervals do not cross 0). In this simulation, using the

credible intervals results in a more conservative test that fails to identify many significant microbes (high but light bars

in the bottom-right pane).

We further compare the performance when changing the latent dimension (R). In Fig. 4, we have a latent dimension of

R = 7 which produced more accurate results than R = 5 (Fig. 12 in the Appendix). Latent dimension of R = 9 (Fig.

13 in the Appendix) produces slightly better accuracy compared to R = 7, but it also creates floating-point instability in

the computations. As Guha and Rodriguez (2021) suggest, we aim to find the smallest R value that produces good

performance to guarantee floating-point stability. In our case, we choose a latent dimension of R = 7 for all the

remaining simulations (aside from the data augmentation simulations, for which we find that a lower value of R = 5 is

required for floating-point stability). Lastly, results for k = 15 sampled microbes can be found in the Figs. 14, 15, 16 in

the Appendix with no considerable differences with respect to R.

We conclude that using posterior probability of influence, the method is able to detect influential nodes (microbes)

for a sufficiently large sample size (n = 500 here) regardless of the effect size (µ) and sparsity (π) of the regression

coefficient B and regardless of the sparsity of the adjacency matrix (k). For smaller sample size (n = 100), either larger

effect sizes are needed (µ = 1.6) or less sparsity in the adjacency matrix A (k = 22).

Fig. 10 (Appendix) shows 95 % credible intervals for the regression coefficients per edge ordered depending on whether

they are truly non-influential edges (top of each panel) or truly influential edges (bottom of each panel) for each

combination of edge effect size (µ = 0.8, 1.6) and probability of influential node (π = 0.3, 0.8). This figure represents

the case of k = 8 sampled microbes. The color of the intervals depends on whether it intersects zero (light) and hence

estimated to be non-influential or does not intersect zero (dark) and hence estimated to be influential by the model.

These panels allow us to visualize false positives (dark intervals on the top panel) or false negatives (light intervals on

the bottom panel) for all simulation settings (n, k, π, µ). Smaller samples size (top n = 100) has considerably more

false negatives compared to larger sample size (bottom n = 500) as evidenced by the many light intervals in the “True

influential edges" panels. This is true especially for the cases of high sparsity in B (π = 0.3 for both µ = 0.8 and 1.6)

and low effect size with less sparsity in B (π = 0.8, µ = 0.8). Overall, all simulation settings show controlled false
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(a) n = 100 (b) n = 500

Figure 4: Posterior probability of influential nodes and coefficients for nodes (theoretical simulations). All
simulations are done with latent dimension R = 7 and k = 8 sampled microbes. Different groups of 4 panels (left side
vs. right side) represent different sample sizes (n = 100, 500). Within each group, we have four panels corresponding
to the two values of edge effect size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8)
which controls the sparsity of the regression coefficient matrix (B). Within each of these panels we have two plots:
95% credible intervals (top) and posterior probability of influence (bottom - calculated as the mean of the ξ variable for
the node across Gibbs samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars
and intervals are colored depending on whether the node is found to be influential (dark) or not influential (light) based
on the 95% credible intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).

positive rate as evidenced by few dark intervals on the “True non-influential edges" panels, regardless of sample size

(n), effect size (µ) and sparsity in B (π). Fig. 11 (Appendix) shows the same plot for k = 22 sampled microbes instead

of k = 8. The conclusions are the same which provides evidence that the identification of influential edges does not

depend on the number of microbes in the samples.

Fig. 5 shows the mean squared error (MSE) (for both coefficients and response) for all 12 cases for sample sizes of

n = 100 and n = 500. The model appears to generate coefficients which, in aggregate, predict the response well,

though the coefficients themselves may not approximate the true coefficients as well. For the coefficients, the model is

better at approximating the true coefficients when the edge effect is strong. Interestingly, in the n = 100 case especially,

the model performs better (in terms of MSE of coefficients) for the sparser coefficient matrices - the opposite result

observed in node identification. This is likely due to the edge coefficients being biased towards zero. Fig. 17 (Appendix)

shows false positive and false negative rates for each case (using an arbitrary cutoff for significance of 0.5), and Fig. 18

(Appendix) shows ROC curves, calculated as the cutoff increases from 0.1 to 1. For both sample sizes (n = 100, 500),

the model performs better (in terms of true and false positives and negatives) with stronger edge effects (µ = 1.6

vs µ = 0.8). Among both edge effect strengths, the model performs better with the larger sample size (n = 500 vs

n = 100). There are very few false positives for the n = 500 case. The ROC curves show very good performance for

the larger sample size case (n = 500).
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Figure 5: Mean Square Error for regression coefficients and response (R = 7). X axis corresponds to the number of
sampled nodes (microbes) which relates to the sparsity of the adjacency matrix X. Dashed lines correspond to different
values of the true mean for edge effects (µ = 0.8, 1.6) and different colors correspond to different sparsity levels on the
regression coefficient matrix B (π = 0.3, 0.8).

Realistic simulations

Additive model

Fig. 23 (Appendix) and Fig. 24 (Appendix) show both the posterior probability of influential nodes and the coefficients

for nodes for random coefficients and phylogenetic coefficients respectively. Both types of coefficients produce similar

results. The model performs poorly for all cases as it is unable to identify influential nodes regardless of sample size (n)

and characteristics of B (π, µ). The model is able to identify a few influential microbes through the node coefficients,

but not through posterior probability of influence in the sparse sample (k = 8) case only.

Interaction model

Fig. 6 (k = 8 - for phylogenetic coefficients) shows the posterior probabilities of influential nodes as well as the node

coefficient 95% credible intervals under the interaction model (Fig. 29 for random coefficients and Fig. 30 for both

node sparsity values (k = 8, 22) are in the Appendix). Both types of coefficients show similar performance in terms of

posterior probabilties of microbe influence when there is low sparsity in the B matrix (π = 0.8). Namely, for the larger

sample size (n = 1000) the method estimates a high PP for truly influential nodes (tall bars in the lower-right panes)

and a low PP for non-influential nodes (short bars in the lower left panes) for all cases of low sparsity in B (π = 0.8)

number of sampled microbes (k) or effect size (µ).

For scenarios of high sparsity in B (π = 0.3), both types of coefficients show good performance with the higher sample

size(n = 1000), though performance is better under the phylogenetic regime, where results are similar to those in

the low sparsity case (π = 0.8). For both types of coefficients, there does not seem to be much if any difference in

model performance between different node coefficient signal strengths (µ = 0.8, 1.6) or number of microbes sampled

(k = 8, 22). However, in terms of using posterior node coefficients for influential node identification (95% credible
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intervals in upper panes in each quadrant of Fig. 6), the lower signal strength (µ = 0.8) appears to be too weak, with

the model finding very few truly influential microbes (dark blue bars/credible intervals on the right pane of each plot)

in this case. However, note that there are several cases (π = 0.8, µ = 1.6, n = 500 for phylogenetic coefficients,

π = 0.3, µ = 1.6, n = 500 for random coefficients) in which the posterior node coefficient credible intervals identify

truly influential nodes not identified using posterior probabilities of influence. Also note that there are no false positive

identifications (dark blue bars/credible intervals in the left pane of each plot) using this method.

(a) n = 500 (b) n = 1000

Figure 6: Posterior probability of influential nodes and coefficients for nodes (interaction model with phylogenetic
coefficients). All plots shown are for k = 8 sampled microbes. Different groups of four panels (left side vs. right
side) represent different sample sizes (n = 100, 500). Within each group, we have four panels corresponding to the
two values of edge effect size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which
controls the sparsity of the regression coefficient matrix (B). Within each of these panels we have two plots: 95%
credible intervals (top) and posterior probability of influence (bottom - calculated as the mean of the ξ variable for the
node across Gibbs samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars and
intervals are colored depending on whether the node is found to be influential (dark) or not influential (light) based on
the 95% credible intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).

Fig. 25 (Appendix) shows the 95 % credible intervals for edge effects under the interaction model with random

coefficients for k = 8 sampled nodes. The results are very similar for k = 22 sampled nodes (Fig. 26 in the Appendix)

and for phylogenetic coefficients (Fig. 27 for k = 8 and Fig. 28 for k = 22, both in the Appendix). Namely, the

model displays a low false positive rate as evidenced by few dark intervals on the “True non-influential edges" panels

for all sample sizes (n), sparsity levels (π) and effect sizes (µ). We highlight that it is expected that there will be few

differences when comparing the two effect sizes (µ = 0.8, 1.6) as these quantities refer to the main (node) effects, not

the interaction (edge) effects which was set as 0.4 for all simulations. The purpose of these simulations is to test if

changes in the main (node) effects biased the performance of the BNR model to detect influential edges. It appears from

these figures that there is no such bias. That is, when the biological phenotype is generated under the interaction model,

as long as the sample size is high enough the BNR has good performance to identify the influential edges regardless of
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the number of microbes sampled (k), the sparsity level (π), node effect sizes (µ), and type of coefficient (random vs

phylogenetic) with controlled false positive and false negative rates in all settings.

Functional redundancy model

Fig. 7 shows the posterior probability of influential nodes as well as the node coefficient 95% credible intervals under

the functional redundancy model with random coefficients for the case of k = 8 (Fig. 31 in the Appendix for the case

of k = 22). Using posterior node probabilities, we observe that there is a high false positive rate when there are many

nodes sampled (k = 22) in all sparsity and coefficient strength settings. Also, there is a high false negative rate in

the remaining cases for the smaller sample size n = 500. Good performance is only achieved when few microbes are

sampled k = 8 and the sample size is large n = 1000. This behavior is similar with phylogenetic coefficients (see Figs.

38, 39 in the Appendix). This implies that the BNR model is unable to identify influential microbes under a model of

functional redundancy unless there are very few sampled microbes (k = 8). This result could be explained by the fact

that multiple sampled microbes could cause the phenotype to reach the threshold more easily and thus, there is less

information on the variability of the response to estimate the effects and influential probabilities. However, using the

node coefficient credible intervals, we are able to identify more influential coefficients (dark blue bars/intervals on the

right pane of each plot) in the k = 22 case with fewer false positives (dark blue bars/intervals on the left pane of each

plot).

(a) n = 500 (b) n = 1000

Figure 7: Posterior probability of influential nodes and coefficients for nodes (functional redundancy model with
random coefficients). Different groups of four panels (quadrants) represent different sample sizes (n = 100, 500) and
different number of sampled microbes (k = 8). Within each group, we have four panels corresponding to the two values
of edge effect size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls the
sparsity of the regression coefficient matrix (B). Within each of these panels we have two plots: 95% credible intervals
(top) and posterior probability of influence (bottom - calculated as the mean of the ξ variable for the node across Gibbs
samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars and intervals are colored
depending on whether the node is found to be influential (dark) or not influential (light) based on the 95% credible
intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).
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Fig. 32 (Appendix) shows the 95 % credible intervals for edge effects under the functional redundancy model with

random coefficients for k = 8 sampled nodes. The results are very similar for phylogenetic coefficients (Fig. 34 for

k = 8 in the Appendix). Namely, there is controlled false positive rate (dark intervals in the “True non-influential edges"

top panels) for the case of small sample size (top: n = 500) which strangely worsens slightly for larger sample size

(bottom: n = 1000) for all cases of π, µ. False negative rate (light intervals in the “True influential edges" top panels)

appears unaffected by n, π, µ. When k = 22 microbes are sampled instead, the model performs worse in all settings

(Fig. 33 for random coefficients for k = 22 sampled nodes and Fig. 35 for phylogenetic coefficients for k = 22, both in

the Appendix). Namely, there are inflated false positive and false negative rates for all settings of n, π, µ. Similarly to

the identification of influential nodes, it seems that the BNR model is unable to accurately identify influential edges

under a functional redundancy model when many nodes are sampled (k = 22). That is, when the biological phenotype

is generated under the functional redundancy model, the BNR has good performance to identify influential nodes and

influential edges only when there are few microbes sampled (k = 8).

MSE, false positive and false negative rates

We present the plots for false positive and negative rates as well as mean squared error in the Appendix. Fig. 43 shows

the false positive and false negative rates for edges and nodes for different simulation settings in terms of n, k, π, µ

for additive (top), interaction (middle) and functional redundancy (bottom) models with random coefficients. An

interaction model with low sparsity in B (π = 0.8) shows the best performance in terms of controlled false positive

and false negative rates for all settings of n and µ. Under the interaction model, there is inflated false negative rate

of edges. Overall, there does not seem to be much effect of number of nodes sampled (k = 8 vs k = 22). Sample

size (n = 500, 1000) does not appear to have an influence given that both columns show similar rate patterns. False

positive rates for edges (dark blue bars) seems to be controlled in all additive and interaction simulation settings showing

that the BNR model is accurate in identifying truly non-influential edges, with the notable exception of the case of

µ = 1.6, pi = 0.3. This case shows very odd results in all aspects (see also Fig. 29). We believe this to be a case where

the model was affected by computational issues (like catastrophic cancellation or a similar error).

Under the additive model, false positive rate of nodes (dark purple bars) appear to be the concern when there are many

nodes sampled (k = 22) and low coefficient matrix sparsity (π = 0.8). As noted before, this is likely due to the fact

that in this case many of the samples were above the threshold at which the response was capped.

In general, the BNR model with random coefficients is able to accurately detect influential nodes and edges when there

are truly interactions effects (Fig. 43 middle: interaction model), especially when there is low sparsity of the coefficient

matrix B (π = 0.8). Under the additive model, the BNR suffers from high false positive rate of nodes.

Fig. 44 shows the false positive and false negative rates for edges and nodes for different simulation settings in terms

of n, k, π, µ for additive (top), interaction (middle) and functional redundancy (bottom) models with phylogenetic

coefficients. Again, an interaction model shows the best performance in terms of controlled false positive and false

negative rates for all settings of π, n and µ.
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With a larger sample size (n = 1000) there is better controlled false positive rate of nodes (dark purple bars) in the

π = 0.8 case than in the random coefficients case (Fig. 43) which means that when the effects of microbes are expected

to be phylogenetically-informed, the BNR model is able to accurately identify the influential nodes compared to effects

of microbes that are randomly assigned.

The results for the additive model (top) are very similar to those with the random coefficients (Fig. 43). For the

redundancy model (bottom), the results are very similar with low coefficient sparsity (π = 0.8), while for high sparsity

the high false negative rates are mostly replaced with high false positive rates when many nodes are sampled k = 22.

Fig. 46 shows the mean squared error for response values and coefficent values for different simulation settings in

terms of n, k, π, µ for additive (top), interaction (middle) and functional redundancy (bottom) models with phylogenetic

coefficients. Fig. 45 shows the same for models with random coefficients. In general, MSE is better with higher sample

sizes. In many cases, coefficient MSE values for the case of k = 22 nodes sampled were so high that it was not feasible

to include them in the plots. Note, however, that these cases still had relatively good MSE values in terms of the

response.

The Effect of Data Augmentation

We find that performing data augmentation on samples of size 50 significantly improves model performance. In both

coefficients and response, the MSE is significantly lower when the model is run on the augmented data as opposed to

the unaugmented data (Fig. 40 Appendix). While the model performance is still relatively poor in terms of identifying

truly influential microbes, augmenting the data to 200 samples we are able to identify one significant microbe using the

95% credible intervals (Figs. 41, 42 Appendix).

Bacterial drivers of Phosphorous Leaching in Soil

For our analysis of the Wagg data (Wagg et al. (2019)) we use a latent variable dimension of R = 5 as well as ν = 12.

Fig. 8 shows node coefficients for the OTUs in the augmented bacterial microbiome dataset (Wagg et al., 2019)

(posterior probabilities of influence given in Fig. 47 in the Appendix). Likely due to the limited number of samples, the

model is not able to accurately differentiate the strength of the effect of different OTUs. There is no cutoff probability

we could reasonably use to determine whether an OTU is identified as influential by the BNR model based on on

posterior probabilty. Luckily, using 95% credible intervals we’re able to identify one microbe whose presence is

influential on the amount of phosphorous leaching in the soil (Table 3) (using 90% credible intervals we identify two

microbes). We include also the reported association in the original study (Wagg et al., 2019).

We unfortunately could not find any influential edges (interactions among bacterial genera) with our model (Fig. 48 in

the Appendix) as all posterior 95% credible intervals for the edge effects intersect zero. This is consistent with the

simulation study. The model typically requires more than 200 samples to reach the statistical power to identify key

interactions. Furthermore, we note that this phenotype (phosphorous leaching) probably falls under the functional

redundancy setting as it is known that several taxa can indeed support the same function (Wagg et al., 2019). Our
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Genus Class Wagg et al. (2019) CI level
Wautersia Betaproteobacteria No association 0.10
Paenibacillus Bacilli Negative 0.05

Table 3: Bacterial genus identified by our BNR model as key drivers of phosphorous leaching in soil (based on
95% (90%) credible intervals). The original study Wagg et al. (2019) reported bacterial classes that were positively or
negatively associated with phosphorous leaching (third column). No association means that the original study did not
find any connection between the bacterial class and the response. The “CI level” column indicates at what level credible
interval the node was significant.

simulation study showed that under a functional redundancy model, the BNR has good performance only when there

are few microbes sampled and many are expected to be influential (low sparsity in B). The data collection setting in

Wagg et al. (2019) was expected to produce high sampling rates which is in disagreement with the ideal setting for the

BNR model which also explains the low statistical power to detect influential nodes. However, the requirement of low

sampling could be an artifact of flaws in the simulation study. High sampling would artificially create more response

values that surpass the threshold, inducing low variability in the response, and thus, restricting the power of the model.

As a point of comparison, we present the histograms of both the simulated "functional redundancy" response and the

actual phosphorous leaching response (Fig. 49 in the Appendix). For the simulation case of k = 8 microbes in each

sample , the mean response value is 6.9 with a standard deviation of 4.25, and out of the 500 samples in this case, just

one is truncated. For the phosphorous leaching data (actual and augmented data), the mean amount of phosphorous

leaching was 0.17 mg/L with a standard deviation of 0.17. Both histograms show sufficient spread and variability, yet

the visual perception can be deceiving and the model could potentially require more samples for accurate estimation of

parameters. We conclude that for cases of functional redundancy, presence/absence of microbes does not appear to be a

suitable predictor of phenotype variability, and other measures like diversity can be more relevant (as those used in the

original study (Wagg et al., 2019)).

Figure 8: Credible intervals for microbial (node) effects on phosphorous leaching. Left: 95% credible intervals for
the estimated effect of each microbe. Right: 90% credible intervals for the estimated effect of each microbe. Within
each plot the intervals are colored depending on whether the node is found to be influential (dark) or not influential
(light) based on whether the interval intersects zero.
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Computational speed

All simulations were run on Julia 1.7.1 with compiler optimization level set to 0, IEEE math, and bounds-checking on,

on servers provided by the Wisconsin Institute for Discovery. These servers run a Linux-based operating system on

Intel Xeon Gold 6254 CPUs. For the theoretical simulations, the inference took an average of 1 minute 34 seconds per

10,000 Gibbs samples (burn-in and retained) for sample size of n = 100 and 4 minutes 31 seconds per 10,000 Gibbs

samples (burn-in and retained) for sample size of n = 500. Recall that between 10,000 and 50,0000 Gibbs samples

(burn-in and retained) were required to be generated to achieve convergence.

For the realistic simulations, the inference took an average of 1 minute 6 seconds per 10,000 Gibbs samples (burn-in

and retained) for sample size of n = 50, 1 minute 41 seconds per 10,000 Gibbs samples (burn-in and retained) for

sample size of n = 200, 6 minutes 41 seconds per 10,000 Gibbs samples (burn-in and retained) for sample size of

n = 500, and 17 minutes 14 seconds per 10,000 Gibbs samples (burn-in and retained) for sample size of n = 1000.

Note that a minimum of 5,000 and maximum of 600,000 Gibbs samples (burn-in and retained) were required to be

generated to achieve convergence. Also note that for n = 50 and n = 200 samples an R value of 5 was used while for

R = 500 and R = 1000 an R value of 7 was used.

For the real data analysis, performing 200,000 generations (Gibbs samples) took 8 hours 17 minutes 41 seconds (24

minutes 53 seconds per 10,000 generations). Note the time per generation is much higher for the real data due to the

higher dimension of the coefficient matrix.

Discussion

In this work, we present the first deep investigation of the applicability of the Bayesian Network Regression (BNR)

model on microbiome data. In addition, we introduce the first user-friendly implementation of the BNR model

in an open source well-documented Julia package BayesianNetworkRegression.jl available on GitHub https:

//github.com/solislemuslab/BayesianNetworkRegression.jl.

The model performs well under a variety of settings of data sparsity (sparsity in network adjacency matrix A) and

sparsity of influential drivers (sparsity in the coefficient regression matrix B) when the model generating the simulated

data matches the BNR model (denoted theoretical simulations). When the model generating the simulated data did

not match the BNR model (realistic simulations), the model performance varied depending on the specific generating

model.

The current version of the BNR model (Equation 1) can accurately identify influential nodes (microbes) and influential

edges (interactions among microbes) under most realistic biological settings, but it requires large sample sizes (e.g.

n = 1000 tested here). Future work will involve the extension of the model to environmental predictors that can also

have an effect on the phenotype of interest. Furthermore, future work will incorporate downstream estimation error of

the adjacency matrix which is currently taken as perfectly reconstructed from the phylogenetic tree.
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In terms of the real data analysis, we investigated the connections between the bacterial soil microbiome data and

phosphorous leaching as in Wagg et al. (2019). Unlike in our simulation study, the sample size was merely 50 samples

which we augmented to 200 via Gaussian data augmentation techniques. The augmented sample was still not sufficient

to achieve statistical power to detect influential edges (interactions), yet it was enough to identify influential nodes

(microbes). At the 5% level, one bacterial OTU was identified a key driver of phosphorous leaching in soil, which had

already been identified as significantly associated with the response in the previous study (Wagg et al., 2019). Another,

which had not been identified in the previous study (Wagg et al., 2019) was identified at the 10% level.

While many existing public datasets do not have equivalent sample sizes to the ones tested in our simulation study, we

believe that this is a case of “build it and they will come". Until now, real data analyses of microbiome data involved

one matrix of relative abundances which is used to estimate one co-occurrence microbial network. The assumption

behind this one co-occurrence matrix is that correlations represent interactions, and these interactions are global. That

is, the interactions will appear in all contexts and all samples.

In recent years, some microbiome researchers believe that the interactions are context-dependent and that there will

be different interactions on different environmental conditions. These different interactions would produce different

microbial networks, each in turn associated with a specific biological phenotype of interest. BNR is the ideal model to

represent this setting as it requires a sample of networks with edge variability (which violates the global interactions

assumption of most public microbiome datasets) and it requires each of the microbial networks to be associated with a

phenotype value. The downside is that the model requires hundreds of these network-phenotype samples. While these

large sample conditions appear to be outside the norm of current observational microbiome research, we believe that the

BNR model could be quite useful to identify key microbial drivers of biological phenotypes in experimental settings.

Indeed, scientists can design experiments with k microbes and then, measure the phenotype of interest. Different

samples would correspond to different replicates under the same set (or different) of microbes. This setup actually

aligns with our simulation study where we have k microbes per sample and the true phenotype value is computed

only using those k microbes. Future work will incorporate other covariates into the model corresponding to replicate,

experimental or environmental conditions. Furthermore, in conjunction with data augmentation techniques, the BNR

model could be applied on a variety of real datasets, as this will be another line of future work. Despite its limitations,

we view the BNR model as one novel tool that microbiome researchers could utilize to identify key microbiome drivers

in biological phenotypes of interest given its robustness and accuracy under a variety of biologically relevant conditions.
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A Appendix

A.1 Table of parameters

Table 4: Parameters in the model and in the priors
Parameter Description

V number of nodes
q number of edges

τ2 ∈ R variance of error term
u ∈ RR×V R-dimensional latent variables for each node
ξ ∈ {0, 1}V binary vector to denote if a node is influential
γ ∈ Rq regression coefficients for edge effects
s ∈ Rq scale parameters for the variance of γ
θ ∈ R exponential parameter for the scale s
∆ ∈ R Bernoulli parameter for ξ

M ∈ RR×R covariance matrix for latent variables u
µ ∈ R overall mean

λ ∈ {0, 1,−1}R vector that governs which entries in the latent variables are informative
π̃ ∈ RR×3 Dirichlet prior probability for λ being 0, 1,−1

A.2 Mathematical description of theoretical simulations

Graphical description of the theoretical simulations is in Fig. 2. Here, we list the variables (see also Table 4):

• n: sample size (n = 100, 500)
• d: number of total microbes (d = 30)
• k: number of microbes sampled (k = 8, 15, 22) which controls the sparsity in A

• R: dimension of latent variables u (R = 5, 7, 9)
• π: probability of Bernoulli per node (π = 0.3, 0.8) which controls the sparsity in B

• µ: mean of effect size in B (µ = 0.8, 1.6) which controls the magnitude in B

Then, the simulating algorithm is:

1. Simulate a 30-taxon phylogenetic tree using the rtree function from the R package ape (Paradis and Schliep,
2019)

2. Simulate whether each node is influential and the true effects of each interaction for i = 1, . . . , d and
j = 1, . . . , 30

ξi ∼ Bernoulli(π)
Bij ∼ ξiξjNormal(µ, 1)

3. For every sample i = 1, . . . , n, calculate the adjacency matrix Ai as follows
(a) Select k microbes randomly Si = {mi1 ,mi2 , . . . ,mik}, with indices K∗

i = {i1, i2, . . . , ik}
(b) For p, q ∈ K∗, let dp,q be the phylogenetic distance between microbes p and q, so that the (p, q) entry in

the adjacency matrix is given by

Ai[p, q] =
1

dp,q

4. For every sample i = 1, . . . , n, calculate the response value as follows

yi =< Ai,B >F +ϵ, ϵ ∼ Normal(0, 1)

At the end of the simulating algorithm, we have a collection of pairs (y1,A1), . . . , (yn,An) to be used as data in the
BNR implementation.
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A.3 Mathematical description of realistic simulations

Graphical description of the realistic simulations is in Fig. 3. Here, we list the variables (see also Table 4):

• n: sample size (n = 500, 1000)

• d: number of total microbes (d = 30)

• k: number of microbes sampled (k = 8, 22) which controls the sparsity in A

• R: dimension of latent variables u (R = 7)

• π: probability of Bernoulli per node (π = 0.3, 0.8) which controls the sparsity in B

• µb: mean of main effect size in B (µb = 0.8, 1.6) which controls the magnitude in B

• L: limit for response y under the functional redundancy model

µ π L
0.8 0.3 3
1.6 0.3 7
0.8 0.8 22
1.6 0.8 30

Next, we describe the simulating algorithm for the three models.

A.3.1 Additive Simulations

1. Simulate a 30-taxon phylogenetic tree using the rtree function from the R package ape (Paradis and Schliep,
2019)

2. Simulate whether a specific node is influential and its true main effect for i = 1, . . . , 30:

(a) ξi ∼ Bernoulli(π)
(b) bi ∼ Normal(µb,Σ)

• Σ = I30 (case of random coefficients)
• Σ governed by the phylogenetic tree using the Julia package PhyloNetworks (Solís-Lemus et al.,

2017) (case of phylogenetic coefficients)

3. For every sample i = 1, . . . , n calculate the adjacency matrix (Ai) as follows

(a) Select k microbes randomly Si = {mi1 ,mi2 , . . . ,mik}, with indices K∗
i = {i1, . . . , ik}

(b) For p, q ∈ K∗
i , let dp,q be the phylogenetic distance between microbes p and q so that the (p, q) entry in

the adjacency matrix is given by

Ai[p, q] =
1

dp,q

4. For every sample i = 1, . . . , n, calculate the response value as follows

yi =

d∑
j=1

bjmjξj + ϵ, ϵ ∼ Normal(0, 1)

mj = 1(j ∈ K∗
i )

where 1(·) is the indicator function.

At the end of the simulating algorithm, we have a collection of pairs (y1,A1), . . . , (yn,An) to be used as data in the
BNR implementation.

A.3.2 Interaction Simulations

1. Simulate a 30-taxon phylogenetic tree using the rtree function from the R package ape (Paradis and Schliep,
2019)

2. Simulate whether a specific node is influential, its true main effect for i = 1, . . . , 30 and all interaction effects
j = 1, . . . , 30:
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(a) ξi ∼ Bernoulli(π)
(b) bi ∼ Normal(µb,Σ)

• Σ = I30 (case of random coefficients)
• Σ governed by the phylogenetic tree using the Julia package PhyloNetworks (Solís-Lemus et al.,

2017) (case of phylogenetic coefficients)
(c) bij ∼ Normal(0.4, 1)

3. For every sample i = 1, . . . , n calculate the adjacency matrix (Ai) as follows

(a) Select k microbes randomly Si = {mi1 ,mi2 , . . . ,mik}, with indices K∗
i = {j1, j2, . . . , jk}

(b) For p, q ∈ K∗, let dp,q be the phylogenetic distance between microbes p and q so that the (p, q) entry in
the adjacency matrix is given by

Ai[p, q] =
1

dp,q

4. For every sample i = 1, . . . , n, calculate the response value as follows:

yi =

d∑
l=1

blmlξl +

d∑
l=1

d∑
j=1

blj(Ai[l, j])ξlξj + ϵ, ϵ ∼ Normal(0, 1)

ml = 1(l ∈ K∗
i )

where 1(·) is the indicator function.

At the end of the simulating algorithm, we have a collection of pairs (y1,A1), . . . , (yn,An) to be used as data in the
BNR implementation.

A.3.3 Functional Redundancy Simulations

1. Simulate a 30-taxon phylogenetic tree using the rtree function from the R package ape (Paradis and Schliep,
2019)

2. Simulate whether a specific node is influential, its true main effect for i = 1, . . . , 30 and all interaction effects
j = 1, . . . , 30:

(a) ξi ∼ Bernoulli(π)
(b) bi ∼ Normal(µb,Σ)

• Σ = I30 (case of random coefficients)
• Σ governed by the phylogenetic tree using the Julia package PhyloNetworks (Solís-Lemus et al.,

2017) (case of phylogenetic coefficients)
(c) bij ∼ Normal(0.4, 1)

3. For every sample i = 1, . . . , n calculate the adjacency matrix (Ai) as follows

(a) Select k microbes randomly Si = {mi1 ,mi2 , . . . ,mik}, with indices K∗
i = {j1, j2, . . . , jk}

(b) For p, q ∈ K∗, let dp,q be the phylogenetic distance between microbes p and q so that the (p, q) entry in
the adjacency matrix is given by

Ai[p, q] =
1

dp,q

4. For every sample i = 1, . . . , n, calculate the response value as follows:

yi = min


d∑

l=1

blmlξl +

d∑
l=1

d∑
j=1

blj(Ai[l, j])ξlξj + ϵ, L

 , ϵ ∼ Normal(0, 1)

ml = 1(l ∈ K∗
i )

where 1(·) is the indicator function.

At the end of the simulating algorithm, we have a collection of pairs (y1,A1), . . . , (yn,An) to be used as data in the
BNR implementation.
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(a) n = 100, k = 8 (b) n = 100, k = 22

(c) n = 500, k = 8 (d) n = 500, k = 22

Figure 9: Posterior probability of influential nodes (theoretical simulations). Different groups of 4 panels represent
different number of sampled microbes (k = 8, 22) which controls the sparsity of the adjacency matrix and different
sample sizes (n = 100, 500). Within each group, we have four panels corresponding to the two values of edge effect
size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls the sparsity of
the regression coefficient matrix (B). Within each of these panels we have two plots: 95% credible intervals (top)
and posterior probability of influence (bottom - calculated as the mean of the ξ variable for the node across Gibbs
samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars and intervals are colored
depending on whether the node is found to be influential (dark) or not influential (light) based on the 95% credible
intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).
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(a) n = 100 (b) n = 500

Figure 10: 95 % credible intervals for edge effects for k = 8 sampled nodes (theoretical simulations). Top (a):
Sample size of n = 100. Bottom (b): Sample size of n = 500. Each panel corresponds to a scenario of π = 0.3, 0.8
(which controls the sparsity of the regression coefficient matrix B) and µ = 0.8, 1.6. We plot the 95 % credible intervals
for the regression coefficients per edge ordered depending on whether they are truly non-influential edges (top of each
panel) or truly influential edges (bottom of each panel). The color of the intervals depends on whether it intersects zero
(light) and hence estimated to be non-influential or does not intersect zero (dark) and hence estimated to be influential
by the model. These panels allow us to visualize false positives (dark intervals on the top panel) or false negatives (light
intervals on the bottom panel).

(a) n = 100 (b) n = 500

Figure 11: 95 % credible intervals for edge effects for k = 22 sampled nodes (theoretical simulations). Top (a):
Sample size of n = 100. Bottom (b): Sample size of n = 500. Each panel corresponds to a scenario of π = 0.3, 0.8
(which controls the sparsity of the regression coefficient matrix B) and µ = 0.8, 1.6. We plot the 95 % credible intervals
for the regression coefficients per edge ordered depending on whether they are truly non-influential edges (top of each
panel) or truly influential edges (bottom of each panel). The color of the intervals depends on whether it intersects zero
(light) and hence estimated to be non-influential or does not intersect zero (dark) and hence estimated to be influential
by the model. These panels allow us to visualize false positives (dark intervals on the top panel) or false negatives (light
intervals on the bottom panel).
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(a) n = 100, k = 8 (b) n = 500, k = 8

(c) n = 100, k = 22 (d) n = 500, k = 22

Figure 12: Posterior probability of influential nodes (theoretical simulations R = 5). Different groups of four
panels represent different number of sampled microbes (k = 8, 22) which controls the sparsity of the adjacency matrix
and different sample sizes (n = 100, 500). Within each group, we have four panels corresponding to the two values
of edge effect size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls the
sparsity of the regression coefficient matrix (B). Within each of these panels we have two plots: 95% credible intervals
(top) and posterior probability of influence (bottom - calculated as the mean of the ξ variable for the node across Gibbs
samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars and intervals are colored
depending on whether the node is found to be influential (dark) or not influential (light) based on the 95% credible
intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).
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(a) n = 100, k = 8 (b) n = 500, k = 8

(c) n = 100, k = 22 (d) n = 500, k = 22

Figure 13: Posterior probability of influential nodes (theoretical simulations R = 9). Different groups of four
panels represent different number of sampled microbes (k = 8, 22) which controls the sparsity of the adjacency matrix
and different sample sizes (n = 100, 500). Within each group, we have four panels corresponding to the two values
of edge effect size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls the
sparsity of the regression coefficient matrix (B). Within each of these panels we have two plots: 95% credible intervals
(top) and posterior probability of influence (bottom - calculated as the mean of the ξ variable for the node across Gibbs
samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars and intervals are colored
depending on whether the node is found to be influential (dark) or not influential (light) based on the 95% credible
intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).
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(a) n = 100, R = 5 (b) n = 500, R = 5

Figure 14: Posterior probability of influential nodes and coefficients for nodes (theoretical simulations k = 15,
R = 5). Different groups of four panels represent different sample sizes (n = 100, 500). Within each group, we
have four panels corresponding to the two values of edge effect size (µ = 0.8, 1.6) and two values of probability of
influential node (π = 0.3, 0.8) which controls the sparsity of the regression coefficient matrix (B). Within each of these
panels we have two plots: 95% credible intervals (top) and posterior probability of influence (bottom - calculated as the
mean of the ξ variable for the node across Gibbs samples) for each node. Each bar corresponds to one node (microbe).
Within each plot the bars and intervals are colored depending on whether the node is found to be influential (dark)
or not influential (light) based on the 95% credible intervals. Each plot is split based on whether the nodes are truly
influential (right) or not (left).

(a) n = 100, R = 7 (b) n = 500, R = 7

Figure 15: Posterior probability of influential nodes and coefficients for nodes (theoretical simulations k = 15,
R = 7). Different groups of four panels represent different sample sizes (n = 100, 500). Within each group, we
have four panels corresponding to the two values of edge effect size (µ = 0.8, 1.6) and two values of probability of
influential node (π = 0.3, 0.8) which controls the sparsity of the regression coefficient matrix (B). Within each of these
panels we have two plots: 95% credible intervals (top) and posterior probability of influence (bottom - calculated as the
mean of the ξ variable for the node across Gibbs samples) for each node. Each bar corresponds to one node (microbe).
Within each plot the bars and intervals are colored depending on whether the node is found to be influential (dark)
or not influential (light) based on the 95% credible intervals. Each plot is split based on whether the nodes are truly
influential (right) or not (left).
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(a) n = 100, R = 9 (b) n = 500, R = 9

Figure 16: Posterior probability of influential nodes and coefficients for nodes (theoretical simulations k = 15,
R = 9). Different groups of four panels represent different sample sizes (n = 100, 500). Within each group, we
have four panels corresponding to the two values of edge effect size (µ = 0.8, 1.6) and two values of probability of
influential node (π = 0.3, 0.8) which controls the sparsity of the regression coefficient matrix (B). Within each of these
panels we have two plots: 95% credible intervals (top) and posterior probability of influence (bottom - calculated as the
mean of the ξ variable for the node across Gibbs samples) for each node. Each bar corresponds to one node (microbe).
Within each plot the bars and intervals are colored depending on whether the node is found to be influential (dark)
or not influential (light) based on the 95% credible intervals. Each plot is split based on whether the nodes are truly
influential (right) or not (left).

Figure 17: False positive and false negative rates for influential edges and nodes (theoretical simulations). X
axis corresponds to the number of sampled nodes (microbes) which relates to the sparsity of the adjacency matrices
Ai. Y axis corresponds to false positive or false negative rates for edges or nodes (depending on the color of the bar).
Decisions to reject for edges are based on 95% posterior credible intervals, and for nodes are based on whether the
posterior probability of influence is greater than 0.5. Within each panel, we have four plots corresponding to the two
values of edge effect size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls
the sparsity of the regression coefficient matrix (B). Each bar corresponds to one rate: false positive rate and false
negative rate for edges (dark and light blue) and false positive rate and false negative rate for nodes (dark and light
purple).
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(a) k = 8

(b) k = 22

Figure 18: ROC curve for node posterior probabilities (theoretical simulations) for R = 7. X axis refers to false
positive rate, Y axis refers to true positive rate. False positive and true positive rate changes as the arbitrary cutoff
value for determining node influence changes. Top is k = 8 microbes per sample, bottom is k = 22. In each plot,
the left pane gives the small sample size (n = 100) case, while the right pane gives the large sample size (n = 500)
case. Dashed lines correspond to different values of the true mean for edge effects (µ = 0.8, 1.6) and different colors
correspond to different sparsity levels on the regression coefficient matrix B (π = 0.3, 0.8).
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A.4.2 Realistic case: Additive model

(a) n = 500 (b) n = 1000

Figure 19: 95 % credible intervals for edge effects (additive model with random coefficients) with k = 8 sampled
nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel corresponds to a scenario
of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and µ = 0.8, 1.6. We plot the 95
% credible intervals for the regression coefficients per edge. In the additive model, all edges are non-influential. The
color of the intervals depends on whether it intersects zero (light) and hence estimated to be non-influential or does not
intersect zero (dark) and hence estimated to be influential by the model. Given that the additive model does not have
interaction (edge) effects, these panels allow us to visualize false positives (dark intervals).

(a) n = 500 (b) n = 1000

Figure 20: 95 % credible intervals for edge effects (additive model with random coefficients) with k = 22 sampled
nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel corresponds to a scenario
of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and µ = 0.8, 1.6. We plot the 95
% credible intervals for the regression coefficients per edge. In the additive model, all edges are non-influential. The
color of the intervals depends on whether it intersects zero (light) and hence estimated to be non-influential or does not
intersect zero (dark) and hence estimated to be influential by the model. Given that the additive model does not have
interaction (edge) effects, these panels allow us to visualize false positives (dark intervals).
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(a) n = 500 (b) n = 1000

Figure 21: 95 % credible intervals for edge effects (additive model with phylogenetic coefficients) with k = 8
sampled nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel corresponds to a
scenario of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and µ = 0.8, 1.6. We plot
the 95 % credible intervals for the regression coefficients per edge. In the additive model, all edges are non-influential.
The color of the intervals depends on whether it intersects zero (light) and hence estimated to be non-influential or does
not intersect zero (dark) and hence estimated to be influential by the model. Given that the additive model does not have
interaction (edge) effects, these panels allow us to visualize false positives (dark intervals).

(a) n = 500 (b) n = 1000

Figure 22: 95 % credible intervals for edge effects (additive model with phylogenetic coefficients) with k = 22
sampled nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel corresponds to a
scenario of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and µ = 0.8, 1.6. We plot
the 95 % credible intervals for the regression coefficients per edge. In the additive model, all edges are non-influential.
The color of the intervals depends on whether it intersects zero (light) and hence estimated to be non-influential or does
not intersect zero (dark) and hence estimated to be influential by the model. Given that the additive model does not have
interaction (edge) effects, these panels allow us to visualize false positives (dark intervals).
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(a) n = 500, k = 8 (b) n = 1000, k = 8

(c) n = 500, k = 22 (d) n = 1000, k = 22

Figure 23: Posterior probability of influential nodes and coefficients for nodes (additive model with random
coefficients). Different groups of four panels represent different number of sampled microbes (k = 8, 22) which
controls the sparsity of the adjacency matrix and different sample sizes (n = 500, 1000). Within each group, we have
four panels corresponding to the two values of edge effect size (µ = 0.8, 1.6) and two values of probability of influential
node (π = 0.3, 0.8) which controls the sparsity of the regression coefficient matrix (B). Within each of these panels we
have two plots: 95% credible intervals (top) and posterior probability of influence (bottom - calculated as the mean of
the ξ variable for the node across Gibbs samples) for each node. Each bar corresponds to one node (microbe). Within
each plot the bars and intervals are colored depending on whether the node is found to be influential (dark) or not
influential (light) based on the 95% credible intervals. Each plot is split based on whether the nodes are truly influential
(right) or not (left).
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(a) n = 500, k = 8 (b) n = 1000, k = 8

(c) n = 500, k = 22 (d) n = 1000, k = 22

Figure 24: Posterior probability of influential nodes and coefficients for nodes (additive model with phylogenetic
coefficients). Different groups of four panels represent different number of sampled microbes (k = 8, 22) which
controls the sparsity of the adjacency matrix and different sample sizes (n = 500, 1000). Within each group, we have
four panels corresponding to the two values of edge effect size (µ = 0.8, 1.6) and two values of probability of influential
node (π = 0.3, 0.8) which controls the sparsity of the regression coefficient matrix (B). Within each of these panels we
have two plots: 95% credible intervals (top) and posterior probability of influence (bottom - calculated as the mean of
the ξ variable for the node across Gibbs samples) for each node. Each bar corresponds to one node (microbe). Within
each plot the bars and intervals are colored depending on whether the node is found to be influential (dark) or not
influential (light) based on the 95% credible intervals. Each plot is split based on whether the nodes are truly influential
(right) or not (left).
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A.4.3 Realistic case: Interaction model

(a) n = 500 (b) n = 1000

Figure 25: 95 % credible intervals for edge effects (interaction model with random coefficients) with k = 8
sampled nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel corresponds to
a scenario of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and µ = 0.8, 1.6. We
plot the 95 % credible intervals for the regression coefficients per edge ordered depending on whether they are truly
non-influential edges (top of each panel) or truly influential edges (bottom of each panel). The color of the intervals
depends on whether it intersects zero (light) and hence estimated to be non-influential or does not intersect zero (dark)
and hence estimated to be influential by the model. These panels allow us to visualize false positives (dark intervals on
the top panel) or false negatives (light intervals on the bottom panel).

(a) n = 500 (b) n = 1000

Figure 26: 95 % credible intervals for edge effects (interaction model with random coefficients) with k = 22
sampled nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel corresponds to
a scenario of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and µ = 0.8, 1.6. We
plot the 95 % credible intervals for the regression coefficients per edge ordered depending on whether they are truly
non-influential edges (top of each panel) or truly influential edges (bottom of each panel). The color of the intervals
depends on whether it intersects zero (light) and hence estimated to be non-influential or does not intersect zero (dark)
and hence estimated to be influential by the model. These panels allow us to visualize false positives (dark intervals on
the top panel) or false negatives (light intervals on the bottom panel).
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(a) n = 500 (b) n = 1000

Figure 27: 95 % credible intervals for edge effects (interaction model with phylogenetic coefficients) with k = 8
sampled nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel corresponds to
a scenario of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and µ = 0.8, 1.6. We
plot the 95 % credible intervals for the regression coefficients per edge ordered depending on whether they are truly
non-influential edges (top of each panel) or truly influential edges (bottom of each panel). The color of the intervals
depends on whether it intersects zero (light) and hence estimated to be non-influential or does not intersect zero (dark)
and hence estimated to be influential by the model. These panels allow us to visualize false positives (dark intervals on
the top panel) or false negatives (light intervals on the bottom panel).

(a) n = 500 (b) n = 1000

Figure 28: 95 % credible intervals for edge effects (interaction model with phylogenetic coefficients) with k = 22
sampled nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel corresponds to
a scenario of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and µ = 0.8, 1.6. We
plot the 95 % credible intervals for the regression coefficients per edge ordered depending on whether they are truly
non-influential edges (top of each panel) or truly influential edges (bottom of each panel). The color of the intervals
depends on whether it intersects zero (light) and hence estimated to be non-influential or does not intersect zero (dark)
and hence estimated to be influential by the model. These panels allow us to visualize false positives (dark intervals on
the top panel) or false negatives (light intervals on the bottom panel).
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(a) n = 500,k = 8 (b) n = 1000,k = 8

(c) n = 500,k = 22 (d) n = 1000,k = 22

Figure 29: Posterior probability of influential nodes and coefficients for nodes (interaction model with random
coefficients). Different groups of four panels represent different number of sampled microbes (k = 8, 22) which
controls the sparsity of the adjacency matrix and different sample sizes (n = 500, 1000). Within each group, we have
four panels corresponding to the two values of edge effect size (µ = 0.8, 1.6) and two values of probability of influential
node (π = 0.3, 0.8) which controls the sparsity of the regression coefficient matrix (B). Within each of these panels we
have two plots: 95% credible intervals (top) and posterior probability of influence (bottom - calculated as the mean of
the ξ variable for the node across Gibbs samples) for each node. Each bar corresponds to one node (microbe). Within
each plot the bars and intervals are colored depending on whether the node is found to be influential (dark) or not
influential (light) based on the 95% credible intervals. Each plot is split based on whether the nodes are truly influential
(right) or not (left).
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(a) n = 500 (b) n = 1000

Figure 30: Posterior probability of influential nodes and coefficients for nodes (interaction model with phylogenetic
coefficients). Different groups of four panels represent different number of sampled microbes (k = 22) which controls
the sparsity of the adjacency matrix and different sample sizes (n = 500, 1000). Within each group, we have four
panels corresponding to the two values of edge effect size (µ = 0.8, 1.6) and two values of probability of influential
node (π = 0.3, 0.8) which controls the sparsity of the regression coefficient matrix (B). Within each of these panels we
have two plots: 95% credible intervals (top) and posterior probability of influence (bottom - calculated as the mean of
the ξ variable for the node across Gibbs samples) for each node. Each bar corresponds to one node (microbe). Within
each plot the bars and intervals are colored depending on whether the node is found to be influential (dark) or not
influential (light) based on the 95% credible intervals. Each plot is split based on whether the nodes are truly influential
(right) or not (left).
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A.4.4 Realistic case: Functional redundancy

(a) n = 500 (b) n = 1000

Figure 31: Posterior probability of influential nodes and coefficients for nodes (functional redundancy model
with random coefficients). Different groups of four panels (quadrants) represent different sample sizes (n = 100, 500)
and different number of sampled microbes (k = 22). Within each group, we have four panels corresponding to the
two values of edge effect size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which
controls the sparsity of the regression coefficient matrix (B). Within each of these panels we have two plots: 95%
credible intervals (top) and posterior probability of influence (bottom - calculated as the mean of the ξ variable for the
node across Gibbs samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars and
intervals are colored depending on whether the node is found to be influential (dark) or not influential (light) based on
the 95% credible intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).
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(a) n = 500 (b) n = 1000

Figure 32: 95 % credible intervals for edge effects (functional redundancy model with random coefficients)
with k = 8 sampled nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel
corresponds to a scenario of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and
µ = 0.8, 1.6. We plot the 95 % credible intervals for the regression coefficients per edge ordered depending on whether
they are truly non-influential edges (top of each panel) or truly influential edges (bottom of each panel). The color of
the intervals depends on whether it intersects zero (light) and hence estimated to be non-influential or does not intersect
zero (dark) and hence estimated to be influential by the model. These panels allow us to visualize false positives (dark
intervals on the top panel) or false negatives (light intervals on the bottom panel).

(a) n = 500 (b) n = 500

Figure 33: 95 % credible intervals for edge effects (functional redundancy model with random coefficients)
with k = 22 sampled nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel
corresponds to a scenario of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and
µ = 0.8, 1.6. We plot the 95 % credible intervals for the regression coefficients per edge ordered depending on whether
they are truly non-influential edges (top of each panel) or truly influential edges (bottom of each panel). The color of
the intervals depends on whether it intersects zero (light) and hence estimated to be non-influential or does not intersect
zero (dark) and hence estimated to be influential by the model. These panels allow us to visualize false positives (dark
intervals on the top panel) or false negatives (light intervals on the bottom panel).
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(a) n = 500 (b) n = 1000

Figure 34: 95 % credible intervals for edge effects (functional redundancy model with phylogenetic coefficients)
with k = 8 sampled nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel
corresponds to a scenario of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and
µ = 0.8, 1.6. We plot the 95 % credible intervals for the regression coefficients per edge ordered depending on whether
they are truly non-influential edges (top of each panel) or truly influential edges (bottom of each panel). The color of
the intervals depends on whether it intersects zero (light) and hence estimated to be non-influential or does not intersect
zero (dark) and hence estimated to be influential by the model. These panels allow us to visualize false positives (dark
intervals on the top panel) or false negatives (light intervals on the bottom panel).

(a) n = 500 (b) n = 1000

Figure 35: 95 % credible intervals for edge effects (functional redundancy model with phylogenetic coefficients)
with k = 22 sampled nodes. Top (a): Sample size of n = 500. Bottom (b): Sample size of n = 1000. Each panel
corresponds to a scenario of π = 0.3, 0.8 (which controls the sparsity of the regression coefficient matrix B) and
µ = 0.8, 1.6. We plot the 95 % credible intervals for the regression coefficients per edge ordered depending on whether
they are truly non-influential edges (top of each panel) or truly influential edges (bottom of each panel). The color of
the intervals depends on whether it intersects zero (light) and hence estimated to be non-influential or does not intersect
zero (dark) and hence estimated to be influential by the model. These panels allow us to visualize false positives (dark
intervals on the top panel) or false negatives (light intervals on the bottom panel).
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(a) n = 500 (b) n = 1000

Figure 36: Posterior probability of influential nodes and coefficients for nodes (functional redundancy model
with random coefficients) with k = 8 sampled nodes. Different groups of four panels represent different sample
sizes (n = 500, 1000). Within each group, we have four panels corresponding to the two values of edge effect size
(µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls the sparsity of the
regression coefficient matrix (B). Within each of these panels we have two plots: 95% credible intervals (top) and
posterior probability of influence (bottom - calculated as the mean of the ξ variable for the node across Gibbs samples)
for each node. Each bar corresponds to one node (microbe). Within each plot the bars and intervals are colored
depending on whether the node is found to be influential (dark) or not influential (light) based on the 95% credible
intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).

(a) n = 500 (b) n = 1000

Figure 37: Posterior probability of influential nodes and coefficients for nodes (functional redundancy model
with random coefficients) with k = 22 sampled nodes. Different groups of four panels represent different sample
sizes (n = 500, 1000). Within each group, we have four panels corresponding to the two values of edge effect size
(µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls the sparsity of the
regression coefficient matrix (B). Within each of these panels we have two plots: 95% credible intervals (top) and
posterior probability of influence (bottom - calculated as the mean of the ξ variable for the node across Gibbs samples)
for each node. Each bar corresponds to one node (microbe). Within each plot the bars and intervals are colored
depending on whether the node is found to be influential (dark) or not influential (light) based on the 95% credible
intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).
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(a) n = 500 (b) n = 1000

Figure 38: Posterior probability of influential nodes and coefficients for nodes (functional redundancy model
with phylogenetic coefficients) with k = 8 sampled nodes. Different groups of four panels represent different
sample sizes (n = 500, 1000). Within each group, we have four panels corresponding to the two values of edge effect
size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls the sparsity of
the regression coefficient matrix (B). Within each of these panels we have two plots: 95% credible intervals (top)
and posterior probability of influence (bottom - calculated as the mean of the ξ variable for the node across Gibbs
samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars and intervals are colored
depending on whether the node is found to be influential (dark) or not influential (light) based on the 95% credible
intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).

(a) n = 500 (b) n = 1000

Figure 39: Posterior probability of influential nodes and coefficients for nodes (functional redundancy model
with phylogenetic coefficients) with k = 22 sampled nodes. Different groups of four panels represent different
sample sizes (n = 500, 1000). Within each group, we have four panels corresponding to the two values of edge effect
size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls the sparsity of
the regression coefficient matrix (B). Within each of these panels we have two plots: 95% credible intervals (top)
and posterior probability of influence (bottom - calculated as the mean of the ξ variable for the node across Gibbs
samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars and intervals are colored
depending on whether the node is found to be influential (dark) or not influential (light) based on the 95% credible
intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).
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A.4.5 The Effect of Data Augmentation

Figure 40: Mean Square Error for regression coefficients and response (functional redundancy model with
random coefficients) for R = 5, ν = 12. X axis corresponds to the number of sampled nodes (microbes) which relates
to the sparsity of the adjacency matrix X. Dashed or solid lines correspond to different values of the true mean for edge
effects (µ = 0.8, 1.6) and different colors correspond to different sparsity levels on the regression coefficient matrix
B (π = 0.3, 0.8). The plot on the left is for the original, unaugmented data only (n = 50), while the plot on the right
includes augmented data (n = 200). Lines which are missing indicate that MSE values for both numbers of microbes
were above the maximum cutoff for the plot.

(a) n = 50 (b) n = 200

Figure 41: Posterior probability of influential nodes and coefficients for nodes (functional redundancy model
with phylogenetic coefficients) with k = 8 sampled microbes. Different groups of four panels represent different
sample sizes (n = 50, 200). Within each group, we have four panels corresponding to the two values of edge effect
size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls the sparsity of
the regression coefficient matrix (B). Within each of these panels we have two plots: 95% credible intervals (top)
and posterior probability of influence (bottom - calculated as the mean of the ξ variable for the node across Gibbs
samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars and intervals are colored
depending on whether the node is found to be influential (dark) or not influential (light) based on the 95% credible
intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).
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(a) n = 50 (b) n = 200

Figure 42: Posterior probability of influential nodes and coefficients for nodes (functional redundancy model
with phylogenetic coefficients) with k = 22 sampled microbes. Different groups of four panels represent different
sample sizes (n = 50, 200). Within each group, we have four panels corresponding to the two values of edge effect
size (µ = 0.8, 1.6) and two values of probability of influential node (π = 0.3, 0.8) which controls the sparsity of
the regression coefficient matrix (B). Within each of these panels we have two plots: 95% credible intervals (top)
and posterior probability of influence (bottom - calculated as the mean of the ξ variable for the node across Gibbs
samples) for each node. Each bar corresponds to one node (microbe). Within each plot the bars and intervals are colored
depending on whether the node is found to be influential (dark) or not influential (light) based on the 95% credible
intervals. Each plot is split based on whether the nodes are truly influential (right) or not (left).

A.4.6 False positive and negative rates
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Figure 43: False positive and false negative rates for influential edges and nodes for additive (top), interaction
(middle) and functional redundancy (bottom) models with random coefficients. X axis corresponds to the number
of sampled nodes (microbes) which relates to the sparsity of the adjacency matrix X. Decisions to reject for edges are
based on 95% posterior credible intervals, and for nodes are based on whether the posterior probability of influence is
greater than 0.5. Within each panel, we have four plots corresponding to the two values of edge effect size (µ = 0.8, 1.6)
and two values of probability of influential edge (π = 0.3, 0.8) which controls the sparsity of the regression coefficient
matrix (B). Each bar corresponds to one rate: false positive rate and false negative rate for edges (dark and light blue)
and false positive rate and false negative rate for nodes (dark and light purple).
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Figure 44: False positive and false negative rates for influential edges and nodes for additive (top), interaction
(middle) and functional redundancy (bottom) models with phylogenetic coefficients. X axis corresponds to the
number of sampled nodes (microbes) which relates to the sparsity of the adjacency matrix X. Decisions to reject for
edges are based on 95% posterior credible intervals, and for nodes are based on whether the posterior probability of
influence is greater than 0.5. Within each panel, we have four plots corresponding to the two values of edge effect
size (µ = 0.8, 1.6) and two values of probability of influential edge (π = 0.3, 0.8) which controls the sparsity of the
regression coefficient matrix (B). Each bar corresponds to one rate: false positive rate and false negative rate for edges
(dark and light blue) and false positive rate and false negative rate for nodes (dark and light purple).

59



Identifying microbial drivers in biological phenotypes with a Bayesian Network Regression model

(a) Additive

(b) Interaction

(c) Funcional redundant

Figure 45: Mean Square Error of coefficients and response for additive (top), interaction (middle) and functional
redundancy (bottom) models with random coefficients for R = 7. X axis corresponds to the number of sampled
nodes (microbes) which relates to the sparsity of the adjacency matrix X. Dashed lines correspond to different values of
the true mean for edge effects (µ = 0.8, 1.6) and different colors correspond to different sparsity levels on the regression
coefficient matrix B (π = 0.3, 0.8).
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(a) Additive

(b) Interaction

(c) Functional redundant

Figure 46: Mean Square Error of coefficients and response for additive (top), interaction (middle) and functional
redundancy (bottom) models with phylogenetic coefficients X axis corresponds to the number of sampled nodes
(microbes) which relates to the sparsity of the adjacency matrix X. Dashed lines correspond to different values of the
true mean for edge effects (µ = 0.8, 1.6) and different colors correspond to different sparsity levels on the regression
coefficient matrix B (π = 0.3, 0.8).
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A.5 Fungal and bacterial drivers of Phosphorous Leaching in Soil

Figure 47: Posterior probability of influence for microbes (bacterial microbiome data). Posterior probability of
influence for each microbe, calculated as the average of the ξ value for that node across retained Gibbs samples.

Figure 48: Posterior 95% credible intervals for edge effects (real-world data). The color of the intervals depends on
whether it intersects zero (light) and hence estimated to be non-influential or does not intersect zero (dark) and hence
estimated to be influential by the model. Note that there are no dark intervals: no edges are found to be influential.

Figure 49: Histogram of response values for simulated "functional redundancy" data with π = 0.8, µ = 0.8, n = 500
samples, k = 8 sampled nodes (left) and for the phosphorous leaching data, including augmented samples (right).
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