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Abstract

Missing data is an important, but often ignored, aspect of a network study. Measurement validity is 

affected by missing data, but the level of bias can be difficult to gauge. Here, we describe the 

effect of missing data on network measurement across widely different circumstances. In Part I of 

this study (Smith and Moody, 2013), we explored the effect of measurement bias due to randomly 

missing nodes. Here, we drop the assumption that data are missing at random: what happens to 

estimates of key network statistics when central nodes are more/less likely to be missing? We 

answer this question using a wide range of empirical networks and network measures. We find that 

bias is worse when more central nodes are missing. With respect to network measures, Bonacich 

centrality is highly sensitive to the loss of central nodes, while closeness centrality is not; distance 

and bicomponent size are more affected than triad summary measures and behavioral homophily is 

more robust than degree-homophily. With respect to types of networks, larger, directed networks 

tend to be more robust, but the relation is weak. We end the paper with a practical application, 

showing how researchers can use our results (translated into a publically available java 

application) to gauge the bias in their own data.
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1. Introduction

Network data are often incomplete, especially when collected through traditional means, 

such as surveys. Conventional logic suggested that even small amounts of missing data were 

unacceptable, since network measures are dependent on the connections between all actors 

in a network and missing even a few nodes could badly bias the estimates of distance, 

cohesion or other structural measures. Recent work has challenged that assumption, showing 

that many network measures can be well-estimated with incomplete information (Borgatti et 

al., 2006; Smith and Moody, 2013). This does not mean that measurement concerns can be 

ignored (for example, see Marsden, 1993; Brewer and Webster, 2000; Marin and Hampton, 
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2007; Eagle and Proeschold-Bell, 2015), only that missing data itself does not necessarily 
invalidate a network study. Still, we are only beginning to understand the practical 

consequences of missing data for network studies (e.g. Kossinets, 2006; Wang et al., 2012). 

How much missing data is too much? And should our tolerance for missing data vary by 

network type, measure of interest and type of missing data (Frantz et al., 2009)? Are there 

circumstances when missing 30% of the network is acceptable, but others when missing 

10% is not?

This paper is the second part of a series on missing network data (Smith and Moody, 2013), 

with the overall goal of providing straightforward, practical guidance for researchers 

collecting and analyzing network data.1 Network scholars have long been concerned with 

measurement error; for example, asking how different collection strategies invite different 

threats to validity (Marsden, 1990; Butts, 2003; Marsden, 2005). Here we focus on the types 

of settings – archetypically surveys2 – where node-missingness is common (e.g. McFarland 

et al., 2014; Patacchini and Zenou, 2016). We thus focus on measurement issues most likely 

to cause problems in such settings (for example, see Laumann et al., 1983; Strully, 2014 for 

a discussion of the boundary problem; see also Smith and Faris, 2015; Hipp et al., 2015 for a 

discussion related specifically to longitudinal network data). Node missingness may be less 

of a concern when dealing with automated data, such as sensor, cell phone or online data 

(Bliss et al., 2014; González-Bailón et al., 2014), though these also have peculiar issues of 

their own, such as distinguishing between ‘real’ and ‘fake’ nodes in an online network (see 

Wang et al., 2012).

Our primary question is what happens to network measures when central actors are more (or 

less) likely to be missing? This is particularly pressing for researchers administrating 

network surveys in schools, organizations and other medium-sized, bounded settings 

(Valente et al., 2003; Moore et al., 2004; Steglich et al., 2012). Certain actors may be 

disproportionally absent the day of the survey or particularly unwilling to take part in the 

study, and it is important to know how such a practical, common problem will affect one's 

analysis (see Kreager et al., 2015). We condition missingness on centrality for two reasons: 

first, centrality nicely captures the kinds of structural problems common in this sort of data 

collection. In adolescent populations, for example, peripheral nodes are likely to be absent 

from school and thus not in the survey (resulting in a negative correlation between centrality 

and missingness); while in organizational or elite networks very central nodes might be too 

busy to participate (resulting in a positive correlation between centrality and missingness). 

While other characteristics might also drive missingness (cluster membership or attributes 

not associated with centrality), centrality provides a general bias that likely maps onto data 

collection difficulty. Second, many of the structural features we care to measure are built on 

1Our approach is distinct from statistical models that aim to estimate and correct bias, given the data have been collected in a manner 
consistent with the correction model (Robins et al., 2004; Koskinen et al., 2010; Koskinen et al., 2013). The approach is also distinct 
from models that take sampled data and make estimates about global network structure (Frank, 1971; Handcock and Gile, 2010; 
Smith, 2012). Practically, since much applied work uses direct comparisons of structural features, it is important to know how badly 
the estimates are biased before trying to make any statistical adjustments (or deciding to collect more data). Our goal is to offer users a 
set of simple guidelines and look-up tables so that researchers can collect and analyze data in an informed manner, knowing the likely 
cost of missing data.
2Note such missingness is not unique to surveys. For example, coauthorship in scientific network data is limited by the indexing 
source and collaboration data from administrative records will be bounded by the administrative source.
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sequences of paths in networks, in much the same way that centrality is, and thus centrality-

biased missingness likely produces the extreme case for how missingness affects network 

metrics.

To provide general guidelines across research settings, we must consider more than the 

amount of missing data. One must also consider the nature of the missing data, the network 

of interest and the measure of interest, as well as the complex dependencies between these 

factors. Missing network data thus require a holistic view and our results offer a toolset to 

help make that view possible. By looking at a wide range of networks, measures and types 

of missing data, we can offer recommendations and best practices for applied network 

practitioners (see Silk et al., 2015, who call for just such an analysis). Even better, a 

researcher faced with a particular set of circumstances (network type, type of missing data, 

amount of missing data) might use our results to estimate the bias for their measure of 

interest.

We begin with a short background on missing data and network measurement. We then 

describe our empirical networks, measures and network sampling scheme. Our approach 

mirrors prior work in this area, removing nodes from the network, recalculating the 

measures of interest, and then comparing the resulting value to the true value. We describe 

results based on the type of missing data across four types of network measures: centrality, 

centralization, topology and homophily.

2. Prior work

Our papers add to the expanding literature on missing network data (Galaskiewicz, 1991; 

Costenbader and Valente, 2003; Borgatti et al., 2006; Smith and Moody, 2013). The majority 

of past work has relied, as we do, on Monte-Carlo simulations to evaluate the robustness of 

network measures to missing data. Simulation offers an alternative to analytical approaches, 

which are often intractable for most network measures (although see the past work of Frank, 

1971; Granovetter, 1976). Past studies have generally followed the same basic setup: identify 

a set of networks and measures of interest; calculate the measures of interest on the selected 

networks; (randomly) generate missingness by removing nodes (or links) from the full 

network; calculate the measures of interest on the distorted networks; compare the statistics 

from the incomplete networks to the true value (Kossinets, 2006; Wang et al., 2012). The 

experimental question is simple: how does bias correlate with different types or levels of 

missing data?

Many of the missing at random studies have focused exclusively on centrality measures 

(Johnson et al., 1989; Galaskiewicz, 1991; Costenbader and Valente, 2003; Borgatti et al., 

2006). Predictably, centrality scores become less accurate as more nodes are removed, but 

less obvious is their relative robustness. For instance, Borgatti et al. (2006) found a 

correlation of .7 between the true values and the sampled values for closeness centrality even 

in networks with 50% of the nodes missing and the correlation is higher for in-degree. 

Costenbader and Valente (2003) found a correlation of .9 with 50% of the nodes missing (for 

in-degree).
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Some recent work moves beyond centrality. Part I of this study offers one of the more 

comprehensive analysis of nodes missing at random (see also Kossinets, 2006; Huisman, 

2009; Wang et al., 2012; Žnidaršič et al., 2012; González-Bailón et al., 2014). Most 

topological measures decreased in accuracy with more missing data, but the rate of 

deterioration varies widely across measures and networks (see Kossinets, 2006 as well). 

Distance and triad summary metrics exhibited greater bias than transitivity or group metrics, 

while measures of behavioral homophily were quite robust to missing data, especially in 

larger, more concentrated networks.

We follow this standard Monte Carlo design, but without assuming missing-at-random 

removal, similar to Huisman (2009) and Fitzhugh and Butts (2010), as well as work done in 

the robustness/attack literature (Albert et al., 2000; Carley et al., 2002). For example, 

Fitzhugh and Butts (2010) explore the effect of missing central nodes on the robustness of a 

network in an emergency setting. A large literature in physics and computer science asks a 

related question of how vulnerable a network is to random, compared to targeted, node 

removal (Gallos et al., 2005; Yehezkel and Cohen, 2012). Most studies find that networks 

with skewed degree distributions are robust to random node removal but quite vulnerable to 

targeted attacks (e.g. Albert et al., 2000). Huisman (2009) falls more directly in the missing 

data tradition, asking how measurement bias is affected by missing certain types of nodes.

Our goal is to make these studies more general and provide practical reference points for 

researchers faced with missing network data. To do so, we need variation across the many 

network domains that researchers study. We study a dozen different networks drawn from a 

wide variety of empirical domains, examine network metrics ranging from individual 

centrality scores to the aggregate block structure, and allow missingness to range from a 

minor inconvenience weakly associated with centrality to high levels strongly associated 

with centrality.

Unfortunately, such generality comes at the cost of parsimony: the multiple conditions 

generate detailed results that can obscure general patterns. While we want to include this 

detail so that individual researchers can compare their work to the cases in our study that 

closely resemble their own, we also want to provide an overview of the general trends. As 

such, we provide 3 ways of summarizing the results for each class of network measures, 

organized by the dozen empirical networks. First, the most practical summaries are found in 

the “target bias tables.” These are analogous to power-calculation tables and express the 

maximum amount of missing data that could be observed and still maintain a score within a 

target bias range (for example, to maintain at least a .9 correlation with the true value, see 

Table 2). The non-parametric version of this table is captured in the corresponding appendix 

figures providing response curves for each scenario, showing graphically the level of bias by 

the level of missingness for each type of missing data. Second, we step back from the detail 

and provide a regression-based summary of the general effect of the scenario attributes 

(network size, type of missingness and so forth) on the overall level of bias observed. This 

gives one a sense of the marginal effects of particular case features. Finally, we ask about the 

interactive nature of these factors and cluster our scenarios into common bias classes.3 To 

3Thanks to the helpful Social Networks reviewer for suggesting the cluster analytic approach to this summary.
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help ease use, we also provide a simple web-based calculator that translates these results into 

a predicted bias level under user-specified scenarios.

3. Data

We examine the effects of missing data across a dozen empirical networks. We select 

networks with highly variable characteristics to cover a wide range of likely empirical 

contexts, although we limit the analysis to networks with less than a 1000 nodes. Medium to 

small sized networks are sensitive to missing data and the most conducive to additional data 

collection efforts, making them particularly relevant to study missing data (i.e. one could 

collect more data if the bias was considered too high). The networks represent a variety of 

substantive settings, including many of the most commonly studied network types – school/

friendship, organizational, and citation networks. The networks are the same as in Part I of 

this study.4 They include: “data on elites (corporate interlocks: “Mizruchi Interlock” and 

“River City Elite”), young youth networks (“Gest 6th graders”, “Prosper s220”),5 adolescent 

and young adult networks (“Sorority Friendship”, “High School (p.13 and p.24)”), the 

Gagnon prison network (MacRae, 1960), science networks (a portion of the sociological 

abstracts collaboration graph and the Social Networks article co-citation graph, the 

biotechnology exchange network) and epidemiological networks (Colorado Springs HIV 

risk network – Morris and Rothenberg, 2011)6” (quoted from Smith and Moody, 2013). See 

Fig. 1 for plots and summary statistics.

4. Network measures

We explore the effect of missing data on four common types of network measures: 

centrality, centralization, topology and homophily and present the empirical values for each 

network in Table 1.

4.1. Centrality

We include in-degree, out-degree, total degree, closeness, betweenness and Bonacich 

centrality. The networks are treated as symmetric for Bonacich centrality, and we define beta 

as .75 times the largest eigenvalue. Closeness centrality is calculated from the inverse 

distance matrix, where disconnected nodes have a value of 0 and directly connected nodes 

have a value of 1. We use the inverse distance matrix to avoid summations over undefined 

values (a problem when all pairs of people cannot reach one another).

4.2. Centralization

Centralization captures the inequality in the distribution of centrality, and we have a 

centralization score corresponding to each centrality measure. Note that centralization is a 

graph-level statistic while centrality is an individual level score. We examine both the 

4We thank the following authors for providing data for this study: Mark Mizruchi (Interlock network); Scott Gest (6th grade data); 
Lisa Keister (River City Elite); Walter Powell (Biotechnology exchange data).
5The Prosper data were made available through the following grants: NSF/HSD: 0624158, W.T. Grant Foundation 8316 & NIDA 
1R01DA018225-01.
6The Colorado Spring HIV network was made available through NIH R01 DA 12831 (PI Morris).
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standard Freeman (1979) deviation scores and, since these prove somewhat unstable, the 

simpler standard deviation of individual centrality.

4.3. Topology

We use six topological measures, ranging in scale from macro structure to local clustering. 

The first two are global measures of connectivity: percent in the largest component and 

percent in the largest bicomponent. A component is a set of nodes connected by at least one 

path. The fraction in the largest component captures a minimal measure of system 

connectivity. The largest bicomponent is the maximal set of people connected by at least two 

independent paths, and is a stronger indicator of network cohesion (Moody and White, 

2003). For our main results, we divide size in the largest bicomponent by total network size. 

We also present a set of alternative results in the appendix (see Table A3), where 

bicomponent size is scaled by component size.

Our third topological measure captures global structure by measuring the mean inverse 

distance (i.e. “closeness”) between pairs of nodes. In networks with low average distance, all 

nodes are close to each other, and have values approaching 1, while networks with high 

average distance will have values that trend toward 0 (not close). Our fourth measure, 

transitivity, reflects local clustering; or the tendency for a “friend of a friend to be a friend.” 

We use the transitivity ratio, defined as the relative number of two-step paths that also have a 

direct path.

Our fifth measure, the tau statistic, is a summary of the triad distribution and describes both 

micro and macro properties (Wasserman and Faust, 1994). At the micro level, the triad 

census reflects hierarchy, clustering and other local tie formation processes. At the macro 

level, the triad census can be used to describe the group structure of a network (Johnsen, 

1985, 1986). We use the tau statistic developed by Holland and Leinhardt (1976) to 

characterize the triad distribution (see also Wasserman, 1977). The tau statistic is used to test 

configurations of triads against known macro-structural models, based on necessary 

structural constraints implicit in the macrostructure (Johnsen, 1985, 1986) and can generally 

be used as ways to evaluate hierarchical orderings of clusters. The tau statistic is a weighted 

sum of the triad distribution conditioned on the dyad distribution. Larger tau values indicate 

that a particular weighting scheme fits the data relatively well. Here we use the ranked-

cluster (RC) weighting scheme. The specific ranked-cluster formulation represents a 

hierarchical ordering of cliques with multiple parallel ranks, such that cliques on the same 

level are not connected while cliques at different levels are asymmetrically connected.7 A 

network following a ranked-cluster triad distribution will be hierarchically arranged: with 

ordered asymmetric nominations between well-defined groups. We are not particularly 

concerned if this weighting scheme is the best fit for all networks, rather, we only care how 

this summary of the triad distribution becomes less accurate as missing data increases.

Our final topological measure is positional: we blockmodel each network, partitioning the 

full network into a simpler set of equivalence blocks (White et al., 1976), placing nodes 

7Specifically, our ranked cluster weighting scheme sets a 1 for the following triads (and 0 for all else): 003, 102, 021D, 021U, 030T, 
120U, 120D, 300.
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together if they have a similar pattern of ties. We can use the rand statistic (Rand, 1971) to 

compare the observed full-data partition to that observed under the missing data conditions. 

The unadjusted rand statistic captures the proportion of pairs in one partition that are 

grouped together in a second partition. We fix the observed partition using a depth = 3 

CONCOR solution for all networks and compare a similar partition to the incomplete 

networks.8

4.4. Homophily

Homophily is an organizing principle of many social systems (McPherson et al., 2001; 

Smith et al., 2014). Homophily captures the tendency for similar people to be socially 

connected at a higher rate than dissimilar people. Past substantive work on homophily has 

examined behaviors, such as smoking and drinking, and demographic characteristics, such 

as race and education (e.g. Haynie, 2001; Goodreau et al., 2009; Schaefer et al., 2012). We 

measure homophily as the edgewise correlation for an attribute and here focus on two 

attributes: node degree and behavior. Thus, our homophily measures are at the network level: 

the correlation between connected nodes on degree or behavior.

We measure assortative degree mixing by the edgewise correlation on degree. Nodes with 

high degree are more likely to be connected to others with high degree when there is strong 

assortative mixing. The correlation is negative when high degree nodes are 

disproportionately connected to low degree nodes. We present results for both out-degree 

and in-degree.

Since there exists no comparable behavioral measure across all of our networks (as there is 

no naturally occurring characteristic that is common to all of the networks in question), we 

construct a behavioral measure with known properties, using the Friedkin (1990) peer 

influence model. We begin by randomly seeding the network with values drawn from a 

uniform distribution and then apply a peer-influence model to the network, updating the 

values for each node by the average of their peers, until the desired level of homophily is 

achieved. We test two levels, a low setting (edgewise correlation of .35) and a high setting 

(correlation of .75). These constructed attributes are fixed and then used across all missing 

data distortion scenarios. The advantage of this model is that it captures the pure structural 

foundation of behavior homophily that would be generated by a known peer influence 

process, independent of particularistic context or selection processes, allowing an 

assessment of missing data on peer influence.9

5. Network sampling and bias

Our design answers two main questions: what is the effect of increasing missing data on 

measurement bias? And what is the effect of removing more or less central nodes from the 

8We ran additional tests allowing the CONCOR depth to vary across networks. We first determined the best fitting blockmodel on the 
network with no missing data and used that to determine the depth when fitting the blockmodel on the networks with missing data. 
The results are very similar across analyses and are in appendix Table A3.
9It is important to note that this constructed measure is not mechanically dependent on centrality in anyway that would generate high 
robustness to missing data. In fact, if anything, the influence construction model captures iterated diffusion across the entire system 
and should give central nodes higher overall influence, which would tend toward overstating bias associated with removing central 
nodes.
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network? The sampling process follows the standard in this literature: for each network, we 

remove a portion of the nodes and calculate the measures of interest on the reconstructed 

network. The removed nodes are not present in the reconstructed network, even if a sampled 

respondent nominates them. This follows a listwise deletion procedure common in this sort 

of Monte Carlo experiment (see also Galaskiewicz, 1991; Costenbader and Valente, 2003; 

Borgatti et al., 2006). We then compare the observed statistic in the incomplete networks to 

the known, empirically true measure, repeating this process 1000 times for each missingness 

level: 1%, 2%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%.

Since centrality is an individual level score, we use the correlation between nodes' true 

centrality score and the score observed in the distorted network (with missing data) to 

summarize the effect of missingness. That is, we calculate the centrality of the nodes in the 

full non-perturbed network, calculate it again with the nodes removed, and correlate these 

two vectors. A high correlation means that nodes are ranked similarly in the true network 

and the network with missing data. The higher the correlation, the greater is the reliability of 

the incomplete network data (see Costenbader and Valente, 2003 for a similar approach).

We use a standardized bias score for all graph-level measures – including centralization, 

topology and homophily. We define bias as:

A bias score shows how much the observed score (under the given missing data scheme) 

differs from the true value and gives us a proportionate distance from the true value. The 

difference is relative to the true empirical value, making the bias scores comparable across 

networks and statistics. Bias scores can be negative (over-estimates) or positive (under-

estimates), but we use the absolute value of the bias scores in our analysis to make them 

comparable across all measures and networks (save for the appendix figures). Note that this 

measure is different from a traditional measure of bias that would compare the true value to 

the mean over all sampled values.

Instead of simple random missingness, here we remove nodes proportional to their 

centrality. We implement this selection by making the probability of being selected as a 

missing node a weighted average of centrality and random noise. The results will approach 

random missingness as we put less weight on the centrality portion, as follows:
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where b is the scalar we set experimentally, centralityi is the centrality score of person i, 
u(0,1) is a random draw from a uniform distribution ranging from 0 to 1 and probi is the 

probability that person i is selected as a missing case.

We experimentally set four levels of the correlation between centrality and missingness: −.

75 (strong negative correlation), where people with high centrality are much less likely to be 

missing; −.25 (weak negative correlation), where people with high centrality are slightly less 

likely to be missing; .25 (weak positive correlation), where people with high centrality are 

slightly more likely to be missing; and .75 (strong positive correlation), where people with 

high centrality are much more likely to be missing. Our analysis includes results for each 

correlation value for two centrality types: in-degree and closeness. Thus, for each measure 

and level of missing data, there are 96 different scenarios: 12 networks × 4 correlation 

settings (−.75, −.25, .25, .75) × 2 types of degree definitions (in-degree and closeness). Note 

that not all of the tables and figures will include results for both definitions of missing nodes 

(in-degree and closeness) as the results are often quite similar.10

Nodes on the outskirts of the network are more likely to be missing when there is a negative 

correlation between centrality and missingness. This mimics situations where peripheral 

members of a community are difficult to study, as is common in school networks (peripheral 

members are more likely to be absent). When the correlation is positive, central nodes are 

more likely to be missing, mimicking situations where active nodes might have scheduling 

difficulties (such as public officials in elite networks), or cases where ties represent hidden 

populations (such as links to known criminals or terrorists-Everton, 2012). Note that the 

positive correlation results provide a conservative estimate on the effects of missing data, 

since it is difficult to capture many network features accurately if the most “important” 

nodes are missing: a measure is quite robust to missing data if the error is low even when the 

most central nodes are removed. The effect of missing high degree nodes may, however, be 

dependent on the features of the network, such as centralization: missing high degree nodes 

may matter less when all actors have similar scores. Similarly, the effect of missing high 

degree nodes may depend on the distribution of the measure of interest. This is why we 

include such a wide variety of networks in our analysis.

We use the positive and negative correlation results to produce upper and lower bounds of 

missing data bias. Our goal is to provide researchers with a practical sense of the bias likely 

observed in their own data. As such, a researcher who can estimate the approximate level of 

missingness and make reasonable assumptions about the correlation of missingness to 

centrality can use our results to identify bounds on bias in their own work. A researcher 

without information on the missing data can still gauge the range of possible bias. We offer a 

detailed example in the conclusion; we have also developed an online calculator to perform 

all of the necessary calculations (link provided after review).

10Full results are available upon request.
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6. Presentation outline

We first present target bias tables, akin to a statistical power-analysis for missing data. For 

centrality, the table presents the percent missing that would yield a target correlation of .9 

between the true and observed score for each network and measure.11 We also include 

analogous tables for centralization, topology and homophily for a target absolute value bias 

of .25. The presented tables only include results where node removal is defined by in-degree 

(for the sake of simplicity) but the closeness results are very similar.

We next regress bias on the amount of missing data. Thus, we predict bias (using the 

absolute value) for each scenario as a function of percent missing: bias = b0 + b1 (%missing/

10). The resulting slope coefficients, b1, represent the expected increase in bias for a 10% 

increase in the number of nodes removed. We use b1 as a summary measure, showing how 

quickly bias increases as missing data increases. For centrality, we define bias as 1 minus the 

correlation between the true and observed centrality scores.

To provide a general overview of the results, we use regression models to summarize how 

bias varies across measures, networks and types of missing data (including the correlation 

with centrality and the node removal type, in-degree or closeness). We run separate HLM 

models for each network measure, using the bias slopes described above as the dependent 

variable.12 Larger coefficients imply more bias, indicating that bias increases at a faster rate 

as missing data increases. Our main independent variables are the four correlation with 

centrality settings (−.75 through .75) and the node removal type (in-degree (1) or closeness 

(0)) and their interaction term. The remaining predictors capture network properties that may 

be related to measurement bias: network size, type (directed = 1; undirected = 0) and 

concentration (measured as the standard deviation of in-degree). For each network property, 

we include a main effect and an interaction between the correlation and centrality. For 

example, larger networks may have less bias than smaller networks (the main effect) and 

may be less affected by missing central nodes (the interaction).

Finally, we use cluster analysis to identify patterns in the results across networks. For each 

of the four broad categories of network statistics (centrality, centralization, topology and 

homophily), we partition our scenarios into clusters based on the pattern of bias (using the 

absolute value of bias) across different levels of missing data which allows us to compare 

missingness effect profiles. A case here is defined by the combination of network, missing 

data type and measure (e.g. Interlock network, .75 correlation with in-degree; Bonacich 

centrality). We include all missing data scenarios in the clustering analysis, including both 

node removal definitions, closeness and in-degree. Each case will have 12 different bias 

values to cluster (one for each level of missing data), and thus cases with similar bias 

profiles are placed in the same cluster.13 We then summarize which types of networks, 

measures, and missing data fall into each cluster.

11The results are based on a quadratic model fit to our simulation results.
12Each network contributes 8 values to the regression: 4 correlation types (−.75, −.25, .25, .75) by two centrality types (in-degree and 
closeness).
13Specifically, we use the model-based approach introduced in Fraley and Raftery (2002) to place the cases into clusters.
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There are thus three tables for each set of measures: a target bias table, showing how much 

data one can miss and still retain high confidence; a regression table, showing what network 

and missing data features are correlated with bias; and a cluster table, showing how different 

factors combine to create high/low bias measurement.

In addition to these tables, we include a detailed graphical presentation of the results in 

Appendix. We present curves for centrality, centralization, topology and homophily (for 

simplicity, we only present the results where node removal is defined by in-degree). Each 

subplot in the figures represents a network/measure combination with bias on the y-axis and 

the level of missing data on the x-axis. The subplots contain one curve for each of the four 

correlation levels. The light gray area around the curves provides the upper and lower 

bounds. We also include a set of summary statistics. For each subplot, we include the mean 

bias slope across the four curves (here allowing for negative and positive bias values) and the 

mean average deviation from the true value (υ). The correlation bias captures the differences 

across the centrality correlation settings. The correlation bias, CB, is the ratio of total bias in 

a given curve to the total bias under random missing data. For example, the Interlock 

network on in-degree has a value of 1.56 when missingness is strongly correlated with 

centrality (.75). This means that the bias is 1.56 times worse when central nodes are missing 

compared to nodes missing at random.

7. Results

7.1. Centrality

Table 2 presents the target bias results for centrality, giving estimates for each network and 

measure under strong positive and strong negative correlation conditions. It is clear from 

Table 2 that the effect of missing data is worse when more central nodes are more likely to 

be missing. The correlation between nodes' true centrality and the measure obtained after 

nodes are removed is lower when more central nodes are removed. For example, for the 

Interlock network, a researcher missing low-degree nodes could miss up to 30% of the 

network and maintain a .9 correlation for total degree, but could only miss 15% if the 

missing nodes are high-degree. Fig. A1 shows a clear decline in accuracy as missing data 

increases (overall negative curve), but higher absolute bias when more central nodes are 

missing. For in-degree, the positive correlation line has 2.3 times more bias (on average) 

than random missing data, while the negative correlation lines has 1.3 times less bias than 

random missing data.

Closeness and betweenness centrality have higher levels of bias than the degree measures, 

while Bonacich power centrality appears most sensitive to missing high degree nodes. On 

average, one can miss up to 46.5% of the data and maintain a .9 correlation (between nodes' 

true degree and their degree after nodes have been removed) if low in-degree nodes are more 

likely to be missing, but only 17.2% if high in-degree nodes are more likely to be missing.

Table 3 summarizes the relationship between network characteristics and sensitivity to 

missing central nodes. The models regress the bias slopes – the summary measure of the 

relation between bias and amount of missing data – on the level of correlation with 

centrality. These models also include interactions between the correlation with centrality and 
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node removal type (in-degree or closeness), size, directionality, and in-degree standard 

deviation (centralization) of each network. The models suggest that large, directed networks 

are less affected by missing high degree nodes (based on the strong negative coefficients for 

Correlation with Centrality*Directed and Correlation with Centrality*Log of Size across the 

models).

We provide a summary of the clustering results in Table 4, which capture the factors 

associated with similar missingness response profiles. The table is organized by the bias 

response profile (first column). Within each type, we examine network type (defined as 

small, medium, large), missing data correlation, and measure.14 The cluster analysis 

suggested 5 large clusters, arranged from low to high bias. The first two clusters represent 

situations with consistently low bias. For example, the median bias at 30% missing is only .

08 for cluster 2. A researcher is likely to find such low bias in scenarios involving a large or 

medium network, where missingness is negatively correlated with centrality (in-degree or 

closeness). The third and fourth clusters represent cases with medium bias response curves. 

These represent scenarios involving small networks, missingness negatively correlated with 

centrality and degree-based outcome measures. The highest bias cluster (with median bias 

of .30 at 30% missing) generally includes any scenario involving measures of closeness or 

small networks for measures of betweenness and Bonacich power, with missing data 

positively associated with centrality.

Table 4 clearly shows how different factors combine to increase or decrease bias; for 

example, while larger networks tend to have lower bias than smaller networks (see Table 3, 

Log of Size), a large network will still have significant bias when measuring betweenness 

centrality when missing high degree nodes. Similarly, missing low centrality nodes does not 

guarantee low bias, although, on average, the bias is lower. For example, scenarios involving 

small networks and in-degree centrality would yield medium bias, even if the missing nodes 

tend to have low centrality.

7.2. Centralization

Tables 5 and 6 present the main results for centralization. Centralization is a graph-level 

statistic calculated from the individual-level centrality scores. We have one centralization 

measure for each of our six centrality measures. We focus on the standard deviation of 

centrality as our measure of centralization because the traditional Freeman centralization 

score offers inconsistent, difficult to interpret results (we present these for completeness in 

Fig. A2 and Tables A1–A2).

Across all measures, bias is worse when central nodes are more likely to be missing, and 

smallest when less central nodes are more likely to be missing. The top end of the degree 

distribution is truncated when more central nodes are removed; the standard deviation is thus 

underestimated, leading to a downward bias. For example, for in-degree centralization, one 

can miss up to 40% of the network and retain a bias of .25 when less central nodes are 

14For simplicity, we characterize the networks based on size alone, placing all networks into one of three categories. We define small 
as less than 100, medium as between 100 and 500, and large as greater than 500. Note that the analysis includes both node removal 
types, in-degree and closeness. The results tend to be similar across these two definitions and we discuss the results without 
differentiating between them.
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missing, but one can only have 18% missing if central nodes are missing. In general, 

removing central nodes has stronger effects on degree centralization and weaker effects on 

betweenness centralization.15 Betweenness does, however, have the highest overall bias. On 

average, one can only miss 19% of the network and still retain a bias under .25, even when 

central nodes are less likely to be missing. It is difficult to estimate betweenness 

centralization with substantial missing data as the measure depends on the structure of the 

entire network, making it particularly dependent on missing nodes.

Table 6 presents our bias regression results. The degree-based measures offer the clearest 

story, where larger, directed networks are less affected by missing central nodes, evidenced 

by the negative coefficients in Models 1–3 for Correlation with Centrality*Directed and 

Correlation with Centrality*Log of Size.

Table 7 presents a summary of our clustering results. The best fitting model yields 5 broad 

clusters, arranged from low to high bias. The two lowest bias clusters (with mean bias of .02 

and .07 under 30% missing) include Bonacich centrality for large and medium networks and 

closeness for directed networks. Note that for closeness centralization it was necessary to 

divide directed and undirected networks, as undirected networks have considerably higher 

bias (see the main effect for Directed in Model 5, Table 6). The middle bias cluster includes 

the degree-based measures. The highest bias cluster, with a median bias of .68 when missing 

30% of the data, includes undirected networks when one is measuring closeness. A 

researcher is also likely to have high bias if they are measuring betweenness centralization.

Thus, it seems that the measure itself strongly determines the level of bias for centralization. 

Closeness and betweenness centralization tend to be in the high bias clusters while Bonacich 

power and the degree measures tend to be in the low and middle bias clusters, although, here 

too, we find exceptions. Bonacich centralization has low bias for large and medium 

networks, but medium to high bias when the network is small. Similarly, a researcher could 

have low or high bias when measuring closeness centralization, depending on whether the 

network is directed or undirected.

7.3. Topology

We present the topology results in Table 8 and Fig. A3. Overall, we see the same pattern as 

before: the negative bias caused by increasing missing data is exaggerated when central 

nodes are more likely to be missing (high positive correlation). For example, bicomponent 

size in the Interlock network has 1.5 times more bias than random missing data when central 

nodes are most likely to be removed, while removing low centrality nodes has 2 times lower 

bias than expected with nodes missing at random. The results are qualitatively similar for 

percent in the largest component and distance. Measures of connectivity have higher bias 

when more central nodes are removed because the paths that generate cohesion tend to flow 

through central nodes, so removing them creates systematically lower cohesion.

15Removing high in-degree nodes has a direct effect on the degree distribution (as the degree distribution is truncated when high 
degree nodes are removed). It is not surprising that the degree-based measures are greatly affected by removing central nodes.
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We find similar, but smaller, effects for tau statistic and CONCOR (i.e. blockmodels). 

CONCOR, as in Part I of this study, is not greatly affected by missing data and this does not 

change much when more central nodes are missing. The tau statistic is greatly affected by 

missing data (with strongly negative slopes in Fig. A3), but the nature of the missing nodes 

is less consequential than with connectivity or cohesion measures. For example, for the 

Sorority network, a researcher could miss up to 17% of the network and retain a bias under .

25 when less central nodes are missing and 15% when more central nodes are missing; the 

analogous numbers are 54 and 30% for component size. Transitivity is quite robust to 

missing data under random node removal, where central nodes are neither more nor less 

likely to be missing, and we see higher bias than in Part I of this study. Transitivity also 

tends to have lower bias than the tau statistic, distance or bicomponent size. See Table 8.

Table 9 shows how the effect of missing central nodes varies by network type and measure. 

For most measures, directed networks are more robust to missing high centrality nodes. We 

can see this as the coefficient for Correlation with Centrality*Directed is negative and 

significant in Models 1 –4 and 6 in Table 9. For bicomponent size and distance (and possibly 

component size), networks with higher in-degree standard deviation have lower overall bias 

but are more affected by missing central nodes (see the negative coefficient for the main 

effect for in-degree standard deviation and the positive coefficient for Correlation with 

Centrality*in-degree standard deviation in Models 2 and 3). Concentrated networks are 

prone to poor estimates when central nodes are removed because their structure is (more) 

dependent on the high degree nodes.

We present our clustering results in Table 10, where we found 6 broad clusters. The first two 

clusters have very low bias for almost all levels of missing data. The low bias clusters 

include CONCOR (i.e. blockmodeling) for all networks and missing data correlation. We 

also see transitivity for large and medium sized networks, as well as component size – but 

here only for large/medium networks under favorable missing data conditions (i.e., missing 

low degree nodes). Component size is more affected by missing high degree nodes, and thus 

the positive correlation cases are found in the high bias clusters.

The fourth cluster captures cases of medium bias, with a median bias of 28% at 30% missing 

(and higher bias at all levels of missing data than the lower bias clusters). This cluster is 

more heterogeneous and we see complex combinations of measure, network type and 

missing data. For example, a researcher with a large network and missing high centrality 

nodes would have medium bias when trying to measure distance and bicomponent size. In 

contrast, a researcher with the same missing data conditions (missing high centrality nodes) 

but a small network would face similar bias measuring transitivity, component size or 

distance.

Finally, the two high bias clusters contain the tau statistic (as well as bicomponent size for 

small networks when missing high centrality nodes). A researcher with any size network 

trying to measure the tau statistic is likely to face high bias, at least compared to other 

topology measures. This holds for all missing data types, as missing high centrality nodes 

has only a weak effect on the bias for the tau statistic.
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7.4. Homophily

We examine homophily first for degree and then for (simulated) behavior. Table 11 presents 

the target bias scores. Looking at the out-degree and in-degree columns, we see highly 

variable levels of sensitivity. In many cases, missing more than 1 % of the network will 

exceed a target bias of .25. This suggests the difficulty of estimating degree homophily when 

missing high or low degree nodes (see also Fig. A4).16 In general, however, it is still the 

case that missing high degree nodes is worse than missing low degree nodes. For in-degree 

homophily, one can miss (on average) 23% of the network and retain a bias under .25 when 

less central nodes are missing, but only 11% if more central nodes are missing. High in-

degree nodes are relatively rare. It is thus difficult to measure degree mixing if the high in-

degree nodes are missing, as the measure is driven by the propensity for high degree nodes 

to be connected.

The behavioral homophily scores offer a very different picture. The estimates are still worse 

when more central nodes are missing but here the overall bias is low and the effect of 

missing central nodes is weak. For example, one can miss a large portion of the Colorado 

Springs network and still accurately measure low behavioral homophily. One can miss up to 

61% of the network and still retain a bias under .25 when more central nodes are missing 

and 70% if less central nodes are missing; compare that to 5% and 45% for in-degree 

homophily on the same network.17

Table 12 presents our bias regression results. Directed networks have lower bias and are less 

affected by missing more central nodes for low behavioral homophily (see the negative 

coefficients in Model 4 for Directed and Correlation with Centrality*Directed). Larger 

networks still generally have lower overall bias, evidenced by the negative, significant 

coefficients for Log of Size in Models 2 and 4.

The cluster results for homophily in Table 13 suggest a simple 3 cluster solution. The first 

cluster has low bias and includes the behavioral homophily scores for all network sizes and 

missing data correlations. The second cluster has higher bias overall (e.g., a median bias of .

26 with 30% missing) and includes in-degree and out-degree homophily for large and 

medium sized networks.18 Finally, the high bias cluster includes small networks for in-

degree and out-degree homophily. The cluster analysis thus reinforces the picture that we 

have already seen: that behavioral measures appear less sensitive to missing data than degree 

measures.

16The figure also, makes clear that certain networks offer extreme results, specifically the Prosper network for in-degree and the 
Cocitation and Elite network for out-degree. More generally, the lines appear erratic in the figure because the positive correlation lines 
are dependent on the empirical homophily value: the bias lines have a negative slope when assortative mixing is positive and a positive 
slope when assortative mixing is negative (i.e. nodes with high in-degree are less likely to be socially connected).
17Behavioral homophily is not greatly affected by missing central nodes because homophily is an aggregate summary over all pairs 
with a tie. Unless the high degree nodes have drastically different patterns of homophily than low degree nodes (not generally the 
case), then the estimates will not be greatly affected by systemically missing high degree nodes. We must, however, place an important 
scope condition on our results: the results only necessarily hold in cases where the variance for the measure of interest is relatively 
low. The mean standard deviation for our behavioral measure is .1 across networks (aggregating over the low and high behavioral 
measures). The level of bias may be higher when the variance of the measure of interest is higher.
18Although note that placing the medium size networks in this second cluster only works if we exclude the clear outliers, Prosper for 
in-degree and Cocitation and Elites for out-degree.
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8. Conclusion

Missing data is a complication faced by many network scholars, as traditional measures 

assume full coverage of a well-bounded population (Laumann et al., 1983; Wasserman and 

Faust, 1994). It is thus important to know how missing data biases commonly used network 

measures. Unfortunately, this is a rather difficult task at present. There are few concrete 

guidelines for dealing with missing network data and the effect of missing data depends on a 

number of factors: the amount of missing data; the nature of the missing data; the measure 

of interest; and the characteristics of the network in question. This paper tries to expand our 

understanding of missing data effects on network measurement by exploring the effect of 

missing data across networks, measures, and missing data scenarios.

As with similar studies, estimates are always worse with more missing data. Most measures 

have the greatest bias when more central nodes are missing and the least when peripheral 

nodes are missing, but this is far from the full story. Some measures are particularly affected 

by missing central nodes (e.g. Bonacich power centrality, bicomponent size) while others are 

not (behavioral homophily and tau statistic). The results also vary systematically by the 

network of interest. Larger, directed networks are generally less affected by missing central 

nodes, but this too varies across measures.

How do these results compare to past findings on the effect of missing-at-random data on 

network estimates? There are, in general, important differences, as some measures are robust 

to missing data only under favorable conditions, while others are more uniformly robust. For 

example, for centrality, degree and Bonacich Power centrality are robust to missing-at-

random data. In contrast, when more central nodes are missing, only the degree measures are 

not greatly affected by missing data. Here, Bonacich Power centrality has high bias scores, 

similar to closeness and betweenness (which have high bias in both missing data cases). This 

is the case as Bonacich Power is particularly susceptible to missing central nodes. There are 

similar patterns with the topology measures. For example, under missing-at-random data, 

transitivity, component size and CONCOR (blockmodeling) are robust to missing nodes, 

while distance and the tau statistic are not. When more central nodes are missing, 

component size and bicomponent size join distance and the tau statistic in the list of less 

robust measures. In contrast, when less central nodes are missing, only the tau statistic 

suffers badly under conditions of missing data.

The overriding lesson here is a simple one: it is not enough to know the level of missing data 

to determine the level of bias. Different collection strategies are required for different 

measures, networks, and types/levels of missing data. It is the combination of these factors 

that determine how good or bad an estimate is likely to be. The results are thus complex but 

systematic. We know the basic factors that contribute to measurement bias. The difficulty is 

putting these factors together to estimate the bias in a particular research setting. We have 

tried to make this difficult problem easier by producing summary tables based on our cluster 

analysis. Those tables present the type of bias likely to arise from combinations of size, 

measurement and missing data type. Our results will make it easier to gauge bias in a 

research setting, but we would also call for more work on generative models of missing data, 

including model-based inference for missing data within the ERGM framework (Handcock 
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and Gile, 2010; Koskinen et al., 2013). In that way, we may move beyond empirical 

regularities to a model of a network with missing data.

Practically, how would one use our results to assess bias in one's own network?

First, a researcher could look up the situation that most closely matches their particular case 

in the summary (cluster analysis) tables. Alternatively, one could use the regression models 

to estimate the level of bias in their network (based on the estimates in Tables 3, 6, 9 and 

12). The output of the models is the expected bias, given the network characteristics, 

measure of interest, type of missing data and level of missing data. To make this simpler, we 

developed a web calculator to facilitate these calculations; a researcher will only have to 

input the conditions appropriate for their study, and the tool will calculate the expected bias 

level.

As a demonstration, consider a setting similar to the Sorority network where we are 

interested in measuring in-degree under conditions of missing data (assume 19% is missing). 

The first step in assessing bias is to characterize the network itself. For example, we can start 

by determining the total size of the network (the number of present and missing nodes). This 

would, practically speaking, come from the initial roster that was used to collect the network 

data in the first place. In our case, we know that the total network size is 72. We also know 

whether the network is directed. We can also estimate the centralization of the network, 

measured as the standard deviation of in-degree. In the simplest case, we can use our 

observed score (from the network with missing data). In our case, the observed standard 

deviation of in-degree (on the network with missing data) is 1.46. Of course, this measure of 

standard deviation is biased, so a better estimate would take the estimated standard deviation 

and try to adjust the value based on the expected level of bias, but we use 1.46 for the sake 

simplicity.

The second step is to characterize the missing data in our network. In our example, we know 

that the network size is 72 and that there are 14 missing students, making the proportion 

missing .194. By using nominations from respondents (those people who filled out the 

survey) to non-respondents we can estimate the in-degree of the missing nodes. For this 

example, the mean in-degree of the missing nodes is 3.21 while the mean in-degree of the 

present nodes is 2.10. We thus know that missing nodes have higher degree than present 

nodes. There is a positive correlation between degree and missingness. To get reasonable 

bounds, we calculate bias under both strong (.75) and weak (.25) conditions.

We can take those inputs (network characteristics and missing data properties) and use them 

to calculate the predicted bias for our measure of interest, in-degree. We demonstrate the 

calculation using our web calculator (we have included images of the java applet in 

Appendix). One first selects the network type: one must designate if the network resembles a 

network in this study, and, if so, which one.19 For our estimate here, we assume that we do 

not know which network best matches our network and simply designate it as 

19For example, one may have a high school network and select one of the high school networks as the analogous case to their own 
network. The application uses this information to inform the calculation of bias, specifically using the random intercepts and slopes for 
the chosen network in the equation.
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uncharacterized. We next select whether the calculation should use the in-degree or 

closeness formulas. We opt for the in-degree calculations. The remaining inputs are values 

we already calculated: the size of the network (72), percentage of missing data (19.44), in-

degree standard deviation (1.46) and directed (True). The final input is the correlation 

between centrality and the presence of nodes in the network. In this case, we calculate 

expected bias where nodes are very likely to be missing (corresponding to a .75 correlation) 

and likely to be missing (corresponding to a .25 correlation) (Fig. A5).

Looking at the in-degree results, we see that the expected bias is .138 under strong positive 

correlation and .12 under a weak positive correlation.20 We thus expect the correlation 

between true and estimated in-degree to be biased between 12 and 14% (so that the 

correlation will be between 86 and 88%).

In the end, a researcher has three options in the face of missing data: do nothing (if the 

estimated bias is small), collect more data (if the estimated bias is large) or impute the 

missing edges and nodes (if the estimated bias is too large and it is infeasible to collect more 

data). This paper offers a means of estimating the bias in a given context. One can take that 

estimate and decide on the proper course of action. We have not, however, considered the 

validity, or payoff, of different imputation approaches. It is this question that we turn to next. 

The final part of the project will consider different options for dealing with missing data. We 

will ask how competing imputation methods fare across networks, measures and types of 

missing data. The overall goal is to provide a comprehensive, practical guide for all 

researchers grappling with incomplete network data.
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Appendix

Fig. A1. 
Centrality score robustness by network, centrality score and missingness level: probability of 

node removal defined by in-degree.

Smith et al. Page 19

Soc Networks. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. A2. 
Centralization score robustness by network, centrality score and missingness level: 

probability of node removal defined by in-degree.
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Fig. A3. 
Topology score robustness by network, centrality score and missingness level: probability of 

node removal defined by in-degree.
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Fig. A4. 
Homophily score robustness by network, centrality score and missingness level: probability 

of node removal defined by in-degree.
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Fig. A5. 
Example using java applet to calculate predicted bias central nodes very likely to be missing 

and central nodes likely to be missing.

Table A1

Maximum percent missing to remain under target bias of .25: traditional centralization, node 

removal defined by in-degree.

Network Correlation with centrality In-degree Out-degree Total degree Bonacich power Closeness Betweenness

Interlock −.75 21 21 21 34 29 25

.75 22 22 22 9 19 13

Prison −.75 34 38 34 28 29 19

.75 48 25 40 15 35 9

Sorority −.75 22 29 19 12 a 13

.75 28 35 29 8 36 7

6th graders −.75 a a 57 39 a 11

.75 35 41 a 36 48 8
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Network Correlation with centrality In-degree Out-degree Total degree Bonacich power Closeness Betweenness

Coauthor −.75 65 65 65 a 52 30

.75 16 16 16 34 40 13

Prosper −.75 55 10 47 23 a 27

.75 34 8 32 22 56 16

Co-citation −.75 a a a a a 50

.75 25 25 25 18 45 10

Elites −.75 a 40 a a a 21

.75 13 60 13 a 35 8

HS 13 −.75 a 9 56 38 68 13

.75 35 7 32 41 a 9

BioTech −.75 a a a 57 a 49

.75 21 21 21 24 30 14

HS 24 −.75 47 11 40 35 a 10

.75 a 8 a 40 63 7

CSprings −.75 a a a 48 a 55

.75 17 17 17 29 39 21

Mean (Std Dev) −.75 52.6 (19.3) 29.6 (22.2) 51.6 (19.2) 43.7 (19.5) 61.5 (16) 26.9 (16.1)

.75 37.6 (17.7) 26.3 (20.3) 32.2 (19.2) 28.8 (17.2) 43 (14.4) 11.2 (4.3)

a
Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means. 

The maximum percent missing was calculated based on a quadratic fit to the data.

Table A2

Traditional centralization bias regression: beta coefficients from closeness and in-degree 

simulations.

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

In-degree Out-degree Total degree Bon. power Closeness Betweeness

Intercept .15*** −.194 .157*** .263*** .076*** −.046

(.03) (.18) (.04) (.06) (.01) (.13)

Correlation with Centrality −.103*** −.042 −.107*** .149*** −.055 .13

(.03) (.04) (.03) (.03) (.03) (.08)

Correlation type (0 = closeness 1 = 
in-degree)

.003 1e–04 .004 .005*** .006* .004

(.003) (.003) (.003) (.001) (.002) (.002)

Correlation with 
Centrality*Correlation type

.014** −.01 .009 .002 .015*** .011*

(.005) (.01) (.005) (.003) (.004) (.004)

Directed −.016 .076 −.013 .004 −.015** .077

(.01) (.07) (.01) (.02) (.005) (.05)

Correlation with Centrality*Directed −.002 −.024 −.011 −.024* −.008 −.065*

(.01) (.02) (.01) (.01) (.01) (.03)

Log of Size −.014* .07 −.015 −.023* −.005 .031

(.006) (.04) (.01) (.01) (.002) (.03)

Correlation with Centrality*Log of 
Size

.011 .004 .011 −.022*** .01 −.017

(.01) (.01) (.01) (.01) (.01) (.02)
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Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

In-degree Out-degree Total degree Bon. power Closeness Betweeness

In-degree Std. Dev. −.003 −.02 −.003 −.01* −.002 −.006

(.002) (.01) (.003) (.005) (.001) (.01)

Correlation with Centrality*In-
degree Std. Dev.

.008*** .007 .009*** .002 .002 .001

(.002) (.003) (.003) (.002) (.002) (.01)

N 96 96 96 96 96 96

Networks 12 12 12 12 12 12

Note: The regression uses the betas from each line as the dependent variable. The direction of the bias is ignored when 
calculating the regressions. The betas represent the expected drop in correlation (between the empirical and the observed) 
for a 10% increase in the amount of missing data. Smaller numbers (or more negative) mean larger bias with more missing 
data. The correlation with centrality takes four values: −.75, −.25, .25, and .75.

Table A3

Maximum percent missing to remain under target bias of .25: Alternative measures of 

bicomponent size and ConCorr.

Network Correlation with centrality Bicomponent 
size (divided 
by size)

Bicomponent 
size (divided by 
component 
size)

ConCorr: 
depth set to 
3

ConCorr: 
depths 
allowed to 
vary

Interlock −.75 44 60 a a

.75 10 12 42 36

Prison −.75 31 41 a a

.75 16 15 60 a

Sorority −.75 34 45 a a

.75 17 19 60 54

6th graders −.75 a a a a

.75 67 64 a a

Coauthor −.75 34 57 a a

.75 10 11 44 32

Prosper −.75 43 53 a a

.75 32 32 a a

Co-citation −.75 a a a a

.75 23 20 53 38

Elites −.75 36 53 a a

.75 12 4 27 10

HS 13 −.75 69 a a a

.75 52 50 a a

BioTech −.75 38 a a a

.75 14 10 32 22

HS 24 −.75 66 a a a

.75 49 49 a 68

CSprings −.75 31 54 a a

.75 11 8 35 30

Mean (Std Dev) −.75 47.2 (16.5) 59.4 (10.6) 70 (0) 70 (0)
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Network Correlation with centrality Bicomponent 
size (divided 
by size)

Bicomponent 
size (divided by 
component 
size)

ConCorr: 
depth set to 
3

ConCorr: 
depths 
allowed to 
vary

.75 26.1 (19.5) 24.5 (19.7) 52.8 (16.2) 47.5 (22)

a
Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means. 

The maximum percent missing was calculated based on a quadratic fit to the data.
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Highlights

• We examine the effect of missing more/less central nodes on network 

measurement.

• We look at measures of centrality, topology, homophily and 

centralization.

• Measurement bias is generally worse when central nodes are missing.

• The effect of missing central nodes varies by measure and network 

type.

• Researchers can estimate bias in their own network using our web-

based calculator.
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Figure 1. 
Networks Used for Sampling Simulation
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Table 4

Cluster analysis summary, centrality measures.

Note: This table summarizes the results of our clustering analysis. Bias is on the y-axis of the plots and percent missing is on the x-axis. Each case 
(network, measure, missing data type) was placed into a cluster based on the pattern of bias across different levels of missing data. We then 
summarized what types of networks, measures and missing data went into each cluster. Note that this table only includes results for the strong 
positive and strong missing data types. A positive correlation means central nodes are more likely to be missing.
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Table 7

Cluster analysis summary, centralization.

Note: This table summarizes the results of our clustering analysis. Bias is on the y-axis of the plots and percent missing is on the x-axis. Each case 
(network, measure, missing datatype) was placed into a cluster based on the pattern of bias across different levels of missing data. We then 
summarized what types of networks, measures and missing data went into each cluster. Note that this table only includes results for the strong 
positive and strong missing data types. A positive correlation means central nodes are more likely to be missing.
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Table 10

Cluster analysis summary, topology.

Note: This table summarizes the results of our clustering analysis. Bias is on the y-axis of the plots and percent missing is on the x-axis. Each case 
(network, measure, missing data type) was placed into a cluster based on the pattern of bias across different levels of missing data. We then 
summarized what types of networks, measures and missing data went into each cluster. Note that this table only includes results for the strong 
positive and strong missing data types. A positive correlation means central nodes are more likely to be missing.
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Table 12

Homophily bias regression: beta coefficients from closeness and in-degree simulations.

Variables Model 1 Model 2 Model 3 Model 4

In-degree Out-degreea High behavioral Low behavioral

Intercept 2.276* 1.516** .111* .234***

(.92) (.53) (.05) (.02)

Correlation with centrality .87* .628* .001 .08***

(.43) (.29) (.01) (.02)

Correlation type (0 = closeness1 = in-degree) .168*** .107*** 5e−04 .005**

(.04) (.03) (.001) (.002)

Correlation with Centrality*Correlation type .391*** .219*** .005*** .009**

(.07) (.06) (.001) (.003)

Directed .151 −.074 −.02 −.033***

(.35) (.23) (.02) (.01)

Correlation with Centrality*Directed −.001 −.118 −.002 −.029***

(.16) (.13) (.004) (.01)

Log of Size −.326 −.253* −.013 −.029***

(.19) (.11) (.01) (.004)

Correlation with Centrality*Log of Size −.145 −.112 4e−04 −.009*

(.09) (.06) (.002) (.005)

In-degree Std. Dev. −.03 .033 −.001 −.002

(.07) (.05) (.004) (.001)

Correlation with Centrality*In-degree Std. Dev. −.001 .022 −.001 −.001

(.03) (.03) (.001) (.002)

N 96 88 96 96

Networks 12 11 12 12

Note: The regression uses the beta slopes from each line as the dependent variable. The direction of the bias is ignored when calculating the 
regressions. The betas represent the expected increase in bias for a 10% increase in the amount of missing data. Larger numbers mean larger bias 
with more missing data. The correlation with centrality takes four values: −.75, −.25, .25, and .75.

a
RC Elite network removed from regression as it is an extreme outlier.
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Table 13

Cluster analysis summary, homophily measures.

Note: This table summarizes the results of our clustering analysis. Bias is on the y-axis of the plots and percent missing is on the x-axis. Each case 
(network, measure, missing data type) was placed into a cluster based on the pattern of bias across different levels of missing data. We then 
summarized what types of networks, measures and missing data went into each cluster. Note that this table only includes results for the strong 
positive and strong missing data types. A positive correlation means central nodes are more likely to be missing.
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