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Abstract

Missing data is an important, but often ignored, aspect of a network study. Measurement validity is
affected by missing data, but the level of bias can be difficult to gauge. Here, we describe the
effect of missing data on network measurement across widely different circumstances. In Part | of
this study (Smith and Moody, 2013), we explored the effect of measurement bias due to randomly
missing nodes. Here, we drop the assumption that data are missing at random: what happens to
estimates of key network statistics when central nodes are more/less likely to be missing? We
answer this question using a wide range of empirical networks and network measures. We find that
bias is worse when more central nodes are missing. With respect to network measures, Bonacich
centrality is highly sensitive to the loss of central nodes, while closeness centrality is not; distance
and bicomponent size are more affected than triad summary measures and behavioral homophily is
more robust than degree-homophily. With respect to types of networks, larger, directed networks
tend to be more robust, but the relation is weak. We end the paper with a practical application,
showing how researchers can use our results (translated into a publically available java
application) to gauge the bias in their own data.
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1. Introduction

Network data are often incomplete, especially when collected through traditional means,
such as surveys. Conventional logic suggested that even small amounts of missing data were
unacceptable, since network measures are dependent on the connections between all actors
in a network and missing even a few nodes could badly bias the estimates of distance,
cohesion or other structural measures. Recent work has challenged that assumption, showing
that many network measures can be well-estimated with incomplete information (Borgatti et
al., 2006; Smith and Moody, 2013). This does not mean that measurement concerns can be
ignored (for example, see Marsden, 1993; Brewer and Webster, 2000; Marin and Hampton,
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2007; Eagle and Proeschold-Bell, 2015), only that missing data itself does not necessarily
invalidate a network study. Still, we are only beginning to understand the practical
consequences of missing data for network studies (e.g. Kossinets, 2006; Wang et al., 2012).
How much missing data is too much? And should our tolerance for missing data vary by
network type, measure of interest and type of missing data (Frantz et al., 2009)? Are there
circumstances when missing 30% of the network is acceptable, but others when missing
10% is not?

This paper is the second part of a series on missing network data (Smith and Moody, 2013),
with the overall goal of providing straightforward, practical guidance for researchers
collecting and analyzing network data.l Network scholars have long been concerned with
measurement error; for example, asking how different collection strategies invite different
threats to validity (Marsden, 1990; Butts, 2003; Marsden, 2005). Here we focus on the types
of settings — archetypically surveys2 — where node-missingness is common (e.g. McFarland
et al., 2014; Patacchini and Zenou, 2016). We thus focus on measurement issues most likely
to cause problems in such settings (for example, see Laumann et al., 1983; Strully, 2014 for
a discussion of the boundary problem; see also Smith and Faris, 2015; Hipp et al., 2015 for a
discussion related specifically to longitudinal network data). Node missingness may be less
of a concern when dealing with automated data, such as sensor, cell phone or online data
(Bliss et al., 2014; Gonzalez-Baildn et al., 2014), though these also have peculiar issues of
their own, such as distinguishing between ‘real’ and ‘fake’ nodes in an online network (see
Wang et al., 2012).

Our primary question is what happens to network measures when central actors are more (or
less) likely to be missing? This is particularly pressing for researchers administrating
network surveys in schools, organizations and other medium-sized, bounded settings
(\Valente et al., 2003; Moore et al., 2004; Steglich et al., 2012). Certain actors may be
disproportionally absent the day of the survey or particularly unwilling to take part in the
study, and it is important to know how such a practical, common problem will affect one's
analysis (see Kreager et al., 2015). We condition missingness on centrality for two reasons:
first, centrality nicely captures the kinds of structural problems common in this sort of data
collection. In adolescent populations, for example, peripheral nodes are likely to be absent
from school and thus not in the survey (resulting in a negative correlation between centrality
and missingness); while in organizational or elite networks very central nodes might be too
busy to participate (resulting in a positive correlation between centrality and missingness).
While other characteristics might also drive missingness (cluster membership or attributes
not associated with centrality), centrality provides a general bias that likely maps onto data
collection difficulty. Second, many of the structural features we care to measure are built on

lour approach is distinct from statistical models that aim to estimate and correct bias, given the data have been collected in a manner
consistent with the correction model (Robins et al., 2004; Koskinen et al., 2010; Koskinen et al., 2013). The approach is also distinct
from models that take sampled data and make estimates about global network structure (Frank, 1971; Handcock and Gile, 2010;
Smith, 2012). Practically, since much applied work uses direct comparisons of structural features, it is important to know how badly
the estimates are biased before trying to make any statistical adjustments (or deciding to collect more data). Our goal is to offer users a
set of simple guidelines and look-up tables so that researchers can collect and analyze data in an informed manner, knowing the likely
cost of missing data.

Note such missingness is not unique to surveys. For example, coauthorship in scientific network data is limited by the indexing
source and collaboration data from administrative records will be bounded by the administrative source.
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sequences of paths in networks, in much the same way that centrality is, and thus centrality-
biased missingness likely produces the extreme case for how missingness affects network
metrics.

To provide general guidelines across research settings, we must consider more than the
amount of missing data. One must also consider the nature of the missing data, the network
of interest and the measure of interest, as well as the complex dependencies between these
factors. Missing network data thus require a holistic view and our results offer a toolset to
help make that view possible. By looking at a wide range of networks, measures and types
of missing data, we can offer recommendations and best practices for applied network
practitioners (see Silk et al., 2015, who call for just such an analysis). Even better, a
researcher faced with a particular set of circumstances (network type, type of missing data,
amount of missing data) might use our results to estimate the bias for their measure of
interest.

We begin with a short background on missing data and network measurement. We then
describe our empirical networks, measures and network sampling scheme. Our approach
mirrors prior work in this area, removing nodes from the network, recalculating the
measures of interest, and then comparing the resulting value to the true value. We describe
results based on the type of missing data across four types of network measures: centrality,
centralization, topology and homophily.

2. Prior work

Our papers add to the expanding literature on missing network data (Galaskiewicz, 1991;
Costenbader and Valente, 2003; Borgatti et al., 2006; Smith and Moody, 2013). The majority
of past work has relied, as we do, on Monte-Carlo simulations to evaluate the robustness of
network measures to missing data. Simulation offers an alternative to analytical approaches,
which are often intractable for most network measures (although see the past work of Frank,
1971; Granovetter, 1976). Past studies have generally followed the same basic setup: identify
a set of networks and measures of interest; calculate the measures of interest on the selected
networks; (randomly) generate missingness by removing nodes (or links) from the full
network; calculate the measures of interest on the distorted networks; compare the statistics
from the incomplete networks to the true value (Kossinets, 2006; Wang et al., 2012). The
experimental question is simple: how does bias correlate with different types or levels of
missing data?

Many of the missing at random studies have focused exclusively on centrality measures
(Johnson et al., 1989; Galaskiewicz, 1991; Costenbader and Valente, 2003; Borgatti et al.,
2006). Predictably, centrality scores become less accurate as more nodes are removed, but
less obvious is their relative robustness. For instance, Borgatti et al. (2006) found a
correlation of .7 between the true values and the sampled values for closeness centrality even
in networks with 50% of the nodes missing and the correlation is higher for in-degree.
Costenbader and Valente (2003) found a correlation of .9 with 50% of the nodes missing (for
in-degree).
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Some recent work moves beyond centrality. Part | of this study offers one of the more
comprehensive analysis of nodes missing at random (see also Kossinets, 2006; Huisman,
2009; Wang et al., 2012; Znidarsi¢ et al., 2012; Gonzalez-Bailon et al., 2014). Most
topological measures decreased in accuracy with more missing data, but the rate of
deterioration varies widely across measures and networks (see Kossinets, 2006 as well).
Distance and triad summary metrics exhibited greater bias than transitivity or group metrics,
while measures of behavioral homophily were quite robust to missing data, especially in
larger, more concentrated networks.

We follow this standard Monte Carlo design, but without assuming missing-at-random
removal, similar to Huisman (2009) and Fitzhugh and Butts (2010), as well as work done in
the robustness/attack literature (Albert et al., 2000; Carley et al., 2002). For example,
Fitzhugh and Butts (2010) explore the effect of missing central nodes on the robustness of a
network in an emergency setting. A large literature in physics and computer science asks a
related question of how vulnerable a network is to random, compared to targeted, node
removal (Gallos et al., 2005; Yehezkel and Cohen, 2012). Most studies find that networks
with skewed degree distributions are robust to random node removal but quite vulnerable to
targeted attacks (e.g. Albert et al., 2000). Huisman (2009) falls more directly in the missing
data tradition, asking how measurement bias is affected by missing certain types of nodes.

Our goal is to make these studies more general and provide practical reference points for
researchers faced with missing network data. To do so, we need variation across the many
network domains that researchers study. We study a dozen different networks drawn from a
wide variety of empirical domains, examine network metrics ranging from individual
centrality scores to the aggregate block structure, and allow missingness to range from a
minor inconvenience weakly associated with centrality to high levels strongly associated
with centrality.

Unfortunately, such generality comes at the cost of parsimony: the multiple conditions
generate detailed results that can obscure general patterns. While we want to include this
detail so that individual researchers can compare their work to the cases in our study that
closely resemble their own, we also want to provide an overview of the general trends. As
such, we provide 3 ways of summarizing the results for each class of network measures,
organized by the dozen empirical networks. First, the most practical summaries are found in
the “target bias tables.” These are analogous to power-calculation tables and express the
maximum amount of missing data that could be observed and still maintain a score within a
target bias range (for example, to maintain at least a .9 correlation with the true value, see
Table 2). The non-parametric version of this table is captured in the corresponding appendix
figures providing response curves for each scenario, showing graphically the level of bias by
the level of missingness for each type of missing data. Second, we step back from the detail
and provide a regression-based summary of the general effect of the scenario attributes
(network size, type of missingness and so forth) on the overall level of bias observed. This
gives one a sense of the marginal effects of particular case features. Finally, we ask about the
interactive nature of these factors and cluster our scenarios into common bias classes.3 To

3Thanks to the helpful Social Networks reviewer for suggesting the cluster analytic approach to this summary.
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help ease use, we also provide a simple web-based calculator that translates these results into
a predicted bias level under user-specified scenarios.

We examine the effects of missing data across a dozen empirical networks. We select
networks with highly variable characteristics to cover a wide range of likely empirical
contexts, although we limit the analysis to networks with less than a 1000 nodes. Medium to
small sized networks are sensitive to missing data and the most conducive to additional data
collection efforts, making them particularly relevant to study missing data (i.e. one could
collect more data if the bias was considered too high). The networks represent a variety of
substantive settings, including many of the most commonly studied network types — school/
friendship, organizational, and citation networks. The networks are the same as in Part | of
this study.4 They include: “data on elites (corporate interlocks: “Mizruchi Interlock” and
“River City Elite”), young youth networks (“Gest 6th graders”, “Prosper 5220”),5 adolescent
and young adult networks (“Sorority Friendship”, “High School (p.13 and p.24)™), the
Gagnon prison network (MacRae, 1960), science networks (a portion of the sociological
abstracts collaboration graph and the Social Networks article co-citation graph, the
biotechnology exchange network) and epidemiological networks (Colorado Springs HIV
risk network — Morris and Rothenberg, 2011)6” (quoted from Smith and Moody, 2013). See
Fig. 1 for plots and summary statistics.

4. Network measures

We explore the effect of missing data on four common types of network measures:
centrality, centralization, topology and homophily and present the empirical values for each
network in Table 1.

4.1. Centrality

We include in-degree, out-degree, total degree, closeness, betweenness and Bonacich
centrality. The networks are treated as symmetric for Bonacich centrality, and we define beta
as .75 times the largest eigenvalue. Closeness centrality is calculated from the inverse
distance matrix, where disconnected nodes have a value of 0 and directly connected nodes
have a value of 1. We use the inverse distance matrix to avoid summations over undefined
values (a problem when all pairs of people cannot reach one another).

4.2. Centralization

Centralization captures the inequality in the distribution of centrality, and we have a
centralization score corresponding to each centrality measure. Note that centralization is a
graph-level statistic while centrality is an individual level score. We examine both the

4\we thank the following authors for providing data for this study: Mark Mizruchi (Interlock network); Scott Gest (6th grade data);
Lisa Keister (River City Elite); Walter Powell (Biotechnology exchange data).

SThe Prosper data were made available through the following grants: NSF/HSD: 0624158, W.T. Grant Foundation 8316 & NIDA
1R01DA018225-01.

6The Colorado Spring HIV network was made available through NIH R01 DA 12831 (Pl Morris).
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standard Freeman (1979) deviation scores and, since these prove somewhat unstable, the
simpler standard deviation of individual centrality.

4.3. Topology

We use six topological measures, ranging in scale from macro structure to local clustering.
The first two are global measures of connectivity: percent in the largest component and
percent in the largest bicomponent. A component is a set of nodes connected by at least one
path. The fraction in the largest component captures a minimal measure of system
connectivity. The largest bicomponent is the maximal set of people connected by at least two
independent paths, and is a stronger indicator of network cohesion (Moody and White,
2003). For our main results, we divide size in the largest bicomponent by total network size.
We also present a set of alternative results in the appendix (see Table A3), where
bicomponent size is scaled by component size.

Our third topological measure captures global structure by measuring the mean inverse
distance (i.e. “closeness”) between pairs of nodes. In networks with low average distance, all
nodes are close to each other, and have values approaching 1, while networks with high
average distance will have values that trend toward 0 (not close). Our fourth measure,
transitivity, reflects local clustering; or the tendency for a “friend of a friend to be a friend.”
We use the transitivity ratio, defined as the relative number of two-step paths that also have a
direct path.

Our fifth measure, the tau statistic, is a summary of the triad distribution and describes both
micro and macro properties (Wasserman and Faust, 1994). At the micro level, the triad
census reflects hierarchy, clustering and other local tie formation processes. At the macro
level, the triad census can be used to describe the group structure of a network (Johnsen,
1985, 1986). We use the tau statistic developed by Holland and Leinhardt (1976) to
characterize the triad distribution (see also Wasserman, 1977). The tau statistic is used to test
configurations of triads against known macro-structural models, based on necessary
structural constraints implicit in the macrostructure (Johnsen, 1985, 1986) and can generally
be used as ways to evaluate hierarchical orderings of clusters. The tau statistic is a weighted
sum of the triad distribution conditioned on the dyad distribution. Larger tau values indicate
that a particular weighting scheme fits the data relatively well. Here we use the ranked-
cluster (RC) weighting scheme. The specific ranked-cluster formulation represents a
hierarchical ordering of cliques with multiple parallel ranks, such that cliques on the same
level are not connected while cliques at different levels are asymmetrically connected.” A
network following a ranked-cluster triad distribution will be hierarchically arranged: with
ordered asymmetric nominations between well-defined groups. We are not particularly
concerned if this weighting scheme is the best fit for all networks, rather, we only care how
this summary of the triad distribution becomes less accurate as missing data increases.

Our final topological measure is positional: we blockmodel each network, partitioning the
full network into a simpler set of equivalence blocks (White et al., 1976), placing nodes

7Specifically, our ranked cluster weighting scheme sets a 1 for the following triads (and 0 for all else): 003, 102, 021D, 021U, 030T,
120U, 120D, 300.
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together if they have a similar pattern of ties. We can use the rand statistic (Rand, 1971) to
compare the observed full-data partition to that observed under the missing data conditions.
The unadjusted rand statistic captures the proportion of pairs in one partition that are
grouped together in a second partition. We fix the observed partition using a depth = 3
CONCOR solution for all networks and compare a similar partition to the incomplete
networks.8

4.4. Homophily

Homophily is an organizing principle of many social systems (McPherson et al., 2001;
Smith et al., 2014). Homophily captures the tendency for similar people to be socially
connected at a higher rate than dissimilar people. Past substantive work on homophily has
examined behaviors, such as smoking and drinking, and demographic characteristics, such
as race and education (e.g. Haynie, 2001; Goodreau et al., 2009; Schaefer et al., 2012). We
measure homophily as the edgewise correlation for an attribute and here focus on two
attributes: node degree and behavior. Thus, our homophily measures are at the network level:
the correlation between connected nodes on degree or behavior.

We measure assortative degree mixing by the edgewise correlation on degree. Nodes with
high degree are more likely to be connected to others with high degree when there is strong
assortative mixing. The correlation is negative when high degree nodes are
disproportionately connected to low degree nodes. We present results for both out-degree
and in-degree.

Since there exists no comparable behavioral measure across all of our networks (as there is
no naturally occurring characteristic that is common to all of the networks in question), we
construct a behavioral measure with known properties, using the Friedkin (1990) peer
influence model. We begin by randomly seeding the network with values drawn from a
uniform distribution and then apply a peer-influence model to the network, updating the
values for each node by the average of their peers, until the desired level of homophily is
achieved. We test two levels, a low setting (edgewise correlation of .35) and a high setting
(correlation of .75). These constructed attributes are fixed and then used across all missing
data distortion scenarios. The advantage of this model is that it captures the pure structural
foundation of behavior homophily that would be generated by a known peer influence
process, independent of particularistic context or selection processes, allowing an
assessment of missing data on peer influence.®

5. Network sampling and bias

Our design answers two main questions: what is the effect of increasing missing data on
measurement bias? And what is the effect of removing more or less central nodes from the

8\We ran additional tests allowing the CONCOR depth to vary across networks. We first determined the best fitting blockmodel on the
network with no missing data and used that to determine the depth when fitting the blockmodel on the networks with missing data.
The results are very similar across analyses and are in appendix Table A3.

It is important to note that this constructed measure is not mechanically dependent on centrality in anyway that would generate high
robustness to missing data. In fact, if anything, the influence construction model captures iterated diffusion across the entire system
and should give central nodes higher overall influence, which would tend toward overstating bias associated with removing central

nodes.
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network? The sampling process follows the standard in this literature: for each network, we
remove a portion of the nodes and calculate the measures of interest on the reconstructed
network. The removed nodes are not present in the reconstructed network, even if a sampled
respondent nominates them. This follows a listwise deletion procedure common in this sort
of Monte Carlo experiment (see also Galaskiewicz, 1991; Costenbader and Valente, 2003;
Borgatti et al., 2006). We then compare the observed statistic in the incomplete networks to
the known, empirically true measure, repeating this process 1000 times for each missingness
level: 1%, 2%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%.

Since centrality is an individual level score, we use the correlation between nodes' true
centrality score and the score observed in the distorted network (with missing data) to
summarize the effect of missingness. That is, we calculate the centrality of the nodes in the
full non-perturbed network, calculate it again with the nodes removed, and correlate these
two vectors. A high correlation means that nodes are ranked similarly in the true network
and the network with missing data. The higher the correlation, the greater is the reliability of
the incomplete network data (see Costenbader and Valente, 2003 for a similar approach).

We use a standardized bias score for all graph-level measures — including centralization,
topology and homophily. We define bias as:

(True — observed)

True

A bias score shows how much the observed score (under the given missing data scheme)
differs from the true value and gives us a proportionate distance from the true value. The
difference is relative to the true empirical value, making the bias scores comparable across
networks and statistics. Bias scores can be negative (over-estimates) or positive (under-
estimates), but we use the absolute value of the bias scores in our analysis to make them
comparable across all measures and networks (save for the appendix figures). Note that this
measure is different from a traditional measure of bias that would compare the true value to
the mean over all sampled values.

Instead of simple random missingness, here we remove nodes proportional to their
centrality. We implement this selection by making the probability of being selected as a
missing node a weighted average of centrality and random noise. The results will approach
random missingness as we put less weight on the centrality portion, as follows:

b centrality; +(1 — [b])
b= sign(b) * u(0, 1)

__ (p—min(p))
(max(p) — min(p))
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probi:%
where b is the scalar we set experimentally, centrality; is the centrality score of person /,

1(0,1) is a random draw from a uniform distribution ranging from 0 to 1 and prob; is the
probability that person 7is selected as a missing case.

We experimentally set four levels of the correlation between centrality and missingness: —.
75 (strong negative correlation), where people with high centrality are much less likely to be
missing; —.25 (weak negative correlation), where people with high centrality are slightly less
likely to be missing; .25 (weak positive correlation), where people with high centrality are
slightly more likely to be missing; and .75 (strong positive correlation), where people with
high centrality are much more likely to be missing. Our analysis includes results for each
correlation value for two centrality types: in-degree and closeness. Thus, for each measure
and level of missing data, there are 96 different scenarios: 12 networks x 4 correlation
settings (-.75, —.25, .25, .75) x 2 types of degree definitions (in-degree and closeness). Note
that not all of the tables and figures will include results for both definitions of missing nodes
(in-degree and closeness) as the results are often quite similar.10

Nodes on the outskirts of the network are more likely to be missing when there is a negative
correlation between centrality and missingness. This mimics situations where peripheral
members of a community are difficult to study, as is common in school networks (peripheral
members are more likely to be absent). When the correlation is positive, central nodes are
more likely to be missing, mimicking situations where active nodes might have scheduling
difficulties (such as public officials in elite networks), or cases where ties represent hidden
populations (such as links to known criminals or terrorists-Everton, 2012). Note that the
positive correlation results provide a conservative estimate on the effects of missing data,
since it is difficult to capture many network features accurately if the most “important”
nodes are missing: a measure is quite robust to missing data if the error is low even when the
most central nodes are removed. The effect of missing high degree nodes may, however, be
dependent on the features of the network, such as centralization: missing high degree nodes
may matter less when all actors have similar scores. Similarly, the effect of missing high
degree nodes may depend on the distribution of the measure of interest. This is why we
include such a wide variety of networks in our analysis.

We use the positive and negative correlation results to produce upper and lower bounds of
missing data bias. Our goal is to provide researchers with a practical sense of the bias likely
observed in their own data. As such, a researcher who can estimate the approximate level of
missingness and make reasonable assumptions about the correlation of missingness to
centrality can use our results to identify bounds on bias in their own work. A researcher
without information on the missing data can still gauge the range of possible bias. We offer a
detailed example in the conclusion; we have also developed an online calculator to perform
all of the necessary calculations (link provided after review).

10Full results are available upon request.
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6. Presentation outline

We first present target bias tables, akin to a statistical power-analysis for missing data. For
centrality, the table presents the percent missing that would yield a target correlation of .9
between the true and observed score for each network and measure.11 We also include
analogous tables for centralization, topology and homophily for a target absolute value bias
of .25. The presented tables only include results where node removal is defined by in-degree
(for the sake of simplicity) but the closeness results are very similar.

We next regress bias on the amount of missing data. Thus, we predict bias (using the
absolute value) for each scenario as a function of percent missing: bias = &y + b1 (Yomissing/
10). The resulting slope coefficients, 6y, represent the expected increase in bias for a 10%
increase in the number of nodes removed. We use b, as a summary measure, showing how
quickly bias increases as missing data increases. For centrality, we define bias as 1 minus the
correlation between the true and observed centrality scores.

To provide a general overview of the results, we use regression models to summarize how
bias varies across measures, networks and types of missing data (including the correlation
with centrality and the node removal type, in-degree or closeness). We run separate HLM
models for each network measure, using the bias slopes described above as the dependent
variable.12 Larger coefficients imply more bias, indicating that bias increases at a faster rate
as missing data increases. Our main independent variables are the four correlation with
centrality settings (-.75 through .75) and the node removal type (in-degree (1) or closeness
(0)) and their interaction term. The remaining predictors capture network properties that may
be related to measurement bias: network size, type (directed = 1; undirected = 0) and
concentration (measured as the standard deviation of in-degree). For each network property,
we include a main effect and an interaction between the correlation and centrality. For
example, larger networks may have less bias than smaller networks (the main effect) and
may be less affected by missing central nodes (the interaction).

Finally, we use cluster analysis to identify patterns in the results across networks. For each
of the four broad categories of network statistics (centrality, centralization, topology and
homophily), we partition our scenarios into clusters based on the pattern of bias (using the
absolute value of bias) across different levels of missing data which allows us to compare
missingness effect profiles. A case here is defined by the combination of network, missing
data type and measure (e.g. Interlock network, .75 correlation with in-degree; Bonacich
centrality). We include all missing data scenarios in the clustering analysis, including both
node removal definitions, closeness and in-degree. Each case will have 12 different bias
values to cluster (one for each level of missing data), and thus cases with similar bias
profiles are placed in the same cluster.13 We then summarize which types of networks,
measures, and missing data fall into each cluster.

11The results are based on a quadratic model fit to our simulation results.

Each network contributes 8 values to the regression: 4 correlation types (-.75, —.25, .25, .75) by two centrality types (in-degree and
closeness).

Specifically, we use the model-based approach introduced in Fraley and Raftery (2002) to place the cases into clusters.
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There are thus three tables for each set of measures: a target bias table, showing how much
data one can miss and still retain high confidence; a regression table, showing what network
and missing data features are correlated with bias; and a cluster table, showing how different
factors combine to create high/low bias measurement.

In addition to these tables, we include a detailed graphical presentation of the results in
Appendix. We present curves for centrality, centralization, topology and homophily (for
simplicity, we only present the results where node removal is defined by in-degree). Each
subplot in the figures represents a network/measure combination with bias on the y~axis and
the level of missing data on the x-axis. The subplots contain one curve for each of the four
correlation levels. The light gray area around the curves provides the upper and lower
bounds. We also include a set of summary statistics. For each subplot, we include the mean
bias slope across the four curves (here allowing for negative and positive bias values) and the
mean average deviation from the true value (v). The correlation bias captures the differences
across the centrality correlation settings. The correlation bias, CB, is the ratio of total bias in
a given curve to the total bias under random missing data. For example, the Interlock
network on in-degree has a value of 1.56 when missingness is strongly correlated with
centrality (.75). This means that the bias is 1.56 times worse when central nodes are missing
compared to nodes missing at random.

7.1. Centrality

Table 2 presents the target bias results for centrality, giving estimates for each network and
measure under strong positive and strong negative correlation conditions. It is clear from
Table 2 that the effect of missing data is worse when more central nodes are more likely to
be missing. The correlation between nodes' true centrality and the measure obtained after
nodes are removed is lower when more central nodes are removed. For example, for the
Interlock network, a researcher missing low-degree nodes could miss up to 30% of the
network and maintain a .9 correlation for total degree, but could only miss 15% if the
missing nodes are high-degree. Fig. Al shows a clear decline in accuracy as missing data
increases (overall negative curve), but higher absolute bias when more central nodes are
missing. For in-degree, the positive correlation line has 2.3 times more bias (on average)
than random missing data, while the negative correlation lines has 1.3 times /ess bias than
random missing data.

Closeness and betweenness centrality have higher levels of bias than the degree measures,
while Bonacich power centrality appears most sensitive to missing high degree nodes. On
average, one can miss up to 46.5% of the data and maintain a .9 correlation (between nodes'
true degree and their degree after nodes have been removed) if low in-degree nodes are more
likely to be missing, but only 17.2% if high in-degree nodes are more likely to be missing.

Table 3 summarizes the relationship between network characteristics and sensitivity to
missing central nodes. The models regress the bias slopes — the summary measure of the
relation between bias and amount of missing data — on the level of correlation with
centrality. These models also include interactions between the correlation with centrality and
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node removal type (in-degree or closeness), size, directionality, and in-degree standard
deviation (centralization) of each network. The models suggest that large, directed networks
are less affected by missing high degree nodes (based on the strong negative coefficients for
Correlation with Centrality*Directed and Correlation with Centrality*Log of Size across the
models).

We provide a summary of the clustering results in Table 4, which capture the factors
associated with similar missingness response profiles. The table is organized by the bias
response profile (first column). Within each type, we examine network type (defined as
small, medium, large), missing data correlation, and measure.14 The cluster analysis
suggested 5 large clusters, arranged from low to high bias. The first two clusters represent
situations with consistently low bias. For example, the median bias at 30% missing is only .
08 for cluster 2. A researcher is likely to find such low bias in scenarios involving a large or
medium network, where missingness is negatively correlated with centrality (in-degree or
closeness). The third and fourth clusters represent cases with medium bias response curves.
These represent scenarios involving small networks, missingness negatively correlated with
centrality and degree-based outcome measures. The highest bias cluster (with median bias
of .30 at 30% missing) generally includes any scenario involving measures of closeness or
small networks for measures of betweenness and Bonacich power, with missing data
positively associated with centrality.

Table 4 clearly shows how different factors combine to increase or decrease bias; for
example, while larger networks tend to have lower bias than smaller networks (see Table 3,
Log of Size), a large network will still have significant bias when measuring betweenness
centrality when missing high degree nodes. Similarly, missing low centrality nodes does not
guarantee low bias, although, on average, the bias is lower. For example, scenarios involving
small networks and in-degree centrality would yield medium bias, even if the missing nodes
tend to have low centrality.

7.2. Centralization

Tables 5 and 6 present the main results for centralization. Centralization is a graph-level
statistic calculated from the individual-level centrality scores. We have one centralization
measure for each of our six centrality measures. We focus on the standard deviation of
centrality as our measure of centralization because the traditional Freeman centralization
score offers inconsistent, difficult to interpret results (we present these for completeness in
Fig. A2 and Tables A1-A2).

Across all measures, bias is worse when central nodes are more likely to be missing, and
smallest when less central nodes are more likely to be missing. The top end of the degree
distribution is truncated when more central nodes are removed; the standard deviation is thus
underestimated, leading to a downward bias. For example, for in-degree centralization, one
can miss up to 40% of the network and retain a bias of .25 when less central nodes are

L4ror simplicity, we characterize the networks based on size alone, placing all networks into one of three categories. We define small
as less than 100, medium as between 100 and 500, and large as greater than 500. Note that the analysis includes both node removal
types, in-degree and closeness. The results tend to be similar across these two definitions and we discuss the results without
differentiating between them.
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missing, but one can only have 18% missing if central nodes are missing. In general,
removing central nodes has stronger effects on degree centralization and weaker effects on
betweenness centralization.1® Betweenness does, however, have the highest overall bias. On
average, one can only miss 19% of the network and still retain a bias under .25, even when
central nodes are less likely to be missing. It is difficult to estimate betweenness
centralization with substantial missing data as the measure depends on the structure of the
entire network, making it particularly dependent on missing nodes.

Table 6 presents our bias regression results. The degree-based measures offer the clearest
story, where larger, directed networks are less affected by missing central nodes, evidenced
by the negative coefficients in Models 1-3 for Correlation with Centrality*Directed and
Correlation with Centrality*Log of Size.

Table 7 presents a summary of our clustering results. The best fitting model yields 5 broad
clusters, arranged from low to high bias. The two lowest bias clusters (with mean bias of .02
and .07 under 30% missing) include Bonacich centrality for large and medium networks and
closeness for directed networks. Note that for closeness centralization it was necessary to
divide directed and undirected networks, as undirected networks have considerably higher
bias (see the main effect for Directed in Model 5, Table 6). The middle bias cluster includes
the degree-based measures. The highest bias cluster, with a median bias of .68 when missing
30% of the data, includes undirected networks when one is measuring closeness. A
researcher is also likely to have high bias if they are measuring betweenness centralization.

Thus, it seems that the measure itself strongly determines the level of bias for centralization.
Closeness and betweenness centralization tend to be in the high bias clusters while Bonacich
power and the degree measures tend to be in the low and middle bias clusters, although, here
too, we find exceptions. Bonacich centralization has low bias for large and medium
networks, but medium to high bias when the network is small. Similarly, a researcher could
have low or high bias when measuring closeness centralization, depending on whether the
network is directed or undirected.

7.3. Topology

We present the topology results in Table 8 and Fig. A3. Overall, we see the same pattern as
before: the negative bias caused by increasing missing data is exaggerated when central
nodes are more likely to be missing (high positive correlation). For example, bicomponent
size in the Interlock network has 1.5 times more bias than random missing data when central
nodes are most likely to be removed, while removing low centrality nodes has 2 times lower
bias than expected with nodes missing at random. The results are qualitatively similar for
percent in the largest component and distance. Measures of connectivity have higher bias
when more central nodes are removed because the paths that generate cohesion tend to flow
through central nodes, so removing them creates systematically lower cohesion.

15Removing high in-degree nodes has a direct effect on the degree distribution (as the degree distribution is truncated when high
degree nodes are removed). It is not surprising that the degree-based measures are greatly affected by removing central nodes.
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We find similar, but smaller, effects for tau statistic and CONCOR (i.e. blockmodels).
CONCOR, as in Part | of this study, is not greatly affected by missing data and this does not
change much when more central nodes are missing. The tau statistic /s greatly affected by
missing data (with strongly negative slopes in Fig. A3), but the nature of the missing nodes
is less consequential than with connectivity or cohesion measures. For example, for the
Sorority network, a researcher could miss up to 17% of the network and retain a bias under .
25 when less central nodes are missing and 15% when more central nodes are missing; the
analogous numbers are 54 and 30% for component size. Transitivity is quite robust to
missing data under random node removal, where central nodes are neither more nor less
likely to be missing, and we see higher bias than in Part | of this study. Transitivity also
tends to have lower bias than the tau statistic, distance or bicomponent size. See Table 8.

Table 9 shows how the effect of missing central nodes varies by network type and measure.
For most measures, directed networks are more robust to missing high centrality nodes. We
can see this as the coefficient for Correlation with Centrality*Directed is negative and
significant in Models 1 -4 and 6 in Table 9. For bicomponent size and distance (and possibly
component size), networks with higher in-degree standard deviation have lower overall bias
but are more affected by missing central nodes (see the negative coefficient for the main
effect for in-degree standard deviation and the positive coefficient for Correlation with
Centrality*in-degree standard deviation in Models 2 and 3). Concentrated networks are
prone to poor estimates when central nodes are removed because their structure is (more)
dependent on the high degree nodes.

We present our clustering results in Table 10, where we found 6 broad clusters. The first two
clusters have very low bias for almost all levels of missing data. The low bias clusters
include CONCOR (i.e. blockmodeling) for all networks and missing data correlation. We
also see transitivity for large and medium sized networks, as well as component size — but
here only for large/medium networks under favorable missing data conditions (i.e., missing
low degree nodes). Component size is more affected by missing high degree nodes, and thus
the positive correlation cases are found in the high bias clusters.

The fourth cluster captures cases of medium bias, with a median bias of 28% at 30% missing
(and higher bias at all levels of missing data than the lower bias clusters). This cluster is
more heterogeneous and we see complex combinations of measure, network type and
missing data. For example, a researcher with a large network and missing high centrality
nodes would have medium bias when trying to measure distance and bicomponent size. In
contrast, a researcher with the same missing data conditions (missing high centrality nodes)
but a small network would face similar bias measuring transitivity, component size or
distance.

Finally, the two high bias clusters contain the tau statistic (as well as bicomponent size for
small networks when missing high centrality nodes). A researcher with any size network
trying to measure the tau statistic is likely to face high bias, at least compared to other
topology measures. This holds for all missing data types, as missing high centrality nodes
has only a weak effect on the bias for the tau statistic.
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7.4. Homophily

We examine homophily first for degree and then for (simulated) behavior. Table 11 presents
the target bias scores. Looking at the out-degree and in-degree columns, we see highly
variable levels of sensitivity. In many cases, missing more than 1 % of the network will
exceed a target bias of .25. This suggests the difficulty of estimating degree homophily when
missing high or low degree nodes (see also Fig. A4).16 In general, however, it is still the
case that missing high degree nodes is worse than missing low degree nodes. For in-degree
homophily, one can miss (on average) 23% of the network and retain a bias under .25 when
less central nodes are missing, but only 11% if more central nodes are missing. High in-
degree nodes are relatively rare. It is thus difficult to measure degree mixing if the high in-
degree nodes are missing, as the measure is driven by the propensity for high degree nodes
to be connected.

The behavioral homophily scores offer a very different picture. The estimates are still worse
when more central nodes are missing but here the overall bias is low and the effect of
missing central nodes is weak. For example, one can miss a large portion of the Colorado
Springs network and still accurately measure low behavioral homophily. One can miss up to
61% of the network and still retain a bias under .25 when more central nodes are missing
and 70% if less central nodes are missing; compare that to 5% and 45% for in-degree
homophily on the same network.1?

Table 12 presents our bias regression results. Directed networks have lower bias and are less
affected by missing more central nodes for low behavioral homophily (see the negative
coefficients in Model 4 for Directed and Correlation with Centrality*Directed). Larger
networks still generally have lower overall bias, evidenced by the negative, significant
coefficients for Log of Size in Models 2 and 4.

The cluster results for homophily in Table 13 suggest a simple 3 cluster solution. The first
cluster has low bias and includes the behavioral homophily scores for all network sizes and
missing data correlations. The second cluster has higher bias overall (e.g., a median bias of .
26 with 30% missing) and includes in-degree and out-degree homophily for large and
medium sized networks.18 Finally, the high bias cluster includes small networks for in-
degree and out-degree homophily. The cluster analysis thus reinforces the picture that we
have already seen: that behavioral measures appear less sensitive to missing data than degree
measures.

16The figure also, makes clear that certain networks offer extreme results, specifically the Prosper network for in-degree and the
Cocitation and Elite network for out-degree. More generally, the lines appear erratic in the figure because the positive correlation lines
are dependent on the empirical homophily value: the bias lines have a negative slope when assortative mixing is positive and a positive
slope when assortative mixing is negative (i.e. nodes with high in-degree are less likely to be socially connected).

Behavioral homophily is not greatly affected by missing central nodes because homophily is an aggregate summary over all pairs
with a tie. Unless the high degree nodes have drastically different patterns of homophily than low degree nodes (not generally the
case), then the estimates will not be greatly affected by systemically missing high degree nodes. We must, however, place an important
scope condition on our results: the results only necessarily hold in cases where the variance for the measure of interest is relatively
low. The mean standard deviation for our behavioral measure is .1 across networks (aggregating over the low and high behavioral
measures). The level of bias may be higher when the variance of the measure of interest is higher.

Although note that placing the medium size networks in this second cluster only works if we exclude the clear outliers, Prosper for
in-degree and Cocitation and Elites for out-degree.
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8. Conclusion

Missing data is a complication faced by many network scholars, as traditional measures
assume full coverage of a well-bounded population (Laumann et al., 1983; Wasserman and
Faust, 1994). It is thus important to know how missing data biases commonly used network
measures. Unfortunately, this is a rather difficult task at present. There are few concrete
guidelines for dealing with missing network data and the effect of missing data depends on a
number of factors: the amount of missing data; the nature of the missing data; the measure
of interest; and the characteristics of the network in question. This paper tries to expand our
understanding of missing data effects on network measurement by exploring the effect of
missing data across networks, measures, and missing data scenarios.

As with similar studies, estimates are always worse with more missing data. Most measures
have the greatest bias when more central nodes are missing and the least when peripheral
nodes are missing, but this is far from the full story. Some measures are particularly affected
by missing central nodes (e.g. Bonacich power centrality, bicomponent size) while others are
not (behavioral homophily and tau statistic). The results also vary systematically by the
network of interest. Larger, directed networks are generally less affected by missing central
nodes, but this too varies across measures.

How do these results compare to past findings on the effect of missing-at-random data on
network estimates? There are, in general, important differences, as some measures are robust
to missing data only under favorable conditions, while others are more uniformly robust. For
example, for centrality, degree and Bonacich Power centrality are robust to missing-at-
random data. In contrast, when more central nodes are missing, only the degree measures are
not greatly affected by missing data. Here, Bonacich Power centrality has high bias scores,
similar to closeness and betweenness (which have high bias in both missing data cases). This
is the case as Bonacich Power is particularly susceptible to missing central nodes. There are
similar patterns with the topology measures. For example, under missing-at-random data,
transitivity, component size and CONCOR (blockmodeling) are robust to missing nodes,
while distance and the tau statistic are not. When more central nodes are missing,
component size and bicomponent size join distance and the tau statistic in the list of less
robust measures. In contrast, when less central nodes are missing, only the tau statistic
suffers badly under conditions of missing data.

The overriding lesson here is a simple one: it is not enough to know the level of missing data
to determine the level of bias. Different collection strategies are required for different
measures, networks, and types/levels of missing data. It is the combination of these factors
that determine how good or bad an estimate is likely to be. The results are thus complex but
systematic. We know the basic factors that contribute to measurement bias. The difficulty is
putting these factors together to estimate the bias in a particular research setting. We have
tried to make this difficult problem easier by producing summary tables based on our cluster
analysis. Those tables present the type of bias likely to arise from combinations of size,
measurement and missing data type. Our results will make it easier to gauge bias in a
research setting, but we would also call for more work on generative models of missing data,
including model-based inference for missing data within the ERGM framework (Handcock
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and Gile, 2010; Koskinen et al., 2013). In that way, we may move beyond empirical
regularities to a model of a network with missing data.

Practically, how would one use our results to assess bias in one's own network?

First, a researcher could look up the situation that most closely matches their particular case
in the summary (cluster analysis) tables. Alternatively, one could use the regression models
to estimate the level of bias in their network (based on the estimates in Tables 3, 6, 9 and
12). The output of the models is the expected bias, given the network characteristics,
measure of interest, type of missing data and level of missing data. To make this simpler, we
developed a web calculator to facilitate these calculations; a researcher will only have to
input the conditions appropriate for their study, and the tool will calculate the expected bias
level.

As a demonstration, consider a setting similar to the Sorority network where we are
interested in measuring in-degree under conditions of missing data (assume 19% is missing).
The first step in assessing bias is to characterize the network itself. For example, we can start
by determining the total size of the network (the number of present and missing nodes). This
would, practically speaking, come from the initial roster that was used to collect the network
data in the first place. In our case, we know that the total network size is 72. We also know
whether the network is directed. We can also estimate the centralization of the network,
measured as the standard deviation of in-degree. In the simplest case, we can use our
observed score (from the network with missing data). In our case, the observed standard
deviation of in-degree (on the network with missing data) is 1.46. Of course, this measure of
standard deviation is biased, so a better estimate would take the estimated standard deviation
and try to adjust the value based on the expected level of bias, but we use 1.46 for the sake
simplicity.

The second step is to characterize the missing data in our network. In our example, we know
that the network size is 72 and that there are 14 missing students, making the proportion
missing .194. By using nominations from respondents (those people who filled out the
survey) to non-respondents we can estimate the in-degree of the missing nodes. For this
example, the mean in-degree of the missing nodes is 3.21 while the mean in-degree of the
present nodes is 2.10. We thus know that missing nodes have higher degree than present
nodes. There is a positive correlation between degree and missingness. To get reasonable
bounds, we calculate bias under both strong (.75) and weak (.25) conditions.

We can take those inputs (network characteristics and missing data properties) and use them
to calculate the predicted bias for our measure of interest, in-degree. We demonstrate the
calculation using our web calculator (we have included images of the java applet in
Appendix). One first selects the network type: one must designate if the network resembles a
network in this study, and, if so, which one.1® For our estimate here, we assume that we do
not know which network best matches our network and simply designate it as

19kor example, one may have a high school network and select one of the high school networks as the analogous case to their own
network. The application uses this information to inform the calculation of bias, specifically using the random intercepts and slopes for
the chosen network in the equation.
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uncharacterized. We next select whether the calculation should use the in-degree or
closeness formulas. We opt for the in-degree calculations. The remaining inputs are values
we already calculated: the size of the network (72), percentage of missing data (19.44), in-
degree standard deviation (1.46) and directed (True). The final input is the correlation
between centrality and the presence of nodes in the network. In this case, we calculate
expected bias where nodes are very likely to be missing (corresponding to a .75 correlation)
and likely to be missing (corresponding to a .25 correlation) (Fig. A5).

Looking at the in-degree results, we see that the expected bias is .138 under strong positive
correlation and .12 under a weak positive correlation.20 We thus expect the correlation
between true and estimated in-degree to be biased between 12 and 14% (so that the
correlation will be between 86 and 88%).

In the end, a researcher has three options in the face of missing data: do nothing (if the
estimated bias is small), collect more data (if the estimated bias is large) or impute the
missing edges and nodes (if the estimated bias is too large and it is infeasible to collect more
data). This paper offers a means of estimating the bias in a given context. One can take that
estimate and decide on the proper course of action. We have not, however, considered the
validity, or payoff, of different imputation approaches. It is this question that we turn to next.
The final part of the project will consider different options for dealing with missing data. We
will ask how competing imputation methods fare across networks, measures and types of
missing data. The overall goal is to provide a comprehensive, practical guide for all
researchers grappling with incomplete network data.
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Fig. Al
Centrality score robustness by network, centrality score and missingness level: probability of

node removal defined by in-degree.
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Each subgraph captures the bias between the true measure and the estimated values as more nodes are removed from the network. The four lines represent
the means under different correlations with centrality (where central nodes are more/less likely to be missing). The dark gray area measures the 10th/90th
percentiles over the lines. B is the regression coefficient of correlation regressed against the percent missing (divided by 10), and thus represents the

-75 expected increase in bias (in the positive or negative direction) for each 10% decline in sample coverage. B is the mean coefficient over all four lines. v

-25 represents the average observed deviation (square root of the total sum of squares divided by n). CB is the correlation bias, comparing the bias under the .75
25 line (CB.75) and -.75 lines (CB-.75) to the bias under random missing nodes. A CB score of 2 means that the bias is, on average, 2 times worse than when
75 nodes are missing at random. Shaded columns indicate undirected networks.

Fig. A2.
Centralization score robustness by network, centrality score and missingness level:

probability of node removal defined by in-degree.
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Line Color by Correlation

Each subgraph captures the bias between the true measure and the estimated values as more nodes are removed from the network. The four lines represent
the means under different correlations with centrality (where central nodes are more/less likely to be missing). The dark gray area measures the 10th/90th

With Centrality percentiles over the lines. B is the regression coefficient of correlation regressed against the percent missing (divided by 10), and thus represents the
-75  expected increase in bias (in the positive or negative direction) for each 10% decline in sample coverage. f is the mean coefficient over all four lines. v
-25  represents the average observed deviation (square root of the total sum of squares divided by n). CB is the correlation bias, comparing the bias under the .75
25 line (CB.75) and -.75 lines (CB-.75) to the bias under random missing nodes. A CB score of 2 means that the bias is, on average, 2 times worse than when
75 nodes are missing at random. Shaded columns indicate undirected networks.
Fig. A3.

Topology score robustness by network, centrality score and missingness level: probability of
node removal defined by in-degree.
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Fig. A4d.

Homophily score robustness by network, centrality score and missingness level: probability
of node removal defined by in-degree.
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Page 23
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1.46
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Central Nodes VERY likely to be missing (0.75)

In Degree Bias: 0.13841

Out Degree Bias: 0.16228

Total Degree Bias: 0.16689

Bonacich Centrality: 0.20496

Closeness Bias: 0.18531
Betweenness Bias: 0.2157

Central Nodes Likely to be Missing:

Lo Network Bias Calculator
About

Network Bias Calculator

Independent Variables

Network Type: Uncharacterized

Correlation Type:

Number of Nodes in Current Network:
Percentage of Network Missing:
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Is this a directed network?

Correlation Between InDegree and Presence in Network:

InDegree Simulation
72

19.44

146

true

Central Nodes likely to be missing (0.25)

Fig. AS.

Results
In Degree Bias: 0.12006
Out Degree Bias: 0.14346
Total Degree Bias: 0.14381
Bonacich Centrality: 0.16593
Closeness Bias: 0.16013
Betweenness Bias: 0.1971

Example using java applet to calculate predicted bias central nodes very likely to be missing
and central nodes likely to be missing.

Table Al

Maximum percent missing to remain under target bias of .25: traditional centralization, node
removal defined by in-degree.

Network Correlation with centrality  In-degree ~ Out-degree  Total degree  Bonacich power Closeness Betweenness
Interlock =75 21 21 21 34 29 25
.75 22 22 22 9 19 13
Prison =75 34 38 34 28 29 19
.75 48 25 40 15 35 9
Sorority -.75 22 29 19 12 a 13
.75 28 35 29 8 36 7
6th graders -.75 a a 57 39 a 11
75 35 41 a 36 48 8
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Network Correlation with centrality  In-degree ~ Out-degree  Total degree  Bonacich power  Closeness  Betweenness
Coauthor =75 65 65 65 a 52 30
.75 16 16 16 34 40 13
Prosper -.75 55 10 47 23 a 27
.75 34 8 32 22 56 16
Co-citation -.75 a a a a a 50
75 25 25 25 18 45 10
Elites -75 a 40 a a a 21
.75 13 60 13 a 35 8
HS 13 -75 a 9 56 38 68 13
75 35 7 32 4 a 9
BioTech =75 a a a 57 a 49
75 21 21 21 24 30 14
HS 24 =75 47 11 40 35 a 10
.75 a 8 a 40 63 7
CSprings -.75 a a a 48 a 55
.75 17 17 17 29 39 21
Mean (Std Dev) -.75 52.6 (19.3) 29.6(22.2) 51.6(19.2)  43.7 (19.5) 61.5(16)  26.9 (16.1)
75 37.6(17.7) 26.3(20.3) 322(19.2)  28.8(17.2) 43(14.4)  11.2(4.3)

a T . .
Cases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means.
The maximum percent missing was calculated based on a quadratic fit to the data.

Table A2

Traditional centralization bias regression: beta coefficients from closeness and in-degree

simulations.
Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
In-degree  Out-degree  Total degree  Bon. power Closeness Betweeness
Intercept 15%*F* -.194 A57FF* .263*** .076*** -.046
(.03) (-18) (.04) (.06) (:01) (13)
Correlation with Centrality —-.103***  —042 —=.107*** 149%** -.055 13
(.03) (.04) (.03) (.03) (.03) (.08)
Correlation type (0 = closeness 1 = .003 le-04 .004 .005*** .006* .004
in-degree) (.003) (.003) (.003) (.001) (.002) (.002)
Correlation with .014** -.01 .009 .002 .015*** .011*
Centrality*Correlation type (005) (01) (005) (003) (004) (004)
Directed -.016 .076 -.013 .004 -.015** .077
(.01) (.07) (.01) (.02) (.005) (.05)
Correlation with Centrality*Directed  —.002 -.024 -.011 -.024* -.008 -.065*
(.01) (.02) (01) (.01) (.01) (.03)
Log of Size -.014* .07 -.015 -.023* -.005 .031
(.006) (.04) (.01) (.01) (.002) (.03)
Correlation with Centrality*Log of 011 .004 .011 —.022*** .01 -.017
e (o) (o (01) (o) (o) (0
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Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
In-degree  Out-degree  Total degree  Bon. power Closeness Betweeness
In-degree Std. Dev. -.003 -.02 -.003 -.01* -.002 -.006
(.002) (.01) (.003) (.005) (.001) (.01)
Correlation with Centrality*In- .008*** .007 .009*** .002 .002 .001
degree Std. Dev. (.002) (.003) (.003) (.002) (.002) (.01)
N 96 96 96 96 96 96
Networks 12 12 12 12 12 12

Note: The regression uses the betas from each line as the dependent variable. The direction of the bias is ignored when
calculating the regressions. The betas represent the expected drop in correlation (between the empirical and the observed)
for a 10% increase in the amount of missing data. Smaller numbers (or more negative) mean larger bias with more missing
data. The correlation with centrality takes four values: -.75, —.25, .25, and .75.

Maximum percent missing to remain under target bias of .25: Alternative measures of

bicomponent size and ConCorr.

Table A3

Network Correlation with centrality =~ Bicomponent Bicomponent ConCorr: ConCorr:
size (divided size (divided by depthsetto  depths
by size) component allowed to

size) vary

Interlock -.75 44 60 a a

75 10 12 42 36

Prison -75 31 4 a a

.75 16 15 60 a
Sorority -75 34 45 a a
.75 17 19 60 54
6th graders -75 a a a a
75 67 64 a a
Coauthor -75 34 57 a a
.75 10 11 44 32
Prosper -.75 43 53 a a
75 32 32 a a
Co-citation -.75 a a a a
75 23 20 53 38
Elites -75 36 53 a a
.75 12 27 10
HS 13 -.75 69 a a
75 52 50 a a
BioTech -.75 38 a a a
75 14 10 32 22
HS 24 -75 66 a a a
.75 49 49 a 68
CSprings -75 31 54 a a
.75 11 8 35 30
Mean (Std Dev) -.75 47.2 (16.5) 59.4 (10.6) 70 (0) 70 (0)
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Network Correlation with centrality  Bicomponent Bicomponent ConCorr: ConCorr:
size (divided size (divided by depthsetto  depths
by size) component 3 allowed to
size) vary
75 26.1(19.5) 24.5(19.7) 52.8 (16.2) 475 (22)
aCases where percent missing is above 70, our observed maximum. In these cases, 70 is used to calculate overall means.
The maximum percent missing was calculated based on a quadratic fit to the data.
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Highlights

. We examine the effect of missing more/less central nodes on network
measurement.

. We look at measures of centrality, topology, homophily and
centralization.

. Measurement bias is generally worse when central nodes are missing.

. The effect of missing central nodes varies by measure and network
type.

. Researchers can estimate bias in their own network using our web-

based calculator.
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Table 4

Cluster analysis summary, centrality measures.
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Bias Profile

Size

Missingness Correlation

Affected Measure

0.4 -
0.2 -

0.0

Cluster 1

&

Large/Medium

Strong Negative

Total Degree; Bon. Power

0.4 -
0.2

0.0

Cluster 2

Large/Medium
Large/Medium

Strong Negative

Strong Positive

Out-degree, In-degree, Between

In-degree, Total Degree

0.4 —
0.2 -

0.0

Cluster 3

0.4 -

0.2 -

0.0 -

Cluster 4

Large/Medium
Small

Small

Strong Pos tive
Strong Negative

Strong Positive

Out-degree

Total, Out & In-degree, Bon Power

In-degree

Large/Medium

Strong Positive

Between., Bon. Power

0.4 -
0.2 -

0.0

Small Strong Negative Between., Closeness

Small Strong Positive Total degree, Out Degree
Cluster 5 Large Any Strong Closeness

Small/Medium Strong Positive Closeness

Small Strong Positive Betweenness

Small Strong Positive Bon. Power

20 40 60

o

Percent Missing Data

Note: This table summarizes the results of our clustering analysis. Bias is on the y-axis of the plots and percent missing is on the x-axis. Each case

(network, measure, missing data type) was placed into a cluster based on the pattern of bias across different levels of missing data. We then
summarized what types of networks, measures and missing data went into each cluster. Note that this table only includes results for the strong
positive and strong missing data types. A positive correlation means central nodes are more likely to be missing.
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Table 7

Cluster analysis summary, centralization.
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Percent Missing Data

Bias Profile Size Missingness Correlation  Affected Measure
Cluster 1
Large/Medium Strong Negative Bon. Power
Cluster 2 Large/Medium/SmaII Strong Negative Closeness
(directed)
Large/Medium Strong Positive Bon. Power
M Small Strong Negative Bon. Power
Cluster 3
Large/Medium/Small Any Strong Total, Out & in-degree
M@/@/e//é Small Strong Positive Bon. Power
Cluster 4 Large/Medium Strong Negative Betweenness
Large Strong Positive Betweenness
Large/Medium/Small .
{Difected) Strong Positive Closeness
Cluster 5 Large/Medium/Small | any Strong Closeness
(undirected)
Medium Strong Positive Betweenness
Small Any Strong Betweenness
| |
0 20 40 60

Note: This table summarizes the results of our clustering analysis. Bias is on the y~axis of the plots and percent missing is on the x-axis. Each case

(network, measure, missing datatype) was placed into a cluster based on the pattern of bias across different levels of missing data. We then

summarized what types of networks, measures and missing data went into each cluster. Note that this table only includes results for the strong
positive and strong missing data types. A positive correlation means central nodes are more likely to be missing.
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Cluster analysis summary, topology.

Table 10
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Bias Profile

Size

Missingness Correlation

Affected Measure

Cluster 1

\

Cluster 2

\

Cluster 3

|

Large/Medium Strong Negative Component, Transitivity
Large Strong Positive Transitivity
All Sizes Any Strong CONCOR

Large/Medium

Large
Medium

Small

Strong Negative

Strong Positive
Strong Positive
Strong Negative

Bicomponent, Distance
Component

Transitivity

Component, Distance, Transitivity

Cluster 4

:i//
jjsfrf/

\ [ [ [
20 40 60

o

Percent Missing Data

Large
Medium
Small

Small

Strong Positive
Strong Positive
Strong Negative

Strong Positive

Bicomponent, Distance
Component, Bicomponent, Distance
Bicomponent

Component, Distance, Transitivity

Large/Medium Any Strong Tau
Small Strong Negative Tau
Small Strong Positive

Bicomponent, Tau

Note: This table summarizes the results of our clustering analysis. Bias is on the y~axis of the plots and percent missing is on the x-axis. Each case
(network, measure, missing data type) was placed into a cluster based on the pattern of bias across different levels of missing data. We then
summarized what types of networks, measures and missing data went into each cluster. Note that this table only includes results for the strong
positive and strong missing data types. A positive correlation means central nodes are more likely to be missing.
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Table 12

Homophily bias regression: beta coefficients from closeness and in-degree simulations.

Variables Model 1 Model 2 Model 3 Model 4
In-degree  Out-degree® High behavioral — Low behavioral
Intercept 2.276* 1.516** A111* \234%**
(.92) (.53) (.05) (.02)
Correlation with centrality .87* .628* .001 .08***
(43) (:29) (.01) (.02)
Correlation type (0 = closenessl = in-degree) .168*** 107x** 5e—04 .005**
(.04) (.03) (.001) (.002)
Correlation with Centrality*Correlation type .391%** 219*%** .005*** .009**
(.07) (.06) (.001) (.003)
Directed 151 -.074 -.02 —-.033***
(.35) (.23) (.02) (.01)
Correlation with Centrality*Directed -.001 -.118 -.002 —.029***
(.16) (.13) (.004) (.01)
Log of Size -.326 -.253* -.013 —.029***
(19) (11) (.01) (.004)
Correlation with Centrality*Log of Size -.145 -.112 4e-04 -.009*
(.09) (.06) (.002) (.005)
In-degree Std. Dev. -.03 .033 -.001 -.002
(.07) (.05) (.004) (.001)
Correlation with Centrality*In-degree Std. Dev.  -.001 .022 -.001 -.001
(.03) (.03) (.001) (.002)
N 96 88 96 96
Networks 12 11 12 12

Page 42

Note: The regression uses the beta slopes from each line as the dependent variable. The direction of the bias is ignored when calculating the
regressions. The betas represent the expected increase in bias for a 10% increase in the amount of missing data. Larger numbers mean larger bias
with more missing data. The correlation with centrality takes four values: —.75, -.25, .25, and .75.

a . . . .
RC Elite network removed from regression as it is an extreme outlier.
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Cluster analysis summary, homophily measures.

Table 13

Page 43

Bias Profile Size Missingness Correlation  Affected Measure
8 — .
Large Strong Negative High & Low Behavioral, out-degree
o Large Strong Positive High & Low Behavioral
4- Medium Any Strong High & Low Behavioral
- Small Any Strong High Behavioral
0 - oo —O
8
Large Strong Negative In-degree
6~ Large Strong Positive Out-degree, in-degree
v .
2 4- Medium Any Strong In-degree
2- Medium Any Strong Out-degree
0- Sooo--0-o—0—°—°"°| gnq Any Strong Low-Behavioral
8-
6 -
4
Small Any Strong Out-degree, in-degree
2
0-
| I | I
0 20 40 60

Percent Missing Data

Note: This table summarizes the results of our clustering analysis. Bias is on the y~axis of the plots and percent missing is on the x-axis. Each case
(network, measure, missing data type) was placed into a cluster based on the pattern of bias across different levels of missing data. We then
summarized what types of networks, measures and missing data went into each cluster. Note that this table only includes results for the strong
positive and strong missing data types. A positive correlation means central nodes are more likely to be missing.
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