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BELIEF PROPAGATION, ROBUST RECONSTRUCTION

AND OPTIMAL RECOVERY OF BLOCK MODELS

By Elchanan Mossel∗,‡,¶, Joe Neeman∗,∥ and Allan Sly†,‡,§

U.C. Berkeley‡, Australian National University§, University of
Pennsylvania¶, and U.T. Austin∥

We consider the problem of reconstructing sparse symmetric block
models with two blocks and connection probabilities a/n and b/n
for inter- and intra-block edge probabilities respectively. It was re-
cently shown that one can do better than a random guess if and
only if (a − b)2 > 2(a + b). Using a variant of Belief Propagation, we
give a reconstruction algorithm that is optimal in the sense that if
(a − b)2 > C(a + b) for some constant C then our algorithm maxi-
mizes the fraction of the nodes labelled correctly. Ours is the only
algorithm proven to achieve the optimal fraction of nodes labelled
correctly. Along the way we prove some results of independent inter-
est regarding robust reconstruction for the Ising model on regular and
Poisson trees.

1. Introduction.

1.1. Sparse stochastic block models. Stochastic block models were intro-
duced more than 30 years ago [13] in order to study the problem of com-
munity detection in random graphs. In these models, the nodes in a graph
are divided into two or more communities, and then the edges of the graph
are drawn independently at random, with probabilities depending on which
communities the edge lies between. In its simplest incarnation – which we
will study here – the model has n vertices divided into two classes of ap-
proximately equal size, and two parameters: a/n is the probability that each
within-class edge will appear, and b/n is the probability that each between-
class edge will appear. Since their introduction, a large body of literature
has been written about stochastic block models, and a multitude of efficient
algorithms have been developed for the problem of inferring the underlying
communities from the graph structure. To name a few, we now have algo-
rithms based on maximum-likelihood methods [27], belief propagation [10],
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2 E. MOSSEL ET AL.

spectral methods [21], modularity maximization [2], and a number of com-
binatorial methods [7, 9, 11, 15].

Early work on the stochastic block model mainly focused on fairly dense
graphs: Dyer and Frieze [11]; Snijders and Nowicki [27]; and Condon and
Karp [9] all gave algorithms that will correctly recover the exact commu-
nities in a graph from the stochastic block model, but only when a and b

are polynomial in n. In a substantial improvement, McSherry [21] gave a
spectral algorithm that succeeds when a and b are logarithmic in n; this had
been anticipated previously by Boppana [5], but his proof was incomplete.
McSherry’s parameter range was later equalled by Bickel and Chen [2] using
an algorithm based on modularity maximization.

We also note that related but different problems of planted coloring were
studied in Blum and Spencer [4] in the dense case, and Alon and Kahale [1]
in the sparse case.

The O(logn) barrier is important because if the average degree of a block
model is logarithmic or larger, it is possible to exactly recover the commu-
nities with high probability as n → ∞. On the other hand, if the average
degree is less than logarithmic then some fairly straightforward probabilistic
arguments show that it is not possible to completely recover the communi-
ties. When the average degree is constant, as it will be in this work, then
one cannot get more than a constant fraction of the labels correct.

Despite these apparent difficulties, there are important practical reasons
for considering block models with constant average degree. Indeed, many real
networks are very sparse. For example, Leskovec et al. [18] and Strogatz [28]
collected and studied a vast collection of large network datasets, many of
which had millions of nodes, but most of which had an average degree of no
more than 20; for instance, the LinkedIn network studied by Leskovec et al.
had approximately seven million nodes, but only 30 million edges. Moreover,
the very fact that sparse block models are impossible to infer exactly may
be taken as an argument for studying them: in real networks one does not
expect to recover the communities with perfect accuracy, and so it makes
sense to study models in which this is not possible either.

Although sparse graphs are immensely important, there is not yet much
known about very sparse stochastic block models. In particular, there is
a gap between what is known for block models with a constant average
degree and those with an average degree that grows with the size of the
graph. Until recently, there was only one algorithm – due to [8], and based
on spectral methods – which was guaranteed to do anything at all in the
constant-degree regime, in the sense that it produced communities which
have a better-than-50% overlap with the true communities.



OPTIMAL RECOVERY OF BLOCK MODELS 3

Despite the lack of rigorous results, a beautiful conjectural picture has re-
cently emerged, supported by simulations and deep but non-rigorous phys-
ical intuition. We are referring specifically to work of Decelle et al. [10],
who conjectured the existence of a threshold, below which is it not possible
to find the communities better than by guessing randomly. In the case of
two communities of equal size, they pinpointed the location of the conjec-
tured threshold. This threshold has since been rigorously confirmed; a sharp
lower bound on its location was given by the authors [24], while sharp upper
bounds were given independently by Massoulié [20] and by the authors [25].

1.2. Our results: optimal reconstruction. Given that it is not possible to
completely recover the communities in a sparse block model, it is natural
to ask how accurately one may recover them. In [24], we gave an upper
bound on the recovery accuracy; here, we will show that that bound is tight
– at least, when the signal to noise ratio is sufficiently high – by giving an
algorithm which performs as well as the upper bound. Our main result may
be stated informally as follows:1

Theorem 1.1. Let pG(a, b) be the highest asymptotic accuracy that any
algorithm can achieve in reconstructing communities of the block model with
parameters a and b. We provide an algorithm that achieves accuracy of
pG(a, b) with probability tending to 1 as n→∞, provided that (a−b)2/(a+b)
is sufficiently large.

To put Theorem 1.1 into the context of earlier work [20, 24, 25] by the
authors and Massoulié, those works showed that pG(a, b) > 1/2 if and only
if (a − b)2 > 2(a + b); in the case that pG(a, b) > 1/2, they also provided
algorithms whose accuracy was bounded away from 1/2. However, those
algorithms were not guaranteed (and are not expected) to have optimal
accuracy, only non-trivial accuracy. In other words, previous results have
shown that for every value of a, b such that (a − b)2 > 2(a + b) there exists
an algorithm that recovers (with high probability) a fraction q(a, b) > 1/2 of
the nodes correctly. Our results provide an algorithm that (when (a − b)2 >
C(a+b) for a large constant C) recovers the optimal fraction of nodes pG(a, b)
in the sense that it is information theoretically impossible for any other
algorithms to recover a bigger fraction.

Our new algorithm, which is based on belief propagation, is essentially an
algorithm for locally improving an initial guess at the communities. In our
current analysis, the initial guess is provided by a previous algorithm of the

1An extended abstract stating the results of the current paper [23] appeared in the
proceedings of COLT 2014 (where it won the best paper award).



4 E. MOSSEL ET AL.

authors [25], which we use as a black box. We should mention that standard
belief propagation with random uniform initial messages and without our
modifications and also without a good initial guess, is also conjectured to
have optimal accuracy [10]. However, at the moment, we don’t know of any
approach to analyze the vanilla version of BP for this problem.

As a major part of our analysis, we prove a result about broadcast pro-
cesses on trees that may be of independent interest. Specifically, we prove
that if the signal-to-noise ratio of the broadcast process is sufficiently high,
then adding extra noise at the leaves of a large tree does not hurt our ability
to guess the label of the root given the labels of the leaves. In other words,
we show that for a certain model on trees, belief propagation initialized with
arbitrarily noisy messages converges to the optimal solution as the height of
the tree tends to infinity. We prove our result for regular trees and Galton-
Watson trees with Poisson offspring, but we conjecture that it also holds for
general trees, and even if the signal-to-noise ratio is low.

We should point out that spectral algorithms – which, due to their effi-
ciency, are very popular algorithms for this model – empirically do not per-
form as well as BP on very sparse graphs (see, e.g., [17]). This is despite the
recent appearance of two new spectral algorithms, due to [17] and [20], which
were specifically designed for clustering sparse block models. The algorithm
of [17] is particularly relevant here, because it was derived by linearizing
belief propagation; empirically, it performs well all the way to the impos-
sibility threshold, although not quite as well as BP. Intuitively, the linear
aspects of spectral algorithms (i.e., the fact that they can be implemented –
via the power method – using local linear updates) explain why they cannot
achieve optimal performance. Indeed, since the optimal local updates (those
given by BP) are non-linear, any method based on linear updates will be
suboptimal.

1.3. Dramatis personae. Before defining everything carefully, we briefly
introduce the three main objects and their relationships.

• The block model detection problem is the problem of detecting com-
munities in a sparse stochastic block model.

• In the tree reconstruction problem, there is a two-color branching pro-
cess in which every node has some children of its own color and some
children of the other color. We observe the family tree of this process
and also all of the colors in some generation; the goal is to guess the
color of the original node.

• The robust tree reconstruction problem is like the tree reconstruction
problem, except that instead of observing exactly the colors in some
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generation, our observations contain some noise.

The two tree problems are related to the block model problem because
a neighborhood in the stochastic block model model looks like a random
tree from one of the tree problems. This connection was proved in [24],
who also showed that tree reconstruction is “easier” than the block model
detection (in a sense that we will make precise later). The current work has
two main steps: we show that block model detection is “easier” than robust
tree reconstruction, and we show that – for a certain range of parameters –
robust tree reconstruction is exactly as hard as tree reconstruction.

2. Definitions and main results.

2.1. The block model. In this article, we restrict the stochastic block
model to the case of two classes with roughly equal size.

Definition 2.1 (Stochastic block model). The block model on n nodes
is constructed by first labelling each node + or − with equal probability in-
dependently. Then each edge is included in the graph independently, with
probability a/n if its endpoints have the same label and b/n otherwise. Here
a and b are two positive parameters. We write G(n,a/n, b/n) for this distri-
bution of (labelled) graphs.

For us, a and b will be fixed, while n tends to infinity. More generally one
may consider the case where a and b may be allowed to grow with n. As
conjectured by [10], the relationship between (a − b)2 and (a + b) turns out
to be of critical importance for the reconstructability of the block model:

Theorem 2.2 (Threshold for non-trivial detection [20, 24, 25]). For the
block model with parameters a and b it holds that

• If (a − b)2 < 2(a + b) then the node labels cannot be inferred from the
unlabelled graph with better than 50% accuracy (which could also be
done just by random guessing).

• if (a − b)2 > 2(a + b) then it is possible to infer the labels with better
than 50% accuracy.

2.2. Broadcasting on trees. Our study of optimal reconstruction accu-
racy is based on the local structure of G(n,a/n, b/n), which requires the
notion of the broadcast process on a tree.

Consider an infinite, rooted tree. We will identify such a tree T with a
subset of N∗, the set of finite strings of natural numbers, with the property
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that if v ∈ T then any prefix of v is also in T . In this way, the root of the
tree is naturally identified with the empty string, which we will denote by
ρ. We will write uv for the concatenation of the strings u and v, and Lk(u)
for the kth-level descendents of u; that is, Lk(u) = {uv ∈ T ∶ ∣v∣ = k}. Also,
we will write C(u) ⊂ N for the indices of u’s children relative to itself. That
is, i ∈ C(u) if and only if ui ∈ L1(u).

Definition 2.3 (Broadcast process on a tree). Given a parameter η ≠
1/2 in [0,1] and a tree T , the broadcast process on T is a two-state Markov
process {σu ∶ u ∈ T} defined as follows: let σρ be + or − with probability 1

2
.

Then, for each u such that σu is defined, independently for every v ∈ L1(u)
let σv = σu with probability 1 − η and σv = −σρ otherwise.

This broadcast process has been extensively studied, where the major
question is whether the labels of vertices far from the root of the tree give
any information on the label of the root. For general trees, this question was
answered definitively by Evans et al. [12], after many other contributions
including [3, 16]. The complete statement of the theorem requires the notion
of branching number, which we would prefer not to define here (see [12]).
For our purposes it suffices to know that a d-ary tree has branching number
d and that a Poisson branching process tree with mean d > 1 has branching
number d (almost surely, and conditioned on non-extinction).

Theorem 2.4 (Tree reconstruction threshold [12]). Let θ = 1− 2η and d

be the branching number of T . Then

E[σρ ∣ σu ∶ u ∈ Lk(ρ)] → 0

in probability as k →∞ if and only if dθ2 ≤ 1.

The theorem implies in particular that if dθ2 > 1 then for every k there
is an algorithm which guesses σρ given σLk(ρ), and which succeeds with
probability bounded away from 1/2. If dθ2 ≤ 1 there is no such algorithm.

2.3. Robust reconstruction on trees. Janson and Mossel [14] considered
a version of the tree broadcast process that has extra noise at the leaves:

Definition 2.5 (Noisy broadcast process on a tree). Given a broadcast
process σ “on a tree T and a parameter δ ∈ [0,1/2), the noisy broadcast
process on T is the process {τu ∶ u ∈ T} defined by independently taking
τu = −σu with probability δ and τu = σu otherwise.
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We observe that the noise present in σ and the noise present in τ have
qualitatively different roles, since the noise present in σ propagates down the
tree while the noise present in τ does not. Janson and Mossel [14] showed that
the range of parameters for which σρ may be non-trivially reconstructed from
σLk

is the same as the range for which σρ may be non-trivially reconstructed
from τLk

. In other words, additional noise at the leaves has no effect on
whether the root’s signal propagates arbitrarily far. One of our main results
is a quantitative version of this statement (Theorem 2.11): we show that for
a certain range of parameters, the presence of noise at the leaves does not
even affect the accuracy with which the root can be reconstructed.

2.4. The block model and broadcasting on trees. The connection between
the community reconstruction problem on a graph and the root reconstruc-
tion problem on a tree was first pointed out in [10] and made rigorous in [24].
The basic idea is the following:

• A neighborhood in G looks like a Galton-Watson tree with offspring
distribution Pois((a+b)/2) (which almost surely has branching number
d = (a + b)/2).

• The labels on the neighborhood look as though they came from a
broadcast process with parameter η = b

a+b .

• With these parameters, θ2d = (a−b)
2

2(a+b) , and so the conjectured threshold
for community reconstruction is the same as the proven threshold for
tree reconstruction.

This local approximation can be formalized as convergence locally on aver-
age, a type of local weak convergence defined in [22]. We should mention that
in the case of more than two communities (i.e. in the case that the broad-
cast process has more than two states) then the picture becomes rather more
complicated, and much less is known, see [10, 24] for some conjectures.

2.5. Reconstruction probabilities on trees and graphs. Note that Theo-
rem 2.4 only answers the question of whether one can achieve asymptotic
reconstruction accuracy better than 1/2. Here, we will be interested in more
detailed information about the actual accuracy of reconstruction, both on
trees and on graphs.

Note that in the tree reconstruction problem, the optimal estimator of σρ
given σLk(ρ) is easy to write down: it is simply the sign of Xρ,k ∶= 2Pr(σρ =
+ ∣ σLk(ρ))− 1. Compared to the trivial procedure of guessing σρ completely
at random, this estimator has an expected gain of

E ∣Pr(σρ = + ∣ σLk(ρ)) − 1

2
∣ = 1

2
E[∣E[σρ ∣ σLk(ρ)]∣].
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It is now natural to define:

Definition 2.6 (Tree reconstruction accuracy). Let T be an infinite
Galton-Watson tree with Pois((a + b)/2) offspring distribution, and η = b

a+b .
Consider the broadcast process on the tree with parameter η and define

(2.1) pT (a, b) = 1

2
+ lim

k→∞
E ∣Pr(σρ = + ∣ σLk(ρ)) − 1

2
∣ .

In words, pT (a, b) is the probability of correctly inferring σρ given the “labels
at infinity.”

Note that by Theorem 2.4, pT (a, b) > 1/2 if and only if (a− b)2 > 2(a+ b).
We remark that the limit in Definition 2.6 always exists because the right-

hand side is non-increasing in k. To see this, it helps to write pT (a, b) in a
different way: let µ+k be the distribution of σLk(ρ) given σρ = + and let µ−k be
the distribution of σLk(ρ) given σρ = −. Then

E ∣Pr(σρ = + ∣ σLk(ρ)) − 1

2
∣ = 1

2
dTV (µ+k , µ−k),

where dTV denotes the total variation distance. Next, note that since labels
at levels k′ > k are independent of σρ given σLk(ρ),

Pr(σρ = + ∣ σLk(ρ)) = Pr(σρ = + ∣ σLk(ρ), σLk+1(ρ), σLk+2(ρ), . . . ).
Hence, if we set ν+k to be the distribution of {σLk′

(ρ) ∶ k′ ≥ k} and similarly
for ν−k , we have

E ∣Pr(σρ = + ∣ σLk(ρ)) − 1

2
∣ = 1

2
dTV (ν+k , ν−k ).

Now the right hand side is clearly non-increasing in k, because ν+k+1 can be
obtained from νk by marginalization.

One of the main results of [24] is that the graph reconstruction problem is
at least as hard as the tree reconstruction problem in the sense that for any
community-detection algorithm, the asymptotic accuracy of that algorithm
is bounded by pT (a, b).

Definition 2.7 (Graph reconstruction accuracy). Let (G,σ) be a la-
belled graph on n nodes. If f is a function that takes a graph and returns a
labelling of it, we write

acc(f,G,σ) = 1

2
+ ∣ 1

n
∑
v

1((f(G))v = σv) − 1

2
∣
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for the accuracy of f in recovering the labels σ. For ǫ > 0, let

pG,n,ǫ(a, b) = sup
f

sup{p ∶ Pr(acc(f,G,σ) ≥ p) ≥ ǫ} .
where the first supremum ranges over all functions f , and the probability is
taken over (G,σ) ∼ G(n,a/n, b/n). Let

pG(a, b) = lim
ǫ→0

lim sup
n→∞

pG,n,ǫ(a, b),
where the limit exists because pG,n,ǫ(a, b) is monotonic in ǫ.

One should think of pG(a, b) as the optimal fraction of nodes that can
be reconstructed correctly by any algorithm (not necessarily efficient) that
only gets to observe an unlabelled graph. More precisely, for any algorithm
and any p > pG(a, b), the algorithm’s probability of achieving accuracy p or
higher converges to zero as n grows. Note that the symmetry between the +
and − is reflected in the definition of acc (for example, in the appearance of
the constant 1/2), and also that acc is defined to be large if f gets most labels
incorrect (because there is no way for an algorithm to break the symmetry
between + and −).

An immediate corollary of the analysis of [24] implies that graph recon-
struction is always at most as accurate as tree reconstruction:

Theorem 2.8 (Graph detection is harder than tree reconstruction [24]).

pG(a, b) ≤ pT (a, b).
We remark that Theorem 2.8 is not stated explicitly in [24]; because the

authors were only interested in the case (a − b)2 ≤ 2(a + b), the claimed
result was that (a − b)2 ≤ 2(a + b) implies pG(a, b) = 1

2
. However, a cursory

examination of the proof of [24, Theorem 1] reveals that the claim was proven
in two stages: first, they prove via a coupling argument that pG(a, b) ≤
pT (a, b) and then they apply Theorem 2.4 to show that (a − b)2 ≤ 2(a + b)
implies pT (a, b) = 1

2
.

2.6. Our results. In this paper, we consider the high signal-to-noise case,
namely the case that (a − b)2 is significantly larger than 2(a + b). In this
regime, we give an algorithm (Algorithm 1) which achieves an accuracy of
pT (a, b).
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Theorem 2.9. There exists a constant C such that if (a− b)2 ≥ C(a+ b)
then

pG(a, b) = pT (a, b).
Moreover, there is a polynomial time algorithm such that for all such a, b

and every ǫ > 0, with probability tending to one as n → ∞, the algorithm
reconstructs the labels with accuracy pG(a, b) − ǫ.

We will assume for simplicity that our algorithm is given the parameters
a and b. This is a minor assumption because a and b can be estimated from
the data to arbitrary accuracy [24, Theorem 3].

A key ingredient of Theorem 2.9’s proof is a procedure for amplifying
a clustering that is a slightly better than a random guess to obtain opti-
mal clustering. In order to discuss this procedure, we define the problem of
“robust reconstruction” on trees.

Definition 2.10 (Robust tree reconstruction accuracy). Consider the
noisy tree broadcast process with parameters η = a

a+b and δ ∈ [0,1/2) on a
Galton-Watson tree with offspring distribution Pois((a + b)/2). We define
the robust reconstruction accuracy as:

p̃T (a, b) = 1

2
+ lim inf

δ→1/2
lim inf
k→∞

E ∣Pr(σρ = + ∣ τLk(ρ)) − 1

2
∣

Our main technical result is that when a − b is large enough then in fact
the extra noise does not have any effect on the reconstruction probability.

Theorem 2.11. There exists a constant C such that if (a−b)2 ≥ C(a+b)
then

p̃T (a, b) = pT (a, b).
We conjecture that the robust reconstruction accuracy is independent of

δ for any parameters, and also for more general trees; however, our proof
does not naturally extend to cover these cases.

2.7. Algorithmic amplification and robust reconstruction. The second main
ingredient in Theorem 2.9 connects the community detection problem to the
robust tree reconstruction problem: we show that given a suitable algorithm
for providing a better-than-random initial guess at the communities, the
community detection problem is easier than the robust reconstruction prob-
lem, in the sense that one can achieve an accuracy of p̃T (a, b).
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Theorem 2.12. For all a and b, pG(a, b) ≥ p̃T (a, b). Moreover, there is
a polynomial time algorithm such that for all such a, b and every ǫ > 0, with
probability tending to one as n → ∞, the algorithm reconstructs the labels
with accuracy p̃T (a, b) − ǫ.

Combining Theorem 2.12 with Theorems 2.8 and 2.11 proves Theorem 2.9.
We remark that Theorem 2.12 easily extends to other versions of the block
model (i.e., models with more clusters or unbalanced classes); however, The-
orem 2.11 does not. In particular, Theorem 2.9 may not hold for general
block models. In fact, one fascinating conjecture of [10] says that for general
block models, computational hardness enters the picture (whereas it does
not play any role in our current work).

2.8. Algorithm outline. Before getting into the technical details, let us
give an outline of our algorithm: for every node u, we remove a neighbor-
hood (whose radius r is slowly increasing with n) of u from the graph G. We
then run a black-box community-detection algorithm on what remains of G.
This is guaranteed to produce some communities which are correlated with
the true ones, but they may not be optimally accurate. Then we return the
neighborhood of u to G, and we consider the inferred communities on the
boundary of that neighborhood. Now, the neighborhood of u is like a tree,
and the true labels on its boundary are distributed like σLr(u). The inferred
labels on the boundary are hence distributed like τLr(u) for some 0 ≤ δ < 1

2
,

and so we can guess the label of u from them using robust tree reconstruc-
tion. (In the previous sentence, we are implicitly claiming that the errors
made by the black-box algorithm are independent of the neighborhood of
u. This is because the edges in the neighborhood of u are independent of
the edges in the rest of the graph, a fact that we will justify more carefully
later.) Since robust tree reconstruction succeeds with probability pT regard-
less of δ, our algorithm attains this optimal accuracy even if the black-box
algorithm does not.

To see the connection between our algorithm and belief propagation, note
that finding the optimal estimator for the tree reconstruction problem re-
quires computing Pr(σu ∣ τLr(u)). On a tree, the standard algorithm for
solving this is exactly belief propagation. In other words, our algorithm
consists of multiple local applications of belief propagation. Although we
believe that a single global run of belief propagation would attain the same
performance, these local instances are easier to analyze.

Finally, a word about notation. Throughout this article, we will use the
letters C and c to denote positive constants whose value may change from
line to line. We will also write statements like “for all k ≥ K(θ, δ) . . . ” as
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abbreviations for statements like “for every θ and δ there exists K such that
for all k ≥K . . . ”

3. Robust reconstruction on regular trees. Our main effort is de-
voted to proving Theorem 2.11. Since the proof is quite involved, we begin
with a somewhat easier case of regular trees which already contains the main
ideas of the proof. The adaptation to the case of Poisson random trees will
be carried in Section 4.

First, we need to define the reconstruction and robust reconstruction prob-
abilities for regular trees. Their definitions are analogous to Definitions 2.6
and 2.10.

Definition 3.1. Let σ be distributed according to the broadcast process
with parameter η on an infinite d-ary tree. Let τ be distributed according to
the noisy broadcast process with parameters η and δ on the same tree. We
define

preg(d, η) = 1

2
+ lim

k→∞
E ∣Pr(σρ = + ∣ σLk(ρ)) − 1

2
∣

p̃reg(d, η) = 1

2
+ lim inf

δ→1/2
lim inf
k→∞

E ∣Pr(σρ = + ∣ τLk(ρ)) − 1

2
∣ .

Theorem 3.2. Consider the broadcast process on the infinite d-ary tree
where if u ∈ L1(v) then Pr(σu = σv) = 1

2
(1 + θ) (equivalently E[σuσv] = θ).

There exists a constant C such that if dθ2 > C then

p̃reg(d, η) = preg(d, η),
3.1. Magnetization. Define

Xu,k = Pr(σu = + ∣ σLk(u)) −Pr(σu = − ∣ σLk(u))
xk = E(Xu,k ∣ σu = +).

Here, we say that Xu,k is the magnetization of u given σLk(u). Note that by
the homogeneity of the tree, the definition of xk is independent of u. A simple
application of Bayes’ rule (see Lemma 1 of [6]) shows that (1+E∣Xρ,k∣)/2 is
the probability of estimating σρ correctly given σLk(ρ).

We may also define the noisy magnetization Y :

Yu,k = Pr(σu = + ∣ τLk(u)) −Pr(σu = − ∣ τLk(u))(3.1)

yk = E(Yu,k ∣ σu = +).
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As above, (1 + E∣Yρ,k∣)/2 is the probability of estimating σρ correctly given
τLk(ρ). In particular, the analogue of Theorem 2.11 for d-ary trees may be
written as follows:

Theorem 3.3. There exists a constant C such that if θ2d > C and δ < 1
2

then
lim
k→∞

E∣Xρ,k ∣ = lim
k→∞

E∣Yρ,k∣.
Our main method for proving Theorem 3.3 (and also Theorem 2.11) is

by studying certain recursions. Indeed, Bayes’ rule implies the following
recurrence for X (see, eg., [26]):

Xu,k =
∏i∈C(u)(1 + θXui,k−1) −∏i∈C(u)(1 − θXui,k−1)
∏i∈C(u)(1 + θXui,k−1) +∏i∈C(u)(1 − θXui,k−1) .(3.2)

The same reasoning that gives (3.2) also shows that (3.2) also holds when
every instance of X is replaced by Y . Since our entire analysis is based on the
recurrence (3.2), the only meaningful (for us) difference between X and Y

is that their initial conditions are different: Xu,0 = ±1 while Yu,0 = ±(1− 2δ).
In fact, we will see later that Theorem 3.3 also holds for some more general
estimators Y satisfying (3.2).

3.2. The simple majority method. Our first step in proving Theorem 3.3
is to show that when θ2d is large, then both the exact reconstruction and the
noisy reconstruction do quite well. While it is possible to do so by studying
the recursion (3.2), such an analysis is actually quite delicate. Instead, we
will show this by studying a completely different estimator: the one which
is equal to the most common label among σLk(ρ). This estimator is easy to
analyze, and it performs quite well; since the estimator based on the sign of
Xρ,k is optimal, it performs even better. The study of the simple majority
estimator is quite old, having essentially appeared in the paper of Kesten
and Stigum [16]; however, we include most of the details for the sake of
completeness.

Suppose dθ2 > 1. Define Su,k = ∑v∈Lk(u) σv and set S̃u,k = ∑v∈Lk(u) τv. We

will attempt to estimate σρ by sgn(Sρ,k) or sgn(S̃ρ,k); when θ2d is large
enough, these estimators turn out to perform quite well. We will show this
by calculating the first two moments of Su,k and S̃u,k; we write E

+ and Var+

for the conditional expectation and conditional variance given σρ = +. The
first moments are trivial, and we omit the proof:
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Lemma 3.4.

E
+Sρ,k = θ

kdk

E
+S̃ρ,k = (1 − 2δ)θkdk.

The second moment calculation uses the recursive structure of the tree.
The argument is not new, but we include it for completeness.

Lemma 3.5.

Var+ Sρ,k = 4η(1 − η)dk (θ2d)k − 1
θ2d − 1

Var+ S̃ρ,k = 4d
kδ(1 − δ) + 4(1 − 2δ)2η(1 − η)dk (θ2d)k − 1

θ2d − 1
.

Proof. We decompose the variance of Sk by conditioning on the first
level of the tree:

(3.3) Var+ Sρ,k = EVar+(Sρ,k ∣ σ1, . . . , σd) +Var+E(Sρ,k ∣ σ1, . . . , σd).
Now, Sρ,k = ∑u∈L1

Su,k−1, and Su,k−1 are i.i.d. under Pr
+. Thus, the first term

of (3.3) decomposes into a sum of variances:

EVar+(Sρ,k ∣ σ1, . . . , σd) = ∑
u∈L1

EVar+(Su,k−1 ∣ σu) = dVar+(Sρ,k−1).
For the second term of (3.3), note that (by Lemma 3.4), E(Su,k−1 ∣ σu) is(θd)k−1 with probability 1 − η and −(θd)k−1 otherwise. Since E(Su,k−1 ∣ σu)
are independent as u varies, we have

Var+E(Sρ,k ∣ σ1, . . . , σd) = 4dη(1 − η)(θd)2k−2.
Plugging this back into (3.3), we get the recursion

Var+ Sρ,k = dVar
+ Sρ,k−1 + 4dη(1 − η)(θd)2k−2.

Since Var+ Sρ,0 = 0, we solve this recursion to obtain

Var+ Sρ,k = d
k

∑
ℓ=1

4η(1 − η)(θd)2ℓ−2dk−ℓ(3.4)

= 4η(1 − η)dk k−1
∑
ℓ=0

(θ2d)ℓ
= 4η(1 − η)dk (θ2d)k − 1

θ2d − 1
.
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To compute Var+ S̃ρ,k, we condition on Sρ,k: conditioned on Sρ,k, S̃ρ,k is a
sum of dk i.i.d. terms, of which (dk +Sρ,k)/2 have mean 1− 2δ, (dk −Sρ,k)/2
have mean 2δ − 1, and all have variance 4δ(1 − δ). Hence, E(S̃k ∣ Sk) =(1−2δ)Sk and Var(S̃k ∣ Sk) = 4dkδ(1− δ). By the decomposition of variance,

Var+(S̃k) = E+(4dkδ(1 − δ)) +Var+((1 − 2δ)Sk)
= 4dkδ(1 − δ) + 4(1 − 2δ)2η(1 − η)dk (θ2d)k − 1

θ2d − 1
,

where the last equality follows from (3.4) and the fact that Var(aX) =
a2Var(X).

Taking k →∞ in Lemmas 3.4 and 3.5, we see that if θ2d > 1 then

Var+ Sk

(E+Sk)2
Var+ S̃k

(E+S̃k)2

⎫⎪⎪⎬⎪⎪⎭
k→∞
→

4η(1 − η)
θ2d

.

By Chebyshev’s inequality,

lim inf
k→∞

Pr+(Sk > 0) ≥ 1 − 4η(1 − η)
θ2d

.

In other words, the estimators sgn(Sk) and sgn(S̃k) succeed with probability

at least 1 − 4η(1−η)
θ2d2

as k →∞. Now, sgn(Yρ,k) is the optimal estimator of σρ
given τLk

, and its success probability is exactly (1 + E∣Yρ,k∣)/2. Hence this
quantity must be larger than the success probability of sgn(S̃k) (and simi-
larly for X and sgn(Sk)). Putting this together, we arrive at the following
estimates: if θ2d > 1 and k ≥K(δ) then

E∣Xρ,k ∣ ≥ 1 − 10η(1 − η)
θ2d

(3.5)

E∣Yρ,k∣ ≥ 1 − 10η(1 − η)
θ2d

.(3.6)

Now, given that σρ = +, the optimal estimator makes a mistake whenever
Xρ,k < 0; hence, Pr+(Xρ,k < 0) ≤ (1−E∣Xρ,k ∣)/2. Since Xu,k ≥ −1, this implies

E
+Xρ,k ≥ E

+∣Xρ,k ∣ − 2Pr+(Xρ,k < 0) ≥ 1 − Cη(1 − η)
θ2d

.

We will use this fact repeatedly, so let us summarize in a lemma:
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Lemma 3.6. There is a constant C such that if θ2d > 1 and k ≥ K(δ)
then

E
+Xρ,k ≥ 1 −

Cη(1 − η)
θ2d

E
+Yρ,k ≥ 1 −

Cη(1 − η)
θ2d

.

By Markov’s inequality, we find that Xu,k is large with high probability:

Lemma 3.7. There is a constant C such that for all k ≥ K(δ) and all
t > 0

Pr(Xu,k ≥ 1 − t
η

θ2d
∣ σu = +) ≥ 1 −Ct−1

Pr(Yu,k ≥ 1 − t
η

θ2d
∣ σu = +) ≥ 1 −Ct−1.

As we will see, Lemma 3.6 and the recursion (3.2) are really the only
properties of Y that we will use. Hence, from now on Yu,k need not be
defined by (3.1). Rather, we will make the following assumptions on Yu,k:

Assumption 3.1. There is a K = K(δ) such that for all k ≥ K, the
following hold:

1. Yu,k+1 =
∏i∈C(u)(1 + θYui,k) −∏i∈C(u)(1 − θYui,k)
∏i∈C(u)(1 + θYui,k) +∏i∈C(u)(1 − θYui,k)

2. The distribution of Yu,k given σu = + is equal to the distribution of
−Yu,k given σu = −.

3. E
+Yρ,k ≥ 1 −

Cη(1 − η)
θ2d

for some constant C.

We will prove Theorem 3.3 under Assumption 3.1. Note that part 2 above
immediately implies

E(Yui,k ∣ σu = +) = θE(Yui,k ∣ σui = +).
Also, part 3 implies that Lemma 3.7 holds for Y .

3.3. The recursion for small θ. Our proof of Theorem 3.3 proceeds in
two cases, with two different analyses. In the first case, we suppose that θ

is small (i.e., smaller than a fixed, small constant). In this case, we proceed
by Taylor-expanding the recursion (3.2) in θ. For the rest of this section, we
will assume that X and Y satisfy parts 1 and 2 of Assumption 3.1, and that
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xk, yk ≥ 5/6 for k ≥K(δ). This restriction will allow us to reuse most of the
argument in the Galton-Watson case (where part 3 of Assumption 3.1 fails
to hold, but we nevertheless have xk, yk ≥ 5/6).

Proposition 3.8. There are absolute constants C and θ∗ > 0 such that
if dθ2 ≥ C and θ ≤ θ∗ then for all k ≥K(θ, d, δ),

E(Xρ,k+1 − Yρ,k+1)2 ≤ 1

2
E(Xρ,k − Yρ,k)2.

Note that Proposition 3.8 immediately implies that if dθ2 ≥ C and θ ≤ θ∗

then E(Xρ,k − Yρ,k)2 → 0 as k → ∞, which implies Theorem 3.3 in the case
that θ ≤ θ∗.

In proving Proposition 3.8, the first step is to replace the right hand side
of (3.2) with something easier to work with; in particular, we would like to
have something without X in the denominator. For this, we note that

a − b

a + b
=
1 − b/a
1 + b/a = 2

1 + b/a − 1.
Hence, if a = ∏i(1 + θXui,k), b = ∏i(1 − θXui,k), and a′ and b′ are the same
quantities with Y replacing X, then

(3.7) ∣Xu,k+1 − Yu,k+1∣ = ∣a − b
a + b

−
a′ − b′

a′ + b′
∣ = 2 ∣ 1

1 + b/a − 1

1 + b′/a′ ∣ .
Using Taylor’s theorem, the right hand side can be bounded in terms of∣(b/a)p − (b′/a′)p∣ for some 0 < p < 1 of our choice:

Lemma 3.9. For any 0 < p < 1 and any x, y ≥ 0,

∣ 1

1 + x
−

1

1 + y
∣ ≤ 1

p
∣xp − yp∣

Proof. Let f(x) = 1
1+x and g(x) = xp. By the fundamental theorem of

calculus, the proof would follow from the inequality ∣f ′(x)∣ ≤ p−1g′(x). Now,∣f ′(x)∣ = 1
(1+x)2 and g′(x) = pxp−1. When x ≥ 1, we have ∣f ′(x)∣ ≤ x−2 ≤ xp−1,

while if x ≤ 1 then ∣f ′(x)∣ ≤ 1 ≤ xp−1.
As an immediate consequence of Lemma 3.9 (for p = 1/4) and (3.7),

(3.8) ∣Xu,k+1 − Yu,k+1∣ ≤ 8
RRRRRRRRRRRR(∏i

1 − θXui,k

1 + θXui,k

)1/4 − (∏
i

1 − θYui,k

1 + θYui,k

)1/4RRRRRRRRRRRR .
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Next, we present a general bound on the second moment of differences

of products. Of course, we have in mind the example Ai = (1−θXui,k

1+θXui,k
)1/4 and

similarly for Bi and Yi.

Lemma 3.10. Let (A1,B1), . . . , (Ad,Bd) be i.i.d. copies of (A,B). Then
E( d

∏
i=1

Ai −
d

∏
i=1

Bi)
2

≤ dmd−1(EA2 − EB2)2 + 2dmd−1
E(A −B)2,

where m =max{EA2,EB2}.
Proof. Let ǫ = E(Ai −Bi)2, so that EAiBi = 1

2
(EA2

i + EB
2
i − ǫ). Then

E( d

∏
i=1

Ai −
d

∏
i=1

Bi)2 = E d

∏
i=1

A2
i +E

d

∏
i=1

B2
i − 2E

d

∏
i=1

AiBi

= (EA2)d + (EB2)d − 2 d

∏
i=1

EA2
i + EB

2
i − ǫ

2

= (EA2)d + (EB2)d − 2(EA2 +EB2 − ǫ

2
)d .(3.9)

By a second-order Taylor expansion, any twice differentiable f satisfies
f(x) + f(y) ≤ 2f((x + y)/2) + 1

4
(x − y)2maxz f

′′(z), where the maximum

ranges over z between x and y. Applying this for f(x) = xd yields

(EA2)d + (EB2)d ≤ d2md−2(EA2 −EB2)2 + 2(EA2 + EB2

2
)d .

Hence,

(3.9) ≤ d2md−2(EA2 − EB2)2 + 2(EA2 +EB2

2
)d − 2(EA2 +EB2 − ǫ

2
)d

≤ d2md−2(EA2 − EB2)2 + 2dmd−1ǫ,

where the second inequality follows from a first-order Taylor expansion of
the function f(x) = xd around x = (EA2 + EB2)/2.

As we said before, we will apply Lemma 3.10 with Ai = (1−θXui,k

1+θXui,k
)1/4 and

Bi = (1−θYui,k

1+θYui,k
)1/4. To make the lemma useful, we will need to bound EA2

i ,
EB2

i , and their difference. First, we will bound EA2
i and EB2

i . In other words,
we will bound

E

¿ÁÁÀ1 − θXui,k

1 + θXui,k

and the same expression with Y instead of X.
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Lemma 3.11. There is a constant θ∗ > 0 such that if xk, yk ≥ 5/6 then

E(A2
i ∣ σu = +) ≤ 1 − θ2xk

4

E(B2
i ∣ σu = +) ≤ 1 − θ2yk

4
.

Proof. First, note that for sufficiently small x,

(1+x)(1−x+ 5
8
x2)2 = (1+x)(1−2x+ 18

8
x2+O(x3)) = 1−x+ 1

4
x2+O(x3) ≥ 1−x,

which may be rearranged to read√
1 − x

1 + x
≤ 1 − x +

5

8
x2.

Now, if θ∗ is sufficiently small then we may apply this with x = θXui,k,
obtaining

E(A2
i ∣ σu = +) ≤ 1 − E(θXui,k ∣ σu = +) + 5

8
E(θ2X2

ui,k ∣ σu = +).
Recalling the assumption that xk ≥ 5/6, we have

1 − E(θXui,k ∣ σu = +) + 5

8
E(θ2X2

ui,k ∣ σu = +) ≤ 1 − θ2xk + 3θ2

4
xk = 1 −

θ2

4
xk.

The same argument applies to Bi, but using Yi instead of Xi.

3.4. The EA2−EB2 term. In this section, we will bound the ∣EA2−EB2∣
term in Lemma 3.10, bearing in mind that the bound has to be at most of
order θ4 in order for d2(EA2 −EB2)2 to be a function of dθ2. Note that the
distribution of Ai conditioned on σv = + is equal to the distribution of 1/Ai

conditioned on σv = −. Hence,

E(A2
i ∣ σu = +) = (1 − η)E(A2

i ∣ σui = +) + ηE(A2
i ∣ σui = −)

= E ((1 − η)A2
i + ηA

−2
i ∣ σui = +) .(3.10)

Now,

(1 − η)A2
i + ηA

−2
i = (1 − η)(1 − θXui,k

1 + θXui,k

)1/2 + η (1 + θXui,k

1 − θXui,k

)1/2

=
(1 − η)(1 − θXui,k) + η(1 + θXui,k)√(1 + θXui,k)(1 − θXui,k)
=

1 − θ2Xui,k√
1 − θ2X2

ui,k

(3.11)

(recalling in the last line that θ = 1 − 2η).



20 E. MOSSEL ET AL.

Lemma 3.12. There is a θ∗ > 0 such that if θ < θ∗ then

∣ d
dx

1 − θ2x√
1 − θ2x2

∣ ≤ 3θ2
for all x ∈ [−1,1].

Proof. By a direct computation,

d

dx

1 − θ2x√
1 − θ2x2

=
θ2x(1 − θ2x2)−1/2(1 − θ2x) − θ2√1 − θ2x2

1 − θ2x2
.

Since ∣x∣ ≤ 1, we have

∣ d
dx

1 − θ2x√
1 − θ2x2

∣ ≤ θ2(1 − θ2)−1/2(1 + θ2) + θ2
1 − θ2

= θ2
(1 − θ2)−1/2(1 + θ2) + 1

1 − θ2
.

The result follows because 1− θ2 and 1+ θ2 can be made arbitrarily close to
1 by taking θ∗ small enough.

Now we apply (3.11) with Lemma 3.12 to obtain the promised bound on
EA2

i − EB
2
i .

Lemma 3.13. There is a θ∗ > 0 such that for all θ < θ∗,

E(A2
i −B

2
i ∣ σu = +) ≤ 3θ2√E((Xui,k − Yui,k)2 ∣ σu = +).

Proof. By (3.10) and (3.11) (and analogously with A replaced by B),
we have

E(A2
i −B

2
i ∣ σu = +) = E⎛⎜⎝

1 − θ2Xui,k√
1 − θ2X2

ui,k

−
1 − θ2Yui,k√
1 − θ2Y 2

ui,k

∣σui = +⎞⎟⎠ .
For a general function f we have E∣f(X)−f(Y )∣ ≤ E∣X−Y ∣maxx ∣ dfdx ∣. Apply-
ing this fact with the function f(x) = 1−θ2x√

1−θ2x2
and the bound of Lemma 3.12,

E(A2
i −B

2
i ∣ σu = +) ≤ 3θ2E(∣Xui,k − Yui,k∣ ∣ σui = +)

≤ 3θ2
√

E((Xui,k − Yui,k)2 ∣ σui = +).
Finally, note that

E((Xui,k − Yui,k)2 ∣ σui = +) = E((Xui,k − Yui,k)2 ∣ σu = +).
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3.5. Combining the estimates to complete the proof. Next, we combine
Lemma 3.10 with the estimates provided in Lemmas 3.11 and 3.13.

Lemma 3.14. There is some constant θ∗ > 0 such that the following
holds. Suppose that X and Y satisfy parts 1 and 2 of Assumption 3.1 and
that xk, yk ≥ 5/6 for k ≥ K(δ). If u has d ≥ 4 children and θ ≤ θ∗ then for
k ≥K(δ),

E ((Xu,k+1 − Yu,k+1)2 ∣ σu = +)
E ((Xu1,k − Yu1,k)2 ∣ σu1 = +) ≤ C(d2θ4 + dθ2)e−

θ2d
5 ,

for a universal constant C.

Proof. Taking the square of (3.8) and taking the expectation on both
sides, we have

E((Xu,k+1 − Yu,k+1)2 ∣ σu = +) ≤ 64E⎛⎝(
d

∏
i=1

Ai −
d

∏
i=1

Bi)2 ∣ σu = +⎞⎠ .
Conditioned on σu, the pairs (Ai,Bi) are i.i.d. and so Lemma 3.10 implies
that

(3.12) E ((Xu,k+1 − Yu,k+1)2 ∣ σu = +)
≤ 64d2md−2(a − b)2 + 128dmd−1

E((Ai −Bi)2 ∣ σu = +),
where

a = E(A2
i ∣ σu = +)

b = E(B2
i ∣ σu = +)

m =max{a, b}.
Now, if θ∗ is suffiently small then the function x ↦ (1−θx

1+θx)1/4 has derivative
at most θ for x ∈ [−1,1]. Hence,

E((Ai −Bi)2 ∣ σu = +) ≤ θ2E((Xu1,k − Yu1,k)2 ∣ σu = +)
= θ2E((Xu1,k − Yu1,k)2 ∣ σu1)(3.13)

provided that θ∗ is sufficiently small. Define

z = E((Xu1,k − Yu1,k)2 ∣ σu1) = E((Xu1,k − Yu1,k)2 ∣ σu1 = +).
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By Lemma 3.11 and the assumption that xk, yk ≥ 5/6, if θ∗ is sufficiently
small then m ≤ 1 − θ2/5 ≤ exp(−θ2/5). Moreover, Lemma 3.13 implies that(a − b)2 ≤ 9θ4z. Plugging these and (3.13) back into (3.12), we have

E ((Xu,k+1 − Yu,k+1)2 ∣ σu = +) ≤ 64(9d2θ4e− θ2(d−2)
5 + 2dθ2e−

θ2(d−1)
5 ) z,

which proves the claim.

Proof of Proposition 3.8. If θ2d is sufficiently large then Lemma 3.6
implies that xk, yk ≥ 5/6 for k ≥K(δ); hence, the conditions of Lemma 3.14
are satisfied. Finally, if dθ2 is large enough then the right hand side in
Lemma 3.14 is at most 1

2
.

3.6. The recursion for large θ. To handle the case in which θ is not small,
we require a different argument. In this case, we study the derivatives of the
recurrence, obtaining the following result:

Proposition 3.15. For any 0 < θ∗ < 1, there is some d∗ = d∗(θ∗) such
that for all θ ≥ θ∗, d ≥ d∗, and k ≥K(θ, d, δ),

E

√∣Xρ,k+1 − Yρ,k+1∣ ≤ 1

2
E

√∣Xρ,k − Yρ,k∣.
Combined with Proposition 3.8, this proves Theorem 3.3. Indeed, to com-

plete the choices of parameters we first take θ∗ to be the universal constant
in Proposition 3.8. Then let d∗ = d∗(θ∗) be given by Proposition 3.15 (note
that d∗ is also a universal constant). Finally, choose C to be the maximum
of d∗ and the C from Proposition 3.8. Now, if θ2d ≥ C then either θ ≤ θ∗

in which case Proposition 3.8 applies, or θ ≥ θ∗ in which case θ ≤ 1 implies
that d ≥ C ≥ d∗ and so Proposition 3.15 applies. In either case, we deduce
Theorem 3.3.

Let g ∶ Rd → R denote the function

(3.14) g(x) = ∏d
i=1(1 + θxi) −∏d

i=1(1 − θxi)
∏d

i=1(1 + θxi) +∏d
i=1(1 − θxi) .

Then the recurrence (3.2) may be written as Xu,k+1 = g(Xu1,k, . . . ,Xud,k).
We will also abbreviate (Xu1,k, . . . ,Xud,k) by XL1(u),k, so that we may write
Xu,k+1 = g(XL1(u),k).
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Define g1(x) = ∏d
i=1(1 + θxi) and g2(x) = ∏d

i=1(1 − θxi) so that g can be
written as g = g1−g2

g1+g2 . Since
∂g1
∂xi
= θ g1

1+θxi
and ∂g2

∂xi
= −θ g2

1−θxi
, we have

∂g

∂xi
=

∂

∂xi

g1 − g2
g1 + g2

= 2
g2

∂g1
∂xi
− g1

∂g2
∂xi(g1 + g2)2

= 4θ
g1g2(g1 + g2)2(1 − θ2x2i ) .(3.15)

If ∣xi∣ ≤ 1 then g1 and g2 are both positive, so g1g2
(g1+g2)2 ≤

g1g2
g2
1

= g2
g1
; of course,

we also have the symmetric bound g1g2
(g1+g2)2 ≤

g1
g2
. Define

h+i (x) = 4 g2(1 − θ2x2i )g1 =
4(1 + θxi)2∏j≠i

1 − θxj

1 + θxj

h−i (x) = 4 g1(1 − θ2x2i )g2 =
4(1 − θxi)2∏j≠i

1 + θxj

1 − θxj

hi(x) =min{h+i (x), h−i (x)}.
By (3.15) and since ∣θ∣ ≤ 1,
(3.16) ∣ ∂g

∂xi
∣ ≤ hi(x).

The point is that if σu = + then for most v ∈ L1(u), Xv,k will be close to
1 and so h+i (XL1(u),k) will be small. On the other hand, if σu = − then for
most v ∈ L1(u), Xv,k will be close to −1 and so h−i (XL1(u),k) will be small.

Note that h+i is convex on [−1,1]d because it is the tensor product of non-
negative, convex functions. Hence for any x, y ∈ [−1,1]d and any 0 < λ < 1,

∣ ∂g
∂xi
(λx + (1 − λ)y)∣ ≤ h+i (λx + (1 − λ)y) ≤max{h+i (x), h+i (y)}.

Then the mean value theorem implies that

∣g(x) − g(y)∣ ≤ ∑
i

∣xi − yi∣max{h+i (x), h+i (y)}.
Applied for x =XL1(u),k = (Xu1,k, . . . ,Xud,k) and y = YL1(u),k = (Yu1,k, . . . , Yud,k),
this yields

(3.17) ∣Xu,k+1 − Yu,k+1∣ ≤ ∑
i

∣Xui,k − Yui,k∣max{h+i (XL1(u),k), h+i (YL1(u),k)}.
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Note that the two terms on the right hand side of (3.17) are dependent on one
another. Hence, it will be convenient to bound h+i (XL1(u),k) by something
that doesn’t depend on Xui. To that end, note that for ∣xi∣ ≤ 1, we have
1 + θxi ≥ 1 − θ = 2η, and so

(3.18) h+i (x) = 4(1 + θxi)2∏j≠i
1 − θxj

1 + θxj
≤

1

η2
∏
j≠i

1 − θxj

1 + θxj
=∶mi(x).

Since mi(x) doesn’t depend on xi, it follows that mi(XL1(u),k) is indepen-
dent of Xui,k given σu (and similarly with Y instead of X). Hence, (3.17)
implies that

(3.19) E(√∣Xu,k+1 − Yu,k+1∣∣σu = +)
≤ ∑

i

E(√∣Xui,k − Yui,k∣∣σu = +)E(√max{mi(XL1(u),k),mi(YL1(u),k)}∣σu = +) .
To prove Proposition 3.15, it therefore suffices to show that E(√mi(XL1(u),k) ∣

σu = +) and E(√mi(YL1(u),k) ∣ σu = +) are both small. Since mi(XL1(u),k)
is a product of independent (when conditioned on σu) terms, it is enough to
show that each of these terms has small expectation. The following lemma
will help bounding these terms.

Lemma 3.16. For any 0 < θ∗ < 1, there is some d∗ = d∗(θ∗) and some
λ = λ(θ∗) < 1 such that for all θ ≥ θ∗, d ≥ d∗ and k ≥K(θ, d, δ),

E
⎛⎝
¿ÁÁÀ1 − θXui,k

1 + θXui,k

∣ σu = +⎞⎠ ≤min{λ,4η1/4}.
The proof of Lemma 3.16 is straightforward but tedious, and we postpone

it until the appendix. Instead, we will now prove Proposition 3.15.

Proof of Proposition 3.15. By Lemma 3.16, and the definition (3.18)
of mi, it follows that
(3.20)

E(√mi(Xui,k) ∣ σu = +) ≤ η−1min{λ, η1/4}d−1 ≤min{λ, η1/4}d−5 ≤ λd−5.

In particular, if d∗(θ∗) is sufficiently large then dλd−5 ≤ 1/4 for all d ≥ d∗.
The same argument applies with Y replacing X, and hence

(3.21) E(√max{mi(XL1(u),k),mi(YL1(u),k)∣σu = +) ≤ 1

2d
.
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By (3.19), we have

E(√∣Xu,k+1 − Yu,k+1∣ ∣ σu = +) ≤ 1

2
E(√∣Xu,k − Yu,k∣ ∣ σu = +) ,

and so we have proved Proposition 3.15.

4. Reconstruction accuracy on Galton-Watson trees. In this sec-
tion, we will adapt the proof of the d-ary case (Theorem 3.3) to the Galton-
Watson case (Theorem 2.11). Let T ⊂ N

∗ be a Galton-Watson tree with
offspring distribution Pois(d). Recall that such a tree may be constructed
by taking, for each u ∈ N∗, an independent Pois(d) random variable Du.
Then define T ⊂ N

∗ recursively by starting with ∅ ∈ T and then taking
ui ∈ T for i ∈ N if u ∈ T and i ≤Du.

As in Section 3, we let {σu ∶ u ∈ T} be distributed as the two-state broad-
cast process on T with parameter η, and let {τu ∶ u ∈ T} be the noisy version,
with parameter δ. We recall the magnetization

Xu,k = Pr(σu = + ∣ σLk(u)) −Pr(σu = − ∣ σLk(u))
xk = E(Xu,k ∣ σu = +).

Note that unlike in Section 3, Xu,k now depends on both the randomness
of the tree and the randomness of σ. Hence, xk now averages over both the
randomness of the tree and the randomness of σ.

We recall that X satisfies the recursion (3.2). As in Section 3, we will
let {Yu,k} be any collection of random variables which satisfies the same
recursion (for large enough k), and for which Yu,k is a good estimator of σu
given σLk(u).

Assumption 4.1. There is a K = K(δ) and a constant C such that for
all k ≥K, the following hold:

1. Yu,k+1 =
∏i∈C(u)(1 + θYui,k) −∏i∈C(u)(1 − θYui,k)
∏i∈C(u)(1 + θYui,k) +∏i∈C(u)(1 − θYui,k) .

2. The distribution of Yu,k given σu = + is equal to the distribution of
−Yu,k given σu = −.

3. With probability at least 1 − e−cd over T ,

E(Yu,k ∣ σu = +, T ) ≥ 1 − Cη

θ2d
.

Note that Assumption 4.1 is the same as Assumption 3.1 except for part
3. Indeed, the change in part 3 between Assumption 3.1 and Assumption 4.1
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points to the main change, and biggest challenge, in extending our previous
argument to Galton-Watson trees: unlike for a regular tree, there is always
some chance that a Galton-Watson tree will go extinct, or that it will be
thinner and more spindly than expected. In this case, we will not be able to
reconstruct the broadcast process as well as we might want, even as η → 0.

In any case, in order to prove Theorem 2.11 it suffices to prove that Y

satisfies part 3 of Assumption 4.1 as well as the following theorem:

Theorem 4.1. Under Assumption 4.1, there is a universal constant C
such that if θ2d ≥ C then limk→∞E∣Xρ,k∣ = limk→∞E∣Yρ,k∣.

Recall that pT (a, b) is equal to limk→∞(1 + E∣Xρ,k∣)/2 in the case d =(a+b)/2 and η = b/(a+b), and that p̃T (a, b) is equal to limk→∞(1+E∣Yρ,k∣)/2 in
the same case. In particular, Theorem 4.1 immediately implies Theorem 2.11.

4.1. Large expected magnetization. The first step towards extending The-
orem 3.3 to the Galton-Watson case is to show that the magnetization of
each node tends to be large.

Proposition 4.2. There is a universal constant c > 0 such that for all
k ≥K(θ, d, δ),

Pr(E(Xρ,k ∣ σρ = +, T ) ≥ 1 − 16η

θ2d
) ≥ 1 − e−cd.

and similarly for Yρ,k. Hence, xk, yk ≥ 1 −
8η
θ2d
− 2e−cd.

Note that the proposition implies that Y satisfies part 3 of Assump-
tion 4.1.

In the regular case, the proof of Lemma 3.6 was based on the fact that
a simple majority vote at the leaves estimates the root well. Here, we will
follow Evans et al. [12] by using a weighted majority vote. For this, we will
need to use the terminology of electrical networks, in particular the notion
of effective conductance and effective resistance. An introduction to these
concepts may be found in [19]; the essential properties that we will need
are that conductances add over parallel paths, while resistances add over
consecutive paths.

Put a resistance of (1 − θ2)θ−2k on each edge e in T whose child is in
generation k (where ρ is generation zero). We write Ceff(k) for the effective
conductance between ρ and level k and Reff(k) for 1/Ceff(k). Also, attach
an additional “noisy” node to each node at level k, with resistance 4δ(1 −
δ)(1 − 2δ)−2θ−2k; then let C

′
eff(k) be the effective conductance between the
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root and these nodes and let R
′
eff(k) = 1/C ′eff(k). Note that Ceff(k) and

C
′
eff(k) are random quantities which depend on the Galton-Watson tree. The

importance of Ceff and C
′
eff for estimating σρ was shown by [12] (Lemma 5.1):

Theorem 4.3. There exist weights w(u) such that if Rk = ∑v∈Lk(ρ)w(v)σv
and Sk = (1 − 2δ)−1∑v∈Lk(ρ)w(v)τv then

E(Rk ∣ σρ) = σρ
E(Sk ∣ σρ) = σρ

Var(Rk ∣ σρ) =Reff(k)
Var(Sk ∣ σρ) =R

′
eff(k).

We mention that w(v) in Theorem 4.3 is proportional to the unit current
flow from ρ to v; for our work, however, we only need to know that it exists
and that it can be easily computed.

Consider the estimators sgn(Rk) and sgn(Sk) for σρ. By Chebyshev’s
inequality,

Pr(Sk ≤ 0 ∣ σρ = +) ≤ Var(Sk) =Reff(k) = 1

Ceff(k)
and similarly Pr(Rk ≤ 0 ∣ σρ = +) ≤ 1/C ′eff(k). In particular, if we can show
that Ceff(k) and C

′
eff(k) are large, we will have shown that sgn(Sk) and

sgn(Rk) are good estimators of σρ. Since sgn(Xk,ρ) and sgn(Yk,ρ) are the
optimal estimators of σρ given, respectively, σLk(ρ) and τLk(ρ), this will prove
that xk and yk are large. Note that this is exactly the same method that we
used to show that xk and yk are large in the d-regular case; the difference
here is that we need to consider a weighted linear estimator instead of an
unweighted one.

Lemma 4.4. There is a universal constant c > 0 such that for all k ≥
K(θ, d, δ),

Pr(Ceff(k) ≥ θ2d

16η
) ≥ e−cd

Pr(C ′eff(k) ≥ θ2d

16η
) ≥ e−cd.

Proof. The proof is by a recursive argument. Note that Ceff(0) =∞ and
C
′
eff(0) = (4δ(1− δ))−1(1− 2δ)−2 > 0. We will write the rest of the proof only

for Ceff, but the same argument holds with C
′
eff replacing Ceff everywhere.
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Let αk−1 =min{(4η)−1,M} where M is the largest median of Ceff(k − 1) (in
the case of Ceff(0), M is any positive value). Now fix k and let Z1,Z2, . . . be
independent copies of Ceff(k − 1). Then Pr(Zi ≥ αk−1) ≥ 1/2 for all i.

Now, the first k levels of a Galton-Watson tree consist of a root with
Pois(d) independent subtrees of k − 1 levels each. For each child i, the con-
ductance between i and Lk−1(i) is distributed like θ2Zi (the factor θ2 arises
because at each level of the tree the conductances are multiplied by an extra
factor of θ2). Since the edge between ρ and i has conductance θ2(1 − θ2)−1,
the conductance between ρ and Lk−1(i) is distributed like

1

θ−2Z−1i + θ
−2(1 − θ2) = θ2Zi(1 − θ2)Zi + 1

.

Summing over the children of ρ, we see that Ceff(k) has the same distribution
as

Pois(d)
∑
i=1

θ2Zi(1 − θ2)Zi + 1
≥ θ2

Pois(d)
∑
i=1

Zi

4ηZi + 1
.

Recall that Pr(Zi ≥ αk−1) ≥ 1/2 and αk−1 ≤ (4η)−1. Hence, αk−1/(4ηαk−1 +
1) ≥ αk−1/2, and so

Ceff(k) ≥ θ2 Pois(d)
∑
i=1

1{Zi≥αk−1}
αk−1

4ηαk−1 + 1

≥
θ2

2

Pois(d)
∑
i=1

1{Zi≥αk−1}αk−1

≥
θ2αk−1

2
Pois(d/2).

Now, there is a universal constant c > 0 such that Pr(Pois(d/2) ≤ d/4) ≤ e−cd;
hence

(4.1) Pr(Ceff(k) ≤ θ2dαk−1/4) ≤ e−cd.
In particular, if d is sufficiently large then e−cd < 1/2 and hence every median
of Ceff(k) is larger than θ2dαk−1/4. In particular, αk ≥min{(4η)−1, θ2dαk−1/4}.
Hence, if θ2d > 4 and k is sufficiently large then αk ≥ (4η)−1. Applying this
to (4.1) completes the proof for Ceff(k), and an identical argument applies
to C

′
eff(k).

Now Proposition 4.2 follows directly from Theorem 4.3 and Lemma 4.4.
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4.2. The small-θ case. The proof of Proposition 3.8 extends fairly easily
to the Galton-Watson case. The weakening of Lemma 3.6 to Proposition 4.2
makes hardly any difference because the proof of Proposition 3.8 only needed
xk ≥ 1/2.

Proposition 4.5. Consider the broadcast process on a Poisson Galton-
Watson tree. Then there are absolute constants C and θ∗ > 0 such that if
dθ2 ≥ C and θ ≤ θ∗ then for all k ≥K(θ, d, δ),

E(Xρ,k+1 − Yρ,k+1)2 ≤ 1

2
E(Xρ,k − Yρ,k)2.

Proof. Let D be the number of children of u, so that D ∼ Pois(d). If
θ2d is sufficiently large then Proposition 4.2 implies that xk, yk ≥ 5/6 and so
applying Lemma 3.14 conditioned on D yields

E((Xu,k+1 − Yu,k+1)2 ∣ D,σu = +) ≤ C(D2θ4 +Dθ2)e− θ2D
5 z ≤ C ′e−

θ2D
10 z

where z = E((Xu1,k − Yu1,k)2 ∣ σu1 = +). Now we integrate out D. Since

D ∼ Pois(d), its moment generating function is EetD = ed(e
t−1). Setting

t = −θ2/10, we have et ≤ 1 + t/2 for all θ ∈ [0,1]; hence,
EetD ≤ etd/2 = e−

θ2d
20 .

That is,

E((Xu,k+1 − Yu,k+1)2 ∣ σu = +) ≤ CzEe−
θ2D
10 ≤ Cze−

θ2d
20 .

In particular, the right hand side is smaller than z/2 if θ2d is sufficiently
large.

4.3. The large-θ case. We now give an analogue of Proposition 3.15 in
the Galton-Watson case.

Proposition 4.6. For any 0 < θ∗ < 1, there is some d∗ = d∗(θ∗) such
that for the broadcast process on the Poisson mean d tree it holds that for
all θ ≥ θ∗, d ≥ d∗, and k ≥K(θ, d, δ),

E

√∣Xρ,k+1 − Yρ,k+1∣ ≤ 1

2
E

√∣Xρ,k − Yρ,k∣.
This completes the proof of Theorem 4.1 (by the same argument that

followed Proposition 3.15).
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4.3.1. The case where one child has large error. Our eventual goal is to
prove Proposition 3.15 by a similar analysis of the partial derivatives of g
that led to the proof of Proposition 3.15. In this section, however, we will
deal with one case where the derivatives of g cannot be controlled well.
First, we introduce a parameter ǫ = ǫ(d) > 0 that will be specified later.
Next, fix a vertex u and let Ω be the event that all children i of u satisfy∣Xui,k − Yui,k∣ ≤ ǫ. On Ω, we will analyze derivatives of g; off Ω we have the
following lemma (recalling that D is the number of children of u):

Lemma 4.7. For any 0 < θ∗ < 1, there exist c,C > 0 such that if η < c,
θ ∈ [θ∗,1), and θ2d > C then for any ǫ > 0 and k ≥K(θ, d, δ)
E(√∣Xu,k+1 − Yu,k+1∣1Ωc ∣D) ≤ C√

ǫ
De−cDE

√∣Xui,k − Yui,k∣1{∣Xui,k−Yui,k ∣>ǫ}.

Proof. First, we condition onD; we may then write 1Ωc ≤ ∑D
i=1 1{∣Xui,k−Yui,k ∣>ǫ}.

Hence,

E(√∣Xu,k+1 − Yu,k+1∣1Ωc ∣D) ≤ E( D

∑
i=1

√∣Xu,k+1 − Yu,k+1∣1{∣Xui,k−Yui,k ∣>ǫ} ∣ D)
=DE(√∣Xu,k+1 − Yu,k+1∣1{∣Xui,k−Yui,k ∣>ǫ} ∣ D),

where the equality follows because all the terms in the sum have the same
distribution. Now we will condition on Xui,k and Yui,k, and we will show
that on the event {∣Xui,kYui,k∣ ≥ ǫ} we have

(4.2) DE(√∣Xu,k+1 − Yu,k+1∣ ∣D,Xui,k, Yui,k) ≤ CDe−cD.

After bounding 1 ≤ ǫ−1/2
√∣Xui,k − Yui,k∣ on the event {∣Xui,kYui,k∣ ≥ ǫ} and

then integrating out Xui,k and Yui,k, the proof will be complete.
Now we prove (4.2). Condition on σu, and suppose without loss of gen-

erality that σu = +. If θ2d is sufficiently large then Proposition 4.2 implies
that (conditioned on σu = +) every child j ≠ i of u independently satisfies

Pr(Xuj,k ≥ 1 − η ∣ σu = +) ≥ 7/8.
If we condition also on D, Hoeffding’s inequality implies that there is a
constant c > 0 such that with probability at least e−cD

2

, at least 3/4 of
u’s children j satisfy Xuj,k ≥ 1 − η. The remaining children (which possibly
include i) satisfy Xuj,k ≥ −1, and so on this event

A ∶=
D

∏
j=1

1 − θXuj,k

1 + θXuj,k

≤ (1 − θ(1 − η)
1 + θ(1 − η))

3D/4 (1 + θ
1 − θ

)D/4 ≤ (3η)3D/4η−D/4.
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Now, Xu,k+1 = 1−A
1+A ≥ 1 − 2A, and so we conclude that

Pr(Xu,k+1 ≥ 1 − 2 ⋅ 3
3D/4ηD/2 ∣Xui,k, Yui,k, σu = +,D) ≥ 1 − e−cD2

.

The previous argument applies equally well with X replaced by Y ; hence
the union bound implies

Pr(∣Xu,k+1 − Yu,k+1∣ ≥ 4 ⋅ 33D/4ηD/2 ∣ Xui,k, Yui,k, σu = +,D) ≥ 1 − 2e−cD2

.

On the other hand, we always have the bound ∣Xu,k+1 − Yu,k+1∣ ≤ 2, and so

E(√∣Xu,k+1 − Yu,k+1∣ ∣ Xui,k, Yui,k, σu = +,D) ≤ 2 ⋅ 33D/8ηD/4 + 2√2e−cD2

.

Now, if η < c for c sufficiently small, the right hand side is bounded by
Ce−cD. This proves (4.2) in the case that σu = +. To complete the proof, we
apply the symmetric argument conditioned on σu = −.

4.3.2. An analogue of Lemma 3.16. The proof of Proposition 4.6 pro-
ceeds by analysing the derivatives of the recurrence (3.14). Recalling that
these derivatives involve a large product, an important ingredient in the
analysis is a bound on the expectation of each term. The following lemma
is analogous to Lemma 3.16 in the regular case; an important difference is
that Lemma 4.8 does not improve as η → 0. In fact, as we remarked after
Assumption 4.1, we cannot expect such behavior because of the possibility
of extinction.

Lemma 4.8. For any 0 < θ∗ < 1, there are some λ = λ(θ∗) < 1 and
d∗ = d∗(θ∗) such that for all θ ≥ θ∗, d ≥ d∗ and k ≥K(θ, d, δ),

E
⎛⎝
¿ÁÁÀ1 − θXui,k

1 + θXui,k

∣ σu = +⎞⎠ ≤ λ.
The same holds with Y replacing X.

We postpone the details of Taylor expansion and approximation to the ap-
pendix, but we will include here one of the main ingredients of Lemma 4.8’s
proof. The point is that in the Galton-Watson case (unlike the d-ary case)
if d is fixed and η → 0 then we cannot expect Xρ,k to be large (i.e. close to
1) with probability converging to 1. It turns out to be enough, however, to
show that Xρ,k is non-negative with probability converging to 1.
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Lemma 4.9. There is a constant C such that if θ2d ≥ C then for any
k ≥K(θ, d, δ),
(4.3) Pr(Xu,k < 0 ∣ σu = +) ≤ η,
and similarly for Y .

Proof. We will give the argument for X only (the argument for Y is
identical). First, note that if η ≥ 1/12 then (4.3) follows directly from Propo-
sition 4.2 if d∗ is sufficiently large. Hence, we may assume that η < 1/12. Let
pk = Pr+(Xρ,k < 0). Then by Proposition 4.2, if C is sufficiently large then
pk ≤ 1/12 for k ≥K(δ).

Let Z− be the number of children i of the root with Xi,k < 0 and Z+ be
the number with Xi,k ≥ 1 − η. Consider the quantity

Z ∶=
D

∏
i=1

1 − θXui,k

1 + θXui,k

,

and note that Xu,k < 0 if and only if Z > 1. Now, Z is increasing in each
Xui,k, and Z only increases if we drop some terms i with Xui,k ≥ 0. Hence,

(4.4) Z ≤ (1 − θ(1 − η)
1 + θ(1 − η))

Z+ (1 + θ
1 − θ

)Z− ≤ (3η)Z+η−Z− .
Now, by the definition of pk,

(4.5) Pr+(X1,k < 0) ≤ Pr(X1,k < 0 ∣ σ1 = +) +Pr(σ1 = − ∣ σρ = +) = pk + η.
Conditioned on σρ and D, Z+ − Z− is a sum of i.i.d. variables with values
1,−1, and 0. Moreover, Proposition 4.2 with d sufficiently large implies that
the probability of Xi,k ≥ 1 − η is at least 5/6, while (4.5) implies that the
probability of Xi,k < 0 is at most pk + η ≤ 1/6. Hence, Hoeffding’s inequality
implies that

Pr+(Z+ −Z− ≤D/3 + 1 ∣D) ≤ Ce−cD
2

,

for universal constants c,C > 0. Note also that if Z− = 0 then Z ≥ 1 and that
in order to have Z− > 0, there must be some i with Xi,k < 0. Note also that
if Z+ − Z− ≥ D/3 then Z ≤ 3DηD/3 ≤ (3/4)D/3 < 1. Thus, applying a union
bound, Hoeffding’s inequality, and (4.5),

Pr+(Z > 1 ∣ D) ≤ Pr+(Z+ −Z− ≤D/3,Z− > 0 ∣D)
(4.6)

≤DPr+(Z+ −Z− ≤D/3,X1,k < 0 ∣D)
=DPr+(Z+ −Z− ≤D/3 ∣ D,X1,k < 0)Pr+(X1,k < 0 ∣ D)
≤ CDe−cD

2(η + pk).



OPTIMAL RECOVERY OF BLOCK MODELS 33

Now, if d is large enough (which can be enforced by taking C large) then

EDe−cD
2

≤ 1
4
, which implies that

pk+1 = Pr
+(Xρ,k+1 < 0) = Pr+(Z > 1) ≤ η + pk

4
≤max{η/2, pk/2}.

Recursing with k, we see that limk→∞Pr+(Xρ,k < 0) ≤ η/2, which implies
that Pr+(Xρ,k < 0) ≤ η for sufficiently large k.

4.3.3. Analysis of the derivatives of g. Our goal in this section is the
following lemma, for which we recall that Ω is the event that all children i

of u satisfy ∣Xui,k − Yui,k∣ ≤ ǫ. Let Ωi be the event that ∣Xui,k − Yui,k∣ ≤ ǫ.
Lemma 4.10. For any 0 < θ∗ < 1, there are constants c,C > 0 such that

for all 0 < ǫ < 1/4, all d ≥ d∗(θ∗), and for any k ≥K(θ, d, δ),
E(1Ω√∣Xu,k+1 − Yu,k+1∣ ∣ D) ≤ CD(ǫ−1e−cD +√ǫ)E1Ωi

√∣Xui,k − Yui,k∣.
We begin with an slightly improved version of (3.17): since ∣Xu,k+1 −

Yu,k+1∣ ≤ 2, we can trivially improve (3.17) to

(4.7) ∣Xu,k+1 − Yu,k+1∣
≤

D

∑
i=1

min{2, ∣Xui,k − Yui,k∣max{hi(XL1(u),k), hi(YL1(u),k)}}.
Note that 1Ω ≤ 1Ωi

for any i (recall that Ωi = {∣Xui,k − Yui,k∣ ≤ ǫ}), and so

∣Xu,k+1 − Yu,k+1∣1Ω
≤

D

∑
i=1

1Ωi
min{2, ∣Xui,k − Yui,k∣max{hi(XL1(u),k), hi(YL1(u),k)}}.

Now, the terms on the right hand side have identical distributions; hence,
taking conditional expectations gives

E(√∣Xu,k+1 − Yu,k+1∣1Ω ∣D)
≤DE(1Ωi

min{2,√∣Xui,k − Yui,k∣max{hi(XL1(u),k), hi(YL1(u),k)}} ∣ D)
Defining

ZX =min{1,√∣Xui,k − Yui,k∣hi(XL1(u),k)}
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and similarly for ZY , we see that to prove Lemma 4.10 it suffices to show
that

E(1Ωi
ZX ∣D) ≤ C(ǫ−1e−cD +√ǫ)E1Ωi

√∣Xui,k − Yui,k∣,
and similarly for ZY . We will show this by conditioning on Xui,k and Yui,k;
that is, we will show the stronger statement that on the event Ωi,

(4.8) E(ZX ∣D,Xui,k, Yui,k) ≤ C(ǫ−1e−cD +√ǫ)√∣Xui,k − Yui,k∣
(and similarly for ZY ).

We split the analysis of ZX and ZY into two cases. The first case is the
easy case: if η is bounded away from zero or ∣Xui,k∣ and ∣Yui,k∣ are bounded
away from 1 then the denominator in hi is bounded above:

Lemma 4.11. For any 0 < θ∗ < 1, there are constants c,C > 0 such that
for all ǫ ≥ 0, all d ≥ d∗(θ∗), and for any k ≥K(θ, d, δ), if max{∣Xui,k ∣, ∣Yui,k ∣} ≤
1 − ǫ then

E(ZX ∣ D,Xui,k, Yui,k) ≤ CλD−1

max{√η, ǫ}
√∣Xui,k − Yui,k∣,

and similarly for ZY .

Proof. By the definition of hi, and because ∣Xui,k ∣ ≤ 1 − ǫ,
hi(Xui,k) ≤ 4

max{η, ǫ2} min

⎧⎪⎪⎨⎪⎪⎩∏j≠i
1 − θXuj,k

1 + θXuj,k

,∏
j≠i

1 + θXuj,k

1 − θXuj,k

⎫⎪⎪⎬⎪⎪⎭ .
Conditioning on σu = + and considering the first term in the minimum,
Lemma 4.8 implies that

E(√∣Xui,k − Yui,k∣hi(XL1(u),k) ∣D,Xui,k, Yui,k, σu = +)
≤

2λD−1

max{√η, ǫ}
√∣Xui,k − Yui,k∣.

By symmetry, the same bound holds if we condition on σu = −. Recalling
that ZX ≤

√∣Xui,k − Yui,k∣hi(XL1(u),k), this completes the proof for ZX . The
exact same argument applies to ZY also.

If Xui,k and Yui,k are allowed to be arbitrarily close to 1 and η is allowed
to be arbitrarily close to zero, then the argument is somewhat more tricky.
The basic idea is that if Xui,k is close to 1 then σu is very likely to be +,
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in which case the denominator in h+i is at least 1 and so h+i is small. Bad
things happen if σu = − because then we need to consider h−i , which has a
small denominator. However, this event is very unlikely conditioned on Xui,k

being close to 1, and so its contribution can be controlled.

Lemma 4.12. For any 0 < θ∗ < 1, there are constants c,C > 0 such that
for all 0 < ǫ < 1/4, all d ≥ d∗(θ∗), and for any k ≥K(θ, d, δ), if ∣Xui,k−Yui,k∣ ≤
ǫ and max{∣Xui,k ∣, ∣Yui,k ∣} ≥ 1 − ǫ then

E(ZX ∣ D,Xui,k, Yui,k) ≤ C(λD−1
+

√
ǫ)√∣Xui,k − Yui,k∣,

and similarly for ZY .

Before proving Lemma 4.12, note that together with Lemma 4.11 it proves (4.8)
and hence Lemma 4.10.

Proof. Fix θ∗ ∈ (0,1) and take λ < 1 satisfying Lemma 4.8. Since ǫ ≤ 1/4,
it follows that Xui,k and Yui,k have the same sign. Without loss of generality,
they are both positive; hence, if A = (1 −min{Xui,k, Yui,k})/2 and B = (1 −
max{Xui,k, Yui,k})/2 then 0 ≤ B ≤ A ≤ ǫ. Note that ∣Xui,k − Yui,k∣ = 2∣A −B∣.
Now,

Pr(σui = + ∣ Xui,k, Yui,k) = 1 +Xui,k

2
≥ 1 −A,

and so
Pr(σu = + ∣ Xui,k, Yui,k) ≥ 1 −A − η.

Since Xui,k is positive,

h+i (XL1(u),k) = 4(1 + θXui,k)2∏j≠i
1 − θXuj,k

1 + θXuj,k

≤ 4∏
j≠i

1 − θXuj,k

1 + θXuj,k

and similarly for Y . By Lemma 4.8, if d∗ is sufficiently large then

E(√∣Xui,k − Yui,k∣h+i (XL1(u),k) ∣ D,Xui,k, Yui,k, σu = +)(4.9)

≤ 4E
⎛⎝
¿ÁÁÀ∣Xui,k − Yui,k∣∏

j≠i

1 − θXuj,k

1 + θXuj,k

∣ D,Xui,k, Yui,k, σu = +
⎞⎠

≤ 4λD−1
√∣Xui,k − Yui,k∣,
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since the Xuj,k are independent conditioned on σu. On the other hand, since
ZX ≥ 0 we have

E(ZX ∣ D,Xui,k, Yui,k) ≤ E(ZX ∣ D,Xui,k, Yui,k, σu = +)
+Pr(σu = − ∣Xui,k, Yui,k)E(Z ∣D,Xui,k, Yui,k, σu = −)

≤ E(ZX ∣ D,Xui,k, Yui,k, σu = +)
+ (A + η)E(ZX ∣ D,Xui,k, Yui,k, σu = −).(4.10)

By (4.9), the first term of (4.10) is bounded by 4λD−1√∣Xui,k − Yui,k∣.
Next, we consider the second term of (4.10); we will consider the coeffi-

cients A and η separately. Now, ZX ≤
√∣Xui,k − Yui,k∣h−i (XL1(u),k) and

h−i (XL1(u),k)) = 4(1 − θXui,k)2∏j≠i
1 + θXuj,k

1 − θXuj,k

≤
1

max{η,B}2∏j≠i
1 + θXuj,k

1 − θXuj,k

.

Then Lemma 4.8 implies that for d∗ sufficiently large,

E(√h−i (XL1(u),k) ∣ D,Xui,k, Yui,k, σu = −) ≤ 1

max{η,B}∏j≠iE
⎛⎝
¿ÁÁÀ1 + θXuj,k

1 − θXuj,k

∣ D,σu = −
⎞⎠

≤
λD−1

max{η,B} .(4.11)

In particular, we have

ηE(Z ∣D,Xui,k, Yui,k, σu = −) ≤ η√∣Xui,k − Yui,k∣E(√h−i (XL1(u),k) ∣D,Xui,k, Yui,k, σi)
≤ λD−1

√∣Xui,k − Yui,k∣,(4.12)

which handles the term in (4.10) involving η.
Next, we consider the term involving A. If A ≤ 2B then we may use (4.11)

for the bound

(4.13) E(√h−i (XL1(u),k) ∣ D,Xui,k, Yui,k, σu = −) ≤ λD−1

B
≤
2λD−1

A
.

Alternatively, if A ≥ 2B then ∣Xui,k − Yui,k∣ = 2∣A −B∣ ≥ A; since Z ≤ 1, we
have

AE(Z ∣Xui,k, Yui,k, σu = −) ≤ A ≤√A∣Xui,k − Yui,k∣ ≤√ǫ∣Xui,k − Yui,k∣.
Combining this with (4.13), we have

AE(Z ∣ Xui,k, Yui,k, σu = −) ≤max{2λD−1,
√
ǫ}√∣Xui,k − Yui,k∣
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in either case. Combining this with (4.12) and going back to (4.10), we have

E(Z ∣ D,Xui,k, Yui,k) ≤ (CλD−1
+

√
ǫ)√∣Xui,k − Yui,k∣,

which completes the proof.

4.3.4. Putting it together. Finally, we put together the various cases and
prove Proposition 4.6. First, fix θ∗ and put ǫ = d−4. The easy case is when
η ≥ c, where c is the constant from Lemma 4.7. In this case, Lemma 4.11
with ǫ = 0 implies that

E(ZX ∣ D,Xui,k, Yui,k) ≤ Ce−cD
√∣Xui,k − Yui,k∣

and similarly for ZY . Taking the expectation over Xui,k and applying (4.7)
implies that

(4.14) E(√∣Xu,k+1 − Yu,k+1∣ ∣ D) ≤ CDe−cDE
√∣Xui,k − Yui,k∣.

Now consider the case where η ≤ c. By Lemma 4.7 (recalling that ǫ = d−4),
we have

E(√∣Xu,k+1 − Yu,k+1∣1Ωc ∣D) ≤ Cd2De−cDE1Ωc
i

√∣Xui,k − Yui,k∣.
By Lemma 4.10, we have

E(√∣Xu,k+1 − Yu,k+1∣1Ω ∣D) ≤ C(d4De−cD + d−2D)E1Ωi

√∣Xui,k − Yui,k∣.
Putting these together, we have

(4.15) E(√∣Xu,k+1 − Yu,k+1∣ ∣ D) ≤ C(d4De−cD + d−2D)E√∣Xui,k − Yui,k∣.
Noting that the right hand side of (4.15) is larger than the right hand side
of (4.14), we see that (4.15) holds without extra conditions on η. Finally,
we integrate out D in (4.15). Since D ∼ Pois(d), we have ED = d and
EDe−cD ≤ e−c

′d for some constant c′ depending on c. In particular, if d is
sufficiently large (depending on C and c, which depend in turn on θ∗) then

CE(d4De−cD + d−2D) ≤ 1

2
,

which proves Proposition 4.6.
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5. From trees to graphs. In this section, we will give our reconstruc-
tion algorithm and prove that it performs optimally. It will be convenient
for us to work with block models on fixed vertex sets instead of random
ones; therefore, let G(V +, V −, p, q) denote the random graph on the vertices
V +∪V − where pairs of vertices within V + or V − are connected with probabil-
ity p and pairs of vertices spanning V + and V − are included with probability
q. Note that if V − and V + are chosen to be a uniformly random partition of[n] then G(V +, V −, a

n
, b
n
) is simply G(n, a

n
, b
n
).

Let BBPartition denote the algorithm of [25], which satisfies the following
guarantee, where V i denotes {v ∈ V (G) ∶ σv = i}:

Theorem 5.1. Suppose that G ∼ G(V +, V −, a
n
, b
n
), where ∣V +∣ + ∣V −∣ =

n + o(n), ∣V +∣ − ∣V −∣ = O(√n) and (a − b)2 > 2(a + b). There exists some
0 ≤ δ < 1

2
such that as n → ∞, BBPartition a.a.s. produces a partition

W +
∪W − = V (G) such that ∣W +∣ = ∣W −∣+o(n) = n

2
+o(n) and ∣W +∆V i∣ ≤ δn

for some i ∈ {+,−}.
Moreover, BBPartition runs in time O(n1+o(1)).
Remark 5.2. We should point out that [25] only claims Theorem 5.1

when V + and V − are uniformly random partitions of [n]; however, one easily
deduce the result for almost-balanced partitions from the result for uniformly

random partitions: choose ǫ > 0 so that (a−b)
2

2(a+b) >
1

1−ǫ . Given a graph G from

G(V +, V −, a
n
, b
n
), let H be the graph obtained by deleting all but ⌈(1 − ǫ)n⌉

vertices at random from G. If (W +,W −) is the partition of H according to its
vertex labels then one can check that the sizes of W + and W − are contiguous
with the sizes of a uniformly random partition of ⌈(1 − ǫ)n⌉. Hence, the
distribution of H is contiguous with G(⌈(1 − ǫ)n⌉, a

n
, b
n
). The results of [25]

then imply that the labels of H can be recovered adequately (i.e., as claimed
in Theorem 5.1); by randomly labelling the vertices of G that were deleted,
we recover Theorem 5.1 as stated.

Note that by symmetry, Theorem 5.1 also implies that ∣W −∆V j ∣ ≤ δn for
j ≠ i ∈ {+,−}. In other words, BBPartition recovers the correct partition up
to a relabelling of the classes and an error bounded away from 1

2
. Note that∣W +∆V i∣ = ∣W −∆V j ∣. Let δ(G) be the (random) fraction of vertices that

are mis-labelled.
For v ∈ G and R ∈ N, define B(v,R) = {u ∈ G ∶ d(u, v) ≤ R} and S(v,R) ={u ∈ G ∶ d(u, v) = R}. If B(v,R) is a tree (which it is a.a.s.), and τ is a

labelling τ on its leaves, we consider the following estimator of v’s label:
first, take K large enough so that Proposition 4.2 holds for k = K. For
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u ∈ S(v,R −K), define Yu,K(τ) as the sign of S′k(τ), where S′k is given as
in the proof of Proposition 4.2. That is, Yu,K(τ) is the sign of a weighted
sum of the labelling τ on S(v,R). For k > K and u ∈ B(v,R − k), define
Yu,k(τ) recursively by Yu,k = g(YL1(u),k−1), where g is given by (3.14). Then
Y satisfies Assumption 4.1.

We remark that the reason for taking this two-stage definition of Y is
because we don’t necessarily know how much noise there is on the leaves
(i.e., δ), and so we cannot define Y by (3.1). Defining Y as we have done
avoids the need to know δ, while still satisfying the required assumptions.

Before presenting the algorithm, we will mention one issue that we glossed
over in our earlier sketch: since we will run the black-box algorithm several
times, and since the labels + and − are symmetric, we need some way to
break the symmetry between the various runs of the algorithm. We do this
by holding out a single vertex of high degree (that we call u∗) and breaking
symmetry according to the sign of most of its neighbors.

Algorithm 1 Optimal graph reconstruction algorithm

1: R← ⌊ 1

20(a+b)
logn⌋

2: Take U ⊂ V to be a random subset of size ⌊√n⌋
3: Let u∗ ∈ U be a random vertex in U with at least

√
logn neighbors in V ∖ U

4: W +
∗ ,W

−
∗ ← ∅

5: for v ∈ V ∖U do

6: W +
v ,W

−
v ← BBPartition(G ∖B(v,R − 1) ∖U)

7: if a > b then

8: relabel W +
v ,W

−
v so that u∗ has more neighbors in W

+
v than W

−
v

9: else

10: relabel W +
v ,W

−
v so that u∗ has more neighbors in W −

v than W +
v

11: end if

12: Define ξ ∈ {+,−}S(v,R) by ξu = i if u ∈W i
v

13: Add v to W
sgn(Yv,R(ξ))
∗

14: end for

15: for v ∈ U do

16: Assign v to W +
∗ or W −

∗ uniformly at random
17: end for

Remark 5.3. Our analysis of Algorithm 1 will assume that we can com-
pute with arbitrary precision numbers in constant time. However, Proposi-
tions 4.5 and 4.6 can also be used to analyze an implementation of Algo-
rithm 1 with finite-precision arithmetic. Indeed, the only part of Algorithm 1
where continuous quantities appear is in the computation of Yv,R, and the
main question in the computation of Yv,R is whether the numerical errors
accumulate as we repeatedly apply the recursion g(x) defined in (3.14).
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Consider the following finite-precision implementation of the recursion:
first, compute Ŷui,k to the desired precision for all children i of u. Then com-

pute g(Ŷu,L1(k)) to arbitrary precision, and finally define Ŷu,k to be g(Ŷu,L1(k))
truncated to the desired precision. Let us see what Proposition 4.5 has to say
about this procedure (Proposition 4.6 has similar consequences for the other
range of parameters): if X denotes the true magnetizations and the rounding
error is bounded by ǫ then

E(Xu,k+1 − Ŷu,k+1)2 ≤ E(Xu,k+1 − g(ŶL1(u),k) + ǫ)2
≤ O(ǫ) +E(Xu,k+1 − g(ŶL1(u),k))2
≤ O(ǫ) + 1

2
E(Xu,k − Ŷu,k)2,

which implies that the asymptotic accuracy of our finite-precision scheme is
within O(√ǫ) of optimal.

As presented, our algorithm is not particular efficient (although it does run
in polynomial time) because we need to re-run BBPartition for almost every
vertex in V . However, one can modify Algorithm 1 to run in O(n1+o(1)) time
by processing o(n) vertices in each iteration (a similar idea is used in [25]).
Since vanilla belief propagation is much more efficient than Algorithm 1 and
reconstructs (in practice) just as well, we have chosen not to present the
faster version of Algorithm 1.

Theorem 5.4. Algorithm 1 produces a partition W +
∗ ∪W

−
∗ = V (G) such

that a.a.s. ∣W +
∗∆V i∣ ≤ (1 + o(1))n(1 − pT (a, b)) for some i ∈ {+,−}.

Theorem 2.8 implies that for any algorithm, ∣W +
∗∆V i∣ ≥ (1 − o(1))n(1 −

pT (a, b)) a.a.s. Hence, it is enough to show that E∣W +
∗∆V i∣ ≤ (1+o(1))n(1−

pT (a, b)). Since Algorithm 1 treats every node equally, it is enough to show
that there is some i such that for every v ∈ V i,

(5.1) Pr(v ∈W +
∗ )→ pT (a, b).

Moreover, since Pr(v ∈ U)→ 0, it is enough to show (5.1) for every v ∈ V i
∖U .

The proof of (5.1) will take the remainder of this section. First, we will
deal with a technicality: in line 6, we are applying BBPartition to the
subgraph of G induced by V ∖ B(v,R − 1) ∖ U ; call this graph Gv . We
need to justify the fact that Gv satisfies the requirements of Theorem 5.1.
Now, if W + = V + ∖ B(v,R − 1) ∖ U and W − = V − ∖ B(v,R − 1) ∖ U then
Gv ∼ G(W +,W −, a

n
, b
n
). Since

∣W +∣ + ∣W −∣ = n − ∣B(v,R − 1)∣ − ⌊√n⌋
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and

∣∣W +∣ − ∣W −∣∣ ≤ ∣∣V +∣ − ∣V −∣∣ + ∣B(v,R − 1)∣ + ⌊√n⌋ ≤ O(√n) + ∣B(v,R − 1)∣,
we see that the hypothesis of Theorem 5.1 is satisfied as long as ∣B(v,R−1)∣ =
O(√n). This is indeed the case; Lemma 4.4 of [24] shows that ∣B(v,R)∣ =
O(n1/8) for the value of R that we have chosen:

Lemma 5.5. ∣B(v,R)∣ = O(n1/8) a.a.s.
We conclude, therefore, that Theorem 5.1 applies in line 6 of Algorithm 1:

Lemma 5.6. There is some 0 ≤ δ < 1
2
such that for any v ∈ V ∖ U , there

a.a.s. exists some i ∈ {+,−} such that ∣W +
v ∆V i∣ ≤ δn, with W +

v defined as in
line 6.

5.1. Aligning the calls to BBPartition. Next, let us discuss in more de-
tail the purpose of u∗ and line 8. Recall that Algorithm 1 relies on multiple
applications of BBPartition, each of which is only guaranteed to give a
good labelling up to swapping + and −. In order to get a consistent labelling
at the end, we need to “align” these multiple applications of BBPartition.

We will break the symmetry between + and − by assuming, from now on,
that u∗ is labelled +. Next, let us note some properties of u∗:

Lemma 5.7. In line 3, there a.a.s. exists at least one u ∈ U with more
than

√
logn neighbors in V ∖ U ; hence, u∗ is well-defined. Moreover, there

is some η > 0 such that a.a.s. at least a (1 + η)/2-fraction of u∗’s neighbors
in V ∖ U either are labelled + (if a > b) or − (if a < b). Finally, for any
v ∈ V ∖U , u∗ a.a.s. has no neighbors in B(v,R − 1).

Proof. For the first claim, note that every u ∈ U independently has more

than Binom(⌈n(1− ǫ/2)⌉, min{a,b}
n
) neighbors in V ∖U , and the maximum of√

n such variables is of order Θ(logn/ log logn)≫√logn.
For the second claim, let d be the number of neighbors that u∗ has in

V ∖ U and note that d = O(log n) a.a.s., because the maximum degree of
any vertex in G is O(logn). Conditioned on d, the number of u∗’s +-labelled

neighbors in V ∖U is dominated by Binom(d, a
a+b ⋅

∣V +∣−d
∣V −∣ ); this is because the

neighborhood of u∗ may be generated by sequentially choosing d neighbors
without replacement from V ∖U , where a +-labelled neighbor is chosen with
probability a

a+b times the fraction of +-labelled vertices remaining. Since∣V +∣ = n/2 ±O(n1/2) and d = o(n), we see that u∗ a.a.s. has at least d( a
a+b −
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o(1)) +-labelled neighbors. If a > b then this verifies the second claim; if
a < b then we repeat the argument with + replaced by −.

For the final claim, note that if u∗ has a neighbor in B(v,R − 1) then
u∗ ∈ B(v,R). But (by Lemma 5.5) ∣B(v,R)∣ = O(n1/8) a.a.s., and so with
probability tending to 1, B(v,R) does not intersect U at all; in particular,
it does not contains u∗.

From now on, suppose without loss of generality that σu∗ = +. Thanks
to the previous paragraph and Theorem 5.1, we see that the relabelling in
lines 8 and 10 correctly aligns W +

v with V +:

Lemma 5.8. There is some 0 ≤ δ < 1
2
such that for any v ∈ V ∖ U ,∣W +

v ∆V +∣ ≤ δn a.a.s., with W +
v defined as in line 8 or line 10.

Proof. Assume for now that a > b. Just for the duration of this proof,
let W +

v and W −
v denote the partition as defined in line 6 of Algorithm 1,

while W̃ +
v and W̃ −

v denote the partition defined by line 8 or line 10.
Recall from Lemma 5.7 that u∗ has at least

√
logn neighbors in V ∖

B(v,R − 1) ∖ U , of which at least a (1 + η)/2-fraction are labelled +; let
d ≥
√
logn be the number of neighbors that u∗ has in V ∖B(v,R − 1) ∖ U ,

and let p ≥ (1 + η)/2 be the fraction that are actually labelled +. Note that
the labelling W +

v ,W
−
v produced in line 6 is independent of the set of u∗’s

neighbors in V ∖B(v,R−1)∖U , because W +
v and W −

v depend only on edges
within V ∖B(v,R− 1)∖U and these are independent of the edges adjoining
u∗. That is, conditioned on d, p, W +

v and W −
v , the neighbors of u∗ can be

generated by taking u∗’s +-labelled neighbors to be a uniformly random set
of pd +-labelled vertices and then taking u∗’s −-labelled neighbors to be
a uniformly random set of (1 − p)d −-labelled vertices. Hence, if Nij (for

i, j ∈ {+,−}) is the number of u∗’s neighbors in V i
∩W

j
v then conditioned on

d, p, andW +
v ,N++ is distributed as HyperGeom(dp, ∣W +

v ∩V
+∣, ∣V +∣) and N−+

is distributed as HyperGeom(d(1 − p), ∣W +
v ∩ V

−∣, ∣V −∣). Since d = o(∣V +∣) =
o(∣V −∣) and d→∞ a.a.s., we have

N++ ≥ (1 − o(1))dp ∣W +
v ∩ V

+∣∣V +∣ = (1 − o(1))2dp∣W +
v ∩ V

+∣
n

N−+ ≥ (1 − o(1))d(1 − p) ∣W +
v ∩ V

−∣∣V −∣ = (1 − o(1))2d(1 − p)∣W +
v ∩ V

−∣
n

.

Adding these together, we have

(5.2) N++ +N−+ = (1 − o(1))d
n
(α + β + (2p − 1)(α − β))
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where α = ∣W +
v ∩ V

+∣ and β = ∣W +
v ∩ V

−∣.
Now, Lemma 5.6 admits two cases: if i = + then

δn ≥ ∣W +
v ∆V +∣ = ∣W +

v ∩ V
−∣ + ∣W −

v ∩ V
+∣ = ∣W +

v ∩ V
−∣ + n

2
+ o(n) − ∣W +

v ∩ V
+∣,

and we conclude that α−β ≥ (1
2
−δ−o(1)))n. A similar argument when i = −

in Lemma 5.6 shows that in that case α−β ≤ −(1
2
−δ−o(1))n. In either case,

α + β = (1 + o(1))n/2.
If i = + in Lemma 5.6 then since p − 1/2 ≥ η/2, (5.2) implies

N++ +N−+ = (1 − o(1))d(1
2
+

(1
2
− δ)η
2

)
a.a.s. Since N++ +N−+ +N+− +N−− = d, we have in particular N++ +N−+ >
N+−+N−− a.a.s., and so u∗ has most of its neighbors inW +

v . Hence, W̃
+
v =W

+
v

and so Lemma 5.6 with i = + implies the the conclusion of Lemma 5.8 holds.
On the other hand, if i = − in Lemma 5.6 then α − β < −(1

2
− δ)n; by (5.2),

N+− +N−− > N++ +N−+. Then u∗ has most of its neighbors in W −
v and so

W̃ +
v =W

−
v . By Lemma 5.6 with i = −, the conclusion of Lemma 5.8 holds.

Finally, we mention the case a < b: essentially the same argument holds
except that instead of p ≥ (1+η)/2 we have p ≤ (1−η)/2. Then i = + implies
that u∗ has most of its neighbors in W −

v , while i = − implies that u∗ has
most of its neighbors in W +

v .

5.2. Calculating v’s label. To complete the proof of (5.1) (and hence
Theorem 5.4), we need to discuss the coupling between graphs and trees.
We will invoke a lemma from [24] which says that a neighborhood in G can be
coupled with a multi-type branching process of the sort that we considered
in Section 4. Indeed, let T be the Galton-Watson tree of Section 4 (with
d = (a + b)/2) and let σ′ be a labelling on it, given by running the two-state
broadcast process with parameter η = b/(a + b). We write TR for T ∩ NR;
that is, the part of T which has depth at most R.

Lemma 5.9. For any fixed v ∈ G, there is a coupling between (G,σ) and(T,σ′) such that (B(v,R), σB(v,R)) = (TR, σ
′
TR
) a.a.s.

Armed with Lemma 5.9, we will consider a slightly different method of
generating G, which is nevertheless equivalent to the original model in the
sense that the new method and the old method may be coupled a.a.s. In
the new construction, we begin by assigning labels to V (G) uniformly at
random. Beginning with a fixed vertex v, we construct B(v,R−1) by drawing
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a Galton-Watson tree of depth R − 1 rooted at v, with labels distributed
according to the broadcast process. On the vertices that remain (i.e., those
that were not used in B(v,R − 1)), we construct a graph G′ according to
the stochastic block model with parameters a/n and b/n. Finally, we join
B(v,R−1) to the rest of the graph: for every vertex u ∈ S(v,R−1), we draw
Pois(a/(a + b)) vertices at random from G′ with label σu and Pois(b/(a +
b)) vertices from G′ with label −σu; we connect all these vertices to u. It
follows from Lemma 5.9 that this construction is equivalent to the original
construction. It also follows from Lemma 5.5 that ∣G′∣ ≥ n −O(n1/8) a.a.s.

The advantage of the construction above is that it becomes obvious that
the edges of G′ = G∖B(v,R−1)∖U are independent of both B(v,R−1) and
the edges joining B(v,R−1) to G′. Since W +

v and W −
v are both functions of

G′ only, it follows that B(v,R−1) and its edges to G′ are also independent of
W +

v and W −
v . Using this observation, we can improve Lemma 5.9 to include

the noisy labels. In particular, we claim that the labelling ξ produced in
line 12 of Algorithm 1 has the same distribution as the noisy labelling τ of
the noisy broadcast process.

In view of Lemma 5.9, it suffices to condition on σ, B(v,R − 1) and G′,
and to show that the conditional distribution of ξ is essentially the same
as the conditional distribution of τ given T and σ′ in the noisy broadcast
process. Since the edges joining B(v,R − 1) to G′ are independent of W +

v

and W −
v , for any u ∈ S(v,R − 1) with σu = + we have

#{w ∼ u ∶ w ∈ G′, σw = +, ξw = +} ∼ Binom(∣V + ∩W +
v ∣, a

n
)

#{w ∼ u ∶ w ∈ G′, σw = +, ξw = −} ∼ Binom(∣V + ∩W −
v ∣, a

n
)

#{w ∼ u ∶ w ∈ G′, σw = −, ξw = −} ∼ Binom(∣V − ∩W −
v ∣, bn)

#{w ∼ u ∶ w ∈ G′, σw = −, ξw = +} ∼ Binom(∣V − ∩W +
v ∣, bn) .

Moreover, the random variables above are independent as u ranges over
S(v,R − 1). Now, if we define δ = 1

n
∣V +∆W +

v ∣ then Binom(∣V + ∩W +
v ∣, a/n)

and Pois(a(1−δ)/2) are at total variation distance at mostO(n−1/2); here, we
are using the fact that ∣V +∩W +

v ∣ = (1−δ)n/2±O(n1/2), which follows because
V +, V − are an equipartition of V (G) and W +

v ,W
−
v are an equipartition of

V (G′), which contains all but at most O(√n) vertices of G. Similarly, we
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have

#{w ∼ u ∶ w ∈ G′, σw = +, ξw = +} d
≈ Pois(a(1 − δ)/2)

#{w ∼ u ∶ w ∈ G′, σw = +, ξw = −} d
≈ Pois(aδ/2)

#{w ∼ u ∶ w ∈ G′, σw = −, ξw = −} d
≈ Pois(b(1 − δ)/2)

#{w ∼ u ∶ w ∈ G′, σw = −, ξw = +} d
≈ Pois(bδ/2)

where “
d
≈” means that the distributions are at total variation distance at

most O(n−1/2). Note that the distributions on the right hand side are exactly
the distributions of the noisy labels τ under the noisy broadcast process. By
a similar argument for σu = −, and a union bound over the O(n1/8) choices
for u, we see that the joint distribution of B(v,R) and {ξu ∶ u ∈ S(v,R)}
a.a.s. the same as the joint distribution of TR and {τu ∶ u ∈ ∂TR}. Hence, by
Theorem 4.1,

lim
n→∞

Pr(Yv,R(ξ) = σv) = pT (a, b).
By line 13 of Algorithm 1, this completes the proof of (5.1).

Acknowledgement. The authors thank Jiaming Xu for his careful read-
ing of the manuscript and his helpful comments and corrections.

APPENDIX A: BOUNDS ON E

√
1−θX
1+θX

Because of the form of the recursion (3.14), at various points in our anal-

ysis we require bounds on quantities of the form E

√
1−θX
1+θX , under various

assumptions on X. These estimates are elementary but tedious to check,
and so we have collected them here.

Proof of Lemma 3.16. By Lemma 3.7, we have

Pr(Xui,k ≥ 1 − ηαt ∣ σu = +) ≥ Pr(Xui,k ≥ 1 − ηαt ∣ σui = +) − η ≥ 1 − t−1 − η,
where α = C/(θ2d) can be taken arbitrarily small if we require θ2d to be
large.

Fix some ǫ = ǫ(θ∗) > 0 to be determined later. Take t = ǫ−1η−3/4 so that

Pr(X ≥ 1 − αη1/4

ǫ
) ≥ 1 − ǫη3/4 − η.

Now, suppose that α is small enough so that αǫ−1 ≤ ǫ. Then

(A.1) Pr(X ≥ 1 − ǫη1/4) ≥ 1 − ǫη3/4 − η.
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Now consider the function

f(x) ∶=
√

1 − θx

1 + θx
.

Note that f(x) is decreasing in x, and hence

Ef(X) ≤ f(s)Pr(X ≥ s) + f(−1)Pr(X ≤ s).
for any random variable X supported on [−1,1] and for any s ∈ [−1,1].
Applying this for s = 1 − ǫη1/4, we have (by (A.1))

(A.2) Ef(X) ≤ f(1 − ǫη1/4)(1 − ǫη3/4 − η) + f(−1)(ǫη3/4 + η).
We will now check that if η ≤ 1−θ∗

2
< 1/2 then each term on the right hand

side of (A.2) can be made strictly smaller than 1/2, and also smaller than
2η1/4, by taking ǫ = ǫ(θ∗) small enough. This will complete the proof of the
Lemma.

We consider the term involving f(−1) first:
(A.3) f(−1)(ǫη3/4 + η) = ǫη1/4√1 − η +

√
η(1 − η).

On the interval η ∈ [0, 1−θ∗
2
], √η(1 − η) is bounded away from 1/2, and

η1/4
√
1 − η is bounded above. Hence, (A.3) is bounded away from 1/2 as

long as ǫ(θ∗) is small enough. On the other hand, (A.3) is also bounded by
2η1/4 as long as ǫ ≤ 1.

Next, we consider the f(1− ǫη1/4) term of (A.2). Note that θ(1− ǫη1/4) ≥
1 − 2η − ǫη1/4 and so

f(1 − ǫη1/4) ≤
¿ÁÁÀ 2η + ǫη1/4

2 − (2η + ǫη1/4) ≤
√

η

1 − η
+Cǫη1/4,

where the second inequality follows from applying a first-order Taylor expan-
sion to the function

√
x/(1 − x) near x = η. Here, C is a universal constant

because the assumptions η ≤ 1/2 and ǫ ≤ 1 ensure that the derivative of√
x/(1 − x) is universally bounded on the interval of interest. Thus,

f(1 − ǫη1/4)(1 − ǫη1/4 − η) ≤ f(1 − ǫη1/4)(1 − η)
≤
√
η(1 − η) +Cǫη1/4(1 − η).(A.4)

As before, on the interval η ∈ [0, 1−θ∗
2
], √η(1 − η) is bounded away from 1/2,

and η1/4(1 − η) is bounded above. Hence, (A.4) is bounded away from 1/2
as long as ǫ(θ∗) is small enough. On the other hand, (A.4) is also smaller
than 2η1/4 as long as ǫ is small enough compared to C.
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Proof of Lemma 4.8. Fix some ǫ = ǫ(θ∗) > 0 to be determined. If θ2d
is sufficiently large compared to ǫ, Proposition 4.2 implies that

Pr(Xui,k ≥ 1 − ǫ ∣ σu = +) ≥ 1 − ǫ −Pr(σui = − ∣ σu = +) ≥ 1 − ǫ − η.
Now, if f is any decreasing function then

Ef(X) ≤f(1 − ǫ)Pr(X ≥ 1 − ǫ)(A.5)

+ f(0)Pr(0 ≤X < 1 − ǫ)
+ f(−1)Pr(X < 0).

We will apply this with f(x) = √1−θx
1+θx ; note that f(0) = 1 and f(−1) =√(1 − η)/η, where η = 1−θ

2
.

Now, we consider two regimes. If
√
η ≥ θ∗/10, we bound

E(f(Xui,k) ∣ σu = +) ≤ Pr(Xui,k ≥ 1 − ǫ ∣ σu = +)f(1 − ǫ)(A.6)

+Pr(Xui,k < 1 − ǫ ∣ σu = +)f(−1)
≤ (1 − ǫ − η)f(1 − ǫ) + ǫ + η√

η

≤ (1 − η)f(1 − ǫ) +√η(1 − η) + 10ǫ

θ∗
.

Now, f(1 − ǫ) = η
1−η +O(ǫ), and so

E(f(Xui,k) ∣ σu = +) ≤ 2√η(1 − η) +O(ǫ),
where the constants in O(ǫ) depend on θ∗. Since 2

√
η(1 − η) is bounded

away from 1 while η is bounded away from 1/2, it follows that for small
enough ǫ (depending on θ∗), E(f(Xui,k) ∣ σu = +) is bounded away from 1.

On the other hand, if
√
η ≤ θ∗/10 then we use (A.5) and the fact (from

Lemma 4.9) that Pr(Xui,k < 0 ∣ σu = +) ≤ 2η to bound

Ef(X) ≤ (1 − ǫ)f(1 − ǫ) + ǫf(0) + 2ηf(−1)
≤ f(1 − ǫ) + ǫ + 2√η.

Now, if ǫ ≤ 1
2
then f(1 − ǫ) ≤√1 − θ∗/2 ≤ 1 − θ∗/4, so

Ef(X) ≤ 1 − θ∗/4 + ǫ + 2√η ≤ 1 − θ∗

20
+ ǫ,

which is bounded away from 1 if ǫ is small enough.
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stochastic block model for modular networks and its algorithmic applications. Physics
Review E, 84:066106, Dec 2011.

[11] M.E. Dyer and A.M. Frieze. The solution of some random NP-hard problems in
polynomial expected time. Journal of Algorithms, 10(4):451–489, 1989.

[12] W. S. Evans, C. Kenyon, Yuval Y. Peres, and L. J. Schulman. Broadcasting on trees
and the Ising model. Ann. Appl. Probab., 10(2):410–433, 2000.

[13] P.W. Holland, K.B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps.
Social Networks, 5(2):109 – 137, 1983.

[14] S. Janson and E. Mossel. Robust reconstruction on trees is determined by the second
eigenvalue. Ann. Probab., 32:2630–2649, 2004.

[15] M. Jerrum and G.B. Sorkin. The Metropolis algorithm for graph bisection. Discrete
Applied Mathematics, 82(1-3):155–175, 1998.

[16] H. Kesten and B. P. Stigum. Additional limit theorems for indecomposable multidi-
mensional Galton-Watson processes. Ann. Math. Statist., 37:1463–1481, 1966.

[17] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly, Lenka
Zdeborov, and Pan Zhang. Spectral redemption in clustering sparse networks. Pro-
ceedings of the National Academy of Sciences, 110(52):20935–20940, 2013.

[18] J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney. Statistical properties of
community structure in large social and information networks. In Proceeding of the
17th international conference on World Wide Web, pages 695–704. ACM, 2008.

[19] R. Lyons. Probability on trees and networks. 2013.
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