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We establish a connection between the level density of a gas of noninteracting bosons and the theory of
extreme value statistics. Depending on the exponent that characterizes the growth of the underlying single-
particle spectrum, we show that at a given excitation energy the limiting distribution function for the
number of excited particles follows the three universal distribution laws of extreme value statistics,
namely, the Gumbel, Weibull, and Fréchet distributions. Implications of this result, as well as general
properties of the level density at different energies, are discussed.
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The level density is an essential quantity in determining
the thermodynamic properties of closed quantum systems.
In interacting many-body (MB) systems its computation is
in general a difficult problem. The most common frame-
work is a mean-field approximation, where a gas of inde-
pendent (quasi-)particles moves in an average self-
consistent potential. In this case, the energy of the gas is
expressed as the sum of the occupied single-particle (SP)
energies. The computation of the MB level density thus
reduces to a combinatorial problem: counting the number
of ways into which the energy can be distributed among the
particles. The level density has been extensively studied in
fermionic systems, where detailed experimental data exist
at different excitation energies and quantum numbers (see,
for some recent progresses in this field, Refs. [1,2]). In
spite of the experimental breakthroughs of the 1990’s and
of the many interesting developments that followed, the
case of bosonic systems is much less known. Studies of the
spectral properties have concentrated on the low energy
range of the spectrum of the condensate phase, where
collective effects and interactions play a crucial role.

Our aim here is to compute, within an independent-
particle approximation, the asymptotic properties of the
MB level density �MB�E;N� of a Bose gas as a function of
the excitation energy E and the particle number N. We will
first consider two extreme regimes that correspond to the
quantum-degenerate and to the classical limits of the gas.
The level density in these two extreme cases behaves quite
differently as a function of energy. In the former case,
where one takes the N ! 1 limit first keeping the energy
E finite, the level density �MB�E;1� increases with energy
in a stretched-exponential manner for large E. In contrast,
in the classical limit where one keeps N finite and takes the
large E limit, the level density increases with energy in a
power-law fashion. This leads to a natural question: what
happens in between these two extreme regimes where both
E and N are large but finite? The main result of this Letter
is to show that in this intermediate regime the level density
displays a rich variety of scaling behaviors depending on
the SP spectrum and has an interesting connection to the
extreme value statistics (EVS) of independent random

variables. These different behaviors have measurable con-
sequences in other thermodynamic properties of the sys-
tem, such as the entropy, or the specific heat.

To explore this intermediate regime, we stay close to the
degenerate-gas limit and compute explicitly the effect of a
finite number of bosons N on the level density. In this
regime, in a given configuration of excitation energy E,
only a fraction of the particles contribute to E, the rest
remain in the ground state. However, the ground-state
occupancy and, consequently, the number of excited bo-
sons, fluctuate among different configurations belonging to
the same excitation energy E. These fluctuations may be
small or anomalously large depending on the SP spectrum.
To obtain a quantitative estimate of these fluctuations, we
compute explicitly the distribution of the number of ex-
cited particles for a fixed (but large) E. We will show that
the fraction of configurations at excitation energy EwithN
or less excited bosons has a limiting distribution (when
suitably rescaled) for large N and large E. Depending on
the index � that controls the growth of the SP number of
states [cf. Eq. (9) below], three limiting distributions
emerge, namely, the Gumbel, Weibull, and Fréchet distri-
butions. Interestingly, precisely the same three limiting
distributions characterize the EVS of independent random
variables [3], a field that has seen a recent resurgence of
interests [4].

Our work provides a link between two a priori unrelated
fields, namely, the combinatorial problem associated with a
noninteracting Bose gas and the EVS. Interestingly, the
Gumbel distribution has been shown to emerge in the
quantum interference patterns of Bose liquids [5]. We
also believe that our results are of interest in different
branches of physics (such as in the computation of black
hole entropy [6]), mathematics, and computer science. For
instance, it is well known that the computation of the level
density of a Bose gas in a one-dimensional (1D) harmonic
potential (equidistant SP spectrum) is directly related to the
theory of partitions of an integer [7,8]. Hence our results
also provide a link between the number partitioning prob-
lem [9] and the EVS, generalizing a theorem due to Erdös
and Lehner [10] (see also [11,12]) which states that the
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number of summands in a random partition of an integer is
asymptotically distributed with the Gumbel law.

We consider noninteracting bosons confined by some
single-particle potential whose energy levels are �j, j �
0; 1; 2; . . . . We set �0 � 0 without loss of generality. Each
configuration fnjg of the gas is characterized by an excita-
tion energy E �

P
1
j�1 nj�j and a total number of particles

N �
P
1
j�0 nj, where nj�0;1;2; . . . is the occupation num-

ber of the jth SP level in that configuration. The level den-
sity at excitation energy E of a gas of N bosons is given by

 �MB�E;N� �
X
fnjg

�
�
E�

X1
j�1

nj�j

�
�
�
N �

X1
j�0

nj

�
: (1)

The number of excited bosons is simply Nex � N � n0 �P
1
j�1 nj. Since n0 � 0, it follows that Nex � N. Thus, if

one just keeps track of only the excited bosons, it is an easy
exercise to show that �MB�E;N� in Eq. (1) can also be
interpreted as the number of configurations with energy E
and with Nex � N. Thus, when N ! 1, �MB�E;1� simply
counts the total number of configurations at energy E.

A convenient way to express Eq. (1) is by means of an
inverse Laplace transform

 �MB�E;N� �
1

�2�i�2
Z a�i1

a�i1
d�

Z b�i1

b�i1
d�eS��;��; (2)

where

 S ��;�� � �����;�� � �E� �N (3)

is the entropy,

 ���;�� � �
Z
d�

N ���

e���� � 1
(4)

the grand potential of the gas, and

 N ��� �
Z "

��"�d" (5)

the integrated density of states expressed in terms of the SP
density of states ���� �

P
j���� �j�. In Eq. (2), a and b

are real parameters such that all the poles of the integrand
are to the left of the integration path.

A saddle point approximation with respect to the auxil-
iary parameters � and � of the integrals in Eq. (2) yields

 �MB�E;N� � eS��;��=2�
���������������������
jD��;��j

q
; (6)

where D��;�� is the determinant of the second derivatives
of S��;��. The dependence on N and E in Eq. (6) arises
from the saddle point conditions that determine implicitly
the values of � and � in terms of N and E

 N ��;�� �
Z
d�

����

e���� � 1
� N; (7)

 E ��;�� �
Z
d�

�����

e���� � 1
� E; (8)

where N ��;�� and E��;�� are the particle number and

energy functions of the gas, respectively. We will work
here in the leading order approximation �MB�E;N� �
eS��;��, and thus ignore the prefactor in Eq. (6).

In Eqs. (7) and (8) all the nontrivial information is
contained in the SP level density ����. We use here the
continuous approximation, in which the discreteness of the
SP energy levels �j is ignored and ���� is replaced by a
smooth function. We assume moreover that the high energy
growth of the integrated density of states is well approxi-
mated, on average, by

 N ��� � ��: (9)

Here � is an adimensional energy. To recover dimensional
quantities in the formulas below, all energies must be
multiplied by some appropriate factor �. The index � is a
real positive number that can take arbitrary values depend-
ing on the confining potential. For instance, if the gas is
trapped by a one-dimensional potential V�x� / jxja, with
a > 0, then it simply follows from the WKB approxima-
tion that � � �a� 2�=2a. This corresponds to the fact that
energy levels grow as �j � js, where s � 1=�. More gen-
erally, when the confining potential is a D-dimensional
harmonic oscillator, then � � D, while when it is a
D-dimensional box (hard wall cavity potential), then � �
D=2 (and, for instance, � � �V=6�2�2=3�2m=@2� when
D � 3, where V is the volume of the cavity and m the
mass of the particle).

From Eqs. (4) and (8), using (9) and, consequently,
���� � ����1, the energy and grand potential are simply
related by E��;�� � �����;��. The entropy (3) may
thus be written, taking into account the condition (8),

 S ��;�� � �1� 1=���E� �N: (10)

For any finite N, � is easily seen from Eq. (7) to be
negative. A standard series expansion of the denominator
in Eqs. (7) and (8) in terms of z � exp���, where 0< z<
1, allows us to write, in the continuous approximation, the
two saddle point conditions as

 N ��;�� �
���� 1�

��
Li��z� � N; (11)

 E ��;�� �
����� 1�

���1 Li��1�z� � E; (12)

where Li��z� �
P
1
k�1 z

k=k� is the polylogarithm function
and � is Euler function.

Equation (11) shows that N ��;�� is an increasing
function of z. Therefore, when N increases at a fixed tem-
perature T � ��1, z needs to increase to satisfy the equal-
ity. As N ! 1, z! 1. In that limit, the energy is easy to
obtain and we get E�0; �� � �

R
1
0 d��

�=	exp���� � 1
 �
	�=�

��1, where

 	� � ����� 1�
��� 1� (13)

[
�z� � Li1�z� is the Riemann zeta function]. From
Eq. (12), we obtain the following relation between inverse
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temperature and excitation energy,

 � � �� � 		�=E
1=�1���: (14)

Using this expression for � and setting � � 0 in Eq. (10),
we get to leading order in a high energy expansion (i.e.,
large energies compared to the spacing between SP energy
levels)

 �MB�E;1� � exp	�1� 1=���	�E
��1=���1�
: (15)

For � � 1 this equation reproduces the well-known asymp-
totic result for an equidistant spectrum �j � j (1D har-

monic potential), �MB�E;1� � e2
����������
�2E=6
p

, obtained by
Hardy and Ramanujan in the partition problem [13]. It
was generalized to arbitrary 1D potentials �j / j1=� (par-
titions into nonintegral powers of integers) in [14]. In the
present context, Eq. (15) is valid for any system whose
average counting function behaves (asymptotically) like
Eq. (9) (see also Ref. [12]). For instance, it holds for a 3D
harmonic potential (� � 3), or a 2D box of arbitrary shape
(or billiard), (� � 1).

Equation (15) describes the density in the limit of an
infinite number of particles for a large but finite excitation
energy E. In the opposite limit, of a large excitation energy
at a fixed number of particles, the density behaves quite
differently. This is the Maxwell-Boltzmann limit, where
the gas behaves classically. From Eq. (11), keeping N fixed
and increasing the temperature (e.g., decreasing �), it
follows that z! 0 to satisfy the equality. Then Li��z� �
z for any �, and the stationary phase conditions (11) and
(12) become N � ���� 1�z=�� and E � �����
1�z=���1. The relation between temperature and excita-
tion energy now is

 E � �NT: (16)

This simple equation generalizes, to an arbitrary confining
potential, the well-known equipartition of energy valid for
quadratic Hamiltonians. It provides a precise relation be-
tween a quantum spectral property (the index �) and the
partition of energy in the classical limit. From the previous
form of the stationary phase conditions when z! 0 we
also get � � log	��N=���� 1�
. Using this relation for �
and Eq. (16) for � in Eq. (10), the many-body level density
now takes the form

 �MB�E;N� �
�

���� 1�

��
E�

N��1

�
N
e���1�N: (17)

In contrast to Eq. (15), in the classical limit the level
density has a power-law dependence on the excitation
energy (similar results in some particular cases were ob-
tained in [15], using different methods). When E� N �
1, using Stirling’s approximation this equation may be
written as

 �MB�E;N� �
	���� 1�
N

N!
E
�N

� �
:

Under this form, this result coincides for � � 1 with the

result obtained in Ref. [7] for the asymptotic behavior of
the partition of integers with a maximum number of sum-
mands (see also [10]).

So far, we have derived two distinct behaviors of the
level density with excitation energy: a stretched-
exponential behavior in the quantum-degenerate-gas limit,
and a power-law behavior in the high temperature classical
limit. In the classical limit, in any typical configuration of
energy E all the particles of the gas are excited, while in the
quantum-degenerate case only a finite fraction of the total
number of particles contribute to the excitation energy (the
remaining particles are in the ground state). To have a
better understanding, in the latter case, of the distribution
of the number of excited particles among all the configu-
rations of energy E, and to gain some insight about the
transition between the two extreme regimes, we now com-
pute, starting from the degenerate-gas limit z! 1, finite N
corrections.

We are interested, in particular, in computing the relative
density F�E;N� � �MB�E;N�=�MB�E;1�. This quantity
gives, among all the possible states of energy between E
and E� dE, the fraction of those whose number of excited
particles does not exceed N. Interestingly, we find three
distinct behaviors for F�E;N�, depending on the value of �.
In terms of a suitable rescaled variable x that depends onN,
E and � (cf below), the fraction F�E;N� behaves as

 � � 1: F�E;N� � exp	� exp��x�
; (18)

 0< �< 1: F�E;N� �
�

0 x � 0
exp	�x��=�1���
 x > 0

(19)

 � > 1: F�E;N� �
�

exp��jxj�� x � 0
1 x > 0:

(20)

In the latter case, the index � depends on the precise value
of � [see Eq. (23)]. These three distributions are known as
the Gumbel, Weibull, and Fréchet distributions, respec-
tively. They are the three universal limit distributions
well known in the theory of extreme value statistics of
uncorrelated random variables [3]. Below we outline the
main steps in the derivation of Eqs. (18)–(20) and define
the rescaled variable x (details will be published
elsewhere).

To prove Eqs. (18)–(20) one needs to compute from
Eqs. (11) and (12) ��E;N� and ��E;N�, and to replace
them in the expression (10). This is done for large but finite
values of the particle number N, i.e., in the limit z �
e�� ! 1, where � � �� is a small positive parameter.

Case I: � � 1.—We find that the appropriate scaling
variable for the limiting distribution Eq. (18) is

 � � 1: x � �1N � log�1; (21)

where �1 � ��2=6E�1=2 was defined in Eq. (14). It follows
from Eq. (18) that the asymptotic value for the typical
number of excited bosons for states of energy E is
��1

1 log��1
1 .
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Case II: 0< �< 1.—From the procedure described
above, now we obtain for F�E;N� the Fréchet distribution,
Eq. (19), with the rescaled variable given by

 0< �< 1: x �
N

c�E
1=�1���

; (22)

where c� � 	�1� ��=�
�1���=�	��1� ����1� ��
1=�=
	1=�1���
� . Note that in Eq. (19) the exponent �=�1� �� is

positive in the corresponding range of �. This distribution
implies that the typical number of excited bosons for states
of energy E is c�E1=�1���=2. However, note that the distri-
bution is strongly asymmetric, with a power-law decay
(toward 1) for N much larger than the typical value.

Case III: � > 1.—This case is slightly more compli-
cated than the previous ones, because of the presence of a
phase transition. In contrast with the previous cases, as N
increases and z! 1 in Eq. (11) at fixed �, the function
Li��z� tends to a finite value. At constant temperature, there
is thus a critical number Nc � ��1� ��
���=�� of bosons
that can be hosted by the thermal cloud, above which a
Bose-Einstein condensation starts. We find that the rele-
vant variable in this case is not N but the difference N �
Nc. The behavior of the distribution is different according
to whether N is smaller or larger than Nc. When N � Nc,
the exponent � and the rescaled variable x in Eq. (20)
depend on the precise value of �. Three different regimes
are found, summarized as follows

 1<�<2:��
�

��1
; x�

���N�Nc�

	�����1���2���
1=�
; (23)

 �� 2: �� 2; x�
�

���=�
log	�����Nc�N�=��


�
1=2
�N�Nc�;

(24)

 � > 2: � � 2; x �
��=2
� �N � Nc�

	���� 1�
��� 1�
1=2
; (25)

where �� is given in Eq. (14). Finally, for any � > 1 and
N >Nc (that corresponds to x > 0), a macroscopic frac-
tion of the particles is in the ground state. These particles
do not contribute to the excitation energy, and their precise
number is unimportant. The behavior of the system is thus
identical to that of theN ! 1 limit, implying F�E;N� � 1
for N > Nc (or x > 0). This completes the demonstration
of the Weibull distribution, Eq. (20).

The connection to the number partitioning problem
becomes evident if one chooses �j � j and E to be a
positive integer. The relation E �

P
1
j�1 njj then corre-

sponds to partitioning E into nonzero integers and Nex �P
1
j�1 nj corresponds to the number of terms or summands

in a given configuration of partition. The ratio F�E;N� �
�MB�E;N�=�MB�E;1� then represents the probability that
the number of summands in a random partition of integer E
is less than or equal to N. The corresponding limiting
Gumbel law for F�E;N� was first proved by Erdös and

Lehner by rigorous methods [10]. Our results provide a
generalization of this theorem to an arbitrary set of sum-
mands characterized by the growth law Eq. (9). The par-
ticular case �j � js with s > 0 corresponds to partitioning
an integer E into sums of sth powers of nonzero integers.
For example, for s � 2, the integer 5 can be partitioned
into sums of squares as 5 � 22 � 12 � 12 � 12 � 12 �
12 � 12. We have shown that while for s � 1 we recover
the Gumbel law, the limiting distribution of F�E;N� is
Fréchet for s > 1 (or 0< �< 1) and Weibull for s < 1
(or � > 1).

In conclusion, we have shown that the density of states
of a system of independent bosons is described in a suitable
scaling limit by the three limiting laws of extreme value
theory. This result has a universal character since it de-
pends only on a single parameter � that governs the large
energy asymptotic average behavior of the SP energy
spectrum (and is independent, for instance, of the fluctua-
tion properties of the SP spectrum).
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