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We consider the problem of estimating the graph associated with a binary
Ising Markov random field. We describe a method based on �1-regularized lo-
gistic regression, in which the neighborhood of any given node is estimated
by performing logistic regression subject to an �1-constraint. The method is
analyzed under high-dimensional scaling in which both the number of nodes
p and maximum neighborhood size d are allowed to grow as a function of
the number of observations n. Our main results provide sufficient conditions
on the triple (n,p, d) and the model parameters for the method to succeed
in consistently estimating the neighborhood of every node in the graph si-
multaneously. With coherence conditions imposed on the population Fisher
information matrix, we prove that consistent neighborhood selection can be
obtained for sample sizes n = �(d3 logp) with exponentially decaying error.
When these same conditions are imposed directly on the sample matrices, we
show that a reduced sample size of n = �(d2 logp) suffices for the method
to estimate neighborhoods consistently. Although this paper focuses on the
binary graphical models, we indicate how a generalization of the method of
the paper would apply to general discrete Markov random fields.

1. Introduction. Undirected graphical models, also known as Markov ran-
dom fields, are used in a variety of domains, including statistical physics [17], nat-
ural language processing [21], image analysis [8, 14, 37] and spatial statistics [26],
among others. A Markov random field (MRF) is specified by an undirected graph
G = (V ,E) with vertex set V = {1,2, . . . , p} and edge set E ⊂ V × V . The struc-
ture of this graph encodes certain conditional independence assumptions among
subsets of the p-dimensional discrete random variable X = (X1,X2, . . . ,Xp)

where variable Xi is associated with vertex i ∈ V . One important problem for
such models is to estimate the underlying graph from n independent and identically
distributed samples {x(1), x(2), . . . , x(n)} drawn from the distribution specified by

Received October 2008; revised January 2009.
1Supported in part by NSF Grants IIS-0427206 and CCF-0625879.
2Supported in part by a Siebel Scholarship.
3Supported in part by NSF Grants DMS-06-05165 and CCF-0545862.
AMS 2000 subject classifications. Primary 62F12; secondary 68T99.
Key words and phrases. Graphical models, Markov random fields, structure learning, �1-regular-

ization, model selection, convex risk minimization, high-dimensional asymptotics.

1287

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/09-AOS691
http://www.imstat.org
http://www.ams.org/msc/


1288 P. RAVIKUMAR, M. J. WAINWRIGHT AND J. D. LAFFERTY

some Markov random field. As a concrete illustration, for binary random variables,
each vector-valued sample x(i) ∈ {0,1}p might correspond to the votes of a set of
p politicians on a particular bill, and estimating the graph structure amounts to
detecting statistical dependencies in these voting patterns (see Banerjee, Ghaoui
and d’Asprémont [2] for further discussion of this example).

Due to both its importance and difficulty, the problem of structure learning
for discrete graphical models has attracted considerable attention. The absence
of an edge in a graphical model encodes a conditional independence assumption.
Constraint-based approaches [30] estimate these conditional independencies from
the data using hypothesis testing and then determine a graph that most closely
represents those independencies. Each graph represents a model class of graphi-
cal models; learning a graph then is a model class selection problem. Score-based
approaches combine a metric for the complexity of the graph with a measure of
the goodness of fit of the graph to the data; for instance, log-likelihood of the
maximum likelihood parameters given the graph, to obtain a score for each graph.
The score is used together with a search procedure that generates candidate graph
structures to be scored. The number of graph structures grows super-exponentially,
however, and Chickering [6] shows that this problem is in general NP-hard.

A complication for undirected graphical models involving discrete random vari-
ables is that typical score metrics involve the partition function or cumulant func-
tion associated with the Markov random field. For general undirected MRFs, cal-
culation of this partition function is computationally intractable [36]. The space
of candidate structures in scoring based approaches is thus typically restricted to
either directed graphical models [10] or to simple sub-classes of undirected graph-
ical models such as those based on trees [7] and hypertrees [31]. Abbeel, Koller
and Ng [1] propose a method for learning factor graphs based on local conditional
entropies and thresholding and analyze its behavior in terms of Kullback–Leibler
divergence between the fitted and true models. They obtain a sample complex-
ity that grows logarithmically in the number of vertices p, but the computational
complexity grows at least as quickly as O(pd+1) where d is the maximum neigh-
borhood size in the graphical model. This order of complexity arises from the fact
that for each node, there are

(p
d

) = O(pd) possible neighborhoods of size d for a
graph with p vertices. Csiszár and Talata [9] show consistency of a method that
uses pseudo-likelihood and a modification of the BIC criterion, but this also in-
volves a prohibitively expensive search.

The main contribution of this paper is a careful analysis of the computational
and statistical efficiency of a simple method for graphical model selection. The
basic approach is straightforward: it involves performing �1-regularized logistic
regression of each variable on the remaining variables, and then using the sparsity
pattern of the regression vector to infer the underlying neighborhood structure. Our
analysis is high-dimensional in nature, meaning that both the model dimension p

as well as the maximum neighborhood size d may tend to infinity as a function
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of the size n. Our main result shows that under mild assumptions on the popula-
tion Fisher information matrix, consistent neighborhood selection is possible using
n = �(d3 logp) samples and computational complexity O(max{n,p}p3). We also
show that when the same assumptions are imposed directly on the sample matri-
ces, n = �(d2 logp) samples suffice for consistent neighborhood selection with
the same computational complexity. We focus in this paper on binary Ising mod-
els, but indicate in Section 7 a generalization of the method applicable to general
discrete Markov random fields.

The technique of �1-regularization for estimation of sparse models or signals
has a long history in many fields (for instance, see [32] for one survey). A surge
of recent work has shown that �1-regularization can lead to practical algorithms
with strong theoretical guarantees (e.g., [5, 12, 23, 24, 32, 33, 39]). Despite the
well-known computational intractability of computing marginals and likelihoods
for discrete MRFs [36], our method is computationally efficient; it involves nei-
ther computing the normalization constant (or partition function) associated with
the Markov random field nor a combinatorial search through the space of graph
structures. Rather, it requires only the solution of standard convex programs with
an overall computational complexity of order O(max{p,n}p3) and is thus well
suited to high-dimensional problems [20]. Conceptually, like the work of Mein-
shausen and Bühlmann [23] on covariance selection in Gaussian graphical models,
our approach can be understood as using a type of pseudo-likelihood based on the
local conditional likelihood at each node. In contrast to the Gaussian case, where
the exact maximum likelihood estimate can be computed exactly in polynomial
time, this use of a surrogate loss function is essential for discrete Markov random
fields given the intractability of computing the exact likelihood [36].

Portions of this work were initially reported in a conference publication [35],
with the weaker result that n = �(d6 logd + d5 logp) samples suffice for consis-
tent Ising model selection. Since the appearance of that paper, other researchers
have also studied the problem of model selection in discrete Markov random
fields. For the special case of bounded degree models, Bresler, Mossel and Sly
[4] describe a simple search-based method, and prove under relatively mild as-
sumptions that it can recover the graph structure with �(logp) samples. How-
ever, in the absence of additional restrictions, the computational complexity of the
method is O(pd+1). In other work, Santhanam and Wainwright [29] analyze the
information-theoretic limits of graphical model selection, providing both upper
and lower bounds on various model selection procedures, but these methods also
have prohibitive computational costs.

The remainder of this paper is organized as follows. We begin in Section 2
with background on discrete graphical models, the model selection problem and
logistic regression. In Section 3, we state our main result, develop some of its
consequences and provide a high-level outline of the proof. Section 4 is devoted
to proving a result under stronger assumptions on the sample Fisher information
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matrix whereas Section 5 provides concentration results linking the population ma-
trices to the sample versions. In Section 6, we provide some experimental results
that illustrate the practical performance of our method and the close agreement
between theory and practice. Section 7 discusses an extension to more general
Markov random fields, and we conclude in Section 8.

Notation. For the convenience of the reader, we summarize here notation to
be used throughout the paper. We use the following standard notation for asymp-
totics: we write f (n) = O(g(n)) if f (n) ≤ Kg(n) for some constant K < ∞,
and f (n) = �(g(n)) if f (n) ≥ K ′g(n) for some constant K ′ > 0. The notation
f (n) = �(g(n)) means that f (n) = O(g(n)) and f (n) = �(g(n)). Given a vec-
tor v ∈ R

d and parameter q ∈ [1,∞], we use ‖v‖q to denote the usual �q norm.
Given a matrix A ∈ R

a×b and parameter q ∈ [1,∞], we use |||A|||q to denote the
induced matrix-operator norm with A viewed as a mapping from �b

q → �a
q (see

Horn and Johnson [16]). Two examples of particular importance in this paper are
the spectral norm |||A|||2, corresponding to the maximal singular value of A, and
the �∞ matrix norm, given by |||A|||∞ = maxj=1,...,a

∑b
k=1|Ajk|. We make use of

the bound |||A|||∞ ≤ √
a|||A|||2 for any symmetric matrix A ∈ R

a×a .

2. Background and problem formulation. We begin by providing some
background on Markov random fields, defining the problem of graphical model
selection and describing our method based on neighborhood logistic regression.

2.1. Pairwise Markov random fields. Let X = (X1,X2, . . . ,Xp) denote a ran-
dom vector with each variable Xs taking values in a corresponding set Xs . Say we
are given an undirected graph G with vertex set V = {1, . . . , p} and edge set E,
so that each random variable Xs is associated with a vertex s ∈ V . The pairwise
Markov random field associated with the graph G over the random vector X is the
family of distributions of X which factorize as P(x) ∝ exp{∑(s,t)∈E φst (xs, xt )}
where for each edge (s, t) ∈ E, φst is a mapping from pairs (xs, xt ) ∈ Xs × Xt to
the real line. For models involving discrete random variables, the pairwise assump-
tion involves no loss of generality since any Markov random field with higher-
order interactions can be converted (by introducing additional variables) to an
equivalent Markov random field with purely pairwise interactions (see Wainwright
and Jordan [34] for details of this procedure).

Ising model. In this paper, we focus on the special case of the Ising model
in which Xs ∈ {−1,1} for each vertex s ∈ V , and φst (xs, xt ) = θ∗

stxsxt for some
parameter θ∗

st ∈ R, so that the distribution takes the form

Pθ∗(x) = 1

Z(θ∗)
exp

{ ∑
(s,t)∈E

θ∗
stxsxt

}
.(1)
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The partition function Z(θ∗) ensures that the distribution sums to one. This model
is used in many applications of spatial statistics such as modeling the behavior of
gases or magnets in statistical physics [17], building statistical models in computer
vision [13] and social network analysis.

2.2. Graphical model selection. Suppose that we are given a collection Xn
1 :=

{x(1), . . . , x(n)} of n samples where each p-dimensional vector x(i) ∈ {−1,+1}p
is drawn in an i.i.d. manner from a distribution Pθ∗ of the form (1) for parameter
vector θ∗ and graph G = (V ,E) over the p variables. It is convenient to view
the parameter vector θ∗ as a

(p
2

)
-dimensional vector, indexed by pairs of distinct

vertices but nonzero if and only if the vertex pair (s, t) belongs to the unknown
edge set E of the underlying graph G. The goal of graphical model selection is to
infer the edge set E. In this paper, we study the slightly stronger criterion of signed
edge recovery; in particular, given a graphical model with parameter θ∗, we define
the edge sign vector

E∗ :=
{

sign(θ∗
st ), if (s, t) ∈ E,

0, otherwise.
(2)

Here the sign function takes value +1 if θ∗
st > 0, value −1 if θ∗

st < 0 and 0, other-
wise. Note that the weaker graphical model selection problem amounts to recover-
ing the vector |E∗| of absolute values.

The classical notion of statistical consistency applies to the limiting behavior of
an estimation procedure as the sample size n goes to infinity with the model size p

itself remaining fixed. In many contemporary applications of graphical models—
among them gene microarray data and social network analysis—the model dimen-
sion p is comparable to or larger than the sample size n, so that the relevance of
such “fixed p” asymptotics is limited. With this motivation, our analysis in this
paper is of the high-dimensional nature, in which both the model dimension and
the sample size are allowed to increase, and we study the scalings under which
consistent model selection is achievable.

More precisely, we consider sequences of graphical model selection problems,
indexed by the sample size n, number of vertices p and maximum node degree d .
We assume that the sample size n goes to infinity, and both the problem dimension
p = p(n) and d = d(n) may also scale as a function of n. The setting of fixed p

or d is covered as a special case. Let Ên be an estimator of the signed edge pattern
E∗ based on the n samples. Our goal is to establish sufficient conditions on the
scaling of the triple (n,p, d) such that our proposed estimator is consistent in the
sense that

P[Ên = E∗] → 1 as n → +∞.

We sometimes call this property sparsistency, as a shorthand for consistency of the
sparsity pattern of the parameter θ∗.

2.3. Neighborhood-based logistic regression. Recovering the signed edge
vector E∗ of an undirected graph G is equivalent to recovering, for each vertex
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r ∈ V , its neighborhood set N (r) := {t ∈ V | (r, t) ∈ E} along with the correct
signs sign(θ∗

rt ) for all t ∈ N (r). To capture both the neighborhood structure and
sign pattern, we define the product set of “signed vertices” as {−1,1}×V . We use
the shorthand “ιr” for elements (ι, r) ∈ {−1,1} × V . We then define the signed
neighborhood set as

N±(r) := {sign(θ∗
rt )t | t ∈ N (r)}.(3)

Here the sign function has an unambiguous definition, since θ∗
rt 
= 0 for all t ∈

N (r). Observe that this signed neighborhood set N±(r) can be recovered from the
sign-sparsity pattern of the (p − 1)-dimensional subvector of parameters

θ∗\r := {θ∗
ru, u ∈ V \ r},

associated with vertex r . In order to estimate this vector θ∗\r , we consider the struc-
ture of the conditional distribution of Xr given the other variables X\r = {Xt | t ∈
V \ {r}}. A simple calculation shows that under the model (1), this conditional
distribution takes the form

Pθ∗(xr | x\r ) = exp(2xr

∑
t∈V \r θ∗

rt xt )

exp(2xr

∑
t∈V \r θ∗

rt xt ) + 1
.(4)

Thus the variable Xr can be viewed as the response variable in a logistic regression
in which all of the other variables X\r play the role of the covariates.

With this set-up, our method for estimating the sign-sparsity pattern of the re-
gression vector θ∗\r and hence the neighborhood structure N±(r) is based on com-
puting an �1-regularized logistic regression of Xr on the other variables X\r . Ex-
plicitly, given Xn

1 = {x(1), x(2), . . . , x(n)}, a set of n i.i.d. samples, this regularized
regression problem is a convex program of the form

min
θ\r∈Rp−1

{
�(θ;Xn

1) + λ(n,p,d)‖θ\r‖1
}
,(5)

where

�(θ;Xn
1) := −1

n

n∑
i=1

log Pθ

(
x(i)
r | x(i)

\r
)

(6)

is the rescaled negative log likelihood (the rescaling factor 1/n in this definition
is for later theoretical convenience) and λ(n,p,d) > 0 is a regularization parameter,
to be specified by the user. For notational convenience, we will also use λn as
notation for this regularization parameter suppressing the potential dependence on
p and d .

Following some algebraic manipulation, the regularized negative log likelihood
can be written as

min
θ\r∈Rp−1

{
1

n

n∑
i=1

f
(
θ;x(i)) − ∑

u∈V \r
θruμ̂ru + λn‖θ\r‖1

}
,(7)
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where

f (θ;x) := log
{

exp
( ∑

t∈V \r
θrtxt

)
+ exp

(
− ∑

t∈V \r
θrtxt

)}
(8)

is a rescaled logistic loss, and μ̂ru := 1
n

∑n
i=1 x

(i)
r x

(i)
u are empirical moments. Note

the objective function (7) is convex but not differentiable, due to the presence of
the �1-regularizer. By Lagrangian duality, the problem (7) can be re-cast as a con-
strained problem over the ball ‖θ\r‖1 ≤ C(λn). Consequently, by the Weierstrass
theorem, the minimum over θ\s is always achieved.

Accordingly, let θ̂ n\r be an element of the minimizing set of problem (7). Al-
though θ̂ n\r need not be unique in general since the problem (7) need not be strictly
convex, our analysis shows that in the regime of interest, this minimizer θ̂ n\r is in-
deed unique. We use θ̂ n\r to estimate the signed neighborhood N±(r) according
to

N̂±(r) := {sign(θ̂ru)u | u ∈ V \ r, θ̂su 
= 0}.(9)

We say that the full graph G is estimated consistently, written as the event {Ên =
E∗}, if every signed neighborhood is recovered—that is, N̂±(r) = N±(r) for all
r ∈ V .

3. Method and theoretical guarantees. Our main result concerns conditions
on the sample size n relative to the parameters of the graphical model—more
specifically, the number of nodes p and maximum node degree d—that ensure
that the collection of signed neighborhood estimates (9), one for each node r of
the graph, agree with the true neighborhoods so that the full graph is estimated
consistently. In this section, we begin by stating the assumptions that underlie our
analysis, and then give a precise statement of the main result. We then provide a
high-level overview of the key steps involved in its proof, deferring details to later
sections. Our analysis proceeds by first establishing sufficient conditions for cor-
rect signed neighborhood recovery—that is, {N̂±(r) = N±(r)}—for some fixed
node r ∈ V . By showing that this neighborhood consistency is achieved at suffi-
ciently fast rates, we can then use a union bound over all p nodes of the graph to
conclude that consistent graph selection is also achieved.

3.1. Assumptions. Success of our method requires certain assumptions on the
structure of the logistic regression problem. These assumptions are stated in terms
of the Hessian of the likelihood function E{log Pθ [Xr | X\r ]} as evaluated at the
true model parameter θ∗\r ∈ R

p−1. More specifically, for any fixed node r ∈ V , this
Hessian is a (p − 1) × (p − 1) matrix of the form

Q∗
r := Eθ∗{∇2 log Pθ∗[Xr | X\r ]}.(10)
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For future reference, this is given as the explicit expression

Q∗
r = Eθ∗[η(X; θ∗)X\rXT\r ],(11)

where

η(u; θ) := 4 exp(2ur

∑
t∈V \r θrtut )

(exp(2ur

∑
t∈V \r θrtut ) + 1)2(12)

is the variance function. Note that the matrix Q∗
r is the Fisher information matrix

associated with the local conditional probability distribution. Intuitively, it serves
as the counterpart for discrete graphical models of the covariance matrix E[XXT ]
of Gaussian graphical models, and indeed our assumptions are analogous to those
imposed in previous work on the Lasso for Gaussian linear regression [23, 32, 39].

In the following we write simply Q∗ for the matrix Q∗
r where the reference

node r should be understood implicitly. Moreover, we use S := {(r, t) | t ∈ N (r)}
to denote the subset of indices associated with edges of r , and Sc to denote its
complement. We use Q∗

SS to denote the d × d sub-matrix of Q∗ indexed by S.
With this notation, we state our assumptions:

(A1) Dependency condition. The subset of the Fisher information matrix cor-
responding to the relevant covariates has bounded eigenvalues; that is, there exists
a constant Cmin > 0 such that


min(Q
∗
SS) ≥ Cmin.(13)

Moreover, we require that 
max(Eθ∗[X\rXT\r ]) ≤ Dmax. These conditions ensure
that the relevant covariates do not become overly dependent. (As stated earlier, we
have suppressed notational dependence on r ; thus these conditions are assumed to
hold for each r ∈ V .)

(A2) Incoherence condition. Our next assumption captures the intuition that
the large number of irrelevant covariates (i.e., nonneighbors of node r) cannot
exert an overly strong effect on the subset of relevant covariates (i.e., neighbors of
node r). To formalize this intuition, we require the existence of an α ∈ (0,1] such
that

|||Q∗
ScS(Q∗

SS)−1|||∞ ≤ 1 − α.(14)

3.2. Statement of main result. We are now ready to state our main result on
the performance of neighborhood logistic regression for graphical model selection.
Naturally, the limits of model selection are determined by the minimum value
over the parameters θ∗

rt for pairs (r, t) included in the edge set of the true graph.
Accordingly, we define the parameter

θ∗
min = min

(r,t)∈E
|θ∗

rt |.(15)

With this definition, we have the following:
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THEOREM 1. Consider an Ising graphical model with parameter vector θ∗
and associated edge set E∗ such that conditions (A1) and (A2) are satisfied by the
population Fisher information matrix Q∗, and let Xn

1 be a set of n i.i.d. samples
from the model specified by θ∗. Suppose that the regularization parameter λn is
selected to satisfy

λn ≥ 16(2 − α)

α

√
logp

n
.(16)

Then there exist positive constants L and K , independent of (n,p, d), such that if

n > Ld3 logp,(17)

then the following properties hold with probability at least 1 − 2 exp(−Kλ2
nn).

(a) For each node r ∈ V , the �1-regularized logistic regression (5), given data Xn
1,

has a unique solution, and so uniquely specifies a signed neighborhood N̂±(r).
(b) For each r ∈ V , the estimated signed neighborhood N̂±(r) correctly excludes

all edges not in the true neighborhood. Moreover, it correctly includes all
edges (r, t) for which |θ∗

rt | ≥ 10
Cmin

√
dλn.

The theorem not only specifies sufficient conditions but also the probability with
which the method recovers the true signed edge-set. This probability decays expo-
nentially as a function of λ2

nn which leads naturally to the following corollary on
model selection consistency of the method for a sequence of Ising models specified
by (n,p(n), d(n)).

COROLLARY 1. Consider a sequence of Ising models with graph edge
sets {E∗

p(n)} and parameters {θ∗
(n,p,d)}; each of which satisfies conditions (A1)

and (A2). For each n, let Xn
1 be a set of n i.i.d. samples from the model specified

by θ∗
(n,p,d), and suppose that (n,p(n), d(n)) satisfies the scaling condition (17) of

Theorem 1. Suppose further that the sequence {λn} of regularization parameters
satisfies condition (16) and

λ2
nn → ∞(18)

and the minimum parameter weights satisfy

min
(r,t)∈E∗

n

∣∣θ∗
(n,p,d)(r, t)

∣∣ ≥ 10

Cmin

√
dλn(19)

for sufficiently large n. Then the method is model selection consistent so that
if Êp(n) is the graph structure estimated by the method given data Xn

1, then
P[Êp(n) = E∗

p(n)] → 1 as n → ∞.
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Remarks. (a) It is worth noting that the scaling condition (17) on (n,p, d)

allows for graphs and sample sizes in the “large p, small n” regime (meaning
p � n), as long as the degrees are bounded, or grow at a sufficiently slow rate. In
particular, one set of sufficient conditions are the scalings

d = O(nc1) and p = O(enc2
), 3c1 + c2 < 1,

for some constants c1, c2 > 0. Under these scalings, note that we have d3 log(p) =
O(n3c1+c2) = o(n), so that condition (17) holds.

A bit more generally, note that in the regime p � n, the growth condition (17)
requires that that d = o(p). However, in many practical applications of graphical
models (e.g., image analysis, social networks), one is interested in node degrees d

that remain bounded or grow sub-linearly in the graph size so that this condition is
not unreasonable.

(b) Loosely stated, the theorem requires that the edge weights are not too close
to zero (in absolute value) for the method to estimate the true graph. In particular,
conditions (16) and (19) imply that the minimum edge weight θ∗

min is required to
scale as

θ∗
min = �

(√
d logp

n

)
.

Note that in the classical fixed (p, d) case, this reduces to the familiar scaling
requirement of θ∗

min = �(n−1/2).
(c) In the high-dimensional setting (for p → +∞), a choice of the regulariza-

tion parameter satisfying both conditions (16) and (18) is, for example,

λn = 16(2 − α)

α

√
logp

n

for which the probability of incorrect model selection decays at rate
O(exp(−K ′ logp)) for some constant K ′ > 0. In the classical setting (fixed p),

this choice can be modified to λn = 16(2−α)
α

√
log(pn)

n
.

The analysis required to prove Theorem 1 can be divided naturally into two
parts. First, in Section 4, we prove a result (stated as Proposition 1) for “fixed
design” matrices. More precisely, we show that if the dependence condition (A1)
and the mutual incoherence condition (A2) hold for the sample Fisher information
matrix

Qn := Ê[η(X; θ∗)X\rXT\r ] = 1

n

n∑
i=1

η
(
x(i); θ∗)

x
(i)
\r

(
x

(i)
\r

)T
,(20)

then the growth condition (17) and choice of λn from Theorem 1 are sufficient to
ensure that the graph is recovered with high probability.
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The second part of the analysis, provided in Section 5, is devoted to showing
that under the specified growth condition (17), imposing incoherence and depen-
dence assumptions on the population version of the Fisher information Q∗ guar-
antees (with high probability) that analogous conditions hold for the sample quan-
tities Qn. On one hand, it follows immediately from the law of large numbers that
the empirical Fisher information Qn

AA converges to the population version Q∗
AA

for any fixed subset A. However, in the current setting, the added delicacy is that
we are required to control this convergence over subsets of increasing size. Our
proof therefore requires some large-deviation analysis for random matrices with
dependent elements so as to provide exponential control on the rates of conver-
gence.

3.3. Primal-dual witness for graph recovery. At the core of our proof lies the
notion of a primal-dual witness used in previous work on the Lasso [33]. In partic-
ular, our proof involves the explicit construction of an optimal primal-dual pair—
namely, a primal solution θ̂ ∈ R

p−1 along with an associated subgradient vector
ẑ ∈ R

p−1 (which can be interpreted as a dual solution), such that the sub-gradient
optimality conditions associated with the convex program (7) are satisfied. More-
over, we show that under the stated assumptions on (n,p, d), the primal-dual pair
(θ̂ , ẑ) can be constructed such that they act as a witness—that is, a certificate guar-
anteeing that the method correctly recovers the graph structure.

For the convex program (7), the zero sub-gradient optimality conditions [27]
take the form

∇�(θ̂) + λnẑ = 0,(21)

where the dual or subgradient vector ẑ ∈ R
p−1 must satisfy the properties

ẑrt = sign(θ̂rt ) if θ̂i 
= 0 and |̂zrt | ≤ 1 otherwise.(22)

By convexity, a pair (θ̂ , ẑ) ∈ R
p−1 × R

p−1 is a primal-dual optimal solution to
the convex program and its dual if and only if the two conditions (21) and (22)
are satisfied. Of primary interest to us is the property that such an optimal primal-
dual pair correctly specifies the signed neighborhood of node r ; the necessary and
sufficient conditions for such correctness are

sign(̂zrt ) = sign(θ∗
rt ) ∀(r, t) ∈ S := {(r, t) ∈ E} and(23a)

θ̂ru = 0 for all (r, u) ∈ Sc := E \ S.(23b)

The �1-regularized logistic regression problem (7) is convex; however, for
p � n, it need not be strictly convex, so that there may be multiple optimal solu-
tions. The following lemma, proved in Appendix A, provides sufficient conditions
for shared sparsity among optimal solutions, as well as uniqueness of the optimal
solution:
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LEMMA 1. Suppose that there exists an optimal primal solution θ̂ with as-
sociated optimal dual vector ẑ such that ‖̂zSc‖∞ < 1. Then any optimal primal
solution θ̃ must have θ̃Sc = 0. Moreover, if the Hessian sub-matrix [∇2�(θ̂)]SS is
strictly positive definite, then θ̂ is the unique optimal solution.

Based on this lemma, we construct a primal-dual witness (θ̂ , ẑ) with the follow-
ing steps.

(a) First, we set θ̂S as the minimizer of the partial penalized likelihood

θ̂S = arg min
(θS,0)∈Rp−1

{�(θ;Xn
1) + λn‖θS‖1}(24)

and set ẑS = sign(θ̂S).
(b) Second, we set θ̂Sc = 0 so that condition (23b) holds.
(c) In the third step, we obtain ẑSc from (21) by substituting in the values of θ̂ and

ẑS . Thus our construction satisfies conditions (23b) and (21).
(d) The final and most challenging step consists of showing that the stated scalings

of (n,p, d) imply that, with high-probability, the remaining conditions (23a)
and (22) are satisfied.

Our analysis in step (d) guarantees that ‖̂zSc‖∞ < 1 with high probability. More-
over, under the conditions of Theorem 1, we prove that the sub-matrix of the sam-
ple Fisher information matrix is strictly positive definite with high probability so
that by Lemma 1, the primal solution θ̂ is guaranteed to be unique.

It should be noted that, since S is unknown, the primal-dual witness method is
not a practical algorithm that could ever be implemented to solve �1-regularized
logistic regression. Rather, it is a proof technique that allows us to establish sign
correctness of the unique optimal solution.

4. Analysis under sample Fisher matrix assumptions. We begin by estab-
lishing model selection consistency when assumptions are imposed directly on the
sample Fisher matrix Qn, as opposed to on the population matrix Q∗, as in Theo-
rem 1. In particular, recalling the definition (20) of the sample Fisher information
matrix Qn = Ê[∇2�(θ∗)], we define the “good event,”

M(Xn
1) := {

Xn
1 ∈ {−1,+1}n×p | Qn satisfies (A1) and (A2)

}
.(25)

As in the statement of Theorem 1, the quantities L and K refer to constants inde-
pendent of (n,p, d). With this notation, we have the following:

PROPOSITION 1 (Fixed design). If the event M(Xn
1) holds, the sample size

satisfies n > Ld2 log(p), and the regularization parameter is chosen such that

λn ≥ 16(2−α)
α

√
logp

n
, then with probability at least 1 − 2 exp(−Kλ2

nn) → 1, the
following properties hold.
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(a) For each node r ∈ V , the �1-regularized logistic regression has a unique
solution, and so uniquely specifies a signed neighborhood N̂±(r).

(b) For each r ∈ V , the estimated signed neighborhood vector N̂±(r) correctly
excludes all edges not in the true neighborhood. Moreover, it correctly includes all
edges with |θrt | ≥ 10

Cmin

√
dλn.

Loosely stated, this result guarantees that if the sample Fisher information ma-
trix is “good,” then the conditional probability of successful graph recovery con-
verges to zero at the specified rate. The remainder of this section is devoted to the
proof of Proposition 1.

4.1. Key technical results. We begin with statements of some key technical
lemmas that are central to our main argument with their proofs deferred to Ap-
pendix B. The central object is the following expansion obtained by re-writing the
zero-subgradient condition as

∇�(θ̂;Xn
1) − ∇�(θ∗;Xn

1) = Wn − λnẑ,(26)

where we have introduced the short-hand notation Wn = −∇�(θ∗;Xn
1) for the

(p − 1)-dimensional score function,

Wn := −1

n

n∑
i=1

x
(i)
\r

{
x(i)
r − exp(

∑
t∈V \r θ∗

rt x
(i)
t ) − exp(−∑

t∈V \r θ∗
rt x

(i)
t )

exp(
∑

t∈V \r θ∗
rt x

(i)
t ) + exp(−∑

t∈V \r θ∗
rt x

(i)
t )

}
.

For future reference, note that Eθ∗[Wn] = 0. Next, applying the mean-value theo-
rem coordinate-wise to the expansion (26) yields

∇2�(θ∗;Xn
1)[θ̂ − θ∗] = Wn − λnẑ + Rn,(27)

where the remainder term takes the form

Rn
j = [∇2�

(−
θ(j);Xn

1
) − ∇2�(θ∗;Xn

1)
]T
j (θ̂ − θ∗)(28)

with
−
θ(j) a parameter vector on the line between θ∗ and θ̂ , and with [·]Tj denoting

the j th row of the matrix. The following lemma addresses the behavior of the term
Wn in this expansion:

LEMMA 2. For the specified mutual incoherence parameter α ∈ (0,1], we
have

P

(
2 − α

λn

‖Wn‖∞ ≥ α

4

)
≤ 2 exp

(
− α2λ2

n

128(2 − α)2 n + log(p)

)
,(29)

which converges to zero at rate exp(−cλ2
nn) as long as λn ≥ 16(2−α)

α

√
logp

n
.

See Appendix B.1 for the proof of this claim.
The following lemma establishes that the sub-vector θ̂S is an �2-consistent esti-

mate of the true sub-vector θ∗
S :
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LEMMA 3 (�2-consistency of primal subvector). If λnd ≤ C2
min

10Dmax
and

‖Wn‖∞ ≤ λn/4, then

‖θ̂S − θS‖2 ≤ 5

Cmin

√
dλn.(30)

See Appendix B.2 for the proof of this claim.
Our final technical lemma provides control on the remainder term (28).

LEMMA 4. If λnd ≤ C2
min

100Dmax

α
2−α

and ‖Wn‖∞ ≤ λn/4, then

‖Rn‖∞
λn

≤ 25Dmax

C2
min

λnd ≤ α

4(2 − α)
.

See Appendix B.3 for the proof of this claim.

4.2. Proof of Proposition 1. Using these lemmas, the proof of Proposition 1
is straightforward. Consider the choice of the regularization parameter, λn =
162−α

α

√
logp

n
. This choice satisfies the condition of Lemma 2, so that we may con-

clude that with probability greater than 1 − 2 exp(−cλ2
nn) → 1, we have

‖Wn‖∞ ≤ α

2 − α

λ

4
≤ λ

4

using the fact that α ≤ 1. The remaining two conditions that we need to apply the
technical lemmas concern upper bounds on the quantity λnd . In particular, for a

sample size satisfying n >
1002D2

max
C4

min

(2−α)4

α4 d2 logp, we have

λnd = 16(2 − α)

α

√
logp

n
d

≤ 16C2
min

100Dmax

α

(2 − α)

<
C2

min

10Dmax

so that the conditions of both Lemmas 3 and 4 are satisfied.
We can now proceed to the proof of Proposition 1. Recalling our shorthand

Qn = ∇2
θ �(θ∗;Xn

1) and the fact that we have set θ̂Sc = 0 in our primal-dual con-
struction, we can re-write condition (27) in block form as

Qn
ScS[θ̂S − θ∗

S ] = Wn
Sc − λnẑSc + Rn

Sc,(31a)

Qn
SS[θ̂S − θ∗

S ] = Wn
S − λnẑS + Rn

S.(31b)
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Since the matrix Qn
SS is invertible by assumption, the conditions (31) can be re-

written as

Qn
ScS(Qn

SS)−1[Wn
S − λnẑS + Rn

S] = Wn
Sc − λnẑSc + Rn

Sc .(32)

Rearranging yields the condition,

[Wn
Sc − Rn

Sc ] − Qn
ScS(Qn

SS)−1[Wn
S − Rn

S] + λnQ
n
ScS(Qn

SS)−1ẑS = λnẑSc .(33)

Strict dual feasibility. We now demonstrate that for the dual sub-vector ẑSc

defined by (33), we have ‖̂zSc‖∞ < 1. Using the triangle inequality and the mutual
incoherence bound (14), we have that

‖̂zSc‖∞ ≤ |||Qn
ScS(Qn

SS)−1|||∞
[‖Wn

S ‖∞
λn

+ ‖Rn
S‖∞
λn

+ 1
]

(34)

+ ‖Rn
Sc‖∞
λn

+ ‖Wn
Sc‖∞
λn

≤ (1 − α) + (2 − α)

[‖Rn‖∞
λn

+ ‖Wn‖∞
λn

]
.(35)

Next, applying Lemmas 2 and 4, we have

‖̂zSc‖∞ ≤ (1 − α) + α

4
+ α

4
= 1 − α

2

with probability converging to one.

Correct sign recovery. We next show that our primal sub-vector θ̂S defined by
(24) satisfies sign consistency, meaning that sgn(θ̂S) = sgn(θ∗

S ). In order to do so,
it suffices to show that

‖θS − θ∗
S‖∞ ≤ θ∗

min

2

recalling the notation θ∗
min := min(r,t)∈E |θ∗

rt |. From Lemma 3, we have ‖θS −
θ∗
S‖2 ≤ 5

Cmin

√
dλn so that

2

θ∗
min

‖θS − θ∗
S‖∞ ≤ 2

θ∗
min

‖θS − θ∗
S‖2

≤ 2

θ∗
min

5

Cmin

√
dλn,

which is less than one as long as θ∗
min ≥ 10

Cmin

√
dλn.
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5. Uniform convergence of sample information matrices. In this section
we complete the proof of Theorem 1 by showing that if the dependency (A1) and
incoherence (A2) assumptions are imposed on the population Fisher information
matrix then under the specified scaling of (n,p, d), analogous bounds hold for
the sample Fisher information matrices with probability converging to one. These
results are not immediate consequences of classical random matrix theory (e.g.,
[11]) since the elements of Qn are highly dependent. Recall the definitions

Q∗ := Eθ∗[η(X; θ∗)X\rXT\r ] and Qn := Ê[η(X; θ∗)X\rXT\r ],(36)

where Eθ∗ denotes the population expectation, and Ê denotes the empirical expec-
tation, and the variance function η was defined previously in (12). The following
lemma asserts that the eigenvalue bounds in assumption (A1) hold with high prob-
ability for sample covariance matrices:

LEMMA 5. Suppose that assumption (A1) holds for the population matrix Q∗
and Eθ∗[XXT ]. For any δ > 0 and some fixed constants A and B , we have

P

[

max

[
1

n

n∑
i=1

x
(i)
\r

(
x

(i)
\r

)T ]
≥ Dmax + δ

]
≤ 2 exp

(
−A

δ2n

d2 + B log(d)

)
,(37a)

P[
min(Q
n
SS) ≤ Cmin − δ] ≤ 2 exp

(
−A

δ2n

d2 + B log(d)

)
.(37b)

The following result is the analog for the incoherence assumption (A2) show-
ing that the scaling of (n,p, d) given in Theorem 1 guarantees that population
incoherence implies sample incoherence.

LEMMA 6. If the population covariance satisfies a mutual incoherence condi-
tion (14) with parameter α ∈ (0,1] as in assumption (A2), then the sample matrix
satisfies an analogous version, with high probability in the sense that

P

[
|||Qn

ScS(Qn
SS)−1|||∞ ≥ 1 − α

2

]
≤ exp

(
−K

n

d3 + log(p)

)
.(38)

Proofs of these two lemmas are provided in the following sections. Before pro-
ceeding, we take note of a simple bound to be used repeatedly throughout our
arguments. By definition of the matrices Qn(θ) and Q(θ) [see (20) and (11)], the
(j, k)th element of the difference matrix Qn(θ) − Q(θ) can be written as an i.i.d.
sum of the form Zjk = 1

n

∑n
i=1 Z

(i)
jk where each Z

(i)
jk is zero-mean and bounded

(in particular, |Z(i)
jk | ≤ 4). By the Azuma–Hoeffding bound [15], for any indices

j, k = 1, . . . , d and for any ε > 0, we have

P[(Zjk)
2 ≥ ε2] = P

[∣∣∣∣∣1

n

n∑
i=1

Z
(i)
jk

∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−ε2n

32

)
.(39)
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So as to simplify notation, throughout this section, we use K to denote a universal
positive constant, independent of (n,p, d). Note that the precise value and mean-
ing of K may differ from line to line.

5.1. Proof of Lemma 5. By the Courant–Fischer variational representa-
tion [16], we have


min(QSS) = min‖x‖2=1
xT QSSx

= min‖x‖2=1
{xT Qn

SSx + xT (QSS − Qn
SS)x}

≤ yT Qn
SSy + yT (QSS − Qn

SS)y,

where y ∈ R
d is a unit-norm minimal eigenvector of Qn

SS . Therefore, we have


min(Q
n
SS) ≥ 
min(QSS) − |||QSS − Qn

SS |||2 ≥ Cmin − |||QSS − Qn
SS |||2.

Hence it suffices to obtain a bound on the spectral norm |||QSS − Qn
SS |||2. Observe

that

|||Qn
SS − QSS |||2 ≤

(
d∑

j=1

d∑
k=1

(Zjk)
2

)1/2

.

Setting ε2 = δ2/d2 in (39) and applying the union bound over the d2 index pairs
(j, k) then yields

P[|||Qn
SS − QSS |||2 ≥ δ] ≤ 2 exp

(
−K

δ2n

d2 + 2 log(d)

)
.(40)

Similarly, we have

P

[

max

(
1

n

n∑
i=1

x
(i)
\r

(
x

(i)
\r

)T )
≥ Dmax

]

≤ P

[∥∥∥∥∥
∣∣∣∣∣
(

1

n

n∑
i=1

x
(i)
\r

(
x

(i)
\r

)T )
− Eθ∗[X\rXT\r ]

∥∥∥∥∥
∣∣∣∣∣
2

≥ δ

]
,

which obeys the same upper bound (40) by following the analogous argument.

5.2. Proof of Lemma 6. We begin by decomposing the sample matrix as the
sum Qn

ScS(Qn
SS)−1 = T1 + T2 + T3 + T4 where we define

T1 := Q∗
ScS[(Qn

SS)−1 − (Q∗
SS)−1],(41a)

T2 := [Qn
ScS − Q∗

ScS](Q∗
SS)−1,(41b)

T3 := [Qn
ScS − Q∗

ScS][(Qn
SS)−1 − (Q∗

SS)−1],(41c)

T4 := Q∗
ScS(Q∗

SS)−1.(41d)
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The fourth term is easily controlled; indeed, we have

|||T4|||∞ = |||Q∗
ScS(Q∗

SS)−1|||∞ ≤ 1 − α

by the incoherence assumption (A2). If we can show that |||Ti |||∞ ≤ α
6 for the re-

maining indices i = 1,2,3, then by our four term decomposition and the triangle
inequality, the sample version satisfies the bound (38), as claimed. We deal with
these remaining terms using the following lemmas:

LEMMA 7. For any δ > 0 and constants K,K ′, the following bounds hold:

P[|||Qn
ScS − Q∗

ScS |||∞ ≥ δ]
(42a)

≤ 2 exp
(
−K

nδ2

d2 + log(d) + log(p − d)

)
;

P[|||Qn
SS − Q∗

SS |||∞ ≥ δ]
(42b)

≤ 2 exp
(
−K

nδ2

d2 + 2 log(d)

)
;

P[|||(Qn
SS)−1 − (Q∗

SS)−1|||∞ ≥ δ]
(42c)

≤ 4 exp
(
−K

nδ2

d3 + K ′ log(d)

)
.

See Appendix C for the proof of these claims.

Control of first term. Turning to the first term, we re-factorize it as

T1 = Q∗
ScS(Q∗

SS)−1[Qn
SS − Q∗

SS](Qn
SS)−1

and then bound it (using the sub-multiplicative property |||AB|||∞ ≤ |||A|||∞|||B|||∞)
as follows:

|||T1|||∞ ≤ |||Q∗
ScS(Q∗

SS)−1|||∞|||Qn
SS − Q∗

SS |||∞|||(Qn
SS)−1|||∞

≤ (1 − α)|||Qn
SS − Q∗

SS |||∞{√
d|||(Qn

SS)−1|||2}
,

where we have used the incoherence assumption (A2). Using the bound (37b)
from Lemma 5 with δ = Cmin/2, we have |||(Qn

SS)−1|||2 = [
min(Q
n
SS)]−1 ≤ 2

Cmin

with probability greater than 1 − exp(−Kn/d2 + 2 log(d)). Next, applying the
bound (42b) with δ = c/

√
d , we conclude that with probability greater than

1 − 2 exp(−Knc2/d3 + log(d)), we have

|||Qn
SS − Q∗

SS |||∞ ≤ c/
√

d.

By choosing the constant c > 0 sufficiently small, we are guaranteed that

P[|||T1|||∞ ≥ α/6] ≤ 2 exp
(
−K

nc2

d3 + log(d)

)
.(43)
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Control of second term. To bound T2, we first write

|||T2|||∞ ≤ √
d|||(Q∗

SS)−1|||2|||Qn
ScS − Q∗

ScS |||∞

≤
√

d

Cmin
|||Qn

ScS − Q∗
ScS |||∞.

We then apply bound (42a) with δ = α
3

Cmin√
d

to conclude that

P[|||T2|||∞ ≥ α/3] ≤ 2 exp
(
−K

n

d3 + log(p − d)

)
.(44)

Control of third term. Finally, in order to bound the third term T3, we apply
the bounds (42a) and (42b), both with δ = √

α/3, and use the fact that log(d) ≤
log(p − d) to conclude that

P[|||T3|||∞ ≥ α/3] ≤ 4 exp
(
−K

n

d3 + log(p − d)

)
.(45)

Putting together all of the pieces, we conclude that

P[|||Qn
ScS(Qn

SS)−1|||∞ ≥ 1 − α/2] = O
(

exp
(
−K

n

d3 + log(p)

))
as claimed.

6. Experimental results. We now describe experimental results that illustrate
some consequences of Theorem 1, for various types of graphs and scalings of
(n,p, d). In all cases, we solved the �1-regularized logistic regression using special
purpose interior-point code developed by Koh, Kim and Boyd [20].

We performed experiments for three different classes of graphs: four-nearest
neighbor lattices, (b) eight-nearest neighbor lattices and (c) star-shaped graphs as
illustrated in Figure 1. Given a distribution Pθ∗ of the Ising form (1), we generated
random data sets {x(1), . . . , x(n)} by Gibbs sampling for the lattice models, and by
exact sampling for the star graph. For a given graph class and edge strength ω > 0,
we examined the performance of models with mixed couplings meaning that θ∗

st =
±ω with equal probability or with positive couplings meaning that θ∗

st = ω for all
edges (s, t). In all cases, we set the regularization parameter λn as a constant factor

of
√

logp
n

as suggested by Theorem 1. For any given graph and coupling type, we
performed simulations for sample sizes n scaling as n = 10βd log(p) where the
control parameter β ranged from 0.1 to upwards of 2, depending on the graph type.

Figure 2 shows results for the 4-nearest-neighbor grid model, illustrated in Fig-
ure 1(a) for three different graph sizes p ∈ {64,100,225} with mixed couplings
[panel (a)] and attractive couplings [panel (b)]. Each curve corresponds to a given
problem size, and corresponds to the success probability versus the control para-
meter β . Each point corresponds to the average of N = 200 trials. Notice how,
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FIG. 1. Illustrations of different graph classes used in simulations. (a) Four-nearest neighbor
grid (d = 4). (b) Eight-nearest neighbor grid (d = 8). (c) Star-shaped graph [d = �(p), or
d = �(log(p))].

despite the very different regimes of (n,p) that underlie each curve, the different
curves all line up with one another quite well. This fact shows that for a fixed de-
gree graph (in this case deg = 4), the ratio n/ log(p) controls the success/failure
of our model selection procedure which is consistent with the prediction of Theo-
rem 1. Figure 3 shows analogous results for the 8-nearest-neighbor lattice model
(d = 8), for the same range of problem size p ∈ {64,100,225} and for both mixed
and attractive couplings. Notice how once again the curves for different problem
sizes are all well aligned which is consistent with the prediction of Theorem 1.

FIG. 2. Plots of success probability P[N̂±(r) = N (r),∀r] versus the control parameter
β(n,p,d) = n/[10d log(p)] for Ising models on 2-D grids with four nearest-neighbor interac-
tions (d = 4). (a) Randomly chosen mixed sign couplings θ∗

st = ±0.50. (b) All positive couplings
θ∗
st = 0.50.



HIGH-DIMENSIONAL ISING MODEL SELECTION 1307

FIG. 3. Plots of success probability P[N̂±(r) = N (r),∀r] versus the control parameter
β(n,p,d) = n/[10d log(p)] for Ising models on 2-D grids with eight nearest-neighbor interac-
tions (d = 8). (a) Randomly chosen mixed sign couplings θ∗

st = ±0.25. (b) All positive couplings
θ∗
st = 0.25.

For our next set of experiments, we investigate the performance of our method
for a class of graphs with unbounded maximum degree d . In particular, we con-
struct star-shaped graphs with p vertices by designating one node as the hub
and connecting it to d < (p − 1) of its neighbors. For linear sparsity, we choose
d = �0.1p�, whereas for logarithmic sparsity we choose d = �log(p)�. We again
study a triple of graph sizes p ∈ {64,100,225}, and Figure 4 shows the resulting

FIG. 4. Plots of success probability P[N̂±(r) = N (r),∀r] versus the control parameter
β(n,p,d) = n/[10d log(p)] for star-shaped graphs for attractive couplings with (a) logarithmic
growth in degrees, (b) linear growth in degrees.
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curves of success probability versus control parameter β = n/[10d log(p)]. Panels
(a) and (b) correspond, respectively, to the cases of logarithmic and linear degrees.
As with the bounded degree models in Figure 2 and 3, these curves align with one
another showing a transition from failure to success with probability one.

Although the purpose of our experiments is mainly to illustrate the conse-
quences of Theorem 1, we also include a comparison of our nodewise �1-penalized
logistic regression-based method to two other graph estimation procedures. For the
comparison, we use a star-shaped graph as in the previous plot, with one node des-
ignated as the hub connected to d = �0.1p� of its neighbors. It should be noted
that among all graphs with a fixed total number of edges, this class of graphs is
among the most difficult for our method to estimate. Indeed, the sufficient con-
ditions of Theorem 1 scale logarithmically in the graph size p but polynomially
in the maximum degree d; consequently, for a fixed total number of edges, our
method requires the most samples when all the edges are connected to the same
node, as in a star-shaped graph.

For comparative purposes, we also illustrate the performance of the PC algo-
rithm of Spirtes, Glymour and Scheines [30] as well as the maximum weight tree
method of Chow and Liu [7]. Since the star graph is a tree (cycle-free), both of
these methods are applicable in this case. The PC algorithm is targeted to learn-
ing (equivalence classes of) directed acyclic graphs, and consists of two stages. In
the first stage it starts from a completely connected undirected graph, and itera-
tively removes edges based on conditional independence tests so that at the end
of this stage it is left with an undirected graph which is called a skeleton. In the
second stage, it partially directs some of the edges in the skeleton so as to obtain
a completed partially directed acyclic graph which corresponds to an equivalence
class of directed acyclic graphs. As pointed out by Kalisch and Bühlmann [18],
for high-dimensional problems, the output of the first stage, which is the undi-
rected skeleton graph, could provide a useful characterization of the dependencies
in the data. Following this suggestion, we use the skeleton graph determined by
the first stage of the PC algorithm as an estimate of the graph structure. We use
the pcalg R-package [18] as an implementation of the PC algorithm which uses
partial correlations to test conditional independencies.

The Chow–Liu algorithm [7] is a method for exact maximum likelihood struc-
ture selection which is applicable to the case of trees. More specifically, it chooses,
from among all trees with a specified number of edges, the tree that minimizes the
Kullback–Leibler divergence to the empirical distribution defined by the samples.
From an implementational point of view, it starts with a completely connected
weighted graph with edge weights equal to the empirical mutual information be-
tween the incident node variables of the edge and then computes its maximum
weight spanning tree. Since our underlying model is a star-shaped graph with fewer
than (p − 1) edges, a spanning tree would necessarily include false positives. We
thus estimate the maximum weight forest with d edges instead where we supplied
the number of edges d in the true graph to the algorithm.
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FIG. 5. Plots of edge disagreement E[|{(s, t) | Êst 
= E∗
st }|] versus the control parameter β(n,

p,d) = n/[10d log(p)] for star-shaped graphs where the hub node has degree d = �(p). The results
here are shown for attractive couplings with θ∗

st = 0.25 for all edges (s, t) belonging to the edge set.
The �1-penalized logistic regression method (L1), the PC method (PC) and the maximum weight
forest method of Chow and Liu (CL) are compared for p = 64.

Figure 5 plots, for the three methods, the total number of edge disagreements
between the estimated graphs and the true graph versus the control parameter β =
n/[10d log(p)]. Even though this class of graphs is especially challenging for a
neighborhood-based method, the �1-penalized logistic-regression based method is
competitive with the Chow–Liu algorithm, and except at very small sample sizes,
it performs better than the PC algorithm for this problem.

7. Extensions to general discrete Markov random fields. Our method and
analysis thus far has been specialized to the case of the binary pairwise Markov
random fields. In this section, we briefly outline the extension to the case of gen-
eral discrete pairwise Markov random fields. (Recall that for discrete Markov ran-
dom fields, there is no loss of generality in assuming only pairwise interactions
since by introducing auxiliary variables, higher-order interactions can be refor-
mulated in a pairwise manner [34].) Let X = (X1, . . . ,Xp) be a random vector,
each variable Xi taking values in a set X of cardinality m, say X = {1,2, . . . ,m}.
Let G = (V ,E) denote a graph with p nodes corresponding to the p variables
{X1, . . . ,Xp}, and let {φs : X → R, s ∈ V } and {φst : X × X → R, (s, t) ∈ E}, re-
spectively, denote collections of potential functions associated with the nodes and
edges of the graph. These functions can be used to define a pairwise Markov ran-
dom field over (X1, . . . ,Xp), with density

P(x) ∝ exp
{∑

s∈V

φs(xs) + ∑
(s,t)∈E

φst (xs, xt )

}
.(46)
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Since X is discrete, each potential function φst can be parameterized as linear
combinations of {0,1}-valued indicator functions. In particular, for each s ∈ V and
j ∈ {1, . . . ,m − 1}, we define

I[xs = j ] =
{

1, if xs = j ,
0, otherwise.

Note we omit an indicator for xs = m from the list, since it is redundant given
the indicators for j = 1, . . . ,m − 1. In a similar fashion, we define the pairwise
indicator functions I[xs = j, xt = k], for (j, k) ∈ {1,2, . . . ,m − 1}2.

Any set of potential functions can then be written as

φs(xs) = ∑
j∈{1,...,m−1}

θ∗
s;j I[xs = j ] for s ∈ V ,

and

φst (xs, xt ) = ∑
(j,k)∈{1,...,m−1}2

θ∗
st;jkI[xs = j, xt = k] for (s, t) ∈ E.

Overall, the Markov random field can be parameterized in terms of the vector
θ∗
s ∈ R

m−1 for each s ∈ V , and the vector θ∗
st ∈ R

(m−1)2
associated with each edge.

In discussing graphical model selection, it is convenient to associate a vector θ∗
uv ∈

R
(m−1)2

to every pair of distinct vertices (u, v) with the understanding that θ∗
uv = 0

if (u, v) /∈ E.
With this set-up, we now describe a graph selection procedure that is the nat-

ural generalization of our procedure for the Ising model. As before we focus on
recovering for each vertex r ∈ V its neighborhood set and then combine the neigh-
borhood sets across vertices to form the graph estimate.

For a binary Markov random field (1), there is a unique parameter θ∗
rt associ-

ated with each edge (r, t) ∈ E. For m-ary models, in contrast, there is a vector
θ∗
rt ∈ R

(m−1)2
of parameters associated with any edge (r, t). In order to describe

a recovery procedure for the edges, let us define a matrix �∗\r ∈ R
(m−1)2×(p−1)

where column u is given by the vector θ∗
ru. Note that unless vertex r is connected

to all of its neighbors, many of the matrix columns are zero. In particular, the prob-
lem of neighborhood estimation for vertex r corresponds to estimating the column
support of the matrix �∗\r—that is,

N (r) = {
u ∈ V \ {r} | ‖θ∗

ru‖2 
= 0
}
.

In order to estimate this column support, we consider the conditional distribu-
tion of Xr given the other variables X\{r} = {Xt |t ∈ V \ {r}}. For a binary model,
this distribution is of the logistic form while for a general pairwise MRF, it takes
the form

P�[Xr = j | X\r = x\r ] = exp(θ∗
r;j + ∑

t∈V \{r}
∑

k θ∗
rt;jkI[xt = k])∑

� exp(θ∗
r;� + ∑

t∈V \{r}
∑

k θ∗
rt;�kI[xt = k]) .(47)
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Thus, Xr can be viewed as the response variable in a multiclass logistic regression
in which the indicator functions associated with the other variables,{

I[xt = k], t ∈ V \ {r}, k ∈ {1,2, . . . ,m − 1}},
play the role of the covariates.

Accordingly, one method of recovering the row support of �∗\r is by performing
multiclass logistic regression of Xr on the rest of the variables X\r using a block
�2/�1 penalty of the form

|||�\r |||2,1 := ∑
u∈V \{r}

‖θru‖2.

More specifically, let Xn
1 = {x(1), . . . , x(n)} denote an i.i.d. set of n samples, drawn

from the discrete MRF (46). In order to estimate the neighborhood of node r , we
solve the following convex program:

min
�\r∈R(m−1)2×(p−1)

{�(�\r;Xn
1) + λn|||�\r |||2,1},(48)

where �(�\r;Xn
1) := 1

n

∑n
i=1 log P�[x(i)

r | x
(i)
\r ] is the rescaled multiclass logistic

likelihood defined by the conditional distribution (47), and λn > 0 is a regulariza-
tion parameter.

The convex program (48) is the multiclass logistic analog of the group Lasso,
a type of relaxation that has been studied in previous and on-going work on linear
and logistic regression (e.g., [19, 22, 25, 38]). It should be possible to extend our
analysis from the preceding sections so as to obtain similar high-dimensional con-
sistency rates for this multiclass setting; the main difference is the slightly different
sub-differential associated with the block �2/�1 norm. See Obozinski, Wainwright
and Jordan [25] for some related work on support recovery using �2/�1 block-
regularization for multivariate linear regression.

8. Conclusion. We have shown that a technique based on �1-regularized lo-
gistic regression can be used to perform consistent model selection in binary Ising
graphical models, with polynomial computational complexity and sample com-
plexity logarithmic in the graph size. Our analysis applies to the high-dimensional
setting, in which both the number of nodes p and maximum neighborhood sizes
d are allowed to grow as a function of the number of observations n. Simula-
tion results show the accuracy of these theoretical predictions. For bounded degree
graphs, our results show that the structure can be recovered with high probabil-
ity once n/ log(p) is sufficiently large. Up to constant factors, this result matches
known information-theoretic lower bounds [29]. Overall, our experimental results
are consistent with the conjecture that logistic regression procedure fails with high
probability for sample sizes n that are smaller than O(d logp). It would be interest-
ing to prove such a converse result, to parallel the known upper and lower thresh-
olds for success/failure of �1-regularized linear regression, or the Lasso (see [33]).
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As discussed in Section 7, although the current analysis is applied to binary
Markov random fields, the methods of this paper can be extended to general dis-
crete graphical models with a higher number of states using a multinomial likeli-
hood and some form of block regularization. It should also be possible and would
be interesting to obtain high-dimensional rates in this setting. A final interesting
direction for future work is the case of samples drawn in a non-i.i.d. manner from
some unknown Markov random field; we suspect that similar results would hold
for weakly dependent sampling schemes.

APPENDIX A: PROOF OF UNIQUENESS LEMMA

In this appendix, we prove Lemma 1. By Lagrangian duality, the penalized prob-
lem (7) can be written as an equivalent constrained optimization problem over the
ball ‖θ‖1 ≤ C(λn), for some constant C(λn) < +∞. Since the Lagrange multiplier
associated with this constraint—namely, λn—is strictly positive, the constraint is
active at any optimal solution so that ‖θ‖1 is constant across all optimal solutions.

By the definition of the �1-subdifferential, the subgradient vector ẑ can be ex-
pressed as a convex combination of sign vectors of the form

ẑ = ∑
v∈{−1,+1}p−1

αvv,(49)

where the weights αv are nonnegative and sum to one. In fact, these weights cor-
respond to an optimal vector of Lagrange multipliers for an alternative formu-
lation of the problem in which αv is the Lagrange multiplier for the constraint
〈v, θ〉 ≤ C(λn). From standard Lagrangian theory [3], it follows that any other
optimal primal solution θ̃ must minimize the associated Lagrangian—or equiva-
lently, satisfy (21)—and moreover must satisfy the complementary slackness con-
ditions αv{〈v, θ̃〉 − C} = 0 for all sign vectors v. But these conditions imply that
〈̂z, θ̃〉 = C = ‖θ̃‖1 which cannot occur if θ̃j 
= 0 for some index j for which
|̂zj | < 1. We thus conclude that θ̃Sc = 0 for all optimal primal solutions.

Finally, given that all optimal solutions satisfy θSc = 0, we may consider the
restricted optimization problem subject to this set of constraints. If the principal
submatrix of the Hessian is positive definite, then this sub-problem is strictly con-
vex so that the optimal solution must be unique.

APPENDIX B: PROOFS FOR TECHNICAL LEMMAS

In this section, we provide proofs of Lemmas 2, 3 and 4, previously stated in
Section 4.

B.1. Proof of Lemma 2. Note that any entry of Wn has the form Wn
u =

1
n

∑n
i=1 Z

(i)
u where for i = 1,2, . . . , n, the variables

Z(i)
u := x

(i)
\r

{
x(i)
r − Pθ∗

[
xr = 1 | x(i)

\r
] + Pθ∗

[
xr = −1 | x(i)

\r
]}
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are zero-mean under Pθ∗ , i.i.d. and bounded (|Z(i)
u | ≤ 2). Therefore, by the Azuma-

Hoeffding inequality [15], we have, for any δ > 0, P[|Wn
u | > δ] ≤ 2 exp(−nδ2

8 ).
Setting δ = αλn

4(2−α)
, we obtain

P

[
2 − α

λn

|Wn
u | > α

4

]
≤ 2 exp

(
− α2λ2

n

128(2 − α)2 n

)
.

Finally, applying a union bound over the indices u of Wn yields

P

[
2 − α

λn

‖Wn‖∞ >
α

4

]
≤ 2 exp

(
− α2λ2

n

128(2 − α)2 n + log(p)

)
as claimed.

B.2. Proof of Lemma 3. Following a method used in a different context by
Rothman et al. [28], we define the function G : Rd → R by

G(uS) := �(θ∗
S + uS;Xn

1) − �(θ∗
S ;Xn

1) + λn(‖θ∗
S + uS‖ − ‖θ∗

S‖).(50)

It can be seen from (24) that û = θ̂S − θ∗
S minimizes G. Moreover, G(0) = 0 by

construction; therefore, we must have G(û) ≤ 0. Note also that G is convex. Sup-
pose that we show that for some radius B > 0, and for u ∈ R

d with ‖u‖2 = B , we
have G(u) > 0. We then claim that ‖û‖2 ≤ B . Indeed, if û lay outside the ball of
radius B , then the convex combination t û + (1 − t)(0) would lie on the boundary
of the ball, for an appropriately chosen t ∈ (0,1). By convexity,

G
(
t û + (1 − t)(0)

) ≤ tG(û) + (1 − t)G(0) ≤ 0,

contradicting the assumed strict positivity of G on the boundary.
It thus suffices to establish strict positivity of G on the boundary of the ball

with radius B = Mλn

√
d where M > 0 is a parameter to be chosen later in the

proof. Let u ∈ R
d be an arbitrary vector with ‖u‖2 = B . Recalling the notation

W = ∇�(θ∗;Xn
1), by a Taylor series expansion of the log likelihood component

of G, we have

G(u) = WT
S u + uT [∇2�(θ∗

S + αu)]u + λn(‖θ∗
S + uS‖ − ‖θ∗

S‖)(51)

for some α ∈ [0,1]. For the first term, we have the bound

|WT
S u| ≤ ‖WS‖∞‖u‖1 ≤ ‖WS‖∞

√
d‖u‖2 ≤ (

λn

√
d
)2 M

4
,(52)

since ‖WS‖∞ ≤ λn

4 by assumption.
Applying the triangle inequality to the last term in the expansion (51) yields

λn‖θ∗
S + uS‖1 − ‖θ∗

S‖1 ≥ −λn‖uS‖1.

Since ‖uS‖1 ≤ √
d‖uS‖2, we have

λn‖θ∗
S + uS‖1 − ‖θ∗

S‖1 ≥ −λn

√
d‖uS‖2 = −M

(√
dλn

)2
.(53)
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Finally, turning to the middle Hessian term, we have

q∗ := 
min
(∇2�(θ∗

S + αu;Xn
1)

)
≥ min

α∈[0,1]
min
(∇2�(θ∗

S + αuS;Xn
1)

)
= min

α∈[0,1]
min

[
1

n

n∑
i=1

η
(
x(i); θ∗

S + αuS

)
x

(i)
S

(
x

(i)
S

)T ]
.

By a Taylor series expansion of η(x(i); ·), we have

q∗ ≥ 
min

[
1

n

n∑
i=1

η
(
x(i); θ∗

S

)
x

(i)
S

(
x

(i)
S

)T ]

− max
α∈[0,1]

∥∥∥∥∥
∣∣∣∣∣1

n

n∑
i=1

η′(x(i); θ∗
S + αuS

)(
uT

S x
(i)
S

)
x

(i)
S

(
x

(i)
S

)T ∥∥∥∥∥
∣∣∣∣∣
2

= 
min(Q
∗
SS) − max

α∈[0,1]

∥∥∥∥∥
∣∣∣∣∣1

n

n∑
i=1

η′(x(i); θ∗
S + αuS

)(〈
uS, x

(i)
S

〉)
x

(i)
S

(
x

(i)
S

)T ∥∥∥∥∥
∣∣∣∣∣
2

≥ Cmin − max
α∈[0,1]

∥∥∥∥∥
∣∣∣∣∣1

n

n∑
i=1

η′(x(i); θ∗
S + αuS

)(〈
uS, x

(i)
S

〉)
x

(i)
S

(
x

(i)
S

)T
︸ ︷︷ ︸

∥∥∥∥∥
∣∣∣∣∣
2

A(α)

.

It remains to control the spectral norm of the matrices A(α), for α ∈ [0,1]. For
any fixed α ∈ [0,1] and y ∈ R

d with ‖y‖2 = 1, we have

〈y,A(α)y〉 = 1

n

n∑
i=1

η′(x(i); θ∗
S + αuS

)[〈
uS, x

(i)
S

〉][〈
x

(i)
S , y

〉]2

≤ 1

n

n∑
i=1

∣∣η′(x(i); θ∗
S + αuS

)∣∣∣∣〈uS, x
(i)
S

〉∣∣[〈x(i)
S , y

〉]2
.

Now note that |η′(x(i); θ∗
S + αuS)| ≤ 1, and∣∣〈uS, x

(i)
S

〉∣∣ ≤ √
d‖uS‖2 = Mλnd.

Moreover, we have

1

n

n∑
i=1

(〈
x

(i)
S , y

〉)2 ≤
∥∥∥∥∥
∣∣∣∣∣1

n

n∑
i=1

x
(i)
S

(
x

(i)
S

)T ∥∥∥∥∥
∣∣∣∣∣
2

≤ Dmax

by assumption. Combining these pieces, we obtain

max
α∈[0,1]|||A(α)|||2 ≤ DmaxMλnd ≤ Cmin/2,
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assuming that λn ≤ Cmin
2MDmaxd

. We verify this condition momentarily, after we have
specified the constant M .

Under this condition, we have shown that

q∗ := 
min
(∇2�(θ∗

S + αu;Xn
1)

) ≥ Cmin/2.(54)

Finally, combining the bounds (52), (53), and (54) in the expression (51), we con-
clude that

G(uS) ≥ (
λn

√
d
)2

{
−1

4
M + Cmin

2
M2 − M

}
.

This expression is strictly positive for M = 5/Cmin. Consequently, as long as

λn ≤ Cmin

2MDmaxd
= C2

min

10Dmaxd

as assumed in the statement of the lemma, we are guaranteed that

‖uS‖2 ≤ Mλn

√
d = 5

Cmin
λn

√
d

as claimed.

B.3. Proof of Lemma 4. We first show that the remainder term Rn satisfies
the bound ‖Rn‖∞ ≤ Dmax‖θ̂S − θ∗

S‖2
2. Then the result of Lemma 3—namely, that

‖θ̂S − θ∗
S‖2 ≤ 5

Cmin
λn

√
d—can be used to conclude that

‖Rn‖∞
λn

≤ 25Dmax

C2
min

λnd

as claimed in Lemma 4.
Focusing on element Rn

j for some index j ∈ {1, . . . , p}, we have

Rn
j = [∇2�

(−
θ(j);x) − ∇2�(θ∗;x)

]T
j [θ̂ − θ∗]

= 1

n

n∑
i=1

[
η
(
x(i); −

θ(j)) − η
(
x(i); θ∗)][

x(i)(x(i))T ]T
j [θ̂ − θ∗]

for some point
−
θ(j) = tj θ̂ + (1 − tj )θ

∗. Setting g(t) = 4 exp(2t)

[1+exp(2t)]2 , note that

η(x; θ) = g(xr

∑
t∈V \r θrtxt ). By the chain rule and another application of the

mean value theorem, we then have

Rn
j = 1

n

n∑
i=1

g′(=
θ(j)T x(i))(x(i))T [−

θ(j) − θ∗]{
x

(i)
j

(
x(i))T [θ̂ − θ∗]}

= 1

n

n∑
i=1

{
g′(=

θ(j)T x(i))x(i)
j

}{[−
θ(j) − θ∗]T

x(i)(x(i))T [θ̂ − θ∗]},
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where
=
θ(j) is another point on the line joining θ̂ and θ∗. Setting ai := {g′(=

θ(j)T ×
x(i))x

(i)
j } and bi := {[−

θ(j) − θ∗]T x(i)(x(i))T [θ̂ − θ∗]}, we have

|Rn
j | = 1

n

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤ 1

n
‖a‖∞‖b‖1.

A calculation shows that ‖a‖∞ ≤ 1, and

1

n
‖b‖1 = tj [θ̂ − θ∗]T

{
1

n

n∑
i=1

x(i)(x(i))T }
[θ̂ − θ∗]

= tj [θ̂S − θ∗
S ]T

{
1

n

n∑
i=1

x
(i)
S

(
x

(i)
S

)T }
[θ̂S − θ∗

S ]

≤ Dmax‖θ̂S − θ∗
S‖2

2,

where the second line uses the fact that θ̂Sc = θ∗
Sc = 0. This concludes the proof.

APPENDIX C: PROOF OF LEMMA 7

Recall from the discussion leading up to the bound (39) that element (j, k) of
the matrix difference Qn − Q∗, denoted by Zjk , satisfies a sharp tail bound. By
definition of the �∞-matrix norm, we have

P[|||Qn
ScS − Q∗

ScS |||∞ ≥ δ] = P

[
max
j∈Sc

∑
k∈S

|Zjk| ≥ δ

]

≤ (p − d)P

[∑
k∈S

|Zjk| ≥ δ

]
,

where the final inequality uses a union bound, and the fact that |Sc| ≤ p − d . Via
another union bound over the row elements

P

[∑
k∈S

|Zjk| ≥ δ

]
≤ P[∃k ∈ S||Zjk| ≥ δ/d]

≤ dP[|Zjk| ≥ δ/d];
we then obtain

P[|||Qn
ScS − Q∗

ScS |||∞ ≥ δ] ≤ (p − d)dP[|Zjk| ≥ δ/d]
from which the claim (42a) follows by setting ε = δ/d in the Hoeffding
bound (39). The proof of bound (42b) is analogous with the pre-factor (p − d)

replaced by d .
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To prove the last claim (42c), we write

|||(Qn
SS)−1 − (Q∗

SS)−1|||∞ = |||(Q∗
SS)−1[Q∗

SS − Qn
SS](Qn

SS)−1|||∞
≤ √

d|||(Q∗
SS)−1[Q∗

SS − Qn
SS](Qn

SS)−1|||2
≤ √

d|||(Q∗
SS)−1|||2|||Q∗

SS − Qn
SS |||2|||(Qn

SS)−1|||2

≤
√

d

Cmin
|||Q∗

SS − Qn
SS |||2|||(Qn

SS)−1|||2.
From the proof of Lemma 5, in particular equation (40), we have

P

[
|||(Qn

SS)−1|||2 ≥ 2

Cmin

]
≤ 2 exp

(
−K

δ2n

d2 + B log(d)

)
for a constant B . Moreover, from (40), we have

P
[|||Qn

SS − QSS |||2 ≥ δ/
√

d
] ≤ 2 exp

(
−K

δ2n

d3 + 2 log(d)

)
so that the bound (42c) follows.
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