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Abstract. The fast Gauss transform of L. Greengard and J. Strain [SIAM J. Sci. Statist.
Comput., 12 (1991), pp. 79–94] reduces the computational complexity of the evaluation of the sum
of N Gaussians at M points in d-dimensional space from O(MN) to O(M + N) floating-point
operations. In this note, we provide numerical evidence that the error estimate of Lemma 2.1 in
[SIAM J. Sci. Statist. Comput., 12 (1991), pp. 79–94] is erroneous and then proceed to calculate a
replacement error estimate for the fast Gauss transform, incorporating an improved upper bound for
Hermite functions.
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The direct computation of the discrete Gauss transform in d-dimensions, that is,
the evaluation of the sum of N Gaussians at M points, requires O(MN) operations.
The computational complexity of this task has been reduced by Greengard and Strain
[2] to O(M + N) by means of the fast Gauss transform algorithm. Without loss of
generality, the algorithm assumes that all the points involved in the computation are
contained within the unit hypercube [0, 1]d.

At the heart of this algorithm lies the following result [3, Lemma 2.1].
Let N points sj lie in a box B = {s ∈ [0, 1]d : ||s − c||∞ <

√
δ/2} with center c

and side length
√
δ. Then, the Gaussian field

G(x) =
N∑
j=1

qje
−||x−sj ||22/δ(1)

is equal to a single Hermite expansion about c:

G(x) =
∑
α≥0

Aαhα

(
x− c√

δ

)
.(2)

The coefficients Aα are given by

Aα =
1

α!

N∑
j=1

qj

(
sj − c√

δ

)α

.(3)

Here α is a multi-index and the notation α > p implies αi > p for i = 1, . . . , d.
The Hermite functions hn (with nonclassical normalization parameter) are defined by

hn(x) = e−x2

Hn(x), where Hn are the Hermite polynomials [1]. Further, Lemma 2.1
of [3] claims that the error Ep due to the truncation of the series (2) after pd terms
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Fig. 1. Quotient of the actual error divided by the error estimate of [3, Lemma 2.1].

satisfies the bound∣∣∣∣∣e−||x−sj ||22/δ −
∑
α<p

Aαhα

(
x− c√

δ

)∣∣∣∣∣ ≤ Q 2.75d(p!)−d/2 2−(p+1)d/2,(4)

where Q =
∑ |qj |.

However, the error estimate (4) is erroneous and underestimates the actual er-
ror introduced after the truncation of the series. For example, consider the two-
dimensional case of a single Gaussian with parameter δ = 1 at source point s ≡ (0, 0)
and weight q = 1. Indeed, Figure 1 shows the quotient of the actual error divided
by the estimate (4) evaluated on a 50 × 50 grid on the unit square. The series are
truncated after the first 25 terms.

We now construct a replacement error estimate for the fast Gauss transform. For
a source point s, an evaluation point x and the center c of a box B we introduce the
following componentwise notation:

up(xi, si, ci) =

p−1∑
ni=0

1

ni!

(
xi − ci√

δ

)ni

hni

(
yi − ci√

δ

)
, 1 ≤ i ≤ d,(5)

vp(xi, si, ci) =

∞∑
ni=p

1

ni!

(
xi − ci√

δ

)ni

hni

(
yi − ci√

δ

)
, 1 ≤ i ≤ d,(6)

which we can use to write the corresponding Gaussian as

e−||x−s||22/δ =

d∏
j=1

(up(xi, si, ci) + vp(xi, si, ci)) .(7)

Assuming that the point s is contained in the box B = {s ∈ [0, 1]d : ||s − c||∞ <
r
√
δ/2} of side length r

√
2δ for some r < 1 [2, cf. Lemma 2.1] centered at c, and
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using the inequality for Hermite functions by Szász [4]

1

n!
|hn(x)| ≤ 2n/2√

n!
e−x2/2, n ≥ 0 and x ∈ R,(8)

and the properties of the geometric series, we have

up(xi, si, ci) ≤ 1 − rp

1 − r
, 1 ≤ i ≤ d,(9)

vp(xi, si, ci) ≤ 1√
p!

rp

1 − r
, 1 ≤ i ≤ d,(10)

and thus, from (7), we have

∣∣∣∣∣∣e
−||x−s||22/δ −

d∏
j=1

up(xi, si, ci)

∣∣∣∣∣∣ ≤ (1 − r)−d
d−1∑
k=0

(
d

k

)
(1 − rp)k

(
rp√
p!

)d−k

.(11)

Finally we can calculate an error estimate for the fast Gauss transform

∣∣∣∣∣e−||x−sj ||22/δ −
∑
α<p

Aαhα

(
x− c√

δ

)∣∣∣∣∣ ≤
Q

(1 − r)d

d−1∑
k=0

(
d

k

)
(1 − rp)k

(
rp√
p!

)d−k

.

Note that this error estimate and the error estimate of [2, Lemma 2.1] coincide when
d = 1, but they are distinct in higher dimensions. Of course, similar reasoning can be
directly applied to Lemmas 2.2 and 2.3 of [2] to obtain corresponding error estimates.
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