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Recent research has shown that virtually all algorithms aimed at the identification of communities
in networks are affected by the same main limitation: the impossibility to detect communities,
even when these are well-defined, if the average value of the difference between internal and external
node degrees does not exceed a strictly positive value, in literature known as detectability threshold.
Here, we counterintuitively show that the value of this threshold is inversely proportional to the
intrinsic quality of communities: the detection of well-defined modules is thus more difficult than
the identification of ill-defined communities.
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Real networks are often organized in local modules or
clusters called communities [1, 2]. In intuitive terms,
a community is a subgroup of nodes with a density of
internal connections larger than the density of exter-
nal links. The identification of communities is a cru-
cial step for the understanding of structural and dynam-
ical properties of networks, and, given the relevance of
the subject, last years have witnessed an explosion of
computer algorithms aimed to address this challenging
task [3]. Whereas the basic mechanisms of community
detection methods can be diverse, several recent papers
have pointed out a main limitation that affects many
identification algorithms: the existence of a so-called de-
tectability threshold [4–7]. To be more specific, this limi-
tation has been mainly investigated in the special case of
random block models composed of two subgroups where
internal and external node degrees are considered as in-
dependent variables extracted from Poisson distributions
with averages equal to 〈kin〉 and 〈kout〉, respectively. Al-
though intuition suggests the presence of a well-defined
community structure for any ∆ = 〈kin〉 − 〈kout〉 > 0, it
has been shown that community identification algorithms
are able to detect modular structure only when ∆ > ∆c,
where the detectability threshold ∆c =

√
〈kin〉+ 〈kout〉

is strictly larger than zero. So far, the main line of in-
vestigation on this topic has been characterized by differ-
ent proofs of the previous result, leading therefore to the
firm belief of a universal limitation potentially affecting
all community detection algorithms. In this paper, we
provide novel and contradictory results that may cause a
reconsideration of the notion of detectability of communi-
ties. We find that the value of the detectability threshold
increases as the “quality” of the communities increases.
In a few words, we counterintuitively show that the de-
tection of well-defined modules is more difficult than the
identification of ill-defined communities.

To this end, we consider a symmetric and weighted net-
work composed of two subgroups of identical size N . The
adjacency matrices of two subgroups are denoted with A

and B, respectively. The information regarding external
connections between nodes of the two subgroups is in-
stead encoded in the matrix C. The adjacency matrix
G of the entire network can be thus written in the block
form

G =

(
A C
CT B

)
. (1)

A, B and C are square matrices of dimensions N × N ,
and G is a symmetric matrix of dimensions 2N × 2N .
For simplicity, we concentrate our attention on the en-
semble of graphs generated according to the following
procedure. Both subgroups have the same internal de-
gree sequence kin = {kin1 , . . . , kinN }, and the same ex-
ternal degree sequence kout = {kout1 , . . . , koutN }. Apart
for such constraints, the graph is completely random in
the sense that connections among nodes are randomly
drawn with the only prescription of preserving the a pri-
ori given internal and external degree sequences [8]. In
the construction of our ensemble, we limit to the case in
which the subgroups are composed of a single connected
component, but we allow for the eventual presence of self-
loops and multiple connections among the same pairs of
nodes. Finally, in order to provide results easily com-
parable with those obtained in previous works, we focus
on the case in which the entries of the degree sequences
kin and kout are random variates extracted from Poisson
distributions with averages 〈kin〉 and 〈kout〉, respectively,
and the sum of these average values is subjected to the
constraint Σ = 〈kin〉+ 〈kout〉.

From now on, we analyze the ability to reveal the pres-
ence of the two subgroups of the second smallest eigen-
vector of the normalized laplacian L associated to the
adjacency matrix G. This method is very popular in
graph clustering, and represents a way to find the bi-
partition corresponding to the minimum of the so-called
normalized cut of the graph [9]. More importantly, this
approach is essentially equivalent to other spectral clus-
tering methodologies (modularity maximization and sta-
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tistical inference) as shown in a recent work by New-
man [10], so that the following results are potentially
valid for a more general class of community identifica-
tion algorithms. The normalized laplacian L associated
to the adjacency matrix G is defined as

L = 1−D−1/2GD−1/2 , (2)

where 1 is the identity matrix, and D is a diagonal ma-
trix whose diagonal elements are equal to the node de-
grees [11]. Let us denote with (ν2,v2) the second smallest
eigenpair of L. The bipartition corresponding to mini-
mum normalized cut is determined on the basis of the
signs of the components of v2 by placing each node in
one of two modules if its corresponding component in v2

is negative or positive [9]. For our purposes, it is thus im-
portant to determine whether these modules correspond
to the two pre-imposed subgroups of our network block
model or not.

Following the same lines of the approach described
in [7, 12], it is possible to show that the presence of mod-
ular structure is revealed by an eigenvector whose i-th
component behaves, on average, as

v∗i = qi
kini − kouti√
kini + kouti

, (3)

with qi = ±q if node i belongs to the first subgroup,
qi = ∓q otherwise, and q proper normalization constant.
The validity of the previous approximation can be deter-
mined by a direct comparison between the components
of the second smallest eigenvector v2 obtained in numer-
ical experiments and the r.h.s. of Eq. (3), as shown for
example in Fig. 1A. Using v∗ as ansatz in the eigenvalue
problem Lv∗ = ν∗v∗, it is possible to further determine
the associated eigenvalue as

ν∗ = 1− 〈k
2
in〉+ 〈k2out〉 − 2ξ

〈k2in〉 − 〈k2out〉
. (4)

In Eq. (4), 〈k2in〉 and 〈k2out〉 are the second moments of
the in- and out-degree distributions of the two groups
(for Poisson distributions, we have 〈k2in〉 = 〈kin〉2 + 〈kin〉
and 〈k2out〉 = 〈kout〉2 + 〈kout〉), while ξ, defined as

ξ =
∑

kin,kout

kini k
out
i P (kin, kout) , (5)

with P (kin, kout) probability to find a node with internal
and external degrees respectively equal to kin and kout,
represents the correlation between the number of internal
and external connections of the nodes in the network.
Please note that the correlation term ξ can be regulated
by simply permuting the entries of the in- and out-degree
sequences, and thus without changing the correspondent
distributions.
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Figure 1: Analysis of networks composed of two subgroups
of size N = 1024. Average internal and external degrees
are chosen such that their sum is Σ = 〈kin〉 + 〈kout〉 = 64.
In- and out-degree sequences are neutrally correlated in the
sense that the correlation term of Eq. (5) reads ξ = ξrand =
〈kin〉〈kout〉. A Numerical validation of the ansatz of Eq. (3).
Please note that here we are showing only the components
of the eigenvector v2 that correspond to nodes of one of the
two subgroups. Different colors and symbols correspond to
different choices of the difference ∆ = 〈kin〉−〈kout〉. B Linear
correlation coefficient between the r.h.s. of Eq. (3) and the
numerical estimation of the components of v2 as a function of
∆. C Sum of the components of v2 as a function of ∆. Only
the components corresponding to nodes of a single group are
considered. This sum is further divided by

√
N/2 in order

to obtain a number between zero and one. D Fraction of
correctly classified nodes as a function of ∆. In panels B,
C and D, the dashed lines stand for the prediction of the
detectability threshold ∆c =

√
Σ [Eq. (7)].

In order to determine the detectability threshold, we have
to understand whether ν∗ effectively represents the sec-
ond smallest eigenvalue ν2 of L. If this is true then com-
munities are detectable in terms of the components of the
eigenvector v∗ = v2 defined in Eq. (3), otherwise they are
not. The term of comparison of ν∗ is given by the ex-
pected value νrand of the second smallest eigenvalue of
the normalized laplacian of a random network with the
same average degree Σ = 〈kin〉+ 〈kout〉, whose value can
be estimated, thanks to the predictions by Chung and
collaborators [13, 14], as

νrand ' 1− 2√
〈kin〉+ 〈kout〉

. (6)

If ν∗ < νrand, this means that ν2 = ν∗ and the condi-
tions to reveal the presence of two subgroups are satis-
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Figure 2: Analysis of networks composed of two subgroups
of size N = 1024. Average internal and external degrees are
chosen such that their sum is Σ = 〈kin〉 + 〈kout〉 = 64. Dif-
ferent colors and symbols correspond to the three different
values of the correlation term ξ described in the text: ξmin

(green diamonds), ξrand (black circles), ξmax (blue squares).
All numerical results shown here correspond to average values
obtained in 100 realizations of the network models. A Numer-
ical estimation of the second smallest eigenvalue ν2 (symbols).
Full lines are obtained with Eq. (4). The gray area delimits
the expected spectral radius of the normalized laplacian of a
random graph with identical average degree [i.e., Eq. (6)]. B
Linear correlation coefficient between the components of v2

and the r.h.s. of Eq. (3) as a function of ∆ = 〈kin〉 − 〈kout〉.
Only the components of v2 corresponding to nodes of one of
the subgroups are considered. C Sum of the components of
v2 corresponding to nodes of one of the two subgroups as a
function of ∆. To generate numbers between zero and one,
this sum is divided by the constant factor

√
N/2. D Fraction

of nodes correctly classified as a function of ∆.

fied. If instead ν∗ > νrand, then ν2 = νrand, and the
two subgroups are not detectable by means of the com-
ponents of the second smallest eigenvector of the normal-
ized laplacian. The condition ν∗ = νrand determines the
detectability threshold ∆c, i.e., the minimal value of the
difference ∆ = 〈kin〉−〈kout〉 for which ν∗ equals the typ-
ical second smallest eigenvalue νrand of a random graph
with identical average degree Σ. As a direct comparison
between Eqs. (4) and (6) reveals, the value of ∆c does
not depend only on the average values of internal and ex-
ternal degrees, but also on the correlation term ξ defined
in Eq. (5). In the following, we consider three special
cases.

Neutrally correlated degree sequences. This is the case
usually considered in literature for the determination of

the detectability threshold. In- and out-degrees are con-
sidered as independent variables, so that the correlation
term reads ξ = ξrand = 〈kin〉〈kout〉. By equating the
r.h.s. of Eqs. (4) and (6), using the definition of the
second moments of Poisson distributions, and assuming
Σ� 1, we recover the well known result

∆c =
√

Σ . (7)

Such prediction is in perfect agreement with the results
of numerical experiments as reported in Figs. 1 and 2. To
monitor the transition between the undetectable and de-
tectable regimes, we use three different order parameters:
(i) The absolute value of the linear correlation coefficient
between the components of the eigenvector v2 (numeri-
cally estimated) and the r.h.s. of Eq. (3). Please note
that in the evaluation of the linear correlation coefficient
we consider only the first N components of v2, i.e., the
components corresponding to nodes inside the first sub-
group. (ii) The absolute value of the sum of the compo-
nents of the eigenvector v2 corresponding to nodes within
the first subgroup. For convenience, this sum is further
divided by the factor

√
N/2 to obtain numbers between

zero and one. (iii) Fraction of nodes correctly classified.
We consider the classification provided by the signs of
the components of the eigenvector v2 and compare it
with the pre-imposed division in two subgroups. All the
three order parameters clearly show the presence of a
transition, as a function of ∆, between a regime in which
the modules identified by the spectral algorithm do not
correspond to the pre-imposed subgroups, and a regime
in which the detected communities coincide instead with
them. More importantly, the value of ∆ for which such
transition occurs is well approximated by Eq. (7). In in-
tuitive terms, one could try to justify the detectability
threshold of Eq. (7) with the following argument. The
fact that internal and external degrees are independent
variables allows for the presence of nodes whose internal
degree is lower than their external number connections
even for ∆ > 0. The assignment to a specific group of
nodes with more external than internal connections is
technically incorrect, and the second smallest eigenvec-
tor of L provides indeed the right answer by “misplacing”
these nodes. Actually, the difference between internal
and external node degrees is a random variate that obeys
the so-called Skellam distribution with mean equal to ∆
and standard deviation equal to

√
Σ [15]. Thus, the sec-

ond smallest eigenvector of L starts to classify nodes in
the pre-imposed subgroups only when the average value
of the difference between internal and external degrees is
larger than the typical variability of the same variable.
This straightforward interpretation is, however, contra-
dicted by the following cases.

Positively correlated degree sequences. If we sort the en-
tries of both internal and external degree sequences in
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ascending (descending) order, then nodes with high in-
ternal degree have high external degree, and vice versa.
The re-arrangement inequality tells us that the corre-
lation term reads ξ = ξmax, being ξmax the maximum
value of ξ that can be reached for fixed entries in the
degree sequences [16]. Please note that in this case the
subgroups in our graph are “well-defined” communities.
Apart for extreme cases, we expect in fact that each node
in the network have more internal than external connec-
tions for every choice of ∆ > 0. According to the intu-
itive argument used to justify Eq. (7), we expect to see
a detectability threshold not only smaller than the one
given in Eq. (7), but also very close to zero. Contrary to
intuition, however, the detectability threshold becomes
larger (see Fig. 2). Although we cannot provide an exact
estimation of ∆c because we are not able to analytically
determine the value of ξmax, we can anyway see from our
Eq. (4) why this counterintuitive behavior is indeed ex-
pected. As ξ increases in fact, the r.h.s. of Eq. (4) gets
closer to the typical second smallest eigenvalue of a ran-
dom graph with average degree Σ [i.e., Eq. (6)]. We thus
require large values of ∆ in order to make ν∗ sufficiently
small.

Negatively correlated degree sequences. If we sort the en-
tries of the internal degree sequence in ascending (de-
scending) order, and those of the external degree se-
quence in descending (ascending) order, then nodes with
high internal degree have low external degree, and vice
versa. In this case, the re-arrangement inequality states
that the correlation term reads ξ = ξmin, being ξmin

the minimal value of ξ that can be reached for fixed en-
tries in the degree sequences [16]. This is the antithetic
case of the one just presented for positively correlated
degree sequences: even for large values of ∆, the pre-
imposed subgroups are “ill-defined” communities, in the
sense that it is very likely to find nodes with external de-
gree larger their internal degree. We should thus expect
a very large detectability threshold, but again this is ex-
pectation is violated. The r.h.s. of Eq. (4) decreases as ξ
decreases, so that we require smaller values of ∆ to make
ν∗ smaller than νrand. Although in this case, our predic-
tion of Eq. (4) fails to correctly describe the behavior of
the second smallest eigenvalue of the normalized lapla-
cian (see Fig. 2), our numerical computations show that
∆c = 0, and thus communities are always detectable if
〈kin〉 > 〈kout〉.

In summary, the ability of algorithms to identify commu-
nities in networks is dependent on their intrinsic quality.
We use the word “quality” in relation with the intuitive
notion of communities, and thus on the comparison be-
tween the number of internal and external connections at
the node level. A “well-defined” community is a subgroup
in which each node has more connections with other
nodes inside the community than with vertices outside
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Figure 3: Application of the algorithm by Blondel et al. to
the detection of communities in our network block model [17].
We plot the fraction of nodes that the algorithm correctly
classifies as a function of ∆ = 〈kin〉 − 〈kout〉. Different colors
and symbols correspond to different choices of ξ. Each point
represents the average performance of the algorithm in 100
realizations of the model. A Block model composed of two
subgroups of size N = 1024 and average degree Σ = 〈kin〉 +
〈kout〉 = 64. B Block model composed of four subgroups of
size N = 512 and average degree Σ = 〈kin〉+ 3〈kout〉 = 32.

of it, whereas an “ill-defined” community is a subgroup
in which many nodes have more connections outside than
inside the community. Intuitively, we should expect that
good communities are less challenging to be identified
than bad communities, but our results show the exact
contrary. One could argue that our results are not gen-
eral enough because they are based on the performance
of an algorithm that is “forced” to return a classification
in two modules, and the random block model on which
this algorithm is applied is also composed of two sub-
groups. These, however, do not seem serious limitations.
In Fig. 3, we report the results obtained with the popular
community detection algorithm by Blondel et al. [17]. It
is important to stress that this algorithm does not use any
previous knowledge regarding the number of subgroups
pre-imposed in our block model. Its performances are in
line with what shown so far for spectral algorithms: the
detection of well-defined communities is more challenging
than the identification of ill-defined communities. This is
not only valid for the case of two subgroups (Fig. 3A), but
applies also to higher numbers of subgroups (Fig. 3B).
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