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We study the fluctuation of the number of particles in ideal Bose�Einstein condensates,
both within the canonical and the microcanonical ensemble. Employing the Mellin�Barnes
transformation, we derive simple expressions that link the canonical number of condensate
particles, its fluctuation, and the difference between canonical and microcanonical fluctuations
to the poles of a Zeta function that is determined by the excited single-particle levels of the
trapping potential. For the particular examples of one- and three-dimensional harmonic traps
we explore the microcanonical statistics in detail, with the help of the saddle-point method.
Emphasizing the close connection between the partition theory of integer numbers and the
statistical mechanics of ideal Bosons in one-dimensional harmonic traps, and utilizing thermo-
dynamical arguments, we also derive an accurate formula for the fluctuation of the number
of summands that occur when a large integer is partitioned. � 1998 Academic Press

There is, essentially, only one problem in statistical thermo-
dynamics: the distribution of a given amount of energy E over
N identical systems.

Erwin Schro� dinger [1]

1. INTRODUCTION

The ideal Bose gas is customarily treated in the grand canonical ensemble, since
the evaluation of the canonical partition sum is impeded by the constraint that the
total particle number N be fixed. In contrast, after introducing a variable that is
conjugate to N, the fugacity z, the computation of the ensuing grand canonical
partition function 5(z, ;) requires merely the summation of geometric series, and all
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thermodynamic properties of the Bose gas are then obtained by taking suitable
derivatives of 5(z, ;) with respect to z or the inverse temperature ;.

There is, however, one serious failure of the grand canonical ensemble. Grand
canonical statistics predicts that the mean-square fluctuation ($2n&) gc of the &th
single-particle level's occupation equals (n&) gc ((n&) gc+1). Applied to the ground
state &=0, this gives

($2n0) gc =(n0) gc ((n0) gc+1)

even when the temperature T approaches zero, so that all N particles condense into
the ground state. But the implication of huge fluctuations, ($2n0) gc=N(N+1), is
clearly unacceptable; when all particles occupy the ground state, the fluctuation has
to die out.

This grand canonical fluctuation catastrophe has been discussed by generations
of physicists, and possible remedies have been suggested within the canonical
framework [2�4]. After the recent realization of Bose�Einstein condensates of
weakly interacting gases of alkali atoms [5�9] brought the problem back into the
focus of interest [10�13], significant steps towards its general solution could be
made. Ideal condensate fluctations have been computed for certain classes of single-
particle spectra, i.e., for certain trap types, both within the canonical ensemble
[11, 14], where the gas is still exchanging energy with some hypothetical heat bath,
and within the more appropriate microcanonical ensemble [10, 15, 16], where it is
completely isolated. Interestingly, canonical and microcanonical fluctuations have
been found to agree in the large-N-limit for one-dimensional harmonic trapping
potentials [10, 13], but to differ in the case of three-dimensional isotropic
harmonic traps [11, 15].

Yet, in the true spirit of theoretical physics one would clearly like to have more
than merely some formulas for condensate fluctuations in particular traps. Can't
one extract a common feature that underlies those formulas, such that simply
inspecting that very feature allows one to determine, without any actual calculation,
the temperature dependence of the condensate fluctuation, and to decide whether or
not canonical and microcanonical fluctuations are asymptotically equal?

It is such a refined understanding that we aim at in the present work. As will be
shown, the feature imagined above actually exists: It is the rightmost pole, in the
complex t-plane, of the Zeta function

Z(;, t)= :
�

&=1

1
(;=&)

t

that is furnished by the system's single-particle energies =& . In order to substantiate
this statement, we will proceed as follows: We start in the next section by deriving
simple expressions that relate the canonical number of ground state particles
(n0) cn , and its mean-square fluctuation ($2n0) cn , to Z(;, t). The key point
exploited there is the approximate equivalence of a trapped Bose gas in the conden-
sate regime to a system of Boltzmannian harmonic oscillators. This equivalence,

199BOSE CONDENSATE FLUCTUATIONS



which holds irrespective of the particular form of the trapping potential, implies
that both (n0) cn and ($2n0) cn can be expressed in terms of harmonic oscillator
sums, which explain the emergence of the spectral Zeta function Z(;, t) and can be
computed with the help of well-established techniques [17]. In Section III we then
evaluate these general canonical formulas for d-dimensional isotropic harmonic
traps, where Z(;, t) reduces to ordinary Riemann Zeta functions, and for aniso-
tropic harmonic traps, where it leads to Zeta functions of the Barnes type.

In Section IV we compare the canonical statistics of harmonically trapped gases
for d=1 and d=3 to their microcanonical counterparts. The strategy adopted
there��the calculation of microcanonical moments from the easily accessible corre-
sponding canonical moments by means of saddle-point inversions��is technically
rather cumbersome and certainly not to be recommended if one merely wishes to
obtain the microcanonical condensate fluctuations ($2n0) mc , but it explains in
precise detail just how the difference between the canonical and the microcanonical
ensemble comes into play, and why ($2n0)mc becomes asymptotically equal to
($2n0) cn in some cases, but not in others. A convenient expression for the
immediate determination of ($2n0) cn&($2n0) mc , based again on the spectral Zeta
function Z(;, t), is then derived in Section V. The final Section VI contains a
concluding discussion; three appendices offer technical details.

Since we restrict ourselves to non-interacting Bose gases, the main value of the
present work lies on the conceptual side��after all, the ideal Bose gas ought to be
properly understood��but it may well turn out to be of more than purely academical
importance: After it has been demonstrated now that the s-wave scattering length
in optically confined condensates can be tuned by varying an external magnetic
field [18], the creation of almost ideal Bose�Einstein condensates might become
feasible. If it did, then also the experimental investigation of the basic statistical
questions studied here, such as the connection between the temperature dependence
of the condensate fluctuation and the properties of the trap potential, should not
remain out of reach.

Finally, there is still another appealing side-aspect: Since the microcanonical
statistics of ideal Bosons in one-dimensional harmonic traps can be mapped to the
partition theory of integer numbers, a natural by-product of our work is a fairly
accurate formula for the fluctuation of the number of integer parts into which a
large integer may by decomposed. The derivation of that formula in Section V is
a beautiful example for the deep-rooted connection between partition theory and
statistical mechanics, quite in the sense of Schro� dinger's remark quoted above.

II. CANONICAL DESCRIPTION OF IDEAL
BOSE�EINSTEIN CONDENSATES

We consider a gas of non-interacting Bose particles confined in a trap with
discrete single-particle energies =& (&=0, 1, 2, ...) and stipulate that the ground
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state energy be equal to zero, =0=0. Starting from the grand canonical partition
sum

`
�

&=0

1
1&z exp(&;=&)

=5(z, ;), (1)

where ;=1�(kBT ) is the inverse temperature, we have the familiar expansion

5(z, ;)= :
�

N=0

zN :
E

e&;E0(E | N), (2)

with coefficients 0(E | N) denoting the number of microstates accessible to an
N-particle gas with total excitation energy E. Combinatorically speaking, 0(E | N)
is the number of possibilities for sharing the energy E among up to N particles��the
number Nex of particles that are actually excited and thus carry a part of E remains
unspecified.

The clear distinction between N and Nex is the starting point for studying statisti-
cal properties of Bose�Einstein condensates in gases with fixed particle number.
When Nex out of N Bose particles are excited, there remain N&Nex particles
forming the condensate, and the corresponding number of microstates (that is, the
number of possibilities for distributing the excitation energy E over exactly Nex

particles) is given by

0(E | Nex)&0(E | Nex&1)#8(Nex | E). (3)

Within the canonical ensemble, i.e., if the N-particle gas is in contact with some heat
bath of temperature T, the probability for finding Nex excited particles can then be
written as

pcn(Nex , ;)=
�E e&;E8(Nex | E)

�E e&;E �N
N$ex=0 8(N$ex | E)

, Nex�N. (4)

The expectation value (Nex) cn with respect to this distribution yields the canonical
ground state occupation number,

(n0) cn =N&(Nex) cn ; (5)

the canonical mean-square fluctuation of the number of condensate particles is
identical to the fluctuation of the number of excited particles,

($2n0) cn=($2Nex) cn

=(N 2
ex) cn&(Nex) 2

cn . (6)
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In order to calculate these cumulants, we consider the function

(1&z) 5(z, ;)#5ex(z, ;), (7)

which satisfies the identities

5ex(z, ;)= :
�

N=0

(zN&zN+1) :
E

e&;E0(E | N)

= :
�

N=0

zN :
E

e&;E[0(E | N)&0(E | N&1)] (8)

with 0(E | &1)=0. Hence, replacing the summation index N by Nex , one finds

5ex(z, ;)= :
�

Nex=0

zNex :
E

e&;E8(Nex | E). (9)

On the other hand we have

5ex(z, ;)= `
�

&=1

1
1&z exp(&;=&)

, (10)

where, in contrast to Eq. (1), the product runs only over the excited states &�1:
The grand canonical partition sum of a fictitious Bose gas which emerges from the
actual gas by removing the single-particle ground state is the generating function for
8(Nex | E). Differentiating this generating function k times, and then setting z=1,
one gets the canonical moments1

\z
�
�z+

k

5ex(z, ;)} z=1

=:
E

e&;E \ :
�

Nex=0

N k
ex 8(Nex | E)+#Mk(;). (11)

In the customary grand canonical framework, z is identified with the fugacity and
linked to the ground state occupation number (n0) gc by z=(1+1�(n0) gc)

&1. In
that case z remains strictly less than unity, thus preventing the ground state factor
in Eq. (1) from diverging. In contrast, z is no more than a formal parameter in the
present analysis, entirely unrelated to the ground state occupation; and since the
ground state factor is absent in the generating function 5ex(z, ;), there is nothing
to prevent us from fixing z=1.

If the sum over Nex in Eq. (11) did not range from 0 to �, but instead from 0
to the actual particle number N, as it does in the canonical distribution (4), then
the ratio M1(;)�M0(;) would be exactly equal to the canonical expectation value
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(Nex) cn . But even if we do not have an exact equality here, the difference between
these two quantities must be negligible if there is a condensate. This statement
requires no proof, it is a mere tautology: a condensate can only be present if those
microstates where the energy E is spread over all N particles are statistically negli-
gible, so that also the microstates that would become available if additional zero-
energy (ground state) particles were added to the gas cannot make themselves felt.
Hence, in the presence of a Bose�Einstein condensate we have, for small k,

:
�

Nex=0

N k
ex8(Nex | E)= :

N

Nex=0

N k
ex 8(Nex | E) (12)

at least to a very good approximation, which gives both

(Nex) cn=
M1(;)
M0(;)

(13)

and

($2Nex) cn=
M2(;)
M0(;)

&\M1(;)
M0(;)+

2

. (14)

The approximation (12), expressing the replacement of the actual condensate of
N&(Nex) cn particles by a condensate consisting of infinitely many particles, can be
interpreted in two different ways. On the one hand, the infinitely many ground state
particles may be regarded as forming a particle reservoir for the excited-states
subsystem. Such an approach to computing canonical condensate fluctuations had
been suggested as early as 1956 by Fierz [2]; it corresponds to the ``Maxwell's
Demon Ensemble'' recently put forward by Navez et al. [15].

The second interpretation rests on the observation that for k=0 the approxima-
tion (12) takes the form

:
�

Nex=0

8(Nex | E)=0(E | N), (15)

so that Eq. (11) gives

:
E

e&;E0(E | N)= `
�

&=1

1
1&exp(&;=&)

#Z(;). (16)

Since each factor 1�[1&exp(&;=&)] corresponds to a geometric series, i.e., to the
canonical partition function of a simple harmonic oscillator with frequency =& ��,
Eq. (16) states that if there is a condensate, so that Eq. (15) holds, then the canonical
partition function of an ideal Bose gas with arbitrary single-particle energies is well
approximated by the canonical partition function of a system of distinguishable
harmonic oscillators, each excited single-particle level =& corresponding to an
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oscillator with frequency =& ��. Thus, for temperatures below the onset of Bose�
Einstein condensation the thermodynamics of the actual Bose gas practically coincides
with the thermodynamics of a Boltzmannian harmonic oscillator system, regardless of
the specific form of the trapping potential. For this reason, we will refer to the
approximation (12) as the oscillator approximation. For the particular case of a
three-dimensional isotropic harmonic trapping potential, the quality of this
approximation has been confirmed in Ref. [20] by comparing the entropy of the
actual Bose gas with that of its Boltzmannian substitute.

Within this oscillator approximation, the determination of the number (Nex) cn

of excited particles, and of the canonical mean-square condensate fluctuation ($2n0) cn

=($2Nex) cn , becomes remarkably simple. Doing the derivatives demanded by
Eq. (11), we find

M0(;)=Z(;) (17)

M1(;)=Z(;) S1(;) (18)

M2(;)=Z(;)[S 2
1(;)+S2(;)], (19)

with Z(;) as given by Eq. (16), and

S1(;)= :
�

&=1

1
exp(;=&)&1

= :
�

&=1

:
�

r=0

exp[&;=&(r+1)], (20)

S2(;)= :
�

&=1

1
exp(;=&)&1 \

1
exp(;=&)&1

+1+
= :

�

&=1

:
�

r=1

r exp[&;=& r]. (21)

Computing the ratios M1(;)�M0(;) and M2(;)�M0(;) according to Eqs. (13) and
(14), the oscillator partition function Z(;) drops out (and, hence, does not even
have to be evaluated here!), and we arrive at the appealing relations

(Nex) cn=S1(;) (22)

($2Nex) cn=S2(;). (23)

Since 1�[exp(;=&)&1]=(n&) gc is just the grand canonical expectation value for
the occupation of the & th excited state in a partially condensed Bose gas (the
fugacity of which is z=1), and (n&) gc ((n&) gc+1)=($2n&) gc is the corresponding
grand canonical mean-square fluctuation, the respresentations (20) and (21) reveal
that the canonical expectation value of the number of excited particles equals the
grand canonical one, and that the canonical mean-square fluctuation of the ground
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state occupation number can simply be computed by adding the grand canonical
fluctuations of the excited levels, subject to only the oscillator approximation. This
is precisely what had been anticipated by Fierz [2], and what has been exploited
in a heuristic manner by Politzer [11] when investigating the three-dimensional
harmonic trap.

For evaluating the sums S1(;) and S2(;) we employ the Mellin�Barnes integral
representation [17]

e&:=
1

2?i |
{+i�

{&i�
dt :-t1(t), (24)

valid for real {>0 and complex : with Re(:)>0. This leads to

(Nex) cn= :
�

&=1

:
�

r=0

1
2?i |

{+i�

{&i�
dt

1(t)
[;=&(r+1)]t

=
1

2?i |
{+i�

{&i�
dt :

�

&=1

:
�

r=0

1(t)
[;=&(r+1)]t

=
1

2?i |
{+i�

{&i�
dt 1(t) Z(;,t) `(t), (25)

where `(t)=��
r=1 r&t denotes the Riemann Zeta function, and we have introduced

the spectral Zeta function

Z(;, t)= :
�

&=1

1
(;=&)

t (26)

that embodies the necessary information about the trap spectrum. In the same way
we find the remarkably similar-looking equation

($2Nex) cn=
1

2?i |
{+i�

{&i�
dt 1(t) Z(;, t) `(t&1). (27)

It should be noted that interchanging summations and integration in Eq. (25), and
in the analogous derivation of the canonical fluctuation formula (27), requires the
absolute convergence of the emerging sums. Therefore, the real number { has to be
chosen such that the path of integration up the complex t-plane lies to the right of
the poles of both Zeta functions.

Now the temperature dependence of (Nex) cn or ($2Nex) cn is determined by the
pole of the integrand (25) or (27) that lies farthest to the right. Since 1(t) has poles
merely at t=0, &1, &2, ..., the decisive pole is provided either by the Riemann
Zeta function `(t) or `(t&1), respectively, or by its spectral opponent Z(;, t),
which depends on the particular trap under study [16]. This competition will be
discussed in detail in the following section, focussing on harmonic trapping poten-
tials.
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III. ISOTROPIC AND ANISOTROPIC HARMONIC TRAPS

The evaluation of the canonical relations (25) and (27) reduces to a mere for-
mality if the pole structure of the spectral Zeta function (26) is known. The simplest
examples are provided by d-dimensional isotropic harmonic traps, since then
Z(;, t) becomes a sum of Riemannian Zeta functions. Namely, denoting the
angular frequency of such a trap by |, the degree of degeneracy g& of a single-
particle state with excitation energy &�| is

g&=\&+d&1
d&1 + , (28)

so that Z(;, t) acquires the form

Z(;, t)=(;�|)&t :
�

&=1

g&

&t , (29)

giving in explicit terms

Z(;, t)=(;�|)&t `(t) for d=1,

Z(;, t)=(;�|)&t [`(t&1)+`(t)] for d=2, (30)

Z(;, t)=(;�|)&t [`(t&2)�2+3`(t&1)�2+`(t)] for d=3.

We now aim at the temperature dependence of (Nex) cn and ($2Nex) cn for
temperatures below the onset of a ``macroscopic'' ground state occupation, so that
the oscillator approximation retains its validity, but well above the level spacing
temperature �|�kB , so that ;�|<<1. Such a temperature interval exists if the par-
ticle number N is sufficiently large, since the condensation temperature generally
increases with N. The desired asymptotic T-dependence can then directly be read off
from the residue of the rightmost pole of the respective integrand (25) or (27). Since
`(z) has merely a single pole at z=1, simple and with residue +1, namely [21]

`(z)r
1

z&1
+# (31)

for z close to 1, the calculation of that residue is particularly easy if the rightmost
pole in (25) or (27) is simple. In the case of a double pole we also need the identity

1 $(n)=1(n) �(n)

=1(n) \&#+ :
n&1

m=1

1
m+ (32)

for the Psi function at integer arguments, with #r0.5772 denoting Euler's constant.
This is the only technical knowledge required for computing the number of excited
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particles, and its fluctuation, in a d-dimensional isotropic harmonic trap within the
canonical ensemble:

(i) For d=1, the number of excited particles is governed by the double pole
at t=1 which emerges since Z(;, t) now is proportional to `(t), whereas the mean-
square fluctuation is dominated by the simple pole of `(t&1) at t=2,

(Nex) cn=
kBT
�| _ln \kBT

�| ++#& (33)

($2Nex) cn=\kBT
�| +

2

`(2). (34)

(ii) For d=2, the rightmost pole of Z(;, t) has moved to t=2 and thus
determines (Nex) cn all by itself, but now the product Z(;, t)`(t&1) provides a
double pole that governs the asymptotics of the fluctuation,

(Nex) cn=\kB T
�| +

2

`(2) (35)

($2Nex) cn=\kBT
�| +

2

_ln \kBT
�| ++#+1+`(2)& . (36)

(iii) For d=3, the pole of the spectral Zeta function Z(;, t) at t=3 wins in
both cases,

(Nex) cn=\kBT
�| +

3

`(3) (37)

($2Nex) cn=\kBT
�| +

3

`(2). (38)

Of course, these results remain valid only as long as (Nex) cn<N. Equating
(Nex) cn and N for d=3, e.g., one finds the large-N condensation temperature

T0=
�|
kB \

N
`(3)+

1�3

(39)

for an ideal gas in a three-dimensional harmonic trap that exchanges energy, but
no particles, with a heat bath. As expected, this result agrees with the one provided
by the familiar grand canonical ensemble [22]. Even more, taking into account
also the next-to-leading pole, one obtains the improvement

(Nex) cn=`(3) \kBT
�| +

3

+
3
2

`(2) \kBT
�| +

2

(40)
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to Eq. (37), implying that for Bose gases with merely a moderate number of
particles the actual condensation temperature TC is lowered by terms of the order
N&1�3 against T0 ,

TC=T0 _1&
`(2)

2`(3)2�3

1
N 1�3& . (41)

Even this improved canonical expression equals its grand canonical counterpart
[23�26].

These examples nicely illustrate the working principle of the basic integral
representations (25) and (27): There are two opponents that place poles on the
positive real axis, namely the spectral Zeta function Z(;, t) on the one hand, which
depends on the particular trap, and `(t) or `(t&1) on the other, which are entirely
independent of the system. For both the number of excited particles and its mean-
square fluctuation, the exponent of T is given by the location of the pole farthest
to the right. Whereas the pole of `(t) and `(t&1) does, naturally, not depend on
the spatial dimension d, the asymptotically relevant pole of Z(;, t) lies at t=d and
thus moves with increasing d to the right, governing (Nex) cn above d=1 and
($2Nex) cn above d=2.

But what about the anisotropic traps that play a major role in present
experiments? With the ground state energy set to zero, and angular trap frequencies
|i (i=1, ..., d ), the energy levels then are

=&1 , ..., &d
=�(|1&1+ } } } +|d&d)#�|&, & # Nd

0 . (42)

The spectral Zeta function

Z(;, t)= :
& # N0

d�[0]

1
(;�|&)t (43)

now is a Zeta function of the Barnes type [27] (see also Ref. [28]). Its rightmost
pole is located at t=d, with residue

res Z(;, d )=
1

1(d ) \
kBT
�0 +

d

, (44)

where we have introduced the geometric mean 0 of the trap frequencies,

0=\`
d

i=1

|i+
1�d

. (45)

The derivation of Eq. (44) is sketched in Appendix A.
The asymptotic evaluation of the canonical formulas (25) and (27) now requires

;�|i<<1 for all i. If this condition is not met, since, for instance, one of the
trapping frequencies is much larger than the others, one has to treat the entailing
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dimensional crossover effects [29] by keeping the corresponding part of Z(;, t) as
a discrete sum. In the following we will assume merely moderate anisotropy, so that
the above inequalities are satisfied.

For two-dimensional anisotropic harmonic traps, the computation of the canoni-
cally expected number of excited particles, and its fluctuation, then leads to

(Nex) cn=\kBT
�0 +

2

`(2) (46)

($2Nex) cn=\kBT
�0 +

2

_ln \ kBT
�(|1+|2)++\|1

|2

+
|2

|1+ `(2)+I(|1 , |2)& , (47)

with

I(|1 , |2)=|
�

0
d: :e&(- |1 �|2+- |2 �|1) :

_\ 1

[1&exp(&- |1 �|2 :)][1&exp(&- |2 �|1 :)]
&

1
:2+ . (48)

Equation (47) reveals a rather complicated dependence of the fluctuation
($2Nex) cn on the trap frequencies |1 and |2 . The comparatively simple form of the
previous Eq. (36) for an isotropic trap has its technical reason in the simple expan-
sion (31) of `(z) around its pole. In contrast, for two-dimensional anisotropic traps
we need the analogous expansion of the Barnes Zeta function (43) for d=2. The
finite part of this expansion, corresponding to Euler's constant # in Eq. (31), now
becomes a function of the frequencies |1 and |2 that enters into the above result.
Details are explained in Appendix B, where we also show the identity

I(|, |)=#+1+ln 2&`(2), (49)

which ensures that Eq. (47) reduces to the isotropic result (36) for |1=|2=|.
For any dimension d�3, it is the pole of Z(;, t) at t=d which determines the

behaviour of both (Nex) cn and ($2Nex) cn :

(Nex) cn=\kB T
�0 +

d

`(d ) (50)

($2Nex) cn=\kBT
�0 +

d

`(d&1). (51)

The difference between the isotropic and the mildly anisotropic case now merely
consists in the replacement of the frequency | by the geometric mean 0.
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IV. A SADDLE-POINT APPROACH TO MICROCANONICAL STATISTICS

When the ideal N-particle Bose gas is completely isolated from its surrounding,
carrying a total excitation energy E, one has to resort to the microcanonical
framework. The microcanonical counterpart of the distribution (4), that is, the
probability for finding Nex out of the N isolated particles in an excited state, is given
by

pmc(Nex , E)=
8(Nex | E)

�N
N$ex=0 8(N$ex | E)

, Nex�N. (52)

It is quite instructive to copy the previous canonical analysis as far as possible, in
order to pin down precisely how the difference between the canonical and the
microcanonical ensemble manifests itself. Hence, we wish to calculate the k th
moments

+k(E)= :
N

Nex=0

N k
ex 8(Nex | E) (53)

of this distribution (52), which yield the microcanonical expectation value

(Nex) mc=
+1(E)
+0(E)

(54)

of the number of excited particles, and the corresponding mean-square fluctuation

($2Nex) mc=
+2(E)
+0(E)

&\+1(E)
+0(E)+

2

. (55)

Provided the energy E is so low that a major fraction of the particles remains in
the ground state, i.e., if (Nex) mc is sufficiently small as compared to N, we can
again employ the oscillator approximation (12), and compute the microcanonical
moments +k(E) from the easily accessible canonical moments (11) by means of
saddle-point inversions.

To see in detail how this works, let us first carry through this program for the
paradigmatic example of an isolated ideal Bose gas trapped by a one-dimensional
harmonic oscillator potential. For ease of notation, we introduce the dimensionless
variables a=;�|, characterizing the inverse temperature, and n=E�(�|), corre-
sponding to the total number of excitation quanta. We are thus working in the
regime a<<1, n>>1. Again, this is compatible with the presence of a condensate
if the particle number N is large. Writing +k(n), Z(a), S1(a), and S2(a) instead of
+k(E), Z(;), S1(;), and S2(;) (see Eqs. (17)�(19)), and defining
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H0(a)#1 (56)

H1(a)#S1(a) (57)

H2(a)#S 2
1(a)+S2(a), (58)

the inversion formula acquires the form [30]

+k(n)=
enaZ(a) Hk(a)

(&2?(�n��a))1�2 } a=ak(n)

(59)

for k=0, 1, and 2. It is crucial to note that each moment requires its own saddle-
point parameter ak(n), obtained by inverting the corresponding saddle-point equa-
tion

n=&
d
da

ln Z(a)&
d
da

ln Hk(a). (60)

In contrast to the canonical case, we now need to evaluate the partition sum

Z(a)= `
�

&=1

1
1&exp(&a&)

(61)

for a<<1. This partition sum actually is a well-studied object in the theory of
modular functions; it satisfies a fairly interesting functional equation that allows
one to extract the desired small-a-behaviour straight away [31, 32]. In view of the
intended transfer of the method to other trap types, we refrain from using this
particular functional equation here, and resort once more to the Mellin�Barnes
techniques. In this way we get

ln Z(a)=& :
�

&=1

ln(1&e&a&)

=
1

2?i |
{+i�

{&i�
dt a-t1(t) `(t) `(t+1), (62)

so that the dominant pole at t=1 gives the approximation ln Z(a)r`(2)�a.
However, in order to derive a proper asymptotic formula for Z(a) we have to
expand ln Z(a) up to terms of the order O(a0) inclusively, which necessitates taking
into account also the double pole of the integrand (62) that lies at t=0. Since the
residue of this pole reads

&`(0) ln a+`$(0)= 1
2 ln a& 1

2 ln 2?, (63)
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we obtain the desired approximation

ln Z(a)=
`(2)

a
+

1
2

ln
a

2?
+O(a). (64)

With H1(a) and H2(a) as determined by Eqs. (33) and (34), the equations (60) for
the saddle-point parameters then adopt the form

n=
`(2)
a2 +

c(k)
a

, (65)

where

c(0)= &1�2

c(1)= &1�2+1 (66)

c(2)= &1�2+2.

Inverting up to the required order O(n0), one finds

1
ak(n)

=
- 6n

?
&

3c(k)
?2 , (67)

hence

nak(n)+ln Z(ak(n))=? �2n
3

+
1
2

ln \ 1

2 - 6n+ . (68)

The important point to observe here is that the moment-dependent number c(k)
drops out, so that the factors enak(n)Z(ak(n)) entering the inversion formula (59)
become asymptotically equal for all k. Moreover, also the saddle-point corrections

\&2?
�n
�a+

&1�2

} a=ak (n)

=�3
2

(6n)&3�4 (69)

do not develop a significant k-dependence, so that these parts cancel when forming
the ratio (54). Hence, we arrive at

+1(n)
+0(n)

=H1(a1(n))=S1(a1(n)), (70)

indicating that the microcanonical expectation value for the number of excited
particles becomes equal to the canonical expression (22) in the asymptotic regime,
where the difference between the saddle-point parameter a1(n) and the true inverse
temperature a0(n) is negligible. Utilizing the asymptotic temperature�energy
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relation kBT�(�|)=- 6n�? obtained from Eq. (67), the microcanonical counterpart
to Eq. (33) reads

(Nex) mc=
- 6n

? _ln \- 6n
? ++#& . (71)

The calculation of the microcanonical condensate fluctuations requires more care.
The canonical expression (23) had been an immediate consequence of the definition
(14) and Eqs. (17)�(19), relying on the cancellation [S 2

1(;)+S2(;)]&S 2
1(;)=

S2(;), but now two different saddle-point parameters enter into the corresponding
difference

H2(a2(n))&H 2
1(a1(n))=S2(a2(n))+(S 2

1(a2(n))&S 2
1(a1(n))), (72)

indicating that the microcanonical fluctuation might deviate from the canonical
one. However, for the one-dimensional oscillator trap we find that S 2

1(a2(n))&
S 2

1(a1(n) is merely of the order O(- n ln2 n), and thus asymptotically negligible in
comparison to S2(a2(n))=n. Therefore, for large n we have

+2(n)
+0(n)

&\+1(n)
+0(n)+

2

=S2(a2(n)), (73)

meaning

($2Nex) mc =n, (74)

so that the microcanonical fluctuation of the number of excited Bose particles in a
one-dimensional harmonic trap, considered for energies such that on the average a
fraction of the particles stays in the ground state, coincides asymptotically with the
canonical fluctuation (34).

This analysis can directly be translated into the language of the theory of parti-
tions of integer numbers [33]. Distributing n excitation quanta among ideal Bose
particles, stored in a one-dimensional harmonic trap, is tantamount to partitioning
the number n into summands; a particle occupying the &th excited oscillator state
gives a summand of magnitude &. In fact, utilizing Eqs. (68) and (69) for computing
+0(n) according to Eq. (59), one finds

+0(n)=
1

4 - 3 n
exp \? �2n

3 + , (75)

which is just the celebrated Hardy�Ramanujan formula for the total number of
unrestricted partitions of n [31], corresponding to the number of microstates that
are accessible to the Bose particles when their common excitation energy is n�|,
provided that n does not exceed the particle number N. For higher energies, the
number of microstates equals the number of partitions that are restricted by the
requirement that there be no more than N summands, since the n quanta cannot be
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distributed over more than the N available particles. However, as long as the dis-
tribution (52) remains sharply peaked around some value N� exr(Nex) mc<N, even
though n may be substantially larger than N, the difference between the number of
these restricted and that of the unrestricted partitions is insignificant, and neglecting
this difference is nothing but the oscillator approximation (12) for k=0.

From the viewpoint of partition theory, Eq. (71) gives the expected number of
summands in a partition of n��randomly partitioning n=1000, for instance, one
expects roughly 93 summands��and Eq. (74) contains the remarkable statement
that the r.m.s.-fluctuation of the number of parts into which n can be decomposed
becomes just - n in the asymptotic limit [16]. Higher cumulants }m(n) of the dis-
tribution which describes the number of summands in unrestricted partitions of n
can be obtained by following the same strategy as outlined above for calculating
}2(n)=n, leading to, e.g.,

}3(n)=
12 - 6 `(3)

?3 n3�2 (76)

and

}4(n)= 12
5 n2. (77)

This indicates deviations from a Gaussian distribution, for which all cumulants
higher than the second are zero. A general asymptotic formula for the partition
moments +k(n) for arbitrary k, together with a check of this formula against exact
data for k=0, ..., 3, can be found in Appendix C.

It is conceptually important to know that the fluctuation formula (74) for the
harmonically trapped one-dimensional Bose gas can also be obtained without
invoking the oscillator approximation, since the number of restricted partitions,
and hence the entire distribution (52), can be well approximated with the help
of an asymptotic expression due to Erdo� s and Lehner [34, 10]. However, that
approach depends on a specific asymptotic result that applies to the one-dimen-
sional harmonic trap only, whereas the present method is capable of some
generalization.

The preceding microcanonical analysis of the ideal Bose�Einstein condensate in
a one-dimensional oscillator trap might appear like much ado about nothing: we
have been careful to keep track of three slightly different saddle-point parameters,
but in the end this distinction turned out to be insignificant, and we have merely
recovered the canonical results. But this is not true in general; the following reason-
ing will show that (and why) a condensate in a three-dimensional isotropic har-
monic trapping potential behaves differently. In this case we again face a partition-
type problem, since the total excitation energy E remains an integer multiple
of a basic quantum �|. We can then virtually retrace the steps that have led
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for d=1 to the microcanonical formulas (71) and (74): Starting from the partition
sum

Z(a)= `
�

&=1

1
[1&exp(&a&)] (&+1)(&+2)�2 (78)

and applying the Mellin�Barnes transformation, one readily finds2

ln Z(a)=
`(4)
a3 +

3
2

`(3)
a2 +

`(2)
a

+
5
8

ln a

&
1
2

ln 2?+
3
2

`$(&1)+
1
2

`$(&2)+O(a), (79)

which, together with the canonical expressions (37) and (38) that now define H1(a)
and H2(a) via Eqs. (57) and (58), yields the saddle-point equations

n=
3`(4)

a4 +
3`(3)

a3 +
`(2)
a2 +

c(k)
a

(80)

with

c(0)= &5�8

c(1)= &5�8+3 (81)

c(2)= &5�8+6.

Again, these equations differ only to the order O(a&1), and again the moment-
dependent coefficient c(k) drops out when computing enak(n)Z(ak(n)) up to the
asymptotically relevant terms of order O(n0):

nak(n)+ln Z(ak(n))

=4`(4) \ n
3`(4)+

3�4

+
3
2

`(3) \ n
3`(4)+

1�2

+_`(2)&
3
8

`(3)2

`(4) &\
n

3`(4)+
1�4

&
5

32
ln \ n

3`(4)+
+

`(3)3

8`(4)2&
`(2) `(3)

4`(4)
&

1
2

ln 2?+
3
2

`$(&1)+
1
2

`$(&2). (82)
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It is clear that this cancellation is quite general. Namely, for a d-dimensional
isotropic harmonic trapping potential one has

ln Z(a)=
`(d+1)

ad + } } } , (83)

and the saddle-point equations become

n=
d`(d+1)

ad+1 + } } } +
c(k)

a
, (84)

hence

1
ak(n)

=\ n
d`(d+1)+

1�(d+1)

+ } } } &
c(k)

d(d+1) `(d+1) \
n

d`(d+1)+
&(d&1)�(d+1)

. (85)

When computing nak(n)+ln Z(ak(n)), the product nak(n) contributes a term c(k)
that originates from the O(a&1)-term in Eq. (84). Otherwise, relevant k-dependent
contributions enter into nak(n)+ln Z(ak(n)) only via the leading terms of order
O(a&d) that stem from Eq. (83) on the one hand, and Eq. (84) multiplied by a on
the other, summing up to

(d+1) `(d+1)__d \ n
d`(d+1)+

(d&1)�(d+1)

&
__ &c(k)

d(d+1) `(d+1) \
n

d`(d+1)+
&(d&1)�(d+1)

&=&c(k) (86)

and thus annihilating c(k).
This little calculation, together with the inversion formula (59), shows explicitly

that the microcanonical expectation values (Nex) mc for d-dimensional isotropic
harmonic traps become asymptotically equal to their canonical counterparts:
Forming the ratio (54), the factors enaZ(a)(&2?�n��a)&1�2 cancel even when
evaluated at the slightly different saddle-point parameters a1(n) and a0(n), so that
we are left with

(Nex) mc =S1(a1(n)). (87)

The asymptotic equality of (Nex) mc and (Nex) cn then follows by observing that
a1(n) becomes asymptotically equal to the true inverse temperature a0(n).

The computation of the microcanonical condensate fluctuation along these lines,
however, is a much more delicate matter. Returning to the particular example d=3
for the sake of definiteness, both canonical expectation values (Nex) cn=S1(a) and
($2Nex) cn=S2(a) are determined by the same simple pole of Z(;, t) at t=3, which
means that both S1(a) and S2(a) are proportional to a&3. This, in turn, implies
that in contrast to the one-dimensional case the difference S 2

1(a2(n))&S 2
1(a1(n))

216 HOLTHAUS, KALINOWSKI, AND KIRSTEN



appearing in Eq. (72) now is of the same order as S2(a2(n)) itself, so that here the
quite innocent-looking difference between the saddle-point equations (80), even
though only of the order O(a&1) and apparently hidden behind terms of order
O(a&4)��thus being overwhelmed much stronger than for d=1��must lead to an
asymptotic difference between canonical and microcanonical condensate fluctua-
tions: The exponent of T will be the same, but the prefactors will differ. This obser-
vation forces us to evaluate Eq. (55) very carefully. We may not simply rely on the
cancellation of c(k) as found in Eq. (82), but have to expand both ratios
+2(n)�+0(n) and +1(n)�+0(n) consistently up to terms of order O(ak(n)&3)=O(n3�4).
This forces us to expand nak(n)+ln Z(ak(n)), as well as the saddle-point correc-
tions, even up to terms of the order O(n&3�4)! Detailed analysis shows that such an
expansion is possible even with only the saddle-point equations (80) as input,
although this is not immediately obvious. Proceeding in this manner, we find

($2Nex) mc=_1+
33

12`(4) \
3`(4)

n +
3�4

& H2(a2(n))

&_1+
2

`(4) \
3`(4)

n +
3�4

& H 2
1(a1(n))

=S2(a2(n))+(S 2
1(a2(n))&S 2

1(a1(n)))+
3
4

`(3)2

`(4) \
n

3`(4)+
3�4

. (88)

The O(n&3�4)-corrections in the square brackets arise because the inverse tem-
perature a0(n) differs from the saddle-point parameters a2(n) and a1(n); this is what
causes the last term in the second equation. Since, moreover,

S 2
1(a2(n))&S 2

1(a1(n))=&
3
2

`(3)2

`(4) \
n

3`(4)+
3�4

, (89)

we finally arrive at

($2Nex) mc=_`(2)&
3
4

`(3)2

`(4) &\
n

3`(4)+
3�4

=_`(2)&
3
4

`(3)2

`(4) &\
kBT
�| +

3

. (90)

This quantifies what we have anticipated: Apparently tiny differences between the
three saddle-point parameters conspire to lower the microcanonical mean-square
condensate fluctuation against the canonical result (38), as a consequence of the
fact that the rightmost pole of Z(;, t) governs both (Nex) cn=S1(;) and ($2Nex) cn

=S2(;). For the one-dimensional harmonic trap, where (Nex) cn and ($2Nex) cn

are determined by two different poles, such an asymptotic difference does not exist.
Conceptually instructive as the above calculation may be, it is also lacking

elegance, to say the least. The reason for the appearance of cumbersome equations
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like Eq. (82) or Eq. (88) lies in the fact that one exctracts the fluctuations from the
exponentially large moments +k(E), taking the difference (55). This involves huge
cancellations, as becomes dramatically clear already for d=1 by comparing the
numbers listed in Tables I and V of Appendix C. If one could avoid computing the
microcanonical moments, and aim directly for the difference between canonical and
microcanonical fluctuations, one should get expressions of a far simpler nature. The
following section will show that such a strategy is actually feasible.

V. MELLIN-BARNES APPROACH TO MICROCANONICAL
CONDENSATE FLUCTUATIONS

We start by considering the excited-states subsystem with the fugacity z and the
energy E as basic variables [15], so that we have the relation Nex=Nex(z, E). In
principle, Nex depends also on trap parameters that determine the single-particle
energies, like the oscillator frequencies in the case of harmonic traps, but these
parameters will be kept constant in the following. Taking the total differential,

dNex=\�Nex

�z +E
dz+\�Nex

�E +z
dE, (91)

then keeping the temperature T fixed, one finds

z \�Nex

�z +T } z=1

=z _\�Nex

�z +E
+\�Nex

�E +z \
�E
�z +T&z=1

. (92)

The left hand side equals the canonical mean-square fluctuation ($2Nex) cn ,
whereas the first term on the r.h.s. is its microcanonical counterpart ($2Nex) mc .
Hence, we obtain

($2Nex) cn&($2Nex) mc=\�Nex

�E +z \
�E
�z+T } z=1

=
kBT 2(�Nex ��T )z (�E��z)T | z=1

kBT 2(�E��T)z | z=1

. (93)

Now the denominator

kBT 2 \�E
�T+z } z=1

=($2E) cn (94)

is the canonical mean-square fluctuation of the system's energy, whereas the two
partial derivatives in the numerator,

kBT 2 \�Nex

�T +z } z=1

=\�E
�z+T }z=1

=($Nex $E) cn , (95)
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both equal the canonical particle-energy correlation ($Nex $E) cn=(NexE) cn&
(Nex) cn (E) cn . Thus, we arrive at the noteworthy identity

($2n0) cn&($2n0) mc=
[($Nex $E) cn]2

($2E) cn
(96)

which expresses the difference between canonical and microcanonical condensate
fluctuations in terms of quantities that can be computed entirely within the con-
venient canonical ensemble. The usefulness of this formula, first stated by Navez et
al. [15], rests in the fact that it lends itself again to the oscillator approximation,
and thus to an efficient evaluation by means of the Mellin�Barnes transformation:
Within the oscillator approximation, the canonical particle-energy correlation
becomes

($Nex $E) cn=\z
�
�z+\&

�
�;+ ln 5ex(z, ;)} z=1

= :
�

&=1

=&

exp(;=&)&1 \
1

exp(;=&)&1
+1+

=
1
;

1
2?i |

{+i�

{&i�
dt 1(t) Z(;, t&1) `(t&1), (97)

and the canonical energy fluctuation adopts the quite similar form

($2E) cn=\&
�

�;+
2

ln 5ex(z, ;)} z=1

= :
�

&=1

=2
&

exp(;=&)&1 \
1

exp(;=&)&1
+1+

=
1
;2

1
2?i |

{+i�

{&i�
dt 1(t) Z(;, t&2) `(t&1). (98)

Hence,

($2n0) cn&($2n0) mc=
[(1�2?i ) �{+i�

{&i� dt 1(t) Z(;, t&1) `(t&1)]2

(1�2?i) �{+i�
{&i� dt 1(t) Z(;, t&2) `(t&1)

. (99)

Compared to the saddle-point approach in the preceding section, this formula is
remarkably easy to handle. Applied to the one-dimensional harmonic trap, for
instance, it yields immediately

($2n0) cn&($2n0) mc=
1

2`(2)
kBT
�| _ln \kBT

�| ++#+1&
2

. (100)
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Improving Eq. (34) by taking also the next-to-leading pole into account,

($2n0) cn=`(2) \kBT
�| +

2

&
1
2

kBT
�|

, (101)

and substituting kBT�(�|)=- 6n�?+3�(2?2) as stated by Eq. (67), we arrive at a
refined approximation to the microcanonical ground state fluctuation:

($2n0) mc=n&
3- 6n

?3 _ln \- 6n
? ++#+1&

2

. (102)

As we already know, the relative difference between canonical and microcanonical
mean-square fluctuations vanishes asymptotically for a condensate in a one-dimen-
sional harmonic trap. But still, this relative difference is of the order O(ln 2n�- n),
so that Eq. (102) is substantially more accurate than the previous leading-order
approximation (74).

This fluctuation formula (102) again has an interesting number-theoretical
interpretation. As indicated in the previous section, the oscillator approximation,
when applied to a one-dimensional harmonic trapping potential, corresponds to
neglecting the difference between partitions of n into no more than N summands
and unrestricted partitions; this remains exact as long as n�N. Hence, Eq. (102)
provides a forteriori a fair approximation to the fluctuation of the number of
integer summands into which the integer n can be decomposed. Figure 1 depicts the
r.m.s-fluctuation _(n)=($2n0) 1�2

mc as approximated by Eq. (74) (upper dashed line)
and by Eq. (102) (lower dashed line; coinciding almost with the full line), and
compares these approximations to the exact data (full line). The latter have been
computed numerically from the distribution (52) for the one-dimensional harmonic
trap, utilizing the recursion relation

8(Nex | n�|)= :
min(n&Nex , Nex)

k=1

8(k | (n&Nex) �|) (103)

with 8(1 | 1�|)=8(n | n�|)=1, assuming n�N. The agreement between the
exact fluctuation and the improved asymptotic formula is no less than striking. It
should be noted that, within the oscillator approximation, Eq. (102) describes the
fluctuation of the ground state particles not only up to the ``restriction temperature''
TR=(�|�kB)- N�`(2), where n=N, but almost up to T0=(�|�kB)N�ln N, where
the occupation of the ground state becomes significant [10].

The handiness of the fluctuation formula (99) becomes fully clear when dealing
with d-dimensional harmonic traps, d�2. Since isotropic harmonic traps can be
considered as special cases, we proceed at once to anisotropic potentials, and
consider d=2 first. All the required technicalities have already been collected in
Section III and Appendix A: The integrand in the denominator of Eq. (99) has its
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FIG. 1. The r.m.s.-fluctuation _(n) of the number of integer summands into which the integer n can
be partitioned. The upper dashed line is the leading approximation _(n)t- n; the lower dashed line
(coinciding almost with the full line) is the more accurate approximation obtained from the square root
of Eq. (102). The full line indicates the exact values. Some numerical data are listed in Table V of
Appendix C. From the viewpoint of statistical mechanics, the upper dashed line gives the r.m.s.-fluctua-
tion of the number of ground state particles for an ideal Bose gas in a one-dimensional harmonic
oscillator trap kept in contact with some heat bath, such that the average number n of excitation quanta
does not exceed the particle number. The other two lines correspond to the (approximate and exact)
microcanonical condensate fluctuation, that is, to the r.m.s.-fluctuation of the number of ground state
particles when the gas is totally isolated from its surrounding, carrying n excitation quanta.

rightmost pole at t=3 with residue 1(3)(kBT��0)2 `(2); the rightmost pole of the
integrand in the numerator lies at t=4, with residue 1(4)(kBT��0)2 `(3). Thus,

($2n0)cn&($2n0) mc=
2
3

`(2)2

`(3) \
kBT
�0 +

2

, (104)

implying that the difference between canonical and microcanonical fluctuations is
still small, even if only by a logarithm, compared to the canonical fluctuations (36)
or (47), respectively. Hence, in the asymptotic limit kBT�(�0)>>1��assuming N is
that large that this limit can be reached with a condensate��canonical and
microcanonical condensate fluctuations still agree. But this is clearly the marginal
case, as witnessed by the fact that for d=2 the poles of Z(;, t) and `(t&1) in
Eq. (27) fall together.

For d�3, the relevant poles in the integrands of Eq. (99) are located at t=d+1
and t=d+2, and one finds the general formula

($2n0) cn&($2n0) mc=
d

d+1
`(d )2

`(d+1) \
kBT
�0 +

d

. (105)

In particular, for isotropic three-dimensional traps one recovers, but now without
any substantial effort, the previous result (90). More generally, for d�3 the
condensate fluctuations in harmonically trapped, energetically isolated ideal Bose
gases are significantly smaller than the corresponding fluctuations (51) in traps that
are thermally coupled to some heat bath, although the exponent of T remains the
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same. As we have repeatedly emphasized, this finding is explained by the fact that
for d�3 both (Nex) cn and ($2Nex) cn are determined by the same simple pole of
the spectral Zeta function Z(;, t).

VI. CONCLUSIONS

The three central formulas explained in this work, Eqs. (25), (27), and (99),
vindicate the assertion put forward in the Introduction: It is the location of the
rightmost pole of the spectral Zeta function Z(;, t) that determines the statistical
properties of the condensate. If that pole is located at t= p, and 0<p<1, then we
deduce from Eq. (25) that (Nex) cn grows linearly with temperature (so that (n0) cn

decreases linearly with T ) in the condensate regime, irrespective of the detailed
properties of the trap, since in that case the pole of `(t) lies to the right of p. If
p=1, the poles of Z(;, t) and `(t) fall together, so that the linear temperature
dependence develops a logarithmic correction. If p>1, we have (Nex) cn B T p.

The key point to be noted when discussing canonical condensate fluctuations is
that the pole of the Riemann Zeta function `(t&1) in Eq. (27) lies at t=2, so that
($2n0) cn changes its T-dependence at p=2: If 0<p<2, then ($2n0) cn B T 2; if
p=2, there is the familiar logarithmic correction to this quadratic T-dependence, as
expressed by Eqs. (36) and (47) for two-dimensional harmonic traps; if p>2, then
($2n0) cn B T p.

The saddle-point calculations in Section IV may be cumbersome, but they exem-
plify on an elementary level why (n0) cn equals (n0) mc in the asymptotic regime,
and why canonical and microcanonical condensate fluctuations may differ. Equa-
tion (88) summarizes the essentials for the three-dimensional oscillator trap: One
needs three slightly different saddle-point parameters for computing the required
microcanonical moments (53) within the oscillator approximation (12) from their
canonical counterparts (11); these slight differences lower the microcanonical fluc-
tuation against the canonical one. The elegant expression (99) links the difference
($2n0) cn&($2n0) mc again to the dominant pole of Z(;, t): If 0<p<2, that dif-
ference has an exponent of T which is smaller than that of ($2n0) cn , so that both
types of fluctuations become asymptotically equal, but if p>2, then the difference
acquires the same exponent of T as ($2n0) cn , so that the microcanonical conden-
sate fluctuation remains lower than the canonical one even in the asymptotic
regime.

We have evaluated canonical and microcanonical condensate fluctuations
explicitly for harmonic trapping potentials, where Z(;, t) reduces to the familiar
Riemann or Barnes-type Zeta functions. This may appear a bit special, but an
analogous discussion is possible for quite arbitrary traps, if one merely exploits the
connection between the residues of Z(;, t) and the corresponding heat-kernel coef-
ficients (see Ref. [36] for a brief explanation of this fairly deep connection).

The vision of letting the poles of Z(;, t) move in the complex t-plane is not a
fantasy restricted to the theorist's ivory tower, but may have direct experimental
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consequences. Continuously deforming the trapping potential means continuously
changing the trap's single-particle spectrum, and hence shifting p. For example, a
spectrum of the type [22, 14]

=&1 , ..., &d
==0 :

d

i=1

ci& s
i (106)

with integer quantum numbers &i and dimensionless anisotropy coefficients ci

not too different from unity implies p=d�s [16], so that, e.g., steepening a three-
dimensional harmonic oscillator potential (s=1) towards a box potential (s=2)
means lowering p from 3 to 3�2. During such a process, the fluctuation of a large
condensate is described by an exponent of T that changes as long as p remains
above 2, since then ($2n0)mc B T d�s, but remains constant when p decreases
further; ($2n0) mc B T 2.

There is another detail that deserves to be mentioned. From the viewpoint of
partition theory, Eq. (74) states that the r.m.s.-fluctuation of the number of parts
into which a large integer n can be decomposed is approximately normal, _(n)t

- n. However, when characterizing condensate fluctuations, one would not do so in
terms of the number of excitation quanta n, but rather in terms of the number of
excited particles (Nex) mc .3 But then Eqs. (71) and (74) yield

($2Nex) 1�2
mc B (Nex) mc , (107)

apart from logarithmic corrections, stating that the normal partition-theoretic
fluctuation translates into supranormal fluctuation of the number of excited Bose
particles in a one-dimensional harmonic trap. More generally, for traps with single-
particle spectra (106) one obtains [16]

($2Nex) 1�2 B (Nex) for 0<d�s<1,

($2Nex) 1�2 B (Nex) s�d for 1<d�s<2, (108)

($2Nex) 1�2 B (Nex) 1�2 for 2<d�s;

both within the canonical and the microcanonical ensemble. Hence, when increasing
d�s from the 1d-harmonic oscillator value 1, the degree of supranormality is
gradually lowered, until one arrives at normal particle number fluctuations for
d�s>2.

Taking these insights together with those obtained in the related previous works
[10�16], it seems fair to conclude that by now a classic problem in statistical
mechanics, the fluctuation of an ideal Bose�Einstein condensate, has been fully
understood.
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3 We choose to characterize the fluctuation in terms of (Nex) , rather than (n0) , since the properties
of an ideal Bose�Einstein condensate, including its fluctuation, are independent of (n0). This is just
what is exploited in the oscillator approximation.



APPENDIX A: RESIDUES OF BARNES-TYPE ZETA FUNCTIONS

According to Section III, the spectral Zeta function for d-dimensional anisotropic
harmonic traps adopts the Barnes form

Z(;, t)= :
& # N0

d�[0]

1
(;�|&)t , (A1)

and the canonical thermodynamics of an ideal Bose gas stored in such a trap
depends crucially on the rightmost pole of this function. In this appendix we briefly
sketch the derivation of Eq. (44), i.e., of the residue of the rightmost pole of Z(;, t).

The starting point is the contour integral representation of the Gamma function
[37],

1(t)=
i

2 sin(?t) |C

d:(&:)t&1 e&:, (A2)

where C is enclosing the positive real axis counterclockwise. With the help of this
representation we deduce

Z(;, t)=
i

2 sin(?t) 1(t) |C

d:(&:)t&1 e&: :
& # N0

d�[0]

1
(;�|&)t

=
i

2 sin(?t) 1(t)
:

& # N0
d�[0]

|
C

d:(&:)t&1 e&:;�|&

= &
1(1&t)

2?i |
C

d:(&:)t&1 { 1
>d

i=1 (1&e&:;�|i)
&1= . (A3)

The first equality is obtained by interchanging summation and integration, then
changing in each summand from the integration variable : to :;�|&; the second by
summing the resulting geometric series and utilizing the relation

sin(?t) 1(t)=
?

1(1&t)
. (A4)

The poles of Z(;, t) are featured by Eq. (A3) in a particularly transparent
manner. Namely, the prefactor 1(1&t) has simple poles at integer values t=
1, 2, 3, ... . At these values the remaining contour integral may be evaluated
immediately by just collecting the residues enclosed by C. The only possible pole
contributing to the integral lies at :=0; it has nonvanishing residues for t=
&�, ..., &1, 0, 1, ..., d. Hence, the poles of Z(;, t) are located at t=1, ..., d, and the
residue of the rightmost pole is found to be

res Z(;, d )=(&1)d&1 `
d

i=1

(;�|i)
&1 res 1(1&d ). (A5)
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Using the identity

res 1(&n)=
(&1)n

n !
, n # N0 , (A6)

we arrive directly at Eq. (44).

APPENDIX B: CANONICAL CONDENSATE FLUCTUATION FOR d=2

When evaluating the fluctuation formula (27) for two-dimensional harmonic
traps, the product Z(;, t) `(t&1) provides a double pole at t=2. In that case the
knowledge of the residue (44) is not enough for computing the mean-square
condensate fluctuation; also the finite part of Z(;, t) at t=2 enters into the residue
of the double pole. More precisely, in analogy to Eq. (31) for the Riemann Zeta
function, one needs the expansion

Z(;, t)=\kBT
�0 +

2

\ 1
t&2

+ f (|1 , |2 , t)+ (B1)

for t close to 2. In this appendix we determine the function f (|1 , |2 , t), and thus
prove Eq. (47).

Introducing a=- |1 �|2 and b=- |2 �|1 , we first write

Z(;, t)=\kBT
�0 +

t

:
& # N0

2 �[0]

1
(a&1+b&2) t , (B2)

valid for Re(t)>2. Splitting the sum according to the scheme

:
& # N0

2 �[0]

= :
�

&1=1

(&2=0)+ :
�

&2=1

(&1=0)+ :
�

&1, &2=1

,

we find the decomposition

Z(;, t)=\kBT
�0 +

t

[`(t)(a&t+b&t)+H(|1 , |2 , t)], (B3)

where

H(|1 , |2 , t)= :
�

&1, &2=1

1
(a&1+b&2)t

=
1

1(t) |
�

0
d: :t&1 e&(a+b) :

(1&e&a:)(1&e&b:)
. (B4)
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This identity is obtained in a similar manner as Eq. (A3), using the familiar
representation

1(t)=|
�

0
d: :t&1e&: (B5)

of the Gamma function.
Now we are interested in the behaviour of Z(;, t) as t � 2, where, as we know

from Appendix A, it has a simple pole. How is this realized in Eq. (B3)? Since `(t)
is regular at t=2, the pole is contained in the integral (B4). At the lower integra-
tion bound, that is, for : � 0, the integrand behaves as 1�: for t � 2; therefore the
integral diverges at t=2. The behaviour of the integral as t tends to 2 is extracted
with the help of the following trick. For Re(t)>2, write

H(|1 , |2 , t)=
1

1(t) |
�

0
d: :t&1e&(a+b) : \ 1

(1&e&a:)(1&e&b:)
&

1
:2+

1
:2+

=
1(t&2)

1(t)
(a+b)2&t

+
1

1(t) |
�

0
d: :t&1e&(a+b) : \ 1

(1&e&a:)(1&e&b:)
&

1
:2+ ,

where Eq. (B5) has been used. The simple pole of Z(;, t) at t=2 is now contained
in the first term, since 1(t&2)�1(t)=1�[(t&1)(t&2)], and the remaining integral
is finite for t=2. In this way, we arrive at the expansion

H(|1 , |2 , t)=
1

t&2
&1&ln \�|1

|2

+�|2

|1++I(|1 , |2)+O(t&2), (B6)

with I(|1 , |2) as defined in Eq. (48). Together with Eq. (B3), this determines the
desired function f (|1 , |2 , t) and thereby leads to the result (47).

It is quite interesting to see how the fluctuation formula (36) for the isotropic
case is recovered in the limit |1=|2=|. Then the integral simplifies to

I(|, |)=|
�

0
d: :e&2: \ 1

(1&e&:)2&
1
:2+

=2&|
�

0
d: _e&2: \1

:
&

1
1&e&:++

:e&:

1&e&:& . (B7)

Employing now the identities [37]

�(z)=
d
dz

ln 1(z)=ln z+|
�

0
d: e&z: \1

:
&

1
1&e&:+ (B8)
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for the Psi function, and

`H(z, q)= :
�

n=0

1
(n+q)z=

1
1(z) |

�

0
d:

:z&1e&q:

1&e&: (B9)

for the Hurwitz Zeta function, we end up with Eq. (49). This equation confirms that
the complicated expression (47) for the canonical condensate fluctuation in a two-
dimensional anisotropic harmonic trap indeed becomes equal to the expression (36)
in the isotropic limit.

APPENDIX C: MOMENTS OF PARTITIONS

The saddle-point method followed in Section IV can be employed to derive
asymptotic expressions for the k th moments +k(n) of unrestricted partitions of
integer n, for arbitrary k [19]. Defining the symbol

� [*0 , *1 , ..., *k&1]#�
k !

l1 ! l2 ! ... lk ! \
*0

1!+
l1

} } } \*k&1

k ! +
lk

, (C1)

where the sum extends over all partitions of k, i.e., l1+2l2+ } } } +klk=k, we find

+k(n)t
1

4- 3 n
exp \?�2n

3 +\
- 6n

? +
k

_� _ln \- 6n
? ++#, `(2), 2! `(3), ..., (k&1)! `(k)& . (C2)

For k=0, this expression gives the Hardy�Ramanujan formula (75); for k=1, 2,
and 3, it adopts the forms

TABLE I

Comparison of Exact Numbers +0(n) of Unrestricted Partitions of n
with the Hardy�Ramanujan Approximation (75)

n +0(n) (exact) +0(n) (asymptotic) rel. error

50 0.2042260 } 106 0.2175905 } 106 0.0654
100 0.1905693 } 109 0.1992809 } 109 0.0457
200 0.3972999 } 1013 0.4100251 } 1013 0.0320
300 0.9253083 } 1016 0.9494095 } 1016 0.0260
500 0.2300165 } 1022 0.2346387 } 1022 0.0201

1000 0.2406147 } 1032 0.2440200 } 1032 0.0142
1500 0.1329462 } 1040 0.1344797 } 1040 0.0115
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TABLE II

Comparison of Exact First Moments +1(n) of Unrestricted Partitions of n
with the Asymptotic Formula (C3)

n +0(n) (exact) +0(n) (asymptotic) rel. error

50 0.2805218 } 107 0.2740428 } 107 0.0231
100 0.4144913 } 1010 0.4087936 } 1010 0.0137
200 0.1357412 } 1015 0.1346191 } 1015 0.0083
300 0.4102848 } 1018 0.4077577 } 1018 0.0062
500 0.1411488 } 1024 0.1405470 } 1024 0.0043

1000 0.2281551 } 1034 0.2275624 } 1034 0.0026
1500 0.1621438 } 1042 0.1618281 } 1042 0.0019

TABLE III

Comparison of Exact Second Moments +2(n) of Unrestricted Partitions of n
with the Asymptotic Formula (C4)

n +0(n) (exact) +0(n) (asymptotic) rel. error

50 0.4461898 } 108 0.4539366 } 108 0.0174
100 0.1027721 } 1012 0.1037857 } 1012 0.0099

200 0.5209742 } 1016 0.5239850 } 1016 0.0058
300 0.2027390 } 1020 0.2036083 } 1020 0.0043
500 0.9563321 } 1025 0.9591871 } 1025 0.0030

1000 0.2361756 } 1036 0.2366168 } 1036 0.0019
1500 0.2146020 } 1044 0.2149100 } 1044 0.0014

TABLE IV
Comparison of Exact Third Moments +3(n) of Unrestricted Partitions of n

with the Asymptotic Formula (C5)

n +0(n) (exact) +0(n) (asymptotic) rel. error

50 0.8145597 } 109 0.9334154 } 109 0.1459
100 0.2898292 } 1013 0.3173679 } 1013 0.0950
200 0.2249985 } 1018 0.2390975 } 1018 0.0627
300 0.1120055 } 1022 0.1175340 } 1022 0.0494
500 0.7186145 } 1027 0.7449881 } 1027 0.0367

1000 0.2683336 } 1038 0.2749645 } 1038 0.0247
1500 0.3099702 } 1046 0.3160662 } 1046 0.0197
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TABLE V

Comparison of Exact r.m.s.-Fluctuations _(n) of the Number of Parts in
Unrestricted Partitions of n with the Predictions Obtained by

Taking the Square Root
of the Asymptotic Eq. (102)

n +0(n) (exact) +0(n) (asymptotic) rel. error

50 5.46 5.65 0.0349
100 8.14 8.29 0.0190
200 12.00 12.12 0.0104
300 15.00 15.11 0.0073
500 19.80 19.89 0.0047

1000 28.71 28.79 0.0026
1500 35.60 35.66 0.0018

+1(n)t+0(n)
- 6n

? _ln \- 6n
? ++#& , (C3)

+2(n)t+0(n) \- 6n
? +

2

_\ln \- 6n
? ++#+

2

+`(2)& , (C4)

+3(n)t+0(n) \- 6n
? +

3

_\ln \- 6n
? ++#+

3

+3 \ln \- 6n
? ++#+ `(2)+2`(3)& . (C5)

Note that our result (C2) differs for k�2 from the formula stated by Richmond
[19], and remedies the discrepancies found by this author when comparing his
formula with exact numerical data. In fact, the above expressions are fairly
accurate; some exact values of +k(n) for k=0 to 3 are juxtaposed in Tables I to IV
to the respective asymptotic predictions. For completeness, exact values of the
r.m.s.-fluctuation _(n) of the number of parts occurring in unrestricted partitions of
n are listed in Table V, together with the approximation furnished by Eq. (102).
Comparing the numbers in this table to those in Table I, one gets a vivid impres-
sion what it means to isolate microcanonical fluctuations from an exponentially
large background.
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