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ABSTRACT

Given a node-attributed graph, and a graph task (link prediction or node classi-
fication), can we tell if a graph neural network (GNN) will perform well? More
specifically, do the graph structure and the node features carry enough usable in-
formation for the task? Our goals are (1) to develop a fast tool to measure how
much information is in the graph structure and in the node features, and (2) to
exploit the information to solve the task, if there is enough. We propose NET-
INFOF, a framework including NETINFOF PROBE and NETINFOF ACT, for the
measurement and the exploitation of network usable information (NUI), respec-
tively. Given a graph data, NETINFOF PROBE measures NUI without any model
training, and NETINFOF ACT solves link prediction and node classification, while
two modules share the same backbone. In summary, NETINFOF has following
notable advantages: (a) General, handling both link prediction and node clas-
sification; (b) Principled, with theoretical guarantee and closed-form solution;
(c) Effective, thanks to the proposed adjustment to node similarity; (d) Scalable,
scaling linearly with the input size. In our carefully designed synthetic datasets,
NETINFOF correctly identifies the ground truth of NUI and is the only method
being robust to all graph scenarios. Applied on real-world datasets, NETINFOF
wins in 11 out of 12 times on link prediction compared to general GNN baselines.

1 INTRODUCTION

Given a graph with node features, how to tell if a graph neural network (GNN) can perform well on
graph tasks or not? How can we know what information (if any) is usable to the tasks, namely, link
prediction and node classification? GNNs (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković
et al., 2018) are commonly adopted on graph data to generate low-dimensional representations that
are versatile for performing different graph tasks. However, sometimes there are no network effects,
and training a GNN will be a waste of computation time. That is to say, we want a measurement
of how informative the graph structure and node features are for the task at hand, which we call
network usable information (NUI).

We propose NETINFOF, a framework to measure and exploit NUI in a given graph. First, NET-
INFOF PROBE measures NUI of the given graph with NETINFOF SCORE (Eq. 2), which we proved
is lower-bound the accuracy (Thm. 2). Next, our NETINFOF ACT solves both the link prediction
and node classification by sharing the same backbone with NETINFOF PROBE. To save training ef-
fort, we propose to compute NETINFOF SCORE by representing different components of the graph
with carefully derived node embeddings. For link prediction, we propose the adjustment to node
similarity with a closed-form formula to address the limitations when the embeddings are static. We
demonstrate that our derived embeddings contain enough usable information, by showing the supe-
rior performance on both tasks. In Fig. 1, NETINFOF ACT outperforms the GNN baselines most
times on link prediction; in Fig. 2, NETINFOF SCORE measured by NETINFOF PROBE highly cor-
relates to the test performance in real-world datasets.

∗The work is done while being an intern at Amazon.
†Corresponding authors.
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Figure 1: NETINFOF wins in real-
world datasets on link prediction (most
points are below or on line x = y).
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(b) Node Classification
Figure 2: NETINFOF SCORE highly correlates to test
performance in real-world datasets. Each point denotes
the result of a component from each dataset.

In summary, our proposed NETINFOF has following advantages:
1. General, handling both node classification and link prediction (Lemma 1-2);
2. Principled, with theoretical guarantee (Thm. 1-2) and closed-form solution (Lemma 1-2);
3. Effective, thanks to the proposed adjustment of node similarity (Fig. 1);
4. Scalable, scaling linearly with the input size (Fig. 6).

In synthetic datasets, NETINFOF correctly identifies the ground truth of NUI and is the only method
being robust to all possible graph scenarios; in real-world datasets, NETINFOF wins in 11 out of 12
times on link prediction compared to general GNN baselines.
Reproducibility: Our code is available at https://github.com/amazon-science/NetInfoF.

2 RELATED WORKS
Table 1: NETINFOF matches all properties,
while baselines miss more than one property.
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1. General 1.1. Node Classification ✔ ✔ ✔
w.r.t. Graph Task 1.2. Link Prediction ✔ ✔ ✔

2. Principled 2.1. Theoretical Guarantee ✔
2.2. Closed-Form Solution ✔ ✔

3. Scalable ✔ ✔ ✔
4. Robust 4.1. Node Classification ✔ ✔

w.r.t. Input Scenario 4.2. Link Prediction ✔

We introduce the related work in two groups:
information theory, and GNNs. In a nut-
shell, NETINFOF is the only one fulfills all
the properties as shown in Table 1.

Information Theory. The typical measure
of the dependence between the random vari-
ables is the mutual information (Kraskov
et al., 2004). It is powerful and widely used in
sequential feature selection (Li et al., 2017),
but its exact computation is difficult (Panin-
ski, 2003; Belghazi et al., 2018) especially

on continuous random variables (Ross, 2014; Mesner & Shalizi, 2020) and high-dimensional data
(François et al., 2006; Mielniczuk & Teisseyre, 2019). Recently (Xu et al., 2020; Ethayarajh et al.,
2022) proposed the concept of V-information. However, the definition needs a trained model, which
is expensive to obtain and is dependent on the quality of training.

Only a few works study the usable information in the graphs, but are not feasible in our problem
settings because of three challenges, i.e., our desired method has to: (1) work without training any
models, where Akhondzadeh et al. (2023) requires model training; (2) identify which components
of the graph are usable, where Dong & Kluger (2023) ignores the individual components; and (3)
generalize to different graph tasks, where Lee et al. (2022) focuses on node classification only.

Graph Neural Networks. Although most GNNs learn node embeddings assuming homophily,
some GNNs (Abu-El-Haija et al., 2019; Zhu et al., 2020; Chien et al., 2021; Liu et al., 2021) break
this assumption by handling k-step-away neighbors differently for every k, and some systematically
study the heterophily graphs on node classification (Platonov et al., 2022; Luan et al., 2022; 2023;
Mao et al., 2023; Chen et al., 2023; Ma et al., 2021). Subgraph GNNs (Zhang & Chen, 2018; Yin
et al., 2022) are only designed for link prediction and are expensive on inference. On the other hand,
linear GNNs (Wu et al., 2019; Wang et al., 2021; Zhu & Koniusz, 2021; Li et al., 2022; Yoo et al.,
2023) target interpretable models. Such approaches remove the non-linear functions and maintain
good performance. As the only method being robust to all graph scenarios, SLIMG (Yoo et al.,
2023) works well on node classification. However, it is unclear how well it works for link prediction.

In conclusion, the proposed NETINFOF is the only one that fulfills all the properties in Table 1.
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3 NETINFOF SCORE: WOULD A GNN WORK?

How to tell whether a GNN will perform well on the given graph task? A graph data is composed
of more than one component, such as graph structure and node features. In this section, we define
our problem, and answer two important questions: (1) How to measure the predictive information
of each component in the graph? (2) How to connect the graph information with the performance
metric on the task? We identify that a GNN is able to perform well on the task when its propagated
representation is more informative than graph structure or node features.

3.1 PROBLEM DEFINITION

Given an undirected graph G = (V, E) with node features X|V|×f , where f is the number of fea-
tures, the problem is defined as follows:

• Measure the network usable information (NUI), and
• Exploit NUI, if there is enough, to solve the graph task.

We consider two most common graph tasks, namely link prediction and node classification. In link
prediction, E is split into Etrain and Epos. The negative edge set Eneg is randomly sampled with the
same size of Epos. The goal is to predict the existence of the edges, 1 for the edges in Epos, and 0 for
the ones in Eneg. In node classification, |Vtrain| node labels y ∈ {1, ..., c}|Vtrain| are given, where c is
the number of classes. The goal is to predict the rest |V| − |Vtrain| unlabeled nodes’ classes.

3.2 PROPOSED DERIVED NODE EMBEDDINGS

To tell whether a GNN will perform well, we can analyze its node embeddings, but they are only
available after training. For this reason, we propose to analyze the derived node embeddings in linear
GNNs. More specifically, we derive 5 different components of node embeddings that can represent
the information of graph structure, node features, and features propagated through structure.

C1: Structure Embedding. The structure embedding U is the left singular vector of the adjacency
matrix A, which is extracted by the singular value decomposition (SVD). This aims to capture the
community information of the graph.

C2: Neighborhood Embedding. The neighborhood embedding R aims to capture the local higher-
order neighborhood information of nodes. By mimicking Personalized PageRank (PPR), we con-
struct a random walk matrix APPR, where each element is the number of times that a node visit
another node in T trials of the kPPR-step random walks. By doing random walks, the local higher-
order structures will be highlighted among the entire graph. To make APPR sparser and to speed up
the embedding extraction, we eliminate the noisy elements with only one visited time. We extract
the left singular vectors of APPR by SVD as the neighborhood embeddings R.

C3: Feature Embedding. Given the raw node features X, we represent the feature embedding with
the preprocessed node features F = g(X), where g is the preprocessed function.

C4: Propagation Embedding without Self-loop. We row-normalize the adjacency matrix into
Arow = D−1A, where D is the diagonal degree matrix. The features are propagated without self-
loop to capture the information of krow-step neighbors, where krow is an even number. This is useful
to capture the information of similar neighbors when the structure exhibits heterophily (e.g., in a bi-
partite graph). Therefore, we have node embedding P = g(l(A2

rowX)), where l is the column-wise
L2-normalization, ensuring every dimension has similar scale.

C5: Propagation Embedding with Self-loop. The adjacency matrix with self-loop has been found
useful to propagate the features in graphs that exhibit homophily. Following the most common
strategy, we symmetrically normalize the adjacency matrix into Ãsym = (D + I)−

1
2 (A + I)(D +

I)−
1
2 , where I is the identity matrix. Similar to C4, we have node embeddings S = g(l(Ã

ksym
sym X)).

While C1-2 aim to capture the information with only the graph structure, C4-5 aim to capture the
information of propagation, which is similar to the one that a trained GNN can capture. To ensure
the embeddings have intuitive meanings, we set all the number of steps kPPR, krow and ksym as 2,
which works sufficiently well in most cases. As C1-2 adopted SVD as their last step, the embed-
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Figure 3: Thm. 2 holds. NETINFOF SCORE is
always less than or equal to validation accuracy.
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Figure 4: NETINFOF SCORE predicts right. It is
correlated to test performance in synthetic datasets.

ding dimensions are orthogonalized. For C3-5, we use principal component analysis (PCA) as g to
reduce and orthogonalize the embedding dimensions, which leads to faster convergence and better
performance when training the model. Every component has the same number of dimensions d.

3.3 NETINFOF SCORE: DEFINITION AND THEOREMS

Next, we want to find a formula that connects the metrics of graph information and task performance.
To begin, we derive the inequality between entropy and accuracy:

Theorem 1 (Entropy and Accuracy). Given a discrete random variable Y , we have:

2−H(Y ) ≤ accuracy(Y ) = max
y∈Y

py (1)

where H(Y ) = −
∑

y∈Y py log py denotes the Shannon entropy.

Proof. See Appx. A.1. ■

Before extending Thm. 1 to the case with two random variables, we need a definition:

Definition 1 (NETINFOF SCORE of Y given X). Given two discrete random variables X and Y ,
NETINFOF SCORE of Y given X is defined as:

NETINFOF SCORE = 2−H(Y |X) (2)

where H(·|·) denotes the conditional entropy.

We prove that NETINFOF SCORE low-bounds the accuracy:

Theorem 2 (NETINFOF SCORE). Given two discrete random variables X and Y , NET-
INFOF SCORE of Y given X low-bounds the accuracy:

NETINFOF SCORE = 2−H(Y |X) ≤ accuracy(Y |X) =
∑
x∈X

max
y∈Y

px,y (3)

where px,y is the joint probability of x and y.

Proof. See Appx. A.2. ■

Thm. 2 provides an advantage to NETINFOF SCORE by giving it an intuitive interpretation, which
is the lower-bound of the accuracy. When there is little usable information to the task, the value of
NETINFOF SCORE is close to random guessing. To empirically verify it, we run the experiments
on the synthetic datasets (Appx. D.1) with five splits, and report NETINFOF SCORE and accuracy
for all components of derived embeddings. In Fig. 3, we find that even for the validation set, NET-
INFOF SCORE is always less than or equal to the accuracy, strictly following Thm. 2. In the next
sections, we show how NETINFOF SCORE can be effectively and efficiently computed with our
proposed NETINFOF PROBE.

4
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4 NETINFOF FOR LINK PREDICTION

With the derived node embeddings, how can we measure NUI in link prediction as well as solve
the task? Compared to general GNNs, the node embeddings of linear GNNs are given by closed-
form formula. They are thus rarely applied on link prediction because of following two reasons: (1)
Predicting links by GNNs relies on measuring node similarity, which is incorrect if the neighbors
are expected to have dissimilar embeddings; for example, in a bipartite graph, while a source node
is connected to a target node, their structural embeddings are expected to be very different, resulting
in low node similarity by linear GNNs; (2) In order to perform well on Hits@K, it is crucial to
suppress the similarity of the nodes of negative edges, i.e. the unexisting connections in the graph.
Hits@K is the ratio of positive edges that are ranked at K-th place or above among both the positive
and negative edges, which is preferred in link prediction where most real-world applications are
recommendations. Since the embeddings of linear GNNs are static, they can not learn to separate
the embeddings of nodes on each side of the negative edges. Therefore, how to generalize linear
GNNs to solve link prediction remains a challenge.

To these reasons, we propose adjustment to the node similarity, which generalizes NETINFOF to link
prediction, including NETINFOF PROBE to measure NUI and NETINFOF ACT to solve the task.

4.1 PROPOSED ADJUSTMENT TO NODE SIMILARITY

To solve the limitations of linear GNNs on link prediction, it is crucial to properly measure the simi-
larity between nodes. We consider the cosine similarity as the measurement, whose value is normal-
ized between 0 and 1. By L2-normalizing each node embedding z1×d, the cosine similarity reduces
to a simple dot product zi · zj . However, even if node i and node j are connected by an edge, it may
result in low value if they are expected to have dissimilar embeddings (e.g. structure embeddings
in a bipartite graph). Therefore, before the dot product, we propose to use the compatibility matrix
Hd×d to transform one of the embeddings, and rewrite the node similarity function into ziHz⊺j .

The compatibility matrix H represents the characteristics of the graph: if the graph exhibits ho-
mophily, H is nearly diagonal; if it exhibits heterophily, H is off-diagonal. It is commonly assumed
given in belief propagation (BP) to handle the interrelations between node classes. In our case, H
represents the interrelations between the dimensions of the node embeddings. By maximizing the
similarity of nodes connected by edges, H can be estimated by the following lemma:

Lemma 1 (Compatibility Matrix). The compatibility matrix H has the closed-form solution and
can be solved by the following optimization problem:

min
H

∑
(i,j)∈E

∥ziH− zj∥22, (4)

where E denotes the set of (positive) edges in the given graph.

Proof. See Appx. A.3. ■

This optimization problem can be efficiently solved by multi-target linear regression. Nevertheless,
this estimation of H does not take the negative edges into account, which may accidentally increase
the similarity of negative edges in some complicated cases. This hurts the performance especially
when evaluating with Hits@K. Therefore, based on Lemma 1, we propose an improved estimation
H∗, which further minimizes the similarity of nodes connected by the sampled negative edges:

Lemma 2 (Compatibility Matrix with Negative Edges). The compatibility matrix with negative
edges H∗ has the closed-form solution and can be solved by the following optimization problem:

min
H∗

∑
(i,j)∈E

(1− ziH
∗z⊺j )−

∑
(i,j)∈Eneg

(ziH
∗z⊺j ), (5)

where Eneg denotes the set of negative edges.

Proof. See Appx. A.4. ■

5
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With great power comes great responsibility, estimating H∗ has a higher computational cost than
estimating H. Thus, we provide three techniques to speedup the computation of H∗ with the help
of H, and the details are in Algo. 1.

T1: Warm Start. We approximate the solution by LSQR iteratively and warm up the approximation
process with H. Since H is similar to H∗ and cheap to compute, this step largely speeds up the
approximation process and reduces the number of iterations needed for convergence.

T2: Coefficient Selection. We reduce the number of coefficients by only estimating the upper tri-
angle of H∗, and keep the ones with 95% energy in H. This is because the similarity function is
symmetric, and the unimportant coefficients with small absolute values in H remain unimportant in
H∗. The absolute sum of the kept coefficients divided by

∑d
i=1

∑d
j=i+1 |Hij | is 95% and the rest

are zeroed out. This helps us reduce the number of coefficients from d2 to be lower than (d+1)d/2.

T3: Edge Reduction. We sample S positive edges from the 2-core graph, and 2S negative edges,
where the sample size S depends on d. Since in large graphs |E| is usually much larger than d2,
it is not necessary to estimate fewer than (d + 1)d/2 coefficients with all |E| edges. Moreover, 2-
core graph remains the edges with stronger connections, where each node in it has at least degree 2.
Sampling from the 2-core graph avoids interference by the noisy edges and leads to better estimation.

4.2 NETINFOF PROBE FOR NUI MEASUREMENT

Based on Thm. 2, we propose NETINFOF PROBE that computes NETINFOF SCORE, without ex-
actly computing the conditional entropy of high-dimensional variables. By sampling negative edges,
the link prediction can be seen as a binary classification problem. For each component of embed-
dings, NETINFOF PROBE esitmates its corresponding H∗ and discretizes the adjusted node simi-
larity of positive and negative edges. To avoid overfitting, we fit the k-bins discretizer with the sim-
ilarity of training edges, and discretize the one of validation edges into k bins. NETINFOF SCORE
can then be easily computed between two categorical variables. For instance, the node similarity be-
tween node i and j with embedding U is (ÛiH

∗
Û
)·Ûj , where ·̂ denotes the embedding preprocessed

by column-wise standardization and row-wise L2-normalization. The details are in Algo. 2.

4.3 NETINFOF ACT FOR NUI EXPLOITATION

To solve link prediction, NETINFOF ACT shares the same derived node embeddings with NET-
INFOF PROBE, and uses a link predictor following by the Hadamard product of the embeddings.
We transform the embeddings on one side of the edge with H∗, which handles heterophily embed-
dings and better separates the nodes in the negative edges. By concatenating all the components, the
input to the predictor is as follows:

ÛiH
∗
Û
⊙ Ûj︸ ︷︷ ︸

Structure

∥ R̂iH
∗
R̂
⊙ R̂j︸ ︷︷ ︸

PPR

∥ F̂iH
∗
F̂
⊙ F̂j︸ ︷︷ ︸

Features

∥ P̂iH
∗
P̂
⊙ P̂j︸ ︷︷ ︸

Features of
2-Step Neighbors

∥ ŜiH
∗
Ŝ
⊙ Ŝj︸ ︷︷ ︸

Features of
Grand Neighbors

(6)

where (i, j) ∈ E ∪ Eneg. Among all the choices, we use LogitReg as the predictor for its scalability
and interpretability. We suppress the weights of useless components, if there is any, by adopting
sparse-group LASSO for the feature selection. The time complexity of NETINFOF ACT is:
Lemma 3. The time complexity of NETINFOF ACT for link prediction is linear on the input size
|E|:

O(f2|V|+ f3 + d4|E|) (7)
where f and d are the number of features and embedding dimensions, respectively.

Proof. See Appx. A.5. ■

5 NETINFOF FOR NODE CLASSIFICATION

In this section, we show how we can generalize NETINFOF to node classification. In contrast to link
prediction, node classification does not rely on the node similarity, needing no compatibility matrix.

6
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5.1 NETINFOF PROBE FOR NUI MEASUREMENT

To effectively and efficiently compute NETINFOF SCORE, we propose to assign labels to the nodes
by clustering. This idea is based on the intuition that good embeddings for node classification can be
split by clustering easily. Among clustering methods, we use k-means as it is fast. We cluster each
component of embeddings and compute NETINFOF SCORE, where k ≥ c. To ensure the clustering
is done stably, row-wise L2-normalization is done on the embedding. The details are in Algo. 3.

5.2 NETINFOF ACT FOR NUI EXPLOITATION

To solve node classification, we again concatenate the embeddings of different components, and the
input of classifier is as follows:

l(U)︸︷︷︸
Structure

∥ l(R)︸︷︷︸
PPR

∥ l(F)︸︷︷︸
Features

∥ l(P)︸︷︷︸
Features of

2-Step Neighbors

∥ l(S)︸︷︷︸
Features of

Grand Neighbors

(8)

where l is the column-wise L2-normalization. Similar to NETINFOF ACT in link prediction, we use
LogitReg as the classifier and adopt sparse-group LASSO for the regularization.

6 SYNTHETIC DATASETS FOR SANITY CHECKS

To ensure that NETINFOF is robust to all graph scenarios, we carefully design the synthetic datasets
for sanity checks. We include all possible graph scenarios, where the ground truth of NUI is avail-
able. The details of implementation are in Appx. D.1.

6.1 LINK PREDICTION

Designs. We separate the nodes into c groups to simulate that there are usually multiple communities
in a graph. To cover all the possibilities in the real-world, the scenarios are the cross-product of
different scenarios on the node features X and the graph structure A, as shown in Fig. 5. We ignore
the scenario that X is useful but A is useless, since this is impractical in the real-world.

There are 3 scenarios of node features X:

1. Random: the node features are random, with no correlation with the existence of edges.
2. Global: all dimensions of the node features are correlated with the existence of edges.
3. Local: only a subset of dimensions of the node features are correlated with the existence

of edges, where there is no overlapping between the subsets of node groups.

There are 2 scenarios of graph structure A:

1. Diagonal: the nodes and their neighbors are in the same group.
2. Off-Diagonal: the nodes and their neighbors are in two different groups.

Observations. In Table 2, NETINFOF receives the highest average rank among all GNN baselines,
and is the only method that can handle all scenarios. While GNNs have worse performance when X
is either random or local, SLIMG, a linear GNN, can not handle the cases with off-diagonal A.

Would a GNN work? Fig. 4a shows that NETINFOF SCORE is highly correlated with test
Hits@100, with high R2 values, where each point denotes a component of embeddings from each
split of synthetic datasets. In Appx. C.1, Table 6 reports NETINFOF SCORE and test performance
of each component. By measuring their NETINFOF SCORE, NETINFOF PROBE tells when prop-
agating features through structure contains less information than using features or structure itself.
For example, in the scenarios that the node features are useless (the first two scenarios in Table 6),
NETINFOF PROBE spots that F (i.e., g(X)) provides little NUI to the task, and thus the propagated
embeddings P and S have less NUI than the structural embeddings U and R. This indicates that
training GNNs is less likely to get better performance than only utilizing the information from the
graph structure, which correctly matches the test performance in Table 6.

7
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graph structure A in synthetic datasets.

Table 2: NETINFOF wins on link prediction in the syn-
thetic datasets. Hits@100 is reported.

Model Rand. X Rand. X Global X Global X Local X Local X Avg.
Diag. A Off-Diag. A Diag. A Off-Diag. A Diag. A Off-Diag. Rank

GCN 82.7±1.1 70.9±1.2 87.2±0.5 85.1±1.2 17.4±1.7 19.2±1.8 4.3 (0.9)
SAGE 77.4±1.1 66.5±4.1 86.2±1.0 85.2±2.2 11.0±1.2 09.5±1.0 5.1 (1.1)
GAT 86.3±0.9 83.1±0.3 87.3±0.9 85.2±0.6 16.0±2.0 16.9±2.1 3.3 (1.5)
H2GCN 24.5±4.3 58.9±3.7 75.3±1.1 85.8±2.5 19.8±2.0 19.2±1.5 5.0 (2.1)
GPR-GNN 75.1±0.8 52.3±1.6 83.4±1.3 79.5±1.6 19.3±1.7 17.1±2.0 6.0 (1.1)
SLIMG 85.7±0.8 67.8±2.8 87.9±1.0 85.1±1.3 82.5±1.6 31.1±1.1 3.3 (1.3)

NETINFOF 87.3±0.7 86.7±0.6 89.8±0.3 89.8±1.0 89.6±0.2 90.8±0.7 1.0 (0.0)

6.2 NODE CLASSIFICATION

Designs. We remain the same scenarios in SLIMG, while use our graph generator in Appx. D.1.

Observations. Fig. 4b shows that NETINFOF SCORE is highly correlated with test accuracy. In
Appx. C.5, Table 10 shows that NETINFOF generalizes to all scenarios as SLIMG does; Table 11
shows that the component with the highest NETINFOF SCORE always has the highest test accuracy.

7 EXPERIMENTS

We conduct experiments by real-world graphs to answer the following research questions (RQ):

RQ1. Effectiveness: How well does NETINFOF perform in real-world graphs?
RQ2. Scalability: Does NETINFOF scales linearly with the input size?
RQ3. Ablation Study: Are all the design choices in NETINFOF necessary?

The details of datasets and settings are in Appx. D. Since we focus on improving linear GNNs in
link prediction, the experiments for node classification are in Appx. C.6 because of space limit. The
experiments are conducted on an AWS EC2 G4dn instance with 192GB RAM.

7.1 EFFECTIVENESS (RQ1)

Real-World Datasets. We evaluate NETINFOF on 7 homophily and 5 heterophily real-world
graphs. We randomly split the edges into the training, validation and testing sets by the ratio
70%/10%/20% for five times and report the average for fair comparison. Since our goal is to
propose a general GNN method, we focus on comparing NETINFOF with 6 GNN baselines, which
are general GNNs (GCN, SAGE, GAT), heterophily GNNs (H2GCN, GPR-GNN), and a linear GNN
(SLIMG). While Hits@100 is used for evaluating on most graphs, Hits@1000 is used on the larger
ones, namely, Products, Twitch and Pokec, which have much more negative edges in the testing sets.

In Table 3, NETINFOF outperforms GNN baselines in 11 out of 12 datasets, and has the highest
average rank, as our derived embeddings include comprehensive graph information, i.e, structure,
features and features propagated through structure. Compared to non-linear GNNs, SLIMG has
worse performance in most heterophily graphs, showing that it can not properly measure the node
similarity of heterophily embeddings in link prediction. By addressing the limitations of linear
GNNs, NETINFOF is able to consistently outperform both SLIMG and non-linear GNNs in both ho-
mophily and heterophily graphs. Note that the results in Pokec are similar to the ones in homophily
graphs, since it can be labeled as either homophily (by locality) or heterophily (by gender).

Table 3: NETINFOF wins on link prediction in most real-world datasets. Hits@100 is reported for
most datasets, and Hits@1000 for the large datasets (Products, Twitch and Pokec).

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Twitch Pokec Avg. Rank
GCN 67.1±1.8 60.4±10. 47.6±13. 22.5±3.1 39.1±1.6 14.8±0.6 02.2±0.1 82.1±4.5 16.5±1.0 31.1±1.7 16.2±0.3 07.9±1.7 4.1 (1.3)
SAGE 68.4±2.8 55.9±2.5 57.6±1.1 27.5±2.1 40.0±1.9 00.7±0.1 00.3±0.2 84.7±3.6 15.5±1.5 27.6±1.4 08.7±0.6 05.5±0.5 4.5 (1.2)
GAT 66.7±3.6 65.2±2.6 55.1±2.4 28.3±1.6 44.2±3.5 05.0±0.8 O.O.M. 84.8±4.5 15.6±0.8 32.3±2.4 08.2±0.3 O.O.M. 4.0 (1.7)
H2GCN 64.4±3.4 35.7±5.4 50.5±0.9 17.9±0.7 29.5±2.4 O.O.M. O.O.M. 79.3±4.5 16.0±2.6 28.7±2.1 O.O.M. O.O.M. 6.2 (1.0)
GPR-GNN 69.8±1.9 53.5±8.1 66.3±3.3 20.7±1.8 34.1±1.1 13.8±0.8 O.O.M. 77.2±5.6 14.6±2.7 32.1±1.3 12.6±0.2 05.0±0.2 4.6 (1.8)
SLIMG 77.9±1.3 86.8±1.0 55.9±2.8 25.3±0.9 40.2±2.5 20.2±1.0 27.6±0.6 76.9±2.8 19.6±1.5 18.7±1.0 12.0±0.3 21.7±0.2 3.5 (1.8)

NETINFOF 81.3±0.6 87.3±1.3 59.7±1.1 31.1±1.9 46.8±2.2 39.2±1.8 35.2±1.1 86.9±2.3 24.2±2.0 36.2±1.2 19.6±0.7 31.3±0.5 1.1 (1.3)
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Figure 6: NETINFOF ACT is scalable on link
prediction, being linear with number of edges.

Table 4: NETINFOF wins on link prediction in
OGB datasets. Hits@20, Hits@50, and Hits@100
are reported for ddi, collab, and ppa, respectively.

Model ogbl-ddi ogbl-collab ogbl-ppa
GCN 37.1±5.1 44.8±1.1 18.7±1.3
SAGE 53.9±4.7 48.1±0.8 16.6±2.4
SLIMG 35.9±0.6 45.1±0.2 21.1±0.6

NETINFOF 56.8±3.4 53.7±0.2 24.2±0.1

OGB Link Prediction Datasets. We evaluate NETINFOF on OGB datasets. Table 4 shows that
NETINFOF outperforms other general GNN baselines, while using a model with much fewer pa-
rameters. NETINFOF has only 1280 learnable parameters for all datasets, while GCN and SAGE
has at least 279K and 424K, respectively, which is 218× more than the ones that NETINFOF has.

7.2 SCALABILITY (RQ2)

We plot the number of edges versus the run time of link prediction in seconds on the real-world
datasets. In Fig. 6, we find that NETINFOF scales linearly with the number of edges, thanks to
our speedup techniques on estimating compatibility matrix H∗. To give a concrete example, the
numbers of coefficients of H∗

U are reduced from d(d + 1)/2 = 8256 to 3208, 5373, and 4293, for
Products, Twitch, and Pokec, respectively. Moreover, those numbers are very reasonable: Products
is a homophily graph, its H∗

U has the fewest coefficients, which are mostly on the diagonal; Twitch
is a heterophily graph, its H∗

U has the most coefficients, which are mostly on the off-diagonal; Pokec
can be seen as either homophily or heterophily, its H∗

U has the number of coefficients in between.

7.3 ABLATION STUDY (RQ3)

To demonstrate the necessity of addressing the limitations of linear GNNs in link prediction with
our design choices, we study NETINFOF (1) without compatibility matrix (w/o CM), and (2) with
only compatibility matrix H (w/ only H), which is not optimized with negative edges. Table 5
shows that NETINFOF works best with both design choices. In heterophily graphs, merely using
H leads to better performance because of properly handling heterophily embeddings; while in ho-
mophily graphs, it accidentally increases the similarity between nodes in negative edges and hurts
the performance. By addressing both heterophily embeddings and negative edges, using H∗ as the
compatibility matrix has the best performance in both heterophily and homophily graphs.

Table 5: Ablation Study - All design choices in NETINFOF are necessary on link prediction.
CM stands for compatibility matrix, and H is not optimized with negative edges.

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Twitch Pokec
w/o CM 79.8±0.9 86.5±1.6 58.5±1.2 27.9±0.2 44.7±3.2 35.9±1.8 34.6±0.4 74.6±1.5 14.3±0.6 29.5±1.8 08.9±0.8 30.5±0.3
w/ only H 80.9±0.5 87.0±1.4 58.8±1.4 26.5±1.2 43.4±2.1 32.5±1.6 30.6±0.4 74.3±3.2 19.3±1.2 32.2±1.6 10.3±3.1 29.8±0.4

NETINFOF 81.3±0.6 87.3±1.3 59.7±1.1 31.1±1.9 46.8±2.2 39.2±1.8 35.2±1.1 86.9±2.3 24.2±2.0 36.2±1.2 19.6±0.7 31.3±0.5

8 CONCLUSIONS

We propose the NETINFOF framework to measure and exploit the network usable information
(NUI). In summary, NETINFOF has the following advantages:

1. General, handling both link prediction and node classification (Lemma 1-2);
2. Principled, with theoretical guarantee (Thm. 1-2) and closed-form solution (Lemma 1-2);
3. Effective, thanks to the proposed adjustment of node similarity;
4. Scalable, scaling linearly with the input size (Fig. 6).

Applied on our carefully designed synthetic datasets, NETINFOF correctly identifies the ground
truth of NUI and is the only method being robust to all graph scenarios. Applied on real-world
graphs, NETINFOF wins in 11 out of 12 times on link prediction.
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Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Phys-
ical review E, 69(6):066138, 2004.

Meng-Chieh Lee, Shubhranshu Shekhar, Jaemin Yoo, and Christos Faloutsos. Ultraprop: Principled
and explainable propagation on large graphs. arXiv preprint arXiv:2301.00270, 2022.

Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset collection, 2014.

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan
Liu. Feature selection: A data perspective. ACM computing surveys (CSUR), 50(6):1–45, 2017.

10



Published as a conference paper at ICLR 2024

Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, and Zhouchen Lin. G2cn: Graph gaussian
convolution networks with concentrated graph filters. In International Conference on Machine
Learning, pp. 12782–12796. PMLR, 2022.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser-
Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong simple
methods. In NeurIPS, 2021.

Meng Liu, Zhengyang Wang, and Shuiwang Ji. Non-local graph neural networks. IEEE transactions
on pattern analysis and machine intelligence, 44(12):10270–10276, 2021.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification: In-
vestigating the homophily principle on node distinguishability. arXiv preprint arXiv:2304.14274,
2023.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations, 2021.

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? arXiv preprint
arXiv:2306.01323, 2023.

Octavio César Mesner and Cosma Rohilla Shalizi. Conditional mutual information estimation for
mixed, discrete and continuous data. IEEE Transactions on Information Theory, 67(1):464–484,
2020.

Jan Mielniczuk and Paweł Teisseyre. Stopping rules for mutual information-based feature selection.
Neurocomputing, 358:255–274, 2019.

Jan Motl and Oliver Schulte. The ctu prague relational learning repository, 2015.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188–197, 2019.

Liam Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):1191–
1253, 2003.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
graph datasets for node classification: Beyond homophily-heterophily dichotomy. arXiv preprint
arXiv:2209.06177, 2022.

Brian C Ross. Mutual information between discrete and continuous data sets. PloS one, 9(2):
e87357, 2014.

Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and
visualization. In AAAI Conference on Artificial Intelligence, volume 29, pp. 4292–4293, New
York, NY, USA, 2015.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-Scale Attributed Node Embedding.
Journal of Complex Networks, 9(2), 2021.

Lubos Takac and Michal Zabovsky. Data analysis in public social networks. In International scien-
tific conference and international workshop present day trends of innovations, volume 1, 2012.

11



Published as a conference paper at ICLR 2024
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A APPENDIX: PROOFS

A.1 PROOF OF THM. 1

Proof. Let Y be a discrete random variable with n outcomes (y1, . . . , yn), and with probabilities
(p1, . . . , pn), where:

1 = p1 + . . .+ pn (9)

Let pmax be the highest probability (break ties arbitrarily), that is:

pmax = max
i

pi (10)

For ease of presentation, and without loss of generality, assume that the most likely outcome is the
first one, y1, and thus pmax = p1. Given no other information, the best classifier for Y is the one
that always guesses outcome y1, and it has accuracy:

accuracy(Y ) = p1 ≡ pmax (11)

The entropy H(Y ) is:
H(Y ) = −(p1 log p1 + . . .+ pn log pn) (12)

Thus we have:

2−H(Y ) = p1
p1 ∗ p2p2 . . . ∗ pnpn (13)

≤ pmax
p1 ∗ pmax

p2 ∗ . . . ∗ pmax
pn // ∵ pmax ≥ pi (14)

≤ pmax
p1+p2+...+pn (15)

≤ pmax (16)

which completes the proof. ■

A.2 PROOF OF THM. 2

Proof. Let Y and X be two discrete random variables with n outcomes (y1, . . . , yn) and m outcomes
(x1, . . . , xm), respectively, then their joint probabilities are (p1,1, . . . , pm,n), where:

1 = p1 + . . .+ pm =

n∑
j=1

p1,j + . . .+

n∑
j=1

pm,j (17)

The accuracy is:

accuracy(Y |X) =

m∑
i=1

max
j

pi,j (18)

The conditional entropy H(Y |X) is:

H(Y |X) = p1 ∗ (−
n∑

j=1

p1,j
p1
∗ log2

p1,j
p1

) + . . .+ pm ∗ (−
n∑

j=1

pm,j

pm
∗ log2

pm,j

pm
) (19)

Thus we have:

⇒ −H(Y |X) = p1 ∗ (
n∑

j=1

p1,j
p1
∗ log2

p1,j
p1

) + . . .+ pm ∗ (
n∑

j=1

pm,j

pm
∗ log2

pm,j

pm
) (20)

≤ p1 ∗ log2 (
n∑

j=1

(
p1,j
p1

)2) + . . .+ pm ∗ log2 (
n∑

j=1

(
pm,j

pm
)2) // ∵ Jensen’s Inequality

(21)

≤ p1 ∗ log2 (p−2
1 ∗

n∑
j=1

p1,j
2) + . . .+ pm ∗ log2 (p−2

m ∗
n∑

j=1

p2m,j) (22)

≤ p1 ∗ log2 (p−1
1 ∗max

j
p1,j) + . . .+ pm ∗ log2 (p−1

m ∗max
j

pm,j) (23)
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This is because ∀i = 1, . . . ,m:
n∑

j=1

p2i,j = pi,1 ∗ pi,1 + . . .+ pi,n ∗ pi,n (24)

≤ pi,1 ∗max
j

pi,j + . . .+ pi,n ∗max
j

pi,j (25)

≤ (pi,1 + . . .+ pi,n) ∗max
j

pi,j (26)

= pi ∗max
j

pi,j (27)

To continue, we have:

⇒ 2−H(Y |X) ≤ 2p1∗log2 (p−1
1 ∗maxj p1,j)+...+pm∗log2 (p−1

m ∗maxj pm,j) (28)

≤ (p−1
1 ∗max

j
p1,j)

p1 ∗ . . . ∗ (p−1
m ∗max

j
pm,j)

pm (29)

≤ max
j

p1,j + . . .+max
j

pm,j // ∵ Weighted AM-GM Inequality (30)

= accuracy(Y |X) (31)

which completes the proof. ■

A.3 PROOF OF LEMMA 1

Proof. The goal is to maximize the similarity of nodes connected by edges. If we start from cosine
similarity and L2-normalize the node embeddings z, we have:

ziHz⊺j
∥zi∥∥zj∥

= 1,∀(i, j) ∈ E

⇒ziHz⊺j = ∥zi∥∥zj∥ = 1

⇒ziH = zj

(32)

Setting zi as the input data and zj as the target data, this equation can be solved by d-target linear
regression with d coefficients, which has the closed-form solution. ■

A.4 PROOF OF LEMMA 2

Proof. First, we rewrite the adjusted node similarity s from matrix form into a simple computation:

s(zi, zj ,H) = ziHz⊺j

= [zi,1 · · · zi,d]

H1,1 · · · H1,d

...
. . .

...
Hd,1 · · · Hd,d


zj,1...
zj,d


=

zi,1zj,1 · · · zi,1zj,d
...

. . .
...

zi,dzj,1 · · · zi,dzj,d

⊙
H1,1 · · · H1,d

...
. . .

...
Hd,1 · · · Hd,d


= zi,1zj,1H1,1 + zi,1zj,2H1,2 + · · ·+ zi,1zj,dH1,d + · · ·+ zi,dzj,dHd,d

(33)

Next, to maximize the similarity of nodes connected by positive edges, and to minimize the similar-
ity of nodes connected by negative edges, we have:

s(zi, zj ,H) =

{
1 (i, j) ∈ E
0 (i, j) ∈ Eneg

(34)

Therefore, this equation can be solved by linear regression with d2 coefficients, which has the closed-
form solution.

■
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A.5 PROOF OF LEMMA 3

Proof. NETINFOF includes four parts: SVD, PCA, compatibility matrix estimation, and LogitReg.
The time complexity of truncated SVD is O(d2|V|), and the one of PCA is f2|V|+f3. Compatibility
matrix estimation is optimized by Ridge regression with regularized least-squares routine, whose
time complexity is d4|E|. The time complexity of training LogitReg is dt|E|, where t is the number
of epochs. In our experiments, t is no greater than 100, and |V| is much less than |E| in most
datasets. By combining all the terms and keeping only the dominant ones, we have time complexity
of NETINFOF for link prediction O(f2|V|+ f3 + d4|E|). ■

B APPENDIX: ALGORITHMS

Algorithm 1: Compatibility Matrix with Negative Edges

Input: Preprocessed node embedding Ẑ, edge set E , and sample size S
1 Extract 2-core edge set Epos from E ;
2 Estimate H with Ẑ and Epos by Lemma 1;
3 if |Epos| > S then
4 Sample S edges from Epos;
5 Initialize H∗ with H;
6 Keep top coefficients in upper triangle of H∗ with 95% energy;
7 Sample 2|Epos| negative edges as Eneg;
8 Estimate H∗ with Ẑ, Epos and Eneg by Lemma 2;
9 Return H∗;

Algorithm 2: NETINFOF PROBE for Link Prediction
Input: Node embedding Z, train edge set Etrain, valid edge set Evalid, valid edge labels yvalid,

sample size S, and bin size k

1 Preprocess Z into Ẑ by column-wise standardization and row-wise L2-normalization;
2 H∗ = Compatibility-Matrix-with-Negative-Edges(Ẑ, Etrain, S);
3 if |Epos| > S then
4 Sample S edges from Epos;
5 else
6 Epos ← E ;
7 Sample 2|Epos| negative edges as Eneg;
8 Fit k-bins discretizer with ẑiH

∗ẑ⊺j ,∀(i, j) ∈ Epos ∪ Eneg;
9 Discretize ẑiH

∗ẑ⊺j ,∀(i, j) ∈ Evalid into k bins as svalid;
10 Return NETINFOF SCORE, computed with svalid and yvalid by Eq. 2;

Algorithm 3: NETINFOF PROBE for Node Classification
Input: Train, valid, and test node embedding Ztrain, Zvalid, and Ztest, train and valid node

labels ytrain and yvalid, and cluster number k
1 Preprocess Z into Ẑ row-wise L2-normalization;
2 Fit clustering model with Ẑtest;
3 Assign cluster labels strain and svalid to Ẑtrain and Ẑvalid, respectively;
4 Return NETINFOF SCORE, computed with strain ∪ svalid and ytrain ∪ yvalid by Eq. 2;
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C APPENDIX: EXPERIMENTS

C.1 LINK PREDICTION IN SYNTHETIC DATASETS

To study the information of the derived node embeddings, we conduct NETINFOF PROBE on each
component, and LogitReg to have test performance on link prediction. In Table 6, the components
with the top-2 NETINFOF SCORE as well have the top-2 test performance in every scenario.

Table 6: Results of each derived node embeddings. NETINFOF SCORE and test Hits@100 on link
prediction are reported. Red highlights the results close to random guessing.

Metric Feature Random X Random X Global X Global X Local X Local X
Component Diagonal A Off-Diag. A Diagonal A Off-Diag. A Diagonal A Off-Diag. A

NETINFOF SCORE

C1 : U 75.1±0.9 74.3±0.5 75.3±0.6 74.1±0.7 75.2±0.8 74.8±0.5
C2 : R 76.5±0.9 76.3±0.5 76.7±0.8 76.3±0.2 76.6±0.8 76.3±0.4
C3 : F 50.0±0.0 50.0±0.0 67.0±0.5 71.5±0.6 75.9±1.1 75.5±0.6
C4 : P 75.1±0.7 73.2±0.6 78.2±0.7 78.5±0.5 78.5±1.2 78.9±0.5
C5 : S 74.3±1.1 72.0±0.5 78.7±1.0 79.2±0.5 79.0±0.9 81.1±0.6

Test Hits@100

C1 : U 83.3±1.2 76.4±2.1 83.5±1.2 76.7±0.5 83.2±1.1 78.2±0.9
C2 : R 83.0±1.5 74.7±1.4 83.0±1.3 75.0±1.5 83.2±1.0 75.3±0.7
C3 : F 02.2±0.2 02.5±0.2 52.3±1.9 63.0±2.2 80.7±1.1 77.1±1.0
C4 : P 82.3±1.2 73.4±0.4 86.2±1.1 79.3±0.7 85.7±1.5 79.4±1.3
C5 : S 80.7±0.9 68.1±1.8 86.4±0.9 79.2±1.1 86.5±1.0 85.2±1.1

C.2 LINK PREDICTION IN REAL-WORLD DATASETS

To study the effectiveness of each derived node embedding, we conduct experiments on each in-
dividual component for the real-world datasets. As shown in Table 7, different components have
variable impact depending on the input graph.

Table 7: Ablation study - NETINFOF on each component of derived node embedding. Hits@100
is reported for most datasets, and Hits@1000 for the large datasets (Products, Twitch and Pokec).

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Twitch Pokec
C1 : U 48.3±0.8 36.9±2.5 43.7±1.8 24.0±1.8 38.5±2.6 18.1±0.6 13.2±0.3 75.0±5.2 12.3±1.8 23.2±2.2 15.8±0.2 16.2±0.6
C2 : R 61.5±1.2 50.0±1.9 47.9±0.8 19.4±0.8 36.8±3.3 12.3±1.0 09.4±0.7 64.6±3.2 08.2±1.4 34.2±2.3 01.5±0.2 05.2±0.2
C3 : F 58.3±3.2 71.5±2.4 41.6±0.4 07.1±0.4 15.6±1.2 04.9±0.2 00.4±0.1 10.7±1.0 00.6±0.1 02.6±0.5 01.7±0.6 00.5±0.2
C4 : P 67.3±1.8 60.9±2.5 48.1±1.8 28.6±2.4 42.4±1.4 34.2±1.0 27.6±0.5 84.3±1.8 20.9±2.3 13.1±1.1 07.3±1.0 12.4±0.8
C5 : S 82.4±1.0 88.7±1.5 63.3±1.1 29.0±2.3 40.3±1.1 33.6±1.1 28.1±0.7 80.5±2.7 19.2±1.2 22.3±0.9 02.7±1.8 16.2±0.6

C.3 SENSITIVITY ANALYSIS OF NETINFOF PROBE IN LINK PREDICTION

We conduct a sensitivity analysis on a medium size dataset “Computers”, to study the effect of
the number of bins k in NETINFOF PROBE (Algo. 2). As shown in Table 8 and Fig. 7, NET-
INFOF SCORE is insensitive to the exact value of k, forming a plateau when k increases.

Table 8: Sensitivity analysis of NETINFOF PROBE in link
prediction. NETINFOF SCORE is reported.

Number of Bins k = 4 k = 8 k = 16 k = 32 k = 64

C1 : U 74.2±0.3 79.7±0.2 80.4±0.3 80.8±0.3 81.0±0.3
C2 : R 76.5±0.2 80.4±0.0 81.2±0.3 81.4±0.3 81.5±0.3
C3 : F 63.8±0.1 64.9±0.2 65.0±0.1 65.0±0.1 65.1±0.1
C4 : P 77.3±0.2 82.1±0.1 83.0±0.3 83.3±0.3 83.4±0.3
C5 : S 77.3±0.1 82.5±0.1 83.3±0.1 83.6±0.2 83.7±0.2
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Figure 7: Sensitivity analysis -
NETINFOF PROBE is insensitive
to the number of bins k.
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C.4 COMPARISON WITH SUBGRAPH GNN IN REAL-WORLD DATASETS

Although the comparison with subgraph GNN is beyond the scope of this paper, the experimental
results of a subgraph GNN, SEAL (Zhang & Chen, 2018), are provided in Table 9 for the interested
readers. The hidden size is set to 128 as the same as other baselines, and the hyperparameter search
is done on the number of hops ([1, 3]), learning rate ([0.001, 0.01]), weight decay ([0, 5e−4]), and the
number of layers ([2, 3]). Other hyperparameters are set as the default ones in Zhang et al. (2021).

To emphasize again, as shown in Table 1, subgraph GNNs are beyond the scope of this paper,
because: (1) they are not designed as general GNNs and can only solve link prediction; (2) they are
only scalable to small graphs. To give a concrete example, using an AWS EC2 G4dn instance with
384GB RAM and running on the largest dataset Photo without running out of memory (O.O.M.) in
the preprocessing step, SEAL takes 17606 seconds (around 4.9 hours) to train on a single split of
data, while NETINFOF takes only 52 seconds, which is 339× faster than SEAL.

Table 9: Comparison with SEAL. Hits@100 is reported for most datasets, and Hits@1000 for the
large datasets (Products, Twitch and Pokec).

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Twitch Pokec
SEAL 66.4±0.6 61.4±1.0 62.8±1.7 O.O.M. 55.5±1.0 O.O.M. O.O.M. 89.4±1.0 O.O.M. 43.6±0.7 O.O.M. O.O.M.
NETINFOF 81.3±0.6 87.3±1.3 59.7±1.1 31.1±1.9 46.8±2.2 39.2±1.8 35.2±1.1 86.9±2.3 24.2±2.0 36.2±1.2 19.6±0.7 31.3±0.5

C.5 NODE CLASSIFICATION IN SYNTHETIC DATASETS

We keep the same settings of sanity checks in SLIMG, but use our graph generation process
in Appx. D.1. To study the information of the derived node embeddings, we conduct NET-
INFOF PROBE on each component, and LogitReg to have test performance on node classification.
In Table 11, the component with the highest NETINFOF SCORE as well has the highest test accuracy
in every scenario. In Table 10, NETINFOF generalizes to all scenarios as SLIMG does.

Table 10: NETINFOF works well on node classification in synthetic datasets. Accuracy is reported.

Model Useful X Random X Random X Useful X Useful X
Uniform A Homophily A Heterophily A Homophily A Heterophily A

SLIMG 85.4±2.3 88.9±0.4 87.4±2.5 97.3±0.2 97.0±0.1

NETINFOF 86.7±1.5 88.6±1.5 87.9±1.5 97.1±0.1 97.0±0.2

Table 11: Results of each derived node embeddings. NETINFOF SCORE, and test accuracy on node
classification are reported. Red highlights the results close to random guessing.

Metric Feature Useful X Random X Random X Useful X Useful X
Component Uniform A Homophily A Heterophily A Homophily A Heterophily A

NETINFOF SCORE

C1 : U 25.9±0.2 73.8±2.8 74.4±3.9 73.6±2.6 75.4±4.5
C2 : R 25.7±0.1 62.5±3.5 56.7±1.3 64.7±3.7 56.3±3.3
C3 : F 64.6±4.2 26.0±0.4 26.0±0.4 73.1±3.2 73.1±3.2
C4 : P 33.7±1.5 56.0±4.2 58.9±3.9 87.2±3.6 87.2±3.2
C5 : S 33.9±0.8 58.7±4.8 55.5±3.5 86.1±2.4 88.3±3.4

Test Accuracy

C1 : U 25.1±0.3 80.3±0.9 81.3±0.8 80.3±0.9 81.3±0.8
C2 : R 25.3±0.4 60.7±0.8 58.4±1.4 61.5±0.9 58.8±1.3
C3 : F 74.7±0.8 25.4±0.6 25.4±0.6 74.7±1.1 74.7±1.1
C4 : P 47.9±0.9 75.2±0.9 77.4±0.8 97.1±0.1 96.6±0.1
C5 : S 47.9±0.9 75.8±1.0 74.1±0.8 96.9±0.1 96.9±0.1

C.6 NODE CLASSIFICATION IN REAL-WORLD DATASETS

We follow the same experimental settings in SLIMG. The nodes are randomly split by the ratio
2.5%/2.5%/95% into the training, validation and testing sets. In Table 12, we find that NETINFOF
always wins and ties with the top baselines.
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Table 12: NETINFOF works well on node classification in real-world datasets. Accuracy is re-
ported.

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Twitch Pokec
GCN 76.0±1.2 65.0±2.9 84.3±0.5 85.1±0.9 91.6±0.5 62.8±0.6 O.O.M. 38.5±3.0 31.4±1.8 26.8±0.4 57.0±0.1 63.9±0.4
SAGE 74.6±1.3 63.7±3.6 82.9±0.4 83.8±0.5 90.6±0.5 61.5±0.6 O.O.M. 39.8±4.3 27.0±1.3 27.8±0.9 56.6±0.4 68.9±0.1
H2GCN 77.6±0.9 64.7±3.8 85.4±0.4 49.5±16. 75.8±11. O.O.M. O.O.M. 31.9±2.6 25.0±0.5 28.9±0.6 58.7±0.0 O.O.M.
GPR-GNN 78.8±1.3 64.2±4.0 85.1±0.7 85.0±1.0 92.6±0.3 58.5±0.8 O.O.M. 31.7±4.7 26.2±1.6 29.5±1.1 57.6±0.2 67.6±0.1
GAT 78.2±1.2 65.8±4.0 83.6±0.2 85.4±1.4 91.7±0.5 58.2±1.0 O.O.M. 39.1±4.1 28.6±0.6 26.4±0.4 O.O.M. O.O.M.
SLIMG 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 59.7±0.1 73.9±0.1

NETINFOF 77.5±1.3 64.5±3.6 84.1±0.5 86.6±0.6 91.6±0.3 66.8±0.7 85.3±0.0 41.6±3.2 30.4±1.5 30.7±0.3 61.0±0.2 74.0±0.1

D APPENDIX: REPRODUCIBILITY

D.1 SYNTHETIC DATASETS

The synthetic datasets are composed of two parts, namely, graph structure and node features. Noting
that link prediction and node classification share the same generator of graph structure, but differ in
the one of node features. Noises are randomly injected into both graph structure and node features
to ensure that they contain consistent usable information across different scenarios. The number of
nodes is set to be 4000, and the number of features is set to be 800.

Graph Structure. There are three kinds of graph structures, namely, diagonal, off-diagonal, and
uniform. For each graph, we equally assign labels with c classes to all nodes. In the diagonal
structure, the nodes are connected to the nodes with the same class label, which exhibits homophily.
In the off-diagonal structure, the nodes are connected to the nodes with one different class label,
which exhibits heterophily. In the uniform structure, the connections are randomly made between
nodes. Other than randomly picking node pairs to make connections, we mimic the phenomenon
that the nodes are connected by higher-order structure in the real-world (Eswaran et al., 2020). To
achieve that, in the diagonal structure, a random amount of nodes (between 4 and 8) with the same
class are randomly picked and made into a clique; In the off-diagonal structure, a random amount of
nodes (between 4 and 8) from each of the two classes are randomly picked and made into a bipartite
clique. This process continues until the graph reaches our desired density. In the link prediction, the
assigned node labels are not used; in the node classification, they are used as the target labels.

Node Features in Link Prediction. In the case that the node features are useful, they are generated
by the left singular vectors of the 2-step random walk matrix. The (i, j) element of the matrix is the
counting of the node on row i visited the node on column j, and each node walks for 1000 trials.
The node features are directly used in the global scenarios, but split into different slices based on the
labels in the local scenarios. The random node features are the rows in a random binary matrix.

Node Features in Node Classification. In the case that the node features are useful, we randomly
sample a center for each class label. For nodes with the same class, we add Gaussian noises on top
of their class center. The random node features are the rows in a random binary matrix.

D.2 REAL-WORLD DATASETS

In the experiments, we use 7 homophily and 5 heterophily real-world datasets that have been widely
used before. All the graphs are made undirected and their statistics are reported in Table 13. We also
conduct experiments on 3 link prediction datasets from Open Graph Benchmark (OGB) (Hu et al.,
2020), namely ogbl-ddi1, ogbl-collab2, and ogbl-ppa3.

Homophily Graphs. Cora (Motl & Schulte, 2015)4, CiteSeer (Rossi & Ahmed, 2015)5 , and
PubMed (Courtesy of the US National Library of Medicine, 1996)6 are citation networks between

1https://ogb.stanford.edu/docs/linkprop/#ogbl-ddi
2https://ogb.stanford.edu/docs/linkprop/#ogbl-collab
3https://ogb.stanford.edu/docs/linkprop/#ogbl-ppa
4https://relational.fit.cvut.cz/dataset/CORA
5https://linqs.org/datasets/#citeseer-doc-classification
6https://www.nlm.nih.gov/databases/download/pubmed medline.html
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research articles. Computers and Photo (Ni et al., 2019)7 are Amazon co-purchasing networks be-
tween products. ogbn-arXiv and ogbn-Products are large graphs from OGB (Hu et al., 2020). ogbn-
arXiv8 is a citation network of papers from arXiv; and ogbn-Products9 is also an Amazon product
co-purchasing network. In the node classification task, we omit the classes with instances fewer than
100 so that each class has enough training data.

Heterophily Graphs. Chameleon and Squirrel (Rozemberczki et al., 2021)10 are Wikipedia page-
to-page networks between articles from Wikipedia. Actor (Pei et al., 2020)11 is a co-occurrence
network of actors on Wikipedia pages. Twitch (Rozemberczki et al., 2021)12 and Pokec (Takac &
Zabovsky, 2012; Leskovec & Krevl, 2014)13 are online social networks, which are relabeled by Lim
et al. (2021)14 to present heterophily. Penn94 is not included in this paper because of legal issues.

Table 13: Network Statistics. The left and right parts are homophily and heterophily, respectively.

Cora CiteSeer PubMed Computers Photo ogbn-arXiv ogbn-Products Chameleon Squirrel Actor Twitch Pokec
# of Nodes 2,708 3,327 19,717 13,752 7,650 169,343 2,449,029 2,277 5,201 7,600 168,114 1,632,803
# of Edges 5,429 4,732 44,338 245,861 119,081 1,166,243 61,859,140 36,101 216,933 29,926 6,797,557 30,622,564
# of Features 1433 3703 500 767 745 128 100 2325 2089 931 7 65
# of Classes 7 6 3 10 8 40 39 5 5 5 2 2

D.3 EXPERIMENTAL SETTINGS

For fair comparison, each experiment is run with 5 different splits of both synthetic and real-
world datasets. In link prediction, edges are split into training, validation and testing sets with the
70%/10%/20% ratio. In node classification, the nodes are split into training, validation and testing
sets with the 2.5%/2.5%/95% ratio. For small graphs, the linear models are trained by L-BFGS for
100 epochs with the patience of 5, and the non-linear models are trained by ADAM for 1000 epochs
with the patience of 200. For large graphs (Products, Twitch, and Pokec), most models are trained
by ADAM for 100 epochs with the patience of 10, except GPR-GNN and GAT, they are trained by
ADAM for 20 epochs with the patience of 5 to speedup. All the training are full-batch, and the same
amount of negative edges are randomly sampled for each batch while training.

D.4 HYPERPARAMETERS

Table 14: Search space of hyperparameters.

Method Hyperparameters

GCN lr = [0.001, 0.01], wd = [0, 5e−4], layers = 2
SAGE lr = [0.001, 0.01], wd = [0, 5e−4], layers = 2
H2GCN lr = [0.001, 0.01], wd = [0, 5e−4], layers = [1, 2]
GPR-GNN lr = [0.001, 0.01], wd = [0, 5e−4], layers = 10, α = [0.1, 0.2, 0.5, 0.9]
GAT lr = [0.001, 0.01], wd = [0, 5e−4], layers = 2, heads = [8, 16]
SLIMG lr = 0.1, wd1 = [1e−4, 1e−5], wd2 = [1e−3, 1e−4, 1e−5, 1e−6]

NETINFOF lr = 0.1, wd1 = [1e−4, 1e−5], wd2 = [1e−3, 1e−4, 1e−5, 1e−6]

The search space of the hyperparameters is pro-
vided in Table 14. Each experiment is run with
5 different splits of the dataset, and grid search
of hyperparameters based on the validation per-
formance is done on each of the splits. The hid-
den size of all methods is set to 128.

Linear GNNs. For sparse-group LASSO, wd1
is the coefficient of overall sparsity, and wd2 is
the one of group sparsity. The derived embed-

ding R in NETINFOF uses T = 1000 for the synthetic and OGB datasets, and T = 200 for the
real-world datasets. The sample size S is set to be 200, 000 in all experiments. Since the large
graphs (Products, Twitch, and Pokec) have no more than 128 features, to ensure NETINFOF and
SLIMG have enough parameters, we concatenate the one-hot node degree to the original features.
The hidden size is set to 256 for NETINFOF and SLIMG in the OGB experiments. For ogbl-ddi,
since there is no node features, they use the one-hot node degree as the node features. For ogbl-ppa,
we concatenate the embedding from node2vec (Grover & Leskovec, 2016) to the original features,
as Hamilton et al. (2017) did for GCN and SAGE.

7https://nijianmo.github.io/amazon/index.html
8https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
9https://ogb.stanford.edu/docs/nodeprop/#ogbn-products

10https://github.com/benedekrozemberczki/MUSAE/
11https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/master/new data/film
12https://github.com/benedekrozemberczki/datasets#twitch-social-networks
13https://snap.stanford.edu/data/soc-Pokec.html
14https://github.com/CUAI/Non-Homophily-Large-Scale
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