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The capacity to collect fingerprints of individuals in online media
has revolutionized the way researchers explore human society.
Social systems can be seen as a nonlinear superposition of a multi-
tude of complex social networks, where nodes represent indivi-
duals and links capture a variety of different social relations.
Much emphasis has been put on the network topology of social
interactions, however, the multidimensional nature of these inter-
actions has largely been ignored, mostly because of lack of data.
Here, for the first time, we analyze a complete, multirelational,
large social network of a society consisting of the 300,000 odd
players of a massivemultiplayer online game.We extract networks
of six different types of one-to-one interactions between the
players. Three of them carry a positive connotation (friendship,
communication, trade), three a negative (enmity, armed aggres-
sion, punishment). We first analyze these types of networks as
separate entities and find that negative interactions differ from
positive interactions by their lower reciprocity, weaker clustering,
and fatter-tail degree distribution. We then explore how the inter-
dependence of different network types determines the organiza-
tion of the social system. In particular, we study correlations and
overlap between different types of links and demonstrate the ten-
dency of individuals to play different roles in different networks.
As a demonstration of the power of the approach, we present the
first empirical large-scale verification of the long-standing structur-
al balance theory, by focusing on the specific multiplex network of
friendship and enmity relations.

complex networks ∣ multiplex relations ∣ quantitative sociology

Human societies can be regarded as large numbers of locally
interacting agents, connected by a broad range of social and

economic relationships. These relational ties are highly diverse in
nature and can represent, e.g., the feeling a person has for an-
other (friendship, enmity, love), communication, exchange of
goods (trade), or behavioral interactions (cooperation or punish-
ment). Each type of relation spans a social network of its own. A
systemic understanding of a whole society can only be achieved by
understanding these individual networks and how they influence
and coconstruct each other. The shape of one network influences
the topologies of the others, as networks of one type may act as a
constraint, an inhibitor, or a catalyst on networks of another type
of relation. For instance, the network of communications poses
constraints on the network of friendships, trading networks are
usually constrained to positively connoted interactions such as
trust, and networks representing hostile actions may serve as a
catalyst for the network of punishments. A society is therefore
characterized by the superposition of its constitutive socioeco-
nomic networks, all defined on the same set of nodes. This super-
position is usually called multiplex, multirelational, multimodal,
or multivariate network (see Fig. 1). The study of small-scale mul-
tiplex networks has a long tradition in the social sciences (1) and
has been applied to areas such as homophily in social networks
(2), the effect of combined interactions on an agent’s behavior
(3), and the nontrivial interrelation between family and business
networks (4). Multiplexity is thought to play an important role

in the organization of large-scale networks. For example, the ex-
istence of different link types between agents explains the overlap
of community structures observed in social networks, where
nodes may belong to several communities, each associated to
one different type of interaction (5, 6). Methodological work
on multiplex networks includes the development of multiplex
community detection (7), clustering (8), and other network
analysis algorithms (9). The role of multiple relation types in
measured social networks has recently been investigated across
communication media (10), in an online game (11), as well as
in ecological networks (12).

Traditional methods of social science, such as small-scale ques-
tionnaire-based approaches, get more and more replaced by
automated methods of data collection which allow for entirely
different scales of analysis (13–15). This change of scale has
opened new perspectives and has the potential to radically trans-
form our understanding of social dynamics and organization (16).
The empirical verification of social theories such as the strength
of weak ties (17, 18) become possible with hitherto unthinkable
levels of precision. However, this large-scale perspective suffers
from the drawback of a relatively coarse-grained representation
of social processes taking place between individuals and of
blindness in respect to the existence of different types of social
interactions. For example, in most works on e-mail (19) or mobile
phone networks (17, 20), the existence and weight of a link is

Fig. 1. Multiplex networks consist of a fixed set of nodes connected by
different types of links. This multirelational aspect is usually neglected in
the analysis of large social networks. In our MMOG dataset, six types of social
links can exist between any two players, representing their friendship or en-
mity relations, their exchanged private messages, their trading activity, their
one-to-one aggressive acts against each other (attacks), and their placing of
head money (bounties) on other players as, e.g., means of punishment.
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determined by the volume of information exchanged between two
individuals. Although nodes can be generally well characterized
(age, sex, zip code, etc.), the corresponding type of interaction
(e.g., family or work interaction) is usually unavailable in the data
and can only be inferred from behavioral patterns (21). More-
over, research on large social networks has focused on single
types of interaction only, e.g., phone or e-mail communication,
and has ignored the wide spectrum of human interactions in real
life (2). Whenever interdependencies and feedbacks between
multiple relational interactions are significant, an aggregate re-
presentation of the different network types or the representation
of one single type will lead to a biased and misleading character-
ization of the organization of the system.

The following work is an attempt toward fully characterizing
the multiplex nature of a large-scale social system. To this end,
we analyze coherent data from a complete society consisting
of about 300,000 players of a massive multiplayer online game
(MMOG) (22). Having become extremely popular over the past
years, there exists a multitude of large-scale online games—often
played by thousands, sometimes even millions. These games offer
the possibility to experience alternative lives in which players can
engage in different types of social interactions, ranging from
establishing friendships and economic relations to the formation
of groups, alliances, fighting, and even waging of war (18). Prac-
tically all actions of all players can be recorded in log files. The
booming popularity of MMOGs opens previously unthinkable
potentials for data-driven, quantitative socioeconomic research
(23) and enables, e.g., economic surveys (24), studies on group
dynamics (25), or large-scale social network analyses and the
testing of classical sociological hypotheses (18).

The data allow the nature of one-to-one interactions between
players to be identified; the topological properties of the corre-
sponding networks—defined on the same set of agents—can
be studied. We show that different types of interactions are char-
acterized by distinct connectivity patterns. Exploring the interde-
pendence of the different networks reveals how multiplexity
shapes the organization of the system at different levels, from
the stability of local motifs to the global overlap between the
networks. Moreover, the existence of positively and negatively
connoted interactions between players, e.g., through declared
friendship or enmity, allows the organization of the system to
be analyzed from the point of view of signed networks (1). Within
this framework, it becomes possible to experimentally verify
structural balance (26), a long-standing theory in social psychol-
ogy (27) proposed for understanding emergence of conflict and
tension in social systems (28). The central idea behind structural
balance is that some configurations of signed motifs, i.e., local
“building blocks” of networks containing positive and/or negative
ties, are socially and psychologically more stable than others
and are therefore more likely to be present in human societies.

By measuring the dynamics and abundance of signed triads (sets
of three nodes connected by positive or negative links), we per-
form a large-scale validation of structural balance and provide
insights indispensable for a realistic modeling of conflicts.

Results
Nature of the Various Networks. Different types of connectivity
patterns may signal different organization principles behind
the formation of networks (29, 30). Statistical properties of the
six networks, when considered as separated entities, are collected
in Table 1. We get the following results.

Positive links are highly reciprocal, negative links are not. Table 1
shows that networks with a positive connotation [friendship,
private messages (PMs), and trades] are strongly reciprocal
(31) (SI Text), in the sense that node pairs have a high tendency
to form bidirectional connections, whereas networks with a nega-
tive connotation (enmity, attack, and bounty) all show signifi-
cantly smaller reciprocity. Low reciprocation in enemy networks
may partially be explained by deliberate refusal of reciprocation
to demonstrate aversion by total lack of response (18). For attack
networks, it may originate from the asymmetry in the strength of
the players (a strong player is more likely to attack a weaker
player to secure a win). Asymmetry in negative relations is
confirmed in the correlations between node in-degrees and
out-degrees. Positive links are almost balanced in the in- and
out-degrees, ρ ∼ 1, whereas negative links show an obvious sup-
pression in doing to others what they did to you.

Power-law degree distributions indicate aggressive actions. Studying
cumulative in- and out-degree distributions, we find pronounced
power-law distributions for aggressive behavior, i.e., attacking
(out-degree for attacks), being declared an enemy (in-degree
for enmity), and punishing/being punished (out- and in- degree
for bounty). Power laws are absent for positive (friendship, com-
munication, trade) and passive links (being attacked) (see Fig. 2).
This discrepancy in degree distributions hints at qualitatively
different link-growth/rewiring processes taking place in positive
tie networks compared to the negative ones. For example, the
classic network growth model of preferential attachment (32)
leads to a power-law degree distribution. As we have shown in
ref. 18, the growth of enemy networks is well characterized by
this model, but not the growth of friend networks.

Positive links cluster. From Table 1 it is clear that the positively
connoted links show higher clustering coefficients than negatively
connoted ones. High values of the clustering coefficient are
expected for positive interactions due to their cohesive nature
and the benefits of dense subgraphs for better performance
(33). The significantly lower values of clustering for negative

Table 1. Single network properties

Positive ties Negative ties

Friends PMs Trades Enemies Attacks Bounties Envelope (all αs)

Directed Nα 4,313 5,877 18,589 2,906 7,992 2,980 18,819
Ldirα 31,929 185,908 796,733 21,183 57,479 5,096 967,205
rα 0.68 0.84 0.57 0.11 0.13 0.20 0.59

ρðkin
α ;kout

α Þ 0.88 0.98 0.93 0.11 0.64 0.31 0.95
Undirected Lundirα 21,118 107,448 568,923 20,008 53,603 4,593 679,404

k̄α 9.79 36.57 61.21 13.77 13.41 3.08 72.20
Cα 0.25 0.28 0.43 0.03 0.06 0.01 0.42

Cα∕Crand
α 109.52 45.71 131.95 6.13 37.27 13.88 109.93

Properties of directed networks: number of nodes Nα (connected to at least one link), number of directed links Ldirα , reciprocity rα, and in-degree/out-
degree correlation ρðkin

α ;kout
α Þ. Greek indices mark network types. Properties of the corresponding undirected networks: number of undirected links Lundirα ,

average degree k̄α, clustering coefficient Cα, and ratio to the corresponding random graph clustering Cα∕Crand
α . The networks, when considered as separate

entities, present distinct types of organization depending on the nature of the interactions. Positively (negatively) connoted links present high (low) values
of rα, ρðkin

α ;kout
α Þ, and Cα.
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values suggests that mechanisms such as triadic closure (34) are
not dominant for negative interactions (see SI Text for a confir-
mation) and has its origin in the balance of signed motifs
(see below).

The independent analysis of the different networks reveals
distinct types of organization which depend on the nature of
the links. It is crucial to account for these distinct topological
properties in models for the dynamics of cooperation and conflict
in human societies. To demonstrate the danger of not differen-
tiating between types of interactions, we include data on the
envelope network (as defined in Materials and Methods) in
Table 1. Neglecting the nature of social ties and mixing different
interactions (even within the same dataset) results in gross
misrepresentation of the system, in this case at least by losing
the typical low reciprocity and clustering observed in negative
tie subnetworks.

For a detailed analysis of the time evolution of single network
properties on the same dataset (first 445 days in the Artemis
game universe), refer to ref. 18. There several “aging” or “matur-
ing” effects were reported, such as a decrease of the clustering
coefficient and reciprocity in friend networks over time.

Network–Network Interactions.Due to strong interactions between
different social relations, a next level of complexity enters when
considering the coexistence of different types of links (35). From
now on, we only focus on undirected versions of the networks,
as defined in Materials and Methods. To quantify the resulting
interdependencies between pairs of networks, we follow two
approaches.

On one hand, we focus on the link overlap between networks
and calculate the Jaccard coefficient Jαβ between two different
sets of links α and β. On the other hand, we compute correlations
ρðkα;kβÞ between node degrees in different networks (see SI Text).
These coefficients measure to which extent degrees of agents in
one type of network correlate with degrees of the same agents in
another one. If ρðkα;kβÞ is close to one, players who have many
(few) links in network α have many (few) links in network β. Note
that both measures might be affected by different network sizes
or average degrees. To account for this possibility, we additionally
compute correlations ρðrkðkαÞ;rkðkβÞÞ between rankings of
node degrees, where rk represents rank. Overlap and correlation
quantities provide complementary insights into the organization
of social structures. In Fig. 3, for all pairs of networks, the three
measures are shown. Note that no causal directions can be
implied and that all correlations are positive. From highest to
smallest overlap (from left to right), Fig. 3 provides the following
conclusions:

Communication–friendship. The pronounced overlap implies that
friends tend to talk with each other. The equally pronounced
correlation attests that players who communicate with many
(few) others tend to have many (few) friends. The former result
was already reported in ref. 18, where a high fraction of com-
munication partners was shown to be friends.

Trade–communication. The high overlap shows that trade part-
ners have a tendency to communicate with each other, whereas
the high correlations shows a tendency of communicators being
traders.

Enmity–attack. The high overlap shows that enemies tend to
attack each other, or that attacks are likely to lead to enemy
markings. The high correlations imply that aggressors or vic-
tims of aggression tend to be involved in many enemy relations.

Communication–attack. The relatively high overlap shows that
there is a tendency for communication taking place between
players who attack each other. The relatively high correlation
implies that players who communicate with many (few) others
tend to attack or be attacked by many (few) players. Aggression
is not anonymous, but accompanied by communication.

Enmity–bounty and attack–bounty. Similar to enmity–attack.
Communication–enmity. Similar to communication–attack.
Trade–friendship. Similar to trade–communication, however with
a smaller overlap. It is more difficult for traders to become
friends than to just communicate.

Friendship–attack. The low overlap shows that attacks tend to not
take place between friends, or that fighting players do not tend
to become friends. The relatively high correlations mean that
players with many (few) friends attack or are attacked by many
(few) others.
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Fig. 2. Cumulative in-degree and out-degree distributions for the six types
of networks spanning the same set of agents: (A) friendship, (B) communica-
tion, (C) trade, (D) enmity, (E) attack, and (F) bounty. Note the differences
between in- and out-degree distributions and the presence of power laws
(with cutoffs) for negatively connoted interactions (Right Column), which
are absent for positive ties (Left Column). It is immediately clear that topo-
logical properties of social networks depend strongly on the nature of their
ties. Ignoring this multirelational composition can lead to loss of essential
information.
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and B, bounty. Pairs of equal connotation (positive–positive or negative–
negative) are marked with a gray background. These pairs have high
overlaps, whereas oppositely connotated pairs have lower overlaps. The
various relations are organized in a nontrivial way, suggesting that agents
play very different roles in different relational networks.
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Trade–attack. Similar to friendship–attack.
Communication–bounty. Similar to communication–attack and
communication–enmity, however with much smaller overlap
and degree correlations.

Trade–enmity. For this and all other interactions, overlap
vanishes. Players who trade with each other almost never be-
come enemies and vice versa.

Friendship–bounty. Similar to communication–bounty.
Friendship–enmity. The degree (rank) correlation is substantial,
suggesting that players who are socially active tend to establish
both positive as well as negative links. However, the vanishing
overlap shows the absence of ambivalent relations. Friends are
never enemies.

Trade–bounty. This interaction shows the smallest values for all
three properties, which could be due to substantial differences
in network sizes. The relatively small correlation may suggest
that players who are experienced in trade have a tendency to
not act out negative sentiments by spending money on bounties.

The exact values of the two correlation measures have to
be interpreted with some caution. High values might be biased
by, e.g., the time a player spent in the game or by ignoring link
weights for the number of exchanged private messages or traded
money. Nevertheless, low values of ρðkα;kβÞ indicate that hubs in
one network are not necessarily hubs in another (see, e.g., the
trade–enmity case), suggesting that agents play very different
roles in different relational networks. For example, agents can
be central for flows of information but peripheral for flows of
goods (36) In the SI Text, we give further relations between above
network–network measures and study their evolutions in time
(see Figs. S1 and S2).

Large-Scale Empirical Test of Structural Balance. In the following, we
assign + (− ) 1 to a positively (negatively) connoted link. All
friendship links have a value of + 1, all enemy links − 1. Social
balance focuses on signed triads where the sign of a triad is the
product of the signs of its three links.

Social balance theory—in its strong form (28)—claims that
positive triads are “balanced” whereas negative triads are “unba-
lanced” (see Fig. 4). Unbalanced triads are sources of stress and
therefore tend to be avoided by agents when they update their
personal relationships. From a physics point of view, the resulting
dynamics can be viewed as an energy minimization process which
may lead to jammed states (37) due to a rugged energy landscape
(38). There is a “weak formulation” of structural balance (39)
which postulates that triads with exactly two positive links are un-
derrepresented in real networks, whereas the three other kinds of
triads should be much more abundant. In the weak formulation,
only situations where “the friend of my friend is my enemy” are

unstable, whereas in the strong form of structural balance, “the
enemy of my enemy is my enemy” is also unstable (see Fig. 4).

To test social balance, we focus on the multiplex network of
friendship and enmity interactions. The number of different types
of triads are labeled NΔ. They are compared to the expected
number of such triads in a null model (reshuffled signs of links,
Nrand

Δ ; see SI Text). In Fig. 4, a standard measure of statistical de-
viation, the z score (see SI Text), shows that +++ and +−−
triads are heavily overrepresented, whereas ++− triads are
heavily underrepresented with respect to pure chance. Triads
of type −−− are underrepresented to a lesser degree than
the three other types, favoring the weak formulation of structural
balance over Heider’s original formulation of balance theory. It is
obvious that triads are characterized by different levels of stabi-
lity. The robustness of these results is further confirmed by exam-
ining the time evolution of the number of triads in friendship/
enmity networks over all 445 days (Fig. 5).

A detailed dynamical analysis of our data further reveals that a
vast majority of changes in the network are due to the creation of
new positive and negative links, not due to switching of existing
links from plus to minus or vice versa. We illustrate this domi-
nance of link destruction and creation over sign switching on
the dynamics of the following triadic structures. Let us define
a wedge as a signed undirected triad with two links, i.e., a triad
with one link missing (a “hole”). There are three possible wedge
types: ++, +−, or−−. We measure day-to-day transitions from
wedges to other possible triadic structures. In the vast majority of
all cases (>99.9%), a wedge stays unchanged. In case of change,
most often a hole is closed by either a positive or a negative link
(see Fig. S3). The removal of a link is less frequent; sign switches
almost never occur. This result is in marked contrast with many
dynamical models of structural balance (37) which assume that a
given social network is fully connected from the start and that
only the link signs are the relevant dynamical parameters, which
evolve to reduce stress in the system. Our observation underpins
that network sparsity and growth are fundamental properties and
they need to be incorporated in any reasonable model of
dynamics of positive and antagonistic forces in social systems.
In full agreement with the results shown in Figs. 4 and 5, wedges
of type ++ close preferentially (about 7 times more likely) with a
positive link, and wedges of type +− close preferentially (about
11 times more likely) with a negative link. There is no clear
sign preference in the closure of type −− wedges. For details
see SI Text and Figs. S3–S5.

We collect empirical transition rates in a transition matrix
MSTC, which we use in a simple dynamical model for signed tria-
dic closure (STC) (see SI Text). This STC model applies MSTC on
a daily state vector of signed wedges. These wedges are closed or
left unchanged according to the elements of MSTC. With this
model, we are able to reproduce the empirical observations to
a reasonable extent (see Fig. 5 Right).
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+ + +
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- --+ +

+

B U
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B B
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10,608 30,145 28,545 9,009
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Fig. 4. Different types of signed triads, balanced (B) or unbalanced (U)
according to the strong or weak formulation of structural balance. We show
the number of each type of triad NΔ in the friendship–enmity multiplex net-
work, the expected number Nrand

Δ of such triads when averaged over 1,000
sign randomizations, and the corresponding z score (see SI Text). Triads + + +
and +−− are overrepresented; + +− triads are underrepresented with
extraordinary significance.
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of STC with a model based on wedge transition rates (see SI Text). Initial
condition: Measured network of day 100. All ratios measured in the data de-
viate significantly from ratios in the null model, except for the −−− triads.
The STC model reproduces the observed ratios considerably better.
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Discussion
Most empirical studies of large-scale social networks focus on
node properties (5), for instance, to uncover the topological cen-
trality of social agents or patterns of homophily between agents
(40), while being blind to the multiple nature of the links connect-
ing agents. In many social systems, however, a proper description
of multiplexity is essential to capture the stress caused by differ-
ent forces acting on social agents and therefore to uncover the
principles shaping the large-scale organization of social interac-
tions. For instance, the interaction and coexistence of multiple
relations are crucial to describe the emergence of conflict in so-
cial systems (41–43) or the development of trust in commercial
networks (44).

Our work begins to quantitatively measure the multidimen-
sionality of human relationships. Its results shed light on macro-
scopic implications of interaction types: Relations driven by
aggression lead to markedly different systemic characteristics
than relations of a nonaggressive nature. Network–network inter-
actions reveal a nontrivial structure of this multidimensionality
and how humans play very different roles in different relational
networks. The richness of the dataset allows the effect of multiple
relations on the structure and stability of a large-scale social
network to be explored, thereby providing a first empirical basis
for the modeling of multiplex complex networks. Future research
perspectives include different generalizations of structural
balance theory, e.g., to a larger set of social relations, to the case
of weighted and/or directed networks or to larger motifs, an
extension of the concept of modularity for multiplex (7) or signed
(45) networks but also dynamical aspects, for instance, the
dynamics of noncooperative organizations (46).

Materials and Methods
Social Network Data from the Online Game “Pardus.” The dataset contains
practically all actions of all players of the MMOG Pardus since 2004 when
the game went online (18). Pardus is an open-ended game with a worldwide
player base of more than 300,000 people. Players live in a virtual, futuristic
universe in which they explore andwhere they interact with others in amulti-
tude of ways to achieve their own goals (22). Here we focus on one of the
three separate game universes, Artemis, in which N ¼ 18;819 players have
interacted with at least one other player over the first 445 consecutive days
of this universe’s existence.

Players typically engage in various economic activities to accumulate
wealth. Communication between any two players can take place directly,
by using a one-to-one, e-mail-like, PM system (see SI Text), or indirectly,
by meeting in built-in chat channels or online forums. Social and economical
decisions of players are often strongly influenced and driven by social factors
such as friendship, cooperation, and conflict. Conflictual relations may result
in aggressive acts such as attacks, fights, revenge, or even destruction of
another player’s means of production or transportation. Under certain
conditions, hostile acts may degenerate into large-scale conflicts between
different factions of players—wars.

The dataset contains longitudinal and relational data allowing for an
almost complete and dynamical mapping of multiplex relations of an entire
society. The data are free of interviewer effects because agents are not con-
scious of their actions being logged. Measurement errors which usually affect
reliability of survey data (47) are practically absent. The longitudinal aspect of
the data allows for the analysis of dynamical aspects such as the emergence
and evolution of network structures. Finally, it is possible to extract multiple
social relationships between a fixed set of humans. We focus on the following
set of six types of one-to-one interactions between players (for details, see
SI Text): friendship and enmity relations, PM communication, trades, attacks,
and revenge/punishment through head money (bounties). We label these
networks by Greek indices: α ¼ 1 refers to friendship networks, …, α ¼ 6

to bounties. We focus on one-to-one interactions only (without projections
as, e.g., used in refs. 48 and 49) and discard indirect interactions such as mere
participation in a chat.

Friendship and enmity networks are taken as snapshots at the last avail-
able day 445. All other networks are aggregated over time, meaning that
whenever a link existed within day 1 and 445, it is counted as a link. For sim-
plicity, we use unweighted, directed networks. Further, we define undirected
networks as follows: A link exists between nodes i and j if there exists at least
one directional link between those nodes. We construct triads [motifs of
three connected nodes (1)] from undirected links. For a combined analysis
of the whole system, we define an envelope network which is composed
of the set of all links of all interaction types. In the envelope network, a link
from i to j exists if it exists in at least one of the six relational networks.

Network Measures. The statistical properties of the six networks have been
studied as separate entities using the following notations and measures.
Nα is the number of nodes in the network type α, and LdirðundirÞα is the number
of (un)directed links. Reciprocity is labeled by rα, and ρðkin

α ;kout
α Þ is the correla-

tion of in- and out-degrees within the α network. Average degree, clustering
coefficient, and clustering coefficient with respect to the corresponding ran-
dom graph are marked by k̄α, Cα, and Cα∕Crand

α , respectively. For more details,
see the SI Text.

Network Interactions. For network–network interactions, we compute the
Jaccard coefficient which measures the interaction between two networks
by measuring the tendency that links simultaneously are present in both net-
works. Jαβ is a similarity score between two sets of elements and is defined as
the size of the intersection of the sets divided by the size of their union (50),
Jαβ ≡ jα ∩ βj∕jα∪βj. Related similarity measures, such as the cosine similarity
measure lead to comparable results. The correlation measures used are
described in detail in the SI Text.
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Supporting Information
Szell et al. 10.1073/pnas.1004008107
SI Text
This supplement to the paper “Multirelational organization of
large-scale social networks in an online world” contains detailed
information on the various network types analyzed, an overview
of the game, notations of measures used, a detailed analysis of
signed triad dynamics, and the null model and STC model for
the social balance part.

Different Types of Social Interactions.
• Friendship and enmity networks. Players can anonymously mark

others as friends or enemies, for any reason. The marked
players are added to the marker’s personal friends or enemies
list. Additionally, every player has a personal “friend of” and
“enemy of” list, displaying all players who have marked them
as friend or enemy, respectively. Friend and enemy markings
can be removed anytime.

• Communication networks. Private messages (PMs) are the
prevalent form of communication within the game. It is similar
to e-mail—a PM is only seen by sender and receiver.

• Trade networks. These are extracted by considering two kinds of
trade possibilities between players: Either players meet and
exchange game money and/or commodities, or players visit
commercial outlets of other players and buy/sell commodities
or equipment.

• Attack networks. For extracting attack networks, we select all
attacks carried out by players on other players or on commer-
cial outlets.

• Bounty networks. Links in bounty networks represent bounties,
which are amounts of game money placed on other players or
on their commercial outlets. Any player can collect a bounty by
terminating the bountied player or destroying his commercial
outlet.

How Players Get to Interact with Each Other. For a basic understand-
ing of how the implementation of the game may shape the pat-
terns of interactions between players, we give here an overview of
the mechanisms and motivations leading players to get to know
and to interact with each other. For more details see ref. 1.

Every game action carried out by a player (trade, movement,
attack, etc.) costs a certain amount of so-called action points
(APs). These points can not exceed a maximum value. For players
having less APs than the maximum, every few minutes a small
number of APs is replenished automatically. Once a player’s
character is out of APs, she has to wait to be able to play on.
As a result, the typical Pardus player logs in once a day to spend
all her APs on several activities within a few minutes. Social
activities such as writing PMs do not consume APs.

A Pardus universe has the shape of a two-dimensional lattice
(bounded in several ways) on which players can move (movement
consumes action points). On each field (the smallest unit of this
lattice), a player has the option to construct a building. Buildings
act both as production sites and trade outlets for certain com-
modity types. Typically, a player has up to five buildings. Players
may visit buildings of other players to trade game money for com-
modities or vice versa. A player has a trade tie with every other
player who traded at her buildings, or whose buildings she traded
with. Additionally, there is the (much rarer) possibility that two
players meet on the same field and exchange game money and/or
commodities. Attack comes with the same two options: Either a
player attacks the building of another player or the player himself
(for this interaction they again have to stand on the same field).

All other relations (communication, friendship, enmity,
bounty) are independent of location in space, i.e., every player
may write PMs to, mark as friend or enemy, or set a bounty
on any other player at anytime, provided she knows the target’s
character name. This name is visible on the navigation screen
when players stand on the same field, in an online list which
shows all currently online players, in chat channels, and in the
game’s forums provided a player has posted a message in the cor-
responding place, as well as in several sections of the game such
as on news pages. We suspect that the type of acquaintances a
player makes during the course of the game depends strongly
on her involvement in social activities. If the player does not show
the preference of using provided ways of communication (PMs,
chats, forums), her partners of friendship/enmity/bounty interac-
tion are likely to show a high causal dependency with her visited
locations in the game universe. On the other hand, a frequent use
of communication tools may reduce this dependency, because
then interactions take place with players independent of location.

Besides character names and online status being displayed on
every player’s personal PM contacts page for quick access, the
friends and enemies lists serve game-mechanic purposes:
Friends/enemies are automatically or optionally included/
excluded for certain actions. For example, enemies of building
owners are not able to use the services offered in the respective
places. Note that friend and enemy markings need not necessarily
denote affective friendships or enmity, they rather indicate a cer-
tain degree of cooperative or noncooperative stance motivated by
affective and/or cognitive incentives. However, we assume these
two motives to coincide to a considerable extent, e.g., it seems
highly unlikely that someone marked as enemy/friend due to ra-
tional considerations at the same time constitutes the affective
opposite of friend/enemy within the game (and vice versa).

We have no information about external forms of relation or
communication, e.g., players being real-life friends or communi-
cating via external tools. Further, so far we do not know how well
structure and dynamics of different types of social networks in
Pardus match comparable social networks in real life, with a
few exceptions (1): We have shown good agreement of PM net-
work features with properties of mobile phone call networks and
revealed findings well according with classic sociological hypoth-
eses. Further, we have begun studying positive and negative net-
works as single entities and found results highly consistent with
social balance theory, as well as a coincidence of network proper-
ties (triad significance profiles) with nonvirtual social networks.

Comparison with Existing Datasets. To our knowledge, the only
large-scale dataset incorporating multiple interactions is the Fa-
cebook network of Lewis et al. (2). Pardus offers several advan-
tages over this Facebook data. The Facebook network consists of
three types of interactions between users: declared friendship re-
lationships, picture friendships (being tagged in an online photo
by a user), and dorm roommate friendships. However, two of
these three types of interactions lead to a tainted representation
of the social system. First, the friendship network of Facebook is
known to be biased by the visibility of the friends of a user on its
webpage (6). In Pardus, friend and enemy lists are completely
private, meaning that no one except the marking and marked
players have information about positive or negative ties between
them. Our data thus represents a more realistic social situation, in
the sense that social ties are not immediately accessible to the
public but need to be found out by communication with or by
careful observation of others. Second, dorm membership is ob-
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tained from the projection of a bipartite network. This procedure
is known to distort the number of cliques in a network (3). For
this reason, we only focus on one-to-one interactions between
players and discard indirect interactions such as the participation
to a chat. Finally, the Pardus dataset has the advantage to capture
a broad range of social interactions, because the players are im-
mersed in the game and therefore not only communicate with one
another, but also engage in collaborative/antagonistic actions.

Mathematical notations—Overlap. The standard way to represent a
network is through its adjacency matrix Aij which, for an un-
weighted, undirected network, is a symmetric matrix whose ele-
ments Aij are equal to one if there is a link between i and j, and
zero otherwise. To incorporate the existence of multiple relations
(multiplex networks), it is common to define the tensor Aij;α,
sometimes called supersociomatrix (4). This tensor has dimen-
sion N ×N × R, where N is the total number of nodes and R
is the number of different link types between the same set of
agents. For a fixed value of α, Aij;α is the adjacency matrix of
the network defined by link type α. By construction, the proper-
ties of each network can be obtained from its adjacency matrix
Aij;α. For instance, the degree ki;α of a node i is given by
∑jAij;α, the total number of links in network α is
Lα ¼ ∑iki;α∕2. The number of paths of length n between nodes
i and j is given by ðAn

αÞij. A whole new layer of complexity opens
once the interplay between different sorts of networks is consid-
ered. From a mathematical point of view, multiplexity can be
revealed by coupling different adjacency matrices. For instance,
the (link) overlap Oαβ ¼ 1

2
∑ijAij;αAij;β between the graphs α and β

counts the number of links they have in common. Similarly, the
multiplicity mij ¼ ∑αAij;α of a link between i and j counts the
number of different links between these nodes.

Correlation measures. Several network measures are based on the
Pearson’s correlation between two quantities. For two random
variables X and Y with mean values X̄ and Ȳ , and standard
deviations σX and σY , the correlation coefficient ρðX;Y Þ is
defined as:

ρðX;Y Þ ¼ E½ðX − X̄ÞðY − Ȳ Þ�
σXσY

∈ ½−1;1�: [S1]

The reciprocity coefficient r is the correlation coefficient be-
tween the transposed entries of the adjacency matrix of a directed
graph, X ≡ Aij, Y ≡ Aji (5). Similarly, we introduce the coeffi-
cients ρðkinα ;koutα Þ to evaluate the correlations between in-degree
and out-degree around the same node in a graph α and ρðkα;kβÞ,
to evaluate the correlations between the degrees of a node in the
two different graphs α and β. The coefficient ρðkinα ;koutα Þ is a
measure of the deviation of a directed network from a Eulerian
network, i.e., ρðkinα ;koutα Þ ¼ 1 only for a Eulerian graph, namely
kini;α ¼ kouti;α for each node i, while ρðkα;kβÞ measures the correla-
tion of the degree centrality of the same node in different net-
works. The coefficient ρðrkðkαÞ;rkðkβÞÞ is calculated the same
way as ρðkα;kβÞ, with the difference that not degrees but ranks
of degrees are used, i.e., the node with largest degree has rank
1, the second largest has rank 2, etc. Nodes with the same degree
have the same rank; the difference to the subsequent rank is the
number of nodes which shared the previous rank. For example if
there are three nodes with degree 45 and rank 10, nodes with
degree 44 have rank 13.

Relations between network–network measures. Correlating net-
work-network measures reveals a strong relation between link
overlap and degree correlation (ρ ¼ 0.88, p-value: 10−5), see
SI Fig. 1 (a). Pairs of networks of the same connotation have
a higher overlap than oppositely connotated pairs; a similar ten-
dency for degree correlation is apparent. A correlation between

link overlap and degree rank correlation is also present, however
with lower significance (ρ ¼ 0.63, p-value: 0.01), see SI Fig. 1 (b).
We mark pairs including a communication network as neutral,
since messages may involve both positively or negatively conno-
tated content.

Network-network interactions over time. To assess to what extent
network-network properties of link overlap, degree correlation,
and degree rank correlation change over time, we show these
properties at days 150, 300, and 445 for all pairs of networks
in SI Fig. 2. Here, accumulated networks, i.e., all except friend-
ship and enmity networks, are accumulated over days 1 to 150,
over days 1 to 300, and over days 1 to 445, respectively. Friendship
and enmity networks are taken at these times. The number of
players involved in the envelope network (i.e., in any relation)
changes from 9,862 to 15,103 to 18,819 in these points in time,
respectively. Changes are relatively small, except for degree
correlations of pairs including bounty networks. Overlap values
generally tend to decrease slightly over time.

Social balance and sparse networks. To analyze the multiplexity of
large-scale networks and to draw conclusions from our observa-
tions, we need to address an issue that is usually obsolete for ex-
periments on small social systems. When considering different
types of interactions between students of a class or diplomatic
positions between countries, it is reasonable to assume that all
agents in the network are aware of each other’s existence. In
large-scale social networks, in contrast, the absence of any type
of link between two nodes may either correspond to the existence
of an indifferent/neutral interaction, or to the absence of any past
and present contact between both agents. The fact that agents
only know a fraction of the total set of agents is typical of sparse
networks and originates from the finite capacities of its nodes,
i.e., agents have limited time and resources, therefore can explore
a small fraction of the available spatial and cognitive space. In the
Pardus networks this finiteness is affirmed by the observation that
out-degrees of friendship and enmity networks have an upper
bound, limited by the Dunbar number of ≈150 (1), presumed
as a natural limit for social ties humans are able to sustain (7).
The average degree k̄α is well below Oð100Þ, for all types α.

A proper null model.The aspect of a null model becomes important
when assessing the relevance of topological structures in a net-
work. A standard procedure consists in comparing this observa-
tion against similar observations in null models, i.e., randomized
versions of the original network under adequate constraints (8).
In order to test predictions of structural balance theory, we focus
on friendship and enmity relations, and leave aside other types of
interactions. In a first step, we remove the negligible number of
ambiguous links (links between players where one marks the
other as friend but is marked back as enemy). Our strategy is
now to compare the numbers NΔi

of triads with i positive links
with the expected numbers Nrand

Δi
of triads in a null model. A stan-

dard choice for a null model consists of random graphs with fixed
degree sequences. It has been applied for each network sepa-
rately in Table 1, where we observe that friendship and enmity
networks are both more transitive than a random graph. How-
ever, this choice is not appropriate to test the arrangement of
positive and negative links on the set of existing relations between
agents—a reshuffling of topology by keeping degrees fixed would
for example considerably change the number of triads which we
want to keep fixed. For this reason we define a null model by
keeping the topology fixed and by randomly assigning the Lþ
plus-signs and L− minus-signs on the existing links, where Lþ
(L−) are the original numbers of friendship (enmity) links respec-
tively. Nrand

Δ is measured by averaging over 1000 realizations of
the null model. Moreover, the deviation of the data from ran-
domness is evaluated by the so-called z-score:
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zi ¼
NΔi

−Nrand
Δi

σΔi

; [2]

where σΔi
is the standard deviation of the number of triads Δi.

Given the ratio p≔ Lþ
LþþL−

of positive to all links in a signed
network, the expected ratio of triad types in the sign-shuffled null
model is, following straightforward combinatorial arguments, p3,
3ð1 − pÞp2, 3ð1 − pÞ2p, and ð1 − pÞ3 for triad types +++, ++−,
+−−, −−−, respectively. These expressions were used to
create Fig. 5 (center) in the main text.

Dynamics of signed triadic structures and network growth. By mea-
suring all day-to-day transitions from wedges (triads with two
links, with the possible forms ++, +−, and −−) to the other
triadic structures (+++, ++−, +−−,−−−, ++, +−,−−,
+, −, and the empty triad) we shed light upon the mechanisms
which lead to the observed significant social balance discussed in
the main text. We measure the following possible transition types:
A wedge stays the same, closes with a positive/negative link (with
the original links unchanged), has one or both links removed, or
has the sign of one or both links switched. SI Fig. 3 shows the daily
transition probabilities, normalized by the total number of
wedges of the corresponding type on that day. Due to lack of not-
ability the transition type of switching links (with a probability less
than a tenth of that of link-removal, on average) was not included
in SI Fig. 3.

Wedges of type ++ close preferentially with a positive link,
see green line in SI Fig. 3 (a), wedges of type +− with a negative
link, see blue line in SI Fig. 3 (b). These probabilities are decreas-
ing over time and seem to eventually level out. There is no clear
sign preference in the closure of type −− wedges (red lines).
These observations consistently explain the social balance results
shown in Fig. 4 and Fig. 5 in the main text. Further, note that−−
wedges are much more likely to remain unchanged than other
types of wedges, see SI Fig. 3 (d). We conclude that the mechan-
ism of triadic closure (9) has a much weaker influence as a driving
force in purely negative tie networks than in positive tie or signed
networks.

SI Fig. 4 depicts the total number of wedges of each type, for
every day. Note how the majority of wedges is of type −−,
although there are more positive than negative links, see Table 1
(main text). Also the growth rate for −− wedges is higher than
for the other two types (until about day 350, where the number of
−− wedges starts to equilibrate). This seemingly paradoxical cir-
cumstance is consistent with the marked differences in clustering
coefficients, see Table 1 (main text). It is further consistent with
the observation that a number of aggressive players frequently
offend many others and consequently get marked as enemy by
unconnected players (1). Since the clustering coefficient mea-
sures the ‘closedness’ of triads, a high clustering coefficient in
friendship networks implies a relatively small number of ++
wedges, whereas a low clustering coefficient in enmity networks
implies a relatively high number of −− wedges.

For assessing to what extent network growth is driven by the
closure of triads, we define the closure ratio as the number of
newly added links which close at least one wedge, divided by
the number of all new links, over a certain time-window during
the evolution of the network. The closure ratio lies between 0 and
1; the higher it is the more new links close a wedge. In practice,
the closure ratio is strictly smaller than 1, since a number of cases
unavoidably do not allow for the possibility of new links closing a
wedge (for example the first and second links which are added
into an empty network because no wedges exist at that stage).
The measured time-evolution of daily closure ratios in the
friend-enmity multiplex-network is depicted in SI Fig. 5 (a). Over
time the ratio slightly increases and seems to level out at around
0.5 for both positive and negative links. We conclude that half of
all links added close at least one wedge, while the other half does

not close one. Thus, a model for network growth using only wedge
transition rates shown in SI Fig. 3 could only account for the
dynamics of about half of the added links.

Another quantity important for modeling social network
dynamics is the number of removed links per time. We define
the link churn ch as the number of removed links divided by
the number of new links, over a given time-window. The churn
is nonnegative; there are 3 possible cases: i) Growth
(0 ≤ ch < 1): More new than removed links, ii) Equilibrium
(ch ¼ 1): The same number of new as removed links, iii) Shrink-
age (ch > 1): More removed than new links. The higher ch, the
more links are removed relative to the number of added links.
Note that in the majority of classic network growth models, such
as preferential attachment (10), no removal of links is assumed
(ch ¼ 0) and the effect of churn is ignored. The measured time-
evolution of link churns over time windows of 14 days in the
friend/enmity network is depicted in SI Fig. 5 (b). Over time
ch increases and fluctuates around ch ¼ 0.7 for both positive
and negative links (taken over days 200 to 445, ch ¼ 0.66 for
friend links and ch ¼ 0.72 for enemy links). Therefore, at the
end for every three new links about two links are removed. Since
the number of links removed from wedges is much smaller than
links added to close wedges, we conclude that many links are re-
moved from triadic structures other than wedges. Again, a model
for network growth using only the transition rates shown in SI
Fig. 3 would only account partially for link-removal dynamics.

A network evolution model of signed triadic closure.Using the mea-
sured daily transition rates above we define a transition matrix

MSTC ¼ P
þþ → þþþ þþ → þþ� þþ → þþ
þ� → þ�þ þ� → þ�� þ� → þ�
�� → ��þ �� → ��� �� → ��

0
@

1
A

¼
0.000212 0.000029 0.999759
0.000025 0.000279 0.999696
0.000040 0.000036 0.999924

0
B@

1
CA;

where the entries are the probabilities of a wedge of given type to
another triadic structure. Rows 1, 2, and 3 of MSTC distinguish
between wedge types ++, +−, and −−, respectively; columns
1, 2 and 3 distinguish between probabilities for closure with either
a positive or a negative link, or the probability of no change,
respectively. The constant probabilities of columns 1 and 2 are
determined by averaging the corresponding evolving probabilities
over the days 100 to 445 (this time-window was chosen due to a
relatively decreased level of fluctuations in transition probabil-
ities, see SI Fig. 3). The third column is one minus the sum of
values in column 1 and 2, since we neglect link-removals and
sign-switches. With these parameters we design the following
network evolution model, to understand Signed Triadic Closure
(STC):

• At time t pick wedge i at random (random sequential update)
• Determine the type of wedge i and close (or do not close) it

according to the relevant entry in MSTC
• Pick next wedge until all wedges are updated
• Continue with time step tþ 1

As initial condition we take the observed friendship and enmity
multiplex-network at day 100. Simulating this process leads to the
results shown in Fig. 5 (right) in the main text, reproducing the
ratio of triads in the data considerably better than the null model.

For the purpose of simplicity, the STC model ignores three
possibly important aspects:

• It does not take into account links added by means other than
triadic closure. As we have shown above, the closure ratio ≈0.5,
i.e., only half of all new links are added in the process of triadic
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closure. For the other half of new links, one could for example
take into account the mechanism of preferential attachment
(10), for which exponents were reported in (1).

• The model does not take into account the removal of links.
Because removal happens in a relatively high frequency
(ch ≈ 0.7), a possible extension of the model could involve
the measurement and implementation of decay rates, i.e., of

transition rates from complete signed triads to wedges (or
other triadic structures with a smaller number of links). We
suspect that balanced triads are more stable than unbalanced
triads.

• The model could be expanded to incorporate directed links
and in/out-degree distributions, clustering coefficients, assorta-
tivity, etc.
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Fig. S1. Correlation between the network-network measures of (a) link overlap and degree correlation (p-value: 10−5), (b) link overlap and degree rank
correlation (p-value: 0.01). Pairs of networks with equal connotation (positive-positive or negative-negative) have a higher overlap then oppositely signed
pairs, with a similar tendency for degree correlation. We mark pairs including a communication network as neutral, since messages may involve both positively
or negatively connotated content.
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Fig. S2. Evolving network-network properties (a) link overlap, (b) degree correlation, (c) degree rank correlation, on the days 150, 300, and 445, for all pairs of
networks, with the notations E for Enmity, F for Friendship, A for Attack, T for Trade, C for Communication and B for Bounty. Changes are relatively small,
except for degree correlations in the E:B, A:B, C:B, and F:B interactions.
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Fig. S3. Measured day-to-day transition probabilities from wedges to staying the same or to other triadic structures, in the multiplex-network consisting of
friend and enmity relations. For visual clarity amoving average filter with a time-window of 14 days was applied. (a) Probabilities of wedges being closed with a
positive link. (b) Probability of a wedge being closed with a negative link. (c) Probability of a wedge having one or both links removed. (d) Probability of a
wedge staying unchanged. Note how + + wedges have a clear preference of being closed by a positive link, while +−wedges have a clear preference of being
closed by a negative link. Wedges of type −− have no sign preference for closure and are more likely to remain unchanged than other wedge types.
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Fig. S4. Evolution of number of wedges of each type, in the multiplex network consisting of friend and enmity relations. For visual clarity a moving average
filter with a time window of 14 days was applied.
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Fig. S5. (a) Closure ratio, defined as the number of new links which closed at least one wedge divided by all new links, here for each day. For visual clarity a
moving average filter with a time window of 14 days was applied. (b) Link churn ch, defined as the number of links removed divided by the number of links
added, here for each time window of 14 days. Evolutions of these ratios are depicted for positive and negative links, within the multiplex network consisting of
friend and enmity relations.
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