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Abstract 10	

Microbial communities live in diverse habitats and significantly impact our health and the 11	

environment. However, the principles that govern their formation and evolution remain poorly 12	

understood. A crucial step in studying microbial communities is to identify the potential metabolic 13	

interactions between the community members, such as competition for nutrients or cross-feeding. 14	

Due to the size and complexity of the metabolic network of each organism, there may be a variety 15	

of connections between each pair of organisms, which poses a challenge to unraveling the 16	

metabolic interactions. Here, we present ReMIND, a computational framework to reconstruct the 17	

interaction networks in microbial communities based on the metabolic capabilities of individual 18	

organisms. We applied ReMIND to a well-studied uranium-reducing community and the honeybee 19	

gut microbiome. Our results provide new perspectives on the evolutionary forces that shape these 20	

ecosystems and the trade-off between metabolite exchange and biomass yield. By enumerating 21	

alternative interaction networks, we systematically identified the most likely metabolites to be 22	

exchanged and highlighted metabolites that could mediate competitive interactions. We envision 23	

that ReMIND will help characterize the metabolic capacity of individual members and elucidate 24	

metabolic interactions in diverse communities, thus holds the potential to guide many applications 25	

in precision medicine and synthetic ecology.  26	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.30.577913doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577913
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 27	

Microbial communities inhabit diverse ecological environments and significantly impact our health 28	

and environment1-5. The presence of different species in a microbial community gives rise to 29	

emergent properties that individual microbes do not possess. These properties, often the result of 30	

complex physicochemical interactions, lead to a range of effects, including enhanced growth6, 31	

increased resilience against perturbations7, increased virulence8,9, and the development of new 32	

biochemical capabilities10-14. These interactions, primarily mediated by small molecules or 33	

metabolites, are key to understanding the collective behavior of microbial communities. 34	

Despite recent advances in the characterization of microbial exometabolomes15-17, the metabolic 35	

interactions in microbial communities and the principles governing the formation and evolution of 36	

such interactions remain poorly understood. In this regard, computational tools can enable us to 37	

unravel the inherent complexity of microbial communities and improve our understanding of the 38	

system. Genome-scale metabolic models (GEMs) are mathematical representations of the 39	

biochemical reactions that can occur in an organism according to the functional annotation of the 40	

organism's genome and experimental evidence18. These models have been used extensively for a 41	

wide range of applications, including the study of microorganisms19 and human diseases20,21, 42	

metabolic engineering22,23, and drug target discovery24. GEMs have also been used to study and 43	

simulate microbial communities25-29, facilitated by recent advances in automated reconstruction of 44	

GEMs30-32 and the increasing availability of manually curated models33. 45	

Metabolic models provide valuable information about metabolism, including nutrient uptake and 46	

by-product secretion. Various computational methods have used this information to identify 47	

metabolic exchanges in microbial communities. Despite differences in assumptions and 48	

methodologies, these methods typically involve two steps. The first step identifies boundary 49	

metabolites, i.e., metabolites that are present in the habitat independently of the community. These 50	

metabolites may originate from the host, be naturally present in the habitat, or be introduced by the 51	

growth medium. Previous studies have defined these boundary metabolites by minimizing the 52	

number of nutrients required to maintain a physiology26,28 or by assuming that only those 53	

metabolites that promote maximum growth are externally available29,34. After identifying the 54	

boundary metabolites, the next step is to identify metabolic interactions. To this end, some studies 55	

minimize the number of exchanged metabolites to reduce species interdependence26,28, while others 56	

use flux variability analysis29,34 or graph-based methods25 to detect overlapping metabolites 57	
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between species. These methods have been successfully applied to specify interactions in 58	

communities ranging from two to forty species. However, none of these methods consider trade-59	

offs between metabolite exchange and biomass yield. In addition, minimizing species 60	

interdependence is not always consistent with the driving forces of the community27,35, suggesting 61	

the need for a more comprehensive framework incorporating a wide range of objective functions. 62	

In this study, we present ReMIND (Reconstruction of Microbial Interaction Networks using 63	

Decomposed in silico minimal exchanges) to systematically reconstruct metabolic interactions in 64	

microbial communities based on the metabolic capabilities of community members. Our 65	

framework identifies the boundary metabolites without enforcing growth optimality, allowing it to 66	

account for ecological conditions where growth is not optimal. We first address the problem at the 67	

species level by generating a set of alternative substrate and by-product profiles stratified based on 68	

biomass yield. We then reconstruct a community model using these generated profiles. We 69	

optimize a chosen objective function, which may reflect evolutionary goals, engineering objectives, 70	

or consistency with available data. We applied our framework to a well-studied two-species 71	

uranium-reducing community36,37 to evaluate the evolutionary history of the community and 72	

propose strategies to improve the community function. We also applied our framework to a larger 73	

honeybee gut microbiome composed of seven members38,39. Our framework sheds light on the 74	

complex interplay between biomass yield and metabolite exchange and identifies key metabolites 75	

that lead to cooperation or competition among species. Furthermore, the framework can guide 76	

experimental studies to reveal the underlying mechanisms of natural microbiomes and provide new 77	

insights into the design of synthetic communities.  78	
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Results  79	

A generalized workflow to reconstruct microbial interaction networks 80	

We have developed a computational constraint-based framework for reconstructing metabolic 81	

interaction networks in microbial communities. Our framework takes as input (i) the genome-scale 82	

metabolic models of individual species and (ii) a list defining the available extracellular 83	

metabolites. These metabolites may be provided by the host, the environment, or the other species 84	

in the community. Such a list may be defined by experimental studies (e.g., exometabolomics) or 85	

generated context-specifically for the community under study by focusing on the key metabolites 86	

(Figure 1 upper left). 87	

The framework starts with independently generating alternative nutrient and by-product profiles 88	

for each species. We aimed to create a framework not limited by the assumption of growth 89	

optimality for individual species within the community. To achieve this, we decomposed the 90	

nutrient and by-product profiles based on biomass yields. In this way, we account for optimal and 91	

sub-optimal yield regimes. Biomass yield can be calculated in different ways, e.g., based on all 92	

substrates, carbon, or nitrogen consumption, depending on the community under study. We named 93	

these substrate-byproduct profiles Decomposed in silico Metabolic Exchanges (DiMEs). The 94	

DiMEs represent all metabolic capabilities of a species in the given extracellular environment, with 95	

each DiME representing a specific physiology (Figure 1 upper right). 96	

The next step is to assemble DiMEs into a community model. The DiMEs form the basis of the 97	

interaction space, where any combination of DiMEs of individual species creates an interaction 98	

profile. While there are many possible interactions, not all are biologically relevant. Therefore, we 99	

formulated an Integer-Linear Programming (ILP) problem to reconstruct relevant interaction 100	

networks. The ILP formulation selects one DiME per species to optimize an objective function. 101	

The objective function may represent a community driving force, a consistency score with partially 102	

observed interactions, or a desirable function. 103	

Specifying metabolic activity of a uranium-reducing community  104	

We first used our method to reconstruct the interaction networks in a uranium-reducing community, 105	

including G. sulfurreducens and R. ferrireducens. These two species are significant components of 106	

a uranium-contaminated site in Rifle, Colorado40. The importance of G. sulfurreducens is due to 107	
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its ability to reduce U (VI) to U (IV). R. ferrireducens cannot reduce uranium but competes with 108	

G. sulfurreducens over the shared nutrients. Previous studies reported that G. sulfurreducens and 109	

R. ferrireducens compete over acetate, ammonium, and Fe (III)36 (Figure 2a). Previous modeling 110	

efforts of this community assumed the two species interact only by competing over the 111	

abovementioned nutrients37,41. We used ReMIND to generate the DiMEs for G. sulfurreducens and 112	

R. ferrireducens (Table S1). We then studied the interaction networks that emerged, optimizing 113	

different objective functions. 114	

We generated DiMEs for G. sulfurreducens and R. ferrireducens for ten biomass yield regimes 115	

(Table S1). The number of unique DiMEs for G. sulfurreducens was 519, including 18 substrates 116	

and 16 by-products, where 8 metabolites could serve either as substrates or products in different 117	

alternatives. The number of unique DiMEs for R. ferrireducens was 400, including 19 substrates 118	

and 15 by-products, where 10 metabolites were common between substrates and products. 119	

Evolutionary objective functions can capture the uranium-reducing community 120	

driving force 121	

We used the ILP formulation to perform three studies for this community using different sets of 122	

objective functions. First, we tried to capture the driving force of the community that led to the 123	

observed interactions. To this end, we defined seven evolutionary objective functions and 124	

generated alternative optimal solutions for each objective (Table 1). If we could reproduce the 125	

observed interactions using an objective function, we could assume that this community had 126	

potentially evolved to optimize that objective function.  127	

The first objective function was to minimize the sum of nutrient uptakes by individual species, 128	

denoted as minUptake, assuming that individual organisms evolved independently to minimize the 129	

resources they uptake. The second objective function was to minimize the uptake of external 130	

resources (abiotic) by the community (minExternal), assuming the two species evolved together to 131	

minimize the dependence on the environment. In addition to minimizing the uptake of external 132	

resources, the third objective minimizes the competitive interactions (minExternal-133	

minCompetition), assuming further interdependence between the community members. The other 134	

four objective functions include maximizing the active yield regimes. They include (i) maximizing 135	

the yield regimes while minimizing the number of uptaken nutrients (maxYield-minUptake), (ii) 136	

maximizing the yield regimes while minimizing the number of external nutrients (maxYield-137	
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minExternal), (iii) maximizing the yield regimes while maximizing the cross-feeding interactions 138	

(maxYield-maxCrossfed), and (iv) maximizing the yield regimes while minimizing the competitive 139	

interactions (maxYield-minCompetition). 140	

We generated the alternative optimal solutions for each objective function (Figure 2). Minimizing 141	

the number of external nutrients resulted in more competitive and cross-feeding interactions 142	

between the two species (Figure 2b, g) to reduce the community’s reliance on the environment. The 143	

cross-feeding interactions were mutual, indicating that G. sulfurreducens and R. ferrireducens can 144	

benefit from each other in an interdependent community. On the other hand, maximization of the 145	

yields indirectly reduced the cross-feeding interactions by driving the community to more selfish 146	

behavior (Figure 2c, d, e, f). 147	

Three different patterns emerged concerning the competition over ammonium. The first pattern 148	

included an essential competition over ammonium, i.e., the two species competed over ammonium 149	

in all alternative optimal solutions. Four objective functions, minExternal, maxYield-minExternal, 150	

maxYield-minUptake, and maxYield-maxCrossfed, yielded the first pattern (Figure 2b, c, d, f). The 151	

second pattern featured alternative nitrogen sources for G. sulfurreducens. We then sought to 152	

explore the trade-off between the number of external sources and competitive interactions (i.e., 153	

minExternal-minCompetition). G. sulfurreducens could either compete with R. ferrireducens over 154	

ammonium or avoid competition by using N2 as the nitrogen source at the expense of increasing 155	

the number of external sources (Figure 2g). We observed the same pattern for minUptake, where 156	

we minimized the number of uptakes for each organism regardless of the interactions (Figure 2h). 157	

Thus, we can deduce that G. sulfurreducens could achieve the minimum number of substrates using 158	

either of the nitrogen sources. The third pattern was obtained when the objective function was 159	

maxYield-minCompetition, where no competition over ammonium was observed in the optimal 160	

solutions (Figure 2e). We also observed three patterns regarding the competition over Fe (III). The 161	

first pattern featured an essential cross-feeding interaction, where G. sulfurreducens consumed Fe 162	

(III) and secreted Fe (II), which was, in turn, consumed by R. ferrireducens. This pattern was 163	

observed for maxYield-maxCrossfed and minExternal-minCompetition (Figure 2f, g). In the 164	

second pattern, we observed no interactions over iron when the objective was maxYield-165	

minUptake or maxYield-minCompetition (Figure 2d, e).  The third pattern captured the 166	

competition over Fe (III) in some alternative solutions, while we observed either cooperation over 167	

Fe (II) or no interactions over iron in other alternatives. Three objective functions, minExternal, 168	
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maxYield-minExternal, and minUptake, resulted in the third pattern. Finally, we did not observe 169	

the competition over acetate in the optimal solutions of these objective functions. This implies that 170	

competition over acetate is not an optimal phenotype, at least for these objective functions, and is 171	

probably observed due to the limited availability of other carbon sources in the environment. 172	

Among the objective functions we considered, minExternal and maxYield-minExternal could 173	

capture the observed interactions better than the others (Figure 2b, c). These two objectives 174	

captured competition over ammonium (all alternatives) and Fe (III) (some alternatives), and both 175	

included minimizing the number of external nutrients. Given that G. sulfurreducens and R. 176	

ferrireducens minimized the number of uptaken external nutrients, we can conclude that the two 177	

species evolved in the same environment where the availability of nutrients was constrained.  178	

Inferring the metabolic landscape by integrating partial observations  179	

In many cases, we have partial information about the interactions between community members. 180	

The systematic generation of DiMEs enables us to specify all potential interactions compatible 181	

with the partial information. To this end, we can formulate an objective function to find the most 182	

consistent interaction(s) with the observations (Table 1).  183	

In the second study, we solved the ILP formulation, where we tried to find the most consistent 184	

interaction networks with the observations (see Methods). This problem had only one optimal 185	

solution, in which, in addition to the observed interactions, the two species also compete over 186	

sulfate and phosphate. We used the ILP formulation to find the DiMEs that support this set of 187	

interactions without establishing interactions through other metabolites. This included thirteen 188	

DiMEs for G. sulfurreducens and four DiMEs for R. ferrireducens (Figure 3a). The DiMEs for G. 189	

sulfurreducens and R. ferrireducens respectively corresponded to a range of suboptimal yield 190	

regimes from 10% to 60% and 10% to 40% of the optimal yield, which supports our finding in the 191	

previous section that the observed interactions were established mainly due to the constrained 192	

availability of the nutrients rather than maximizing the biomass yield. 193	

Proposing synthetic media to achieve desirable properties 194	

The third study was aimed at designing a community with desirable properties. Considering that 195	

only G. sulfurreducens remediates uranium contamination, we generated interaction networks in 196	

which G. sulfurreducens outperformed R. ferrireducens (i.e., G. sulfurreducens achieves a higher 197	

biomass yield than R. ferrireducens). To this end, we used three objective functions (Table 1). The 198	
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first objective function selected the DiMEs with higher yields for G. sulfurreducens and the DiMEs 199	

with lower yields for R. ferrireducens (see Methods). The optimal solution was obtained when G. 200	

sulfurreducens grew with the maximum yield, and R. ferrireducens grew with the lowest possible 201	

yield, i.e., 10% of the maximum yield. We found one optimal interaction network (Figure 3b(i)).  202	

In addition to favoring higher yields for G. sulfurreducens and lower yields for R. ferrireducens, 203	

the second and third objective functions minimized the number of uptaken nutrients and maximized 204	

the cross-feeding interactions, respectively (see Methods). The former resulted in five optimal 205	

interaction networks, while the latter had six optimal solutions (Figure 3b). Three interactions were 206	

essential using all the objective functions: competition over ammonium, sulfate, and phosphate. 207	

Interestingly, interaction through malate was observed in various alternatives more than other 208	

carbon sources, stressing the importance of this carbon source to induce the favorable phenotype 209	

in the community. Experiments can be performed to investigate the impact of providing malate to 210	

the community as a potential method to improve the uranium remediation capacity of the 211	

community.  212	

Adding Shewanella oneidensis enhances the uranium-reducing capacity of the 213	

community  214	

In the final simulation, we used ReMIND to capture the impact of adding a new member on the 215	

interaction networks42. To this end, we chose Shewanella oneidensis, a bacterium with uranium-216	

reducing capacity. Like G. sulfurreducens, S. oneidensis can reduce U (VI) to U (IV) and contribute 217	

to bioremediation. The impact of adding S. oneidensis to the community of G. sulfurreducens and 218	

R. ferrireducens was computationally investigated elsewhere41, where it was presumed that S. 219	

oneidensis consumes lactate and secretes acetate, which G. sulfurreducens and R. ferrireducens 220	

can then consume. Also, it was presumed that S. oneidensis competes with the other two species 221	

for Fe (III) and ammonium. These assumptions are based on observations about S. oneidensis in 222	

monoculture or other environments43,44. We used ReMIND to systematically examine the effect of 223	

this perturbation on the interaction network. We simulated the community with and without S. 224	

oneidensis, optimizing the Evolutionary objectives (Table 1) that resulted in the closest patterns to 225	

the observed interactions in the community of G. sulfurreducens and R. ferrireducens (Figure 2) 226	

(i.e., minExternal and maxYield-minExternal) .  227	
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When the objective function was minExternal, the number of external resources remained 228	

unchanged after adding S. oneidensis (Figure 3c). The species either increase the overlap in their 229	

nutritional requirements through competitive interactions or increase their dependence on the 230	

secreted metabolites through cross-feeding interactions to reduce the number of external resources. 231	

In particular, in all optimal solutions for the two-member community, we observed either 232	

competition over the carbon source or cross-feeding. In both scenarios, a single external carbon 233	

source was used by the community. The interaction over the carbon source was mediated by four 234	

metabolites, i.e., malate (both competition and cross-feeding), citrate (only competition), lactate 235	

(only competition), and acetate (only cross-feeding).  236	

Similarly, only a single carbon source was obtained from the environment, and two interactions 237	

via carbon sources were observed in all optimal solutions for the three-member community 238	

(competition or cross-feeding). The interactions were mediated by six metabolites, i.e., malate 239	

(both competition and cross-feeding), fumarate (both competition and cross-feeding), citrate 240	

(competition only), lactate (competition only), pyruvate (cross-feeding only), and succinate (cross-241	

feeding only). The highest yields that G. sulfurreducens and R. ferrireducens could achieve were 242	

also affected; while the highest yield for G. sulfurreducens increased, the highest yield for R. 243	

ferrireducens decreased. This suggests that if the efficient consumption of resources is the sole 244	

factor in determining the interactions, the presence of S. oneidensis can benefit G. sulfurreducens 245	

and harm R. ferrireducens.  246	

When we considered the second objective function, i.e., maxYield-minExternal, the yields of G. 247	

sulfurreducens and R. ferrireducens were unaffected, and both organisms could still achieve the 248	

highest possible yields (Table S1). However, the number of external resources increased after 249	

adding S. oneidensis. This implies that if diverse resources are available to the community, G. 250	

sulfurreducens and R. ferrireducens yields remain unaffected by S. oneidensis. Since we concluded 251	

in the previous sections that this community evolved under constrained nutrient availability in its 252	

natural environment, we could assume that adding S. oneidensis improves the bioremediation 253	

capacity both through its own uranium-reducing capability and by improving the yield of G. 254	

sulfurreducens. 255	
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Closely related species have high nutritional overlaps 256	

The gut microbiota of the honeybees shows numerous similarities with the human gut microbiome; 257	

thus, it has been widely used as a model system in microbiome research45. The core microbial 258	

community comprises five bacterial clusters, which are present in every female worker bee across 259	

the world39. These species include Snodgrasella alvi and Giliamella apicola from the 260	

Proteobacteria phylum, Bifidobacterium asteroides, which belongs to the Actinobacteria phylum, 261	

and lastly, Lactobacillus Firm-4 and Lactobacillus Firm-5 clades belonging the Firmicutes phylum. 262	

We chose Lactobacillus mellifer, Lactobacillus mellis, Lactobacillus kullabergensis, and 263	

Lactobacillus apis as representative species for the Lactobacillus Firm-4 and Lactobacillus Firm-264	

5 clades, respectively46. Overall, we considered a seven-member core honeybee gut community for 265	

our analysis. In this study, we used the metabolic models from the CarveMe database to 266	

demonstrate our workflow’s adaptability with automatically reconstructed models27. 267	

We defined a broad extracellular environment comprising 88 carbon-containing compounds 268	

(inorganic compounds were discounted) to generate DiMEs. This environment included the 269	

metabolites that could be utilized as substrates or secreted as by-products for all species, and they 270	

could originate from the host or microbiome metabolism (See Methods). We generated the DiMEs 271	

for all seven core members of the honeybee gut microbiome for ten different biomass yield regimes 272	

(Table S2). The alternatives varied among the species, with Giliamella apicola having the highest 273	

number of unique DiMEs across all seven species. In total, 86 metabolites were covered by these 274	

alternatives across all species, either as substrates or by-products. Analysis of these metabolites 275	

indicated that 36 could serve as substrates and by-products, 46 were only substrates, and 4 were 276	

only products (Figure 4a). 277	

We then identified the potential nutritional overlaps between every pair of species in the honeybee 278	

gut microbiome (Figure 4b) without differentiating between the alternatives. Therefore, the 279	

percentage does not refer to a particular physiology or habitat (See Methods). It instead reflects the 280	

similarity between the substrate utilization capabilities of both organisms and provides a 281	

comprehensive list of the potential competitive interactions. The highest nutritional overlap was 282	

between L. kullabergensis and L. apis from the Lactobacillus Firm-5 clade, with 34 overlapping 283	

nutrients across their DiMEs, leading to a 61% nutritional overlap. The next notable overlap was 284	

48% between L. mellifer and L. mellis from the Lactobacillus Firm-4 clade. The high percentage 285	

predicted between the two Firmicutes clades supports the common belief that the closely related 286	
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species are expected to have high nutritional overlaps and are primarily characterized by 287	

competitive interactions26,27. In contrast, the lowest percentage was 20% and found between S. alvi 288	

and L. mellifer. Comparing the nutritional overlaps for all the other species showed that S. alvi was 289	

dissimilar to the other community members in terms of substrate utilization, with the highest 290	

predicted nutritional overlap of 35% with G. apicola (Figure 4b). This dissimilarity was not 291	

surprising as most members of the honeybee gut are primary fermenters except for S. alvi, which 292	

has a significantly different metabolism47,48. 293	

Cross-feeding interactions become costly as the number of exchanged metabolites 294	

increases. 295	

We used ReMIND to identify the interaction network between S. alvi and G. apicola. These 296	

species, co-located in the ileum’s epithelial surface, exhibit complementary metabolisms: G. 297	

apicola ferments sugars, and S. alvi oxidizes carboxylic acids47. There has been increasing evidence 298	

for the cross-feeding interactions between the two species47-49. Therefore, we used the ReMIND 299	

framework to enumerate alternative directional cross-feeding patterns ranging from a single cross-300	

fed metabolite to the maximum number of cross-fed metabolites in different environmental and 301	

biomass yield conditions. 302	

Our study revealed 16 potential cross-fed compounds between the two species, including amino 303	

acids, carboxylic acids, and purine derivatives. We found that nine metabolites could be shared 304	

bidirectionally in the case of single-metabolite cross-feeding. In contrast, dihydroxy acetone, 305	

succinate, formate, acetate, and L-threonine, were provided unidirectionally by G. apicola to S. 306	

alvi, while 4-aminobutanoate and L-proline were provided by S. alvi to G. apicola (Figure 5a). 307	

These findings align with previous observations of specific cross-feeding interactions from G. 308	

apicola to S. alvi through lactate, formate47, succinate49, and 2-oxoglutarate48. The range of biomass 309	

yields for these interactions was wide, ranging from 10% to the optimum (100%) for both species, 310	

reflecting diverse metabolic costs and suggesting that some metabolites can be costlessly 311	

secreted50. 312	

We predicted 90 cross-feeding patterns involving two metabolites. However, not all combinations 313	

of the 16 metabolites were feasible due to physiological and biochemical limits (Figure S1). These 314	

patterns fell into three categories: (i) G. apicola provided nutrients to S. alvi (23 cases), (ii) S. alvi 315	

provided nutrients to G. apicola (3 cases), and (iii) G. apicola and S. alvi mutually provided 316	
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nutrients (64 cases). The first two classes represent commensalism or parasitism, while the latter 317	

represents mutualistic interactions. Biomass yield in these interactions varied from 10% to the 318	

optimum for both species, with mutualistic patterns typically leading to higher yields (Figure S1). 319	

In the case of three-metabolite cross-feeding, we found 162 patterns. Of these, 134 represented 320	

mutualism, while 28 could be associated with commensalism or parasitism. Biomass yields for G. 321	

apicola varied from 10% to the optimum, and for S. alvi, from 10% to 90% of the optimum. 322	

Interestingly, the maximum yield for the nutrient provider in commensal or parasitic interactions 323	

is much lower, down to 10% for S. alvi and 40% for G. apicola (Figure S1). When four metabolites 324	

were exchanged, 60 patterns emerged, with 50 indicating mutualism and 10 commensalism or 325	

parasitism. Here, the maximum yield for G. apicola falls to 40% of the optimum, while S. alvi 326	

maintained up to 90%. Notably, S. alvi achieved higher yields when providing fewer or no nutrients 327	

to G. apicola. 328	

For the maximum cross-fed metabolites, i.e., five cross-fed metabolites, we identified three patterns 329	

(Figure 5a). All patterns were mutualistic, where both species provided nutrients. In particular, S. 330	

alvi’s yield dropped to 10% of its optimum, while G. apicola’s maximum yield decreased to 30%. 331	

The overall trend observed across all patterns from one to five exchanged metabolites suggested 332	

that as the number of cross-feeding interactions increased, the highest individual biomass yields 333	

that could support these interactions decreased, indicating that exchanging metabolites becomes 334	

more costly for the species. In other words, if a species provided more nutrients, it did so at the 335	

expense of its biomass yield, reflecting apparent altruistic behavior. 336	

The same minimal environment can give rise to a variety of microbial interactions 337	

We then assessed the nutritional needs for the two-member community consisting of S. alvi and G. 338	

apicola. To this end, we minimized the number of nutritional requirements supporting the growth 339	

of both species. This way, the community was expected to rely less on the habitat/host and more 340	

on the metabolic interactions. Our analysis showed that at least 11 nutrients must be externally 341	

provided (abiotic sources or host-derived metabolites) to the community to support the growth of 342	

both organisms. We generated all alternative minimal nutritional environments and the minimum 343	

and maximum individual biomass yield regimes that can be achieved within these environments 344	

(Figure S2a). Our study identified nine alternative minimal environments, each composed of 11 345	

metabolites. These alternatives included 16 metabolites, containing amino acids, purines, 346	
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pyrimidines, carboxylic acids, carbohydrates, and vitamins. Interestingly, our analysis showed that 347	

the same minimal environment can give rise to alternative interaction patterns, suggesting that the 348	

same environmental conditions can support diverse ecological interactions (Figure S2b and 349	

Supplementary Results). 350	

Metabolic interaction potential increases with the number of species in the microbial 351	

community 352	

To examine the effect of changing the size of the community on the number of metabolic 353	

interactions, we reconstructed all subcommunities of the core honeybee gut microbiome of all sizes 354	

(Figure 5b). Our results showed that increasing the number of species in the random 355	

subcommunities increased both the maximum number of metabolites that can be exchanged and 356	

the minimal nutritional requirements. In addition, the variation in minimal nutritional requirements 357	

within the subcommunities of the same size decreased as the number of species increased.  358	

We observed that within the subcommunities of the same size, species with a higher number of 359	

metabolic genes generally had the lowest number of nutrient requirements (marked in Figure 5b), 360	

consistent with previous findings for individual species51. Overall, it could be concluded that such 361	

communities relied less on the environment compared to subcommunities of the same size. To 362	

provide a lower and upper bound on the extent of competitive interactions that could occur, we 363	

also quantified the minimal and maximal competitive interactions (counted with the number of 364	

metabolites for which there is competition) within all subcommunities (Supplementary File 1). In 365	

accordance with the pairwise nutritional overlap (Figure 4b), the highest lower-bound for 366	

competitive interactions was observed for the L. apis and L. kullabergensis pair with at least 15 367	

competitive interactions. Similarly, this value reached 11 competitive interactions for the L. mellis 368	

and L. mellifer pair. 369	

Examining the effect of biotic perturbations and identifying metabolite-hubs with 370	

high-connectivity 371	

We next assessed how adding a new species (B. asteroides) to a two-member community (S. alvi 372	

and G. apicola) affects its minimal nutritional needs and cross-feeding interactions, an experiment 373	

known as N+1 biotic perturbation52 (see communities marked in Figure 5b). Our findings 374	

demonstrated that the external nutrient requirements increased from 11 to 15. We further analyzed 375	
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the three-member community’s minimal environment by exploring different minimal 376	

environments and their impact on biomass yields (Figure S3 and Supplementary Results). 377	

Moreover, including B. asteroides increased the maximum number of cross-fed metabolites from 378	

five to eight (Figure 5b). In addition to the 16 metabolites that could be exchanged between S. alvi 379	

and G. apicola, six new metabolites contributed to cross-feeding interactions, including carboxylic 380	

acids, monosaccharides, organooxygen compounds, and amino acids. We then classified these 381	

metabolites based on the species exchanging them and decomposed the complex interaction 382	

networks into their pairwise contributions (Figure 5c). 383	

Our classification of cross-fed metabolites yielded three classes. The first class contained ten 384	

metabolites, primarily amino acids and carboxylic acids, that could be exchanged between all 385	

species, thus linking the entire community. These metabolites mediate more robust interactions 386	

against biotic perturbations since interactions through these metabolites persist if a species is 387	

removed (Class 1 in Figure 5c). The second group included three metabolites that could only be 388	

exchanged due to the metabolic synergy of a particular species with the others. For instance, 389	

succinate could be only provided by B. asteroides and G. apicola to S. alvi, implying that such 390	

interaction emerges only if S. alvi is present (Class 2 in Figure 5c). Metabolites in both the first and 391	

second groups potentially serve as metabolite hubs, enhancing community connectivity beyond 392	

pairwise interactions. The last category of metabolites included nine compounds that could only be 393	

exchanged between a specific pair, representing only pairwise interactions without leading to 394	

higher degrees of connections (Class 3 in Figure 5c). 395	

Cross-fed metabolites in the core honeybee gut microbiome show different degrees 396	

of connectivity 397	

We analyzed the seven-member core honeybee gut microbiome, focusing on the minimal 398	

nutritional environments and cross-feeding patterns, where the maximum number of metabolites 399	

was exchanged. This resulted in predicting 27 distinct minimal environments, each including 37 400	

nutrients (Figure S4a). Our analysis showed that amino acids are the major components in these 401	

environments (Figure S4b, Supplementary Results). Regarding the cross-feeding interactions, we 402	

identified 93 patterns of 21 cross-fed metabolites (Figure 6a). The alternative cross-feeding patterns 403	

covered 29 metabolites, including mainly carbohydrates and carbohydrate conjugates, amino acids, 404	

and carboxylic acids (Figure 6b), consistent with previous research in diverse microbial 405	
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ecosystems27,50,53,54. Ten of the 29 metabolites were identified as essential cross-fed metabolites, 406	

appearing in all alternatives of the maximum number of cross-fed metabolites.  407	

We also assessed the degree of connectivity of metabolites in various patterns. To this end, we 408	

summed the maximum number of species that could uptake and produce the metabolite, 409	

representing the maximum number of links (edges) the metabolite could have. Our results indicated 410	

that different metabolites could provide different degrees of connectivity for the species. Carbon 411	

dioxide emerged as the cross-fed metabolite with the highest degree of connectivity, as all species 412	

can secrete CO2 in most, if not all, DiMEs, and only one species, L. kullabergensis, was predicted 413	

to take up small amounts of CO2 (not the primary carbon source) in some alternative DiMEs. A 414	

high degree of connectivity was also achieved by amino acids and carboxylic acids, including 415	

leucine, tyrosine, fumarate, and succinate. Interestingly, when the number of cross-fed metabolites 416	

was maximized, most of the exchanged metabolites had a connectivity degree of two. This implies 417	

that these compounds were only exchanged between a pair of species without leading to broader 418	

network connectivity (Figure 6a).  419	
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Discussion 420	

In this study, we presented our two-step framework for reconstructing microbial interaction 421	

networks using genome-scale metabolic models. In the first step, we formulated a MILP problem 422	

to generate the substrate and by-product profiles ranked by biomass yields for each species, which 423	

we named DiMEs. In the second step, we devised an ILP formulation to select a DiME for each 424	

species such that an objective function of interest is optimized. We benchmarked our method by 425	

generating interaction networks capturing experimentally observed interactions for a well-studied 426	

two-species uranium-reducing community36,37. We investigated ecological principles that shape 427	

interactions in this community, identified environments that support partial observations, and 428	

suggested potential interventions to enhance its bioremediation capacity, including the introduction 429	

of a new species to the community. We then applied our framework to the core honeybee gut 430	

microbiome composed of seven species. Consistent with previous studies26,27, we showed that 431	

closely related species have higher overlap in their nutritional requirements and are characterized 432	

mainly by competitive interactions. We demonstrated that our approach facilitates the analysis of 433	

metabolic interdependencies in different environments, providing insights into the trade-off 434	

between metabolite exchange and biomass yield. Additionally, it allows us to simplify complex 435	

interactions into simpler pairwise contributions, identify metabolite hubs with high connectivity, 436	

and assess the effect of adding or removing a member from a community. 437	

Our framework offers several advantages for identifying metabolic exchanges within microbial 438	

communities. First, it requires a limited number of necessary inputs, namely the GEMs for the 439	

species and, if available, a list of potential extracellular metabolites (e.g., exometabolomics). 440	

Second, our framework does not assume growth optimality for individual species. This is 441	

particularly important given the altruistic behavior of some microbial species55,56 and considering 442	

that metabolic systems do not always operate in a fully optimal state, allowing the system to be 443	

more robust to perturbations. Furthermore, our workflow systematically decomposes the problem 444	

into two sequential steps, significantly reducing computational complexity. We first address the 445	

problem at the species level, allowing parallel processing of DiMEs for each species. In the next 446	

step, the number of DiMEs to be included for each species can be controlled by adding them using 447	

a heuristic approach, making the framework easily scalable to larger communities. Finally, the 448	

DiMEs formulation itself is a valuable resource that provides insight into the metabolic capabilities 449	
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of each organism. It provides the research community with a new approach to resolve the 450	

uncertainty associated with substrate and by-product profiles in metabolic models.	451	

While we used automatically reconstructed metabolic models in our study, these models might 452	

need further refinement to accurately represent organism-specific phenotypes30.The scope of our 453	

analysis is inherently linked to the accuracy of these models, and future studies can further curate 454	

the models in combination with experimental validation to improve predictive accuracy. In 455	

addition, as more data becomes available, the analysis presented here can be extended by 456	

integrating additional data, such as host diet and partially observed interactions, to further refine 457	

and constrain the alternative interaction networks. 458	

Our framework systematically identifies, ranks, and analyzes potential metabolic interactions 459	

within microbial communities. It holds great promise for experimental design and microbial 460	

therapy by guiding which species or metabolites to target to restore dysbiosis and prevent or treat 461	

diseases. Beyond microbial interactions, the methods developed here can be adapted to study 462	

various cellular interaction networks, including host-microbe and tumor microenvironment 463	

interactions, offering broader applicability in biological research.   464	
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Methods 465	

The genome-scale metabolic models  466	

Manually curated GEMs for Geobacter sulfurreducens57 and Rhodoferax ferrireducens36  were 467	

obtained from the literature. It was proposed that the nitrogen sources for this community are 468	

inorganic compounds such as ammonium or atmospheric nitrogen37. Thus, we blocked the uptake 469	

of organic compounds that contain nitrogen, including amino acids. We also assumed that each 470	

organism could use a single carbon source at a time due to the catabolite repression. This 471	

assumption was formulated as an additional constraint while generating DiMEs.  Moreover, the 472	

uptake of oxygen was blocked to simulate the anaerobic environment37. We used manually curated 473	

GEM for Shewanella oneidensis58 to investigate the impact of adding a member to the community. 474	

We assumed anaerobic conditions for the honeybee gut lumen. S. alvi is an obligate aerobe that 475	

colonizes the epithelium of the ileum, and thus has access to the oxygen diffused by the epithelial 476	

cells39. The other organisms of the honeybee gut microbiome used in this study grow in the absence 477	

of oxygen. We simulated growth under anaerobic conditions, and for the cases where the models 478	

failed to simulate growth under anaerobic conditions, we gap-filled them (Table S3) using the 479	

NICEgame workflow59 and the universal CarveMe model30 as a reaction pool. Also, the S. alvi 480	

GEM was gap-filled (Table S3) to enable growth on minimal media. We realized that import of 481	

some inorganic compounds (Ca+2, Zn+2 and Mn2+) to the cytosol was coupled with the transport of   482	

carboxylic acids (e.g., citrate) in some of the models, which unrealistically made the carbon source 483	

essential for the model. To address this issue, we modeled the transport of these compounds via 484	

the abc system or proton symport (Table S3). 485	

Thermodynamic curation of the genome-scale models 486	

The process of thermodynamically curating Genome-scale Metabolic Models (GEMs) involves 487	

integrating thermodynamic data, specifically the Gibbs free energy of formation and its estimation 488	

error, into the models. The following pipeline was used for this estimation: First, MetaNetX 489	

(http://www.metanetx.org) was used to annotate the GEM’s compounds with identifiers from 490	

various databases, including SEED60, KEGG61, CHEBI62, and HMDB63. Then, using Marvin 491	

(version 20.20, 2020, ChemAxon http://www.chemaxon.com), the structures of compounds 492	

(canonical SMILES) were converted into their major protonation states at pH seven, and MDL 493	
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Molfiles were generated. These Molfiles, along with the Group Contribution Method, were 494	

employed to calculate the standard Gibbs free energy of formation and its estimation error for the 495	

compounds. The calculation of the thermodynamic properties of the metabolites allowed the 496	

addition of thermodynamic constraints for a considerable percentage of the reactions of each GEM 497	

(Table S4). 498	

Defining the extracellular environment and general considerations 499	

We defined a set of potential carbon sources and available inorganics for the uranium-reducing 500	

community (Supplementary File 2). For the core honeybee gut community, we first defined a broad 501	

extracellular environment. Instead of using the union of all exchanges from all models, we 502	

described a shorter but inclusive list of metabolites that could be utilized as substrates or secreted 503	

as by-products by all species. Inorganic compounds were assumed to be always present in the 504	

environment, and thus, they were not included in the metabolite list. 505	

We divided the carbon sources into primary and supplementary (Supplementary File 3). The 506	

primary carbon sources were metabolites that could serve as the main carbon source for any of the 507	

species based on previous studies48,49 and genomic evidence39,47. The supplementary carbon 508	

sources included metabolites that were less likely to serve as main carbon source for any of the 509	

species (e.g., vitamins, purines, pyrimidines, certain amino acids) but were found to be essential 510	

(uptake or production) for growth of at least one of the models. We then differentiated between the 511	

two different types of carbon sources by constraining the maximum uptake rate of the 512	

supplementary carbon sources to 1 mmol gDW-1 h-1. The primary carbon source list was generated 513	

iteratively over all species starting from a user defined initial list of primary carbon sources. For 514	

the first iteration, we used the initial list and we also consider catabolite repression (i.e., only Cu,b 515	

metabolites from the primary carbon source list can be uptaken at the same time) and growth was 516	

simulated for each models. If any of the models could not grow given these constraints, we added 517	

more metabolites to the primary carbon source list and/or relaxed the catabolite repression 518	

constraint (e.g., Cu,b+1 metabolites from the primary carbon source list could be uptaken at the same 519	

time) and simulated growth again (Table S5). This process was repeated until all the models could 520	

grow. The uptakes for glucose and fructose, which were part of the primary carbon sources, were 521	

blocked for the species S. alvi to avoid any unrealistic alternatives, as this species is known to have 522	
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lost all the pathways responsible for the breakdown of glycolytic sugars39. In addition, secretions 523	

of citrate, isocitrate glucose and fructose were blocked for all species.  524	

For the uranium-reducing and the honeybee gut microbiomes, the maximum secretion values for 525	

all carbon sources and the maximum uptake rate for the primary carbon sources and inorganic 526	

compounds were constrained to 25 mmol gDW-1 h-1to avoid unrealistic fluxes. The maximum 527	

secretion rate for inorganics was also set to 50 mmol gDW-1 h-1. For this reason, some lower 528	

biomass yield regimes were found to be infeasible for L. mellifer, L. mellis, L. apis and L. 529	

kullabergensis and B. asteroides. DiMEs were exhaustively generated for G. sulfurreducens, R. 530	

ferrireducens, and S. oneidensis considering ten yield regimes. The DiMEs were exhaustively 531	

enumerated for all species in the honeybee gut and all feasible biomass yield regimes, including 532	

minimal, minimal+1, and minimal+2 sizes. 𝜇!	was set to 0.2 h−1 for all species in this study and 533	

different biomass yield regimes were defined based on the uptaken moles of carbon. 534	

Decomposed in silico Minimal Exchanges (DiMEs) 535	

Finding DiMEs is formulated as a MILP problem. It adds new variables and constraints to the 536	

FBA64 or TFA65,66 formulation to generate the minimal sets of active exchange reactions, including 537	

uptakes and secretions. In contrast to previously published formulations67,68, the nutrient and by-538	

product profiles are decomposed based on the biomass yield to explore optimal and suboptimal 539	

solutions. In the first step, we find the optimal biomass yield for an experimentally observed growth 540	

rate (𝜇!) subject to the availability of the extracellular metabolites. The available extracellular 541	

metabolites can be defined through experimental studies (e.g., exometabolomics). If no information 542	

about the extracellular metabolites is available, we can generate DiMEs assuming all extracellular 543	

metabolites in the model are available. To find the optimal biomass yield for a fixed growth rate, 544	

we minimize the nutrient uptake: 545	

 min ' 𝑦𝑜"𝑣"#
"∈%&'()*+,!"#

  

Fixed Growth 𝜇 = 𝜇! (1) 

FBA Constraints 𝑆 ∙ 𝑣 = 0 (2) 

 𝒗- ≤ 𝒗 ≤ 	𝒗. (3) 
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where 𝑆 is the stoichiometric matrix,	𝜇	 the growth rate, 𝑣 are the reaction fluxes, and 𝑣!	and 𝑣#	 are 546	

the lower and upper bound, respectively, for all the reactions in the network. In the objective function,  547	

𝑦𝑜"	 represents a vector containing weights for the exchange reactions, where the exchange 548	

reaction m is linked to an extracellular metabolite denoted by m. The weighting vector is context-549	

specific and can be defined by the user. We used the weighting vectors presented in Table 2. In 550	

addition to Equations (1)-(3), thermodynamic constraints can be considered to ensure 551	

thermodynamic feasibility66,68 (Equation (4)). ∆/G0! is the Gibb’s free energy of the reactions 552	

defined in TFA. 𝑏1and 𝑏#are the binary variables for the forward or reverse fluxes of all the 553	

reactions and M is a big constant. 554	

After finding the optimal biomass yield (𝑌2/4∗ ), we fix the yield at various fractions of 𝑌2/4∗  (referred 555	

to herein as yield regimes) by adding a new constraint. We also integrate new binary variables (𝑟") 556	

to indicate if the exchange reaction m is active or inactive. The objective function is to maximize 557	

the number of inactive exchange reactions. 558	

 max
	
' 𝑟"

7$

"89

  

Fixed Growth 𝜇 = 𝜇!  

FBA Constraints 
𝑆 ∙ 𝑣 = 0 

𝒗- ≤ 𝒗 ≤ 	𝒗. 
 

TFA Constraints 

∆/G0! −𝑀 +𝑀 ∙ 𝑏01 	 ≤ 0 

−∆/G0! −𝑀 +𝑀 ∙ 𝑏0# 	 ≤ 0 

𝑣0
1,# −𝑀 ∙ 𝑏0

1,# ≤ 0 

𝑏01 + 𝑏0# ≤ 1 

(4) 

DiME Constraint 

1
𝑌;
𝑌2/4∗ − tol ≤ 	 ' 𝑦𝑜"𝑣"#

"∈<=>7?@/A%&'

≤	
1
𝑌;
𝑌2/4∗ + tol	 (5) 

	𝑏"1 + 𝑏"# + 𝑟" ≤ 1 (6) 

Equation (5) decomposes biomass yield into different yield regimes, where 𝑌; 	is a parameter 559	

defined as a fraction of the optimal biomass yield (e.g., 90%, 70%, 50%), and tol is a user-defined 560	

tolerance. The minimum and maximum yield regimes and the increments are user-defined 561	

parameters adjustable based on the user’s preference. If a DiME appeared in more than one yield 562	

regime, we only retained the highest yield regime, assuming that the organisms have evolved over 563	
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generations to reach the highest possible yield in each environment. However, it is worth 564	

mentioning that this step is optional, and repeated DiMEs in different yield regimes can be retained. 565	

Equation (6) determines if an exchange reaction is active; if  𝑟" = 1, the reaction m is inactive and 566	

does not carry flux, whereas if 𝑟" = 0, the reaction m is active and carries flux. 567	

We also included an additional constraint to account for catabolite repression: 568	

 ' 𝑟"
"∈	;()*!+,

≤ 𝐶',B (7) 

This constraint implies that the number of uptaken carbon sources must not exceed a user-defined 569	

parameter 𝐶',B.  570	

Generating alternative DiMEs 571	

To generate alternative nutrient and by-product sets, the following integer-cut constraint is added 572	

to the problem after generating each DiME (𝑧C,D-,E
	 ) for the species 𝑠0. 573	

 ' 𝑟"
"∈	FGH.

≥ 1, 	ActC = {𝑚	|	𝑟" = 0	(active)	in	solution	𝑘	} (8) 

Since an exchange reaction m is only active if 	𝑟" = 0  Equation (8) ensures that at least one of the 574	

exchange reactions is different in the next solution. We generate alternative solutions until a 575	

stopping criterion is reached. Stopping criteria can be set based on the number of alternatives, the 576	

size of DiMEs (e.g., minimal size, minimal size+1, minimal size+2), or exhaustive enumeration.  577	

Calculating nutritional overlap percentages 578	

Nutritional overlaps between pairs were determined by calculating the percentage of shared 579	

substrates out of the total unique substrates for both members of each pair, considering all DiMEs 580	

across different biomass yield scenarios. This calculation is similar to the Jaccard index and is 581	

done as follows: 582	

 NOP",7 =
𝑆" ∩ 𝑆7
𝑆" ∪ 𝑆7

× 100 (9) 

where Sm and Sn represent unique substrates of the species m and n respectively.  583	
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Reconstruction of interaction network 584	

The generated set of DiMEs includes all metabolic capabilities of a species given an extracellular 585	

environment, where each DiME represents a specific physiology. To represent the species with the 586	

most relevant DiMEs, we can optimize an objective function representing a community driving 587	

force, partially observed interactions, or an engineering goal.  We devised an Integer Linear 588	

Programming (ILP) problem to select one DiME per species such that a user-defined objective is 589	

optimized. The ILP problem includes the following constraints: 590	

 ' 𝑧C,D-,E
	

C
= 𝑁𝑦E,D- , 	∀𝑙, ∀𝑠0 (10) 

 ' ' 𝑧C,D-,E
	

C∈./E
≥ 𝑤I,D-

> , 	∀𝑠0 , 	𝑈I = {𝑘|Metabolite	𝑗	is	uptaken	as	part	of	DiME	𝑘} (11) 

 𝑧C,D-,E
	 ≤ 𝑤I,D-

> , 	∀𝑙, 	∀𝑠0 , ∀𝑘 ∈ 𝑈I (12) 

 ' ' 𝑧C,D-,E
	

C∈4/E
≥ 𝑤I,D-

D , 	∀𝑠0 , 	𝑆I = {𝑘|Metabolite	𝑗	is	secreted	as	part	of	DiME	𝑘} (13) 

 𝑧C,D-,E
	 ≤ 𝑤I,D-

D , 	∀𝑙, 	∀𝑠0 , ∀𝑘 ∈ 𝑆I (14) 

 ' 𝑤I,D-
>

D-∈J'B/
− 1 ≤ 𝑀𝑥I7, 	∀𝑗, SubI = {𝑠0|Metabolite	𝑗	is	consumed	by	𝑠0} (15) 

 2 −' 𝑤I,D-
>

D-∈J'B/
≤ 𝑀(1 − 𝑥I7), 	∀𝑗, SubI = {𝑠0|Metabolite	𝑗	is	consumed	by	𝑠0} (16) 

 ' 𝑤I,D-
>

D-∈J'B/
≥ 𝑥I

K, 	∀𝑗, SubI = {𝑠0|Metabolite	𝑗	is	consumed	by	𝑠0} (17) 

 ' 𝑤I,D-
D

D-∈L+&)/
≥ 𝑥I

K, ∀𝑗, ProdI = {𝑠0|Metabolite	𝑗	is	produced	by	𝑠0} (18) 

 ' 𝑤I,D-
>

D-∈J'B/
≤ 𝑀(1 − 𝛼I), 	∀𝑗, SubI = {𝑠0|Metabolite	𝑗	is	consumed	by	𝑠0} (19) 

 ' 𝑤I,D-
D

D-∈L+&)/
≤ 𝑀(1 − 𝛽I), 	∀𝑗, ProdI = {𝑠0|Metabolite	𝑗	is	produced	by	𝑠0} (20) 

 1 − 𝑥I
K ≤ 𝛼I + 𝛽I , 	∀𝑗 (21) 

 ' 𝑦E,D-E
= 1, ∀𝑠0 (22) 

The variables, indices, and constants are described in Table 3. Equation (10) defines the number of 591	

DiMEs selected per species for each yield regime. We used a default value of N=1 to select one 592	

DiME per species. However, to capture the heterogeneity in single species or to account for 593	
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complex metabolisms, such as co-utilization of a nutrient or co-production of a by-product, higher 594	

values of N can be used to allow the selection of multiple DiMEs per species. Equations (11) and 595	

(12) enforce that the jth metabolite uptake is active if and only if at least one DiME is selected in 596	

which this metabolite is among the nutrients. 597	

Similarly, Equations (13) and (14) ensure that the jth metabolite secretion is active if and only if at 598	

least one DiME is selected, in which this metabolite is among the by-products. Equations (15) and 599	

(16) account for the competition over the jth metabolite if at least two species in the community 600	

consume this metabolite. On the other hand, Equations (17)-(21) capture cooperation over the jth 601	

metabolite if at least one species produces this metabolite and one other species consumes it. 602	

Finally, Equation (22) ensures that only one yield regime is active for each species. 603	

The above constraints are the complete ILP formulation to capture competitive and cross-feeding 604	

interactions independent of the objective function. However, if the objective function is to 605	

maximize or minimize the interactions, some of the abovementioned constraints can be removed 606	

to simplify the problem.  607	

Code and Data Availability 608	

ReMIND is implemented in both Python and MATLAB.  The Python version is based on pyTFA65, 609	

a Python implementation of the TFA method. It uses COBRApy69 and Optlang70.  The MATLAB 610	

version is based on matTFA65, a MATLAB implementation of the TFA method. The code used to 611	

generate the models is freely available under the APACHE 2.0 license at https://github.com/EPFL-612	

LCSB/remind.	 613	

Computations for the uranium-reducing community were done on 32-bit macOS, Intel® Xeon® 614	

CPU 2.7 GHz, 32 GB 1866 MHz RAM and for the honeybee gut community on 64-bit Ubuntu 615	

20.04.2 LTS, Intel® Xeon® Gold 6254 CPU 3.10 GHz (18 cores, 36 threads per socket), 192 GB 616	

3200 MHz RAM. Code was run on Python 3.6 on Docker (20.10.21) containers based on the 617	

official python 3.6-stretch container using the optlang package70 and using commercial solver 618	

ILOG CPLEX version 12.8.0.0. 619	
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Table 1: Different objective functions used with the ILP formulation to reconstruct the interaction network 636	
in the uranium-reducing community. 637	

Description Abbreviation 

Evolutionary 

Minimizing the total number of uptakes minUptake 

Minimizing the number of external uptakes minExternal 

Minimizing the number of external uptakes while 
minimizing the competitive interactions 

minExternal-minCompetition 

Maximizing the yield of both organisms while 
minimizing the number of uptakes 

maxYield-minUptake 

Maximizing the yield of both organisms while 
minimizing the external uptakes 

maxYield-minExternal 

Maximizing the yield of both organisms and the 
cross-feeding interactions 

maxYield-maxCrossfed 

Maximizing the yield of both organisms while 
minimizing the competitive interactions  

maxYield-minCompetition 

Data Integration 

Maximizing the consistency with the observed 
interactions 

 

Engineering 

Maximizing Geobacter's yield while minimizing 
Rhodoferax's yield 

 

Maximizing Geobacter's yield while minimizing 
Rhodoferax's yield and the total number of 

uptakes 
 

Maximizing Geobacter's yield and the cross-
feeding interactions while minimizing 

Rhodoferax's yield 
 

  638	
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Table 2: Different yield options to find and explore the optimal and suboptimal biomass yield space, where 639	
𝑚 denotes each boundary reaction, and 𝑚,𝑚𝑒𝑡 stands for the boundary metabolite associated with the 640	
reaction 𝑚.  𝑀𝑊, 𝑛$ 	and 𝑛%	denote the molecular weight of the 𝑚𝑒𝑡, the number of moles of carbon, and 641	
the number of moles of nitrogen in the metabolite 𝑚𝑒𝑡, respectively. 642	

Yield Option Formula Uses 

Gram uptake   𝑦𝑜" = MW"012 Penalizes large molecules, 

Includes all extracellular metabolites 
(organic and inorganic). 

Carbon uptake  𝑦𝑜" = 𝑛;"012
 When carbon is the limiting factor for 

growth, penalizes metabolites with a 
high carbon number 

Nitrogen uptake 𝑦𝑜" = 𝑛M"012
 When nitrogen is the limiting factor 

for growth, penalizes metabolites 
with a high nitrogen number 

  643	
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Table 3: The definition of variables, indices, and constants used in the formulation. 644	

Symbol Type Represents 

𝒊 Index All reactions in the model 

𝒎 Index Boundary (exchange) reactions in the model  

𝒎𝒎𝒆𝒕 Index Boundary metabolite  

𝒋 Index Extracellular metabolite 

𝒌 Index DiME 

𝒍 Index Yield regime 

𝒔𝒊 Index Species 

𝒓𝒎 Binary Variable If the jth boundary reaction is active 0, else 1 

𝒙𝒋𝒏 Binary Variable If competition over the jth metabolite exists 1, else 0 

𝒙𝒋
𝒑 Binary Variable If cooperation over the jth metabolite exists 1, else 0 

𝒘𝒋,𝒔𝒊
𝒖  Binary Variable If the jth metabolite by the sith species is uptaken 1, else 0 

𝒘𝒋,𝒔𝒊
𝒔  Binary Variable If the jth metabolite by the sith species is secreted 1, else 0 

𝒛𝒌,𝒔𝒊,𝒍
	  Binary Variable 

If the kth DiME in the sith species and the lth yield regime is active 1, 
else 0 

𝒚𝒍,𝒔𝒊 Binary Variable If the lth yield regime in the sith species is active 1, else 0 

𝜶𝒋 Binary Variable If at least one species uptakes the jth metabolite 0, else 1 

𝜷𝒋 Binary Variable If at least one species secretes the jth metabolite 0, else 1 

𝑵 Constant The number of DiMEs that can be chosen per species 

𝑴 Constant 
An arbitrarily large number bigger than the number of species for the ILP 

and bigger than all flux upper bounds for TFA 
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 646	

Figure 1: The workflow to reconstruct interaction networks in communities. From left in clockwise 647	
direction: GEMs of individual species and a list of available nutrients are the input to ReMIND. The 648	
ReMIND workflow starts with the generation of DiMEs. A community model is then built from the 649	
generated DiMEs. Following a user-defined objective function, metabolic interaction networks are 650	
reconstructed. ReMIND has diverse applications, from deciphering metabolic interaction networks, to 651	
engineering microbial communities with desired properties, and can propose experimentally testable 652	
hypothesis. 653	

  654	
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 655	

 656	

Figure 2: Illustration of interaction networks in the uranium-reducing community using Evolutionary 657	
objective functions. a The observed interactions between G. sulfurreducens and R. ferrireducens, which 658	
includes competition over acetate, ammonium, and Fe (III). The optimal solutions for different objective 659	
functions: b minimizing the number of external nutrients (minExternal), c maximizing the yield of both 660	
organisms while minimizing the number of external uptakes (maxYield-minExternal), d maximizing the 661	
yield of both organisms while minimizing the number of uptakes (maxYield-minUptake), e maximizing the 662	
yield of both organisms while minimizing the number of competitive interactions (maxYield-663	
minCompetition), f maximizing the yield of both organisms while maximizing the number of cross-feeding 664	
interactions (maxYield-maxCrossfed), g minimizing the number of external nutrients and competitive 665	
interactions (minExternal-minCompetition), and h minimizing the number of uptaken nutrients 666	
(minUptake). Regarding the competition over ammonium, we observed three different patterns: (i) 667	
competition over ammonium in all optimal solutions (b, c, d, and f), (ii) switching between competition over 668	
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ammonium and using different nitrogen sources, where G. sulfurreducens consumed N2 as an alternative 669	
nitrogen source to avoid competition (g and h), and (iii) no competition over ammonium (e). Regarding the 670	
competition over Fe (III), we observed two patterns: (i) competition over Fe (III) in some optimal solutions 671	
(b and c) and (ii) no competition over Fe (III) as the electron acceptor (d, e, f, g, and h). Interestingly, G. 672	
sulfurreducens and R. ferrireducens cooperated over iron in some cases, where G. sulfurreducens consumed 673	
Fe (III) and secreted Fe (II) which is then uptaken by R. ferrireducens. In such cases, R. ferrireducens relied 674	
on other electron acceptors. In all cases, we did not observe competition over acetate, reflecting that 675	
competition over acetate probably appeared due to the constrained availability of resources rather than 676	
optimality.  677	
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   678	

Figure 3: Various types of analyses on the uranium-reducing community. a Alternative DiMEs for G. 679	
sulfurreducens and R. ferrireducens that give rise to the most consistent interactions with the observations. 680	
In addition to the observed competition over ammonium, Fe (III), and acetate, the optimal solution includes 681	
obligatory competitions over sulfate and phosphate. Thirteen alternatives for G. sulfurreducens with yields 682	
ranging between 10% and 60% of the maximum yield and four alternatives for R. ferrireducens with yields 683	
ranging between 10% and 40% of the maximum yield could lead to the optimal interaction, b The optimal 684	
interaction patterns observed using Engineering objective functions, where the objective function was to 685	
maximize G. sulfurreducens yield and minimize R. ferrireducens yield, to maximize G. sulfurreducens yield 686	
and minimize R. ferrireducens yield while minimizing the total number of uptakes, and to maximize G. 687	
sulfurreducens yield and minimize R. ferrireducens yield while maximizing the cross-feeding interactions. 688	
Competition over ammonium, phosphate, and sulfate appeared in all cases, while the repeated presence of 689	
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malate in the interactions indicates its importance in driving the community toward the desired state, and c 690	
Comparing the yields and the number of external uptakes before and after adding S. oneidensis, while 691	
minimizing the number of external uptakes, and maximizing the yield of all species while minimizing the 692	
total number of uptakes.  693	
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 694	

Figure 4: DiME analysis for the core honeybee gut microbiome. a The total number of metabolites that 695	
can be utilized as a substrate or secreted as a product from the union of DiMEs for all species and all biomass 696	
yield regimes. b Percentage of the nutritional overlaps between 21 pairs in the core honeybee gut 697	
microbiome.   698	
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Figure 5: Subcommunity analysis in the core honeybee gut microbiome. a Analysis of the cross-feeding 701	
interactions between S. alvi and G. apicola. All alternative directional cross-feeding patterns between two 702	
species, from single compound (left) to maximal number of compounds exchanges (right), along with the 703	
minimal and maximal biomass yields predicted for each alternative interaction pattern. For visual purposes, 704	
the cross-feeding patterns for single, four and five metabolites exchanged are shown, dots represent the axis 705	
break, and the full analysis including the patterns with two and three metabolites exchanged can be found 706	
in Figure S1. b Characterization of all subcommunities of all sizes in the core honeybee gut microbiome 707	
according to the maximum cross-fed metabolites and minimal nutritional requirements. Circled 708	
communities indicate the sub-communities with the minimal nutritional requirements from each size; in 709	
general, their addition follows the order of species with decreasing number of metabolic genes. (Lower right 710	
corner). c Venn diagram of decomposed cross-feeding interactions (in the 3-member community) to their 711	
pairwise contributions, with their corresponding classes explained according to the number of pairs the 712	
metabolite can be cross-fed.  713	
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 714	

Figure 6: The analysis of the core honeybee gut microbiome. a Alternative cross-feeding patterns in the 715	
core microbiome when the maximal number (21) of metabolites are cross-fed, metabolites are colored 716	
according to the degree of connectivity of the metabolite (influx edges and outgoing edges). b Composition 717	
of the cross-fed metabolites in a., compounds are classified according to the Human Metabolome Database 718	
(HMDB), with 28/29 compounds classified (classification file taken from Machado et al.27).  719	
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