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Abstract—We consider the problem of graph learning
under Gaussian Markov random fields, where all partial
correlations are nonnegative. Such model is called attractive
Gaussian Markov random fields, and has received considerable
attention in recent years. The graph learning problem under
this model can be formulated as the `1-norm regularized
Gaussian maximum likelihood estimation of the precision matrix
under sign constraints. In this paper, we propose a projected
Newton-like algorithm, which is computationally efficient. By
exploiting the structure of the Gaussian maximum likelihood
estimation problem, the proposed algorithm significantly reduces
the computational cost in computing the approximate Newton
direction. Then we prove that the proposed method can recover
the graph edges correctly under the irrepresentability condition.
Numerical results on synthetic and financial time-series data
sets demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

We consider the problem of learning graphs under attractive
Gaussian Markov random fields, where all the partial
correlations are nonnegative. Such property is also known
as multivariate totally positive of order 2 (MTP2), and
its applications include actuarial sciences [1], taxonomic
reasoning [2], financial markets [3], [4], factor analysis
in psychometrics [5], and graph signal processing [6], [7].
For example, in financial markets, instruments usually have
positive dependencies as a result of the market factor [3], [8].
Graph learning under the attractive Gaussian Markov random
fields can be formulated as estimating the precision matrices
under MTP2 constraints.

Recent works reported that MTP2 constraints can reduce the
sample complexity to make the maximum likelihood estimator
exist [2], [5], [9], [10]. One interesting result provided in
[2], [5] showed that the maximum likelihood estimator under
MTP2 constraints exists if the sample size satisfies n ≥ 2,
independent of the underlying dimension p. This result leads
to a significant reduction from n ≥ p, which is necessary for
the maximum likelihood estimator to exist under unconstrained
Gaussian graphical models. Aside from Gaussian distributions,
the advantages of MTP2 constraints have also been explored
in the binary exponential family, showing that the maximum
likelihood estimator may exist with only n = p observations
[10], while n ≥ 2p is required if there are no MTP2 constraints.
Such advantages of MTP2 constraints are significant in the
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high-dimensional regime, where the samples are usually limited
compared with the dimension.

Graph learning under Gaussian Markov random fields has
been widely studied. One well-known method is the graphical
lasso [11], [12], [13], which is formulated as the `1-norm
penalized Gaussian maximum likelihood estimation. Various
extensions of graphical lasso and their theoretical properties
have also been studied [14], [15], [16], [17], [18], [19], [20],
[21], [22]. For the case of attractive Gaussian Markov random
fields, the authors in [2], [23] proposed the Gaussian maximum
likelihood estimation method under MTP2 constraints, and
developed a block-coordinate descent (BCD) algorithm. The
authors in [6] incorporated the `1-norm regularization and
connectivity constraints, and developed a similar scheme by
cyclically updating each column/row. Note that BCD algorithms
are usually time-consuming in high-dimensional problems. In
another direction, one may consider second-order methods.
However, they usually need to compute the (approximate)
inverse Hessian, which leads to computational inefficiency. In
addition, it is still unknown whether the `1-norm approaches
can succeed to recover the underlying graph edges under
attractive Gaussian Markov random fields.

The main contributions of this paper are threefold:

• We propose a computationally efficient projected
Newton-like algorithm to solve the `1-norm regularized
Gaussian maximum likelihood estimation under MTP2

constraints. By exploiting the structure of the Gaussian
maximum likelihood estimation, the proposed algorithm
significantly reduces the computational cost in computing
the approximate Newton direction.

• We prove that the `1-norm regularized Gaussian maximum
likelihood estimation method can recover the graph edges
correctly under irrepresentability condition.

• Numerical experiments on synthetic and financial time-
series data demonstrate the effectiveness of the proposed
algorithm. It is observed that the proposed algorithm takes
less computational time than the state-of-the-art methods.

The remainder of the paper is organized as follows.
Preliminaries and related work are provided in Section II.
We propose a novel algorithm, and present the theoretical
results on the successful edge recovery guarantees in Section
III. Experimental results are provided in Section IV, and
conclusions are made in Section V.
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Notations: Lower case bold letters denote vectors and
upper case bold letters denote matrices. Both Xij and [X]ij
denote the (i, j)-th entry of X . Let ⊗ be the Kronecker
product, and supp(X) = {(i, j)|Xij 6= 0}. [p] denotes the
set {1, . . . , p}. X> denotes transpose of X . ‖x‖, ‖X‖F and
‖X‖2 denote Euclidean norm, Frobenius norm and operator
norm, respectively. |||X|||∞ denotes the `∞/`∞-operator norm
given by |||X|||∞ := maxi=1,...,p

∑p
j=1 |Xij |. Let ‖x‖max =

maxi |xi| and ‖x‖min = mini |xi|. Sp+ and Sp++ denote the
sets of positive semi-definite and positive definite matrices with
size p× p, respectively.

II. PRELIMINARIES AND RELATED WORK

In this section, we first introduce the attractive Gaussian
Markov random fields, then present related works.

A. Attractive Gaussian Markov Random Fields

We denote an undirected graph by G = (V,E), where
V = {1, . . . , p} is the vertex set, and E is the edge set. Let
y = (y1, . . . , yp) be a zero-mean p-dimensional random vector
following y ∼ N (0,Σ). We associate the random variables
y1, . . . , yp with the vertex set V . Then, the random vector y
forms a Gaussian Markov random field with respect to a graph
G = (V,E), where

Θij 6= 0 ⇐⇒ (i, j) ∈ E ∀ i 6= j,

Θij = 0 ⇐⇒ yi ⊥⊥ yj | y[p]\{i,j},
(1)

where Θ := Σ−1 is called precision matrix.
In this paper, we focus on the attractive Gaussian Markov

random fields, where the precision matrix Θ is a symmetric M-
matrix [24], i.e.,

[
Θij

]
≤ 0, for any i 6= j. In other words, all

the partial correlations are nonnegative in attractive Gaussian
Markov random fields.

We aim to estimate a sparse precision matrix under
attractive Gaussian Markov random fields given independent
and identically distributed observations y(1), . . . ,y(n) ∈ Rp.
Let S = 1

n

∑n
i=1 y

(i)(y(i))> be the sample covariance matrix.
The sparse precision matrix estimation under the attractive
Gaussian Markov random fields can be formulated as the
`1-norm regularized maximum likelihood estimation under the
MTP2 constraints,

X? = arg min
X∈Mp

− log det(X)+ tr (XS)+λ
∑
i 6=j

|Xij | , (2)

where Mp is the set of all p-dimensional, symmetric, non-
singular M-matrices, which is defined by

Mp :=
{
X ∈ Sp++|Xij ≤ 0,∀ i 6= j

}
. (3)

We propose a second-order algorithm in Section III to solve
this problem.

B. Related Work

Sparse precision matrix estimation under Gaussian Markov
random fields has been extensively studied in the literature.
One popular approach is the `1-norm regularized Gaussian
maximum likelihood estimation [11], [12], [13], and numerous

algorithms have been proposed for solving this problem. A
representative, yet not exhaustive, list of works available
in the literature include: block coordinate ascent method
[11], [25], Nesterov’s smooth gradient method [12], projected
gradient method [26], projected quasi-Newton [27], augmented
Lagrangian method [28], inexact interior point method [29],
primal proximal-point with Newton-CG method [30], and
Newton’s method with quadratic approximation [31], [32],
[33]. However, all the methods mentioned above cannot be
directly extended to estimate precision matrices in our problem
because of MTP2 constraints.

To estimate precision matrices under MTP2 constraints, one
option is using the Gaussian maximum likelihood estimator
[5], [34], and the sign constraint can promote the sparsity
of the solution implicitly. To solve this problem, a primal
algorithm [2] and a dual algorithm [23] were proposed based
on block coordinate descent. The authors in [6] proposed the
`1-norm regularized Gaussian maximum likelihood estimation,
and updated each column/row of the variable by solving a
nonnegative quadratic program. In addition, there is growing
interest in learning graphs under the generalized graph
Laplacian models [6], [23], [35], where the precision matrices
satisfy MTP2 constraints. In this paper, we aim to propose an
efficient algorithm for estimating sparse precision matrices
under MTP2 constraints, and establish the successful edge
recovery guarantees.

III. PROPOSED ALGORITHM AND THEORETICAL RESULTS

In this section, we first derive a second-order algorithm to
solve the `1-norm regularized Gaussian maximum likelihood
estimation under MTP2 constraints, then provide theoretical
results on successful recovery of graph edges.

A. Proposed Algorithm

To solve Problem (2), we propose a projected Newton-like
algorithm. In each iteration, we partition the algorithm variables
into two sets, i.e., free and restricted sets, and only update
the variables in the free set while fixing the variables in the
restricted set. The restricted set of variables is defined by

Ik :=
{

(i, j) ∈ [p]2
∣∣ [Xk]ij = 0, [∇f (Xk)]ij < 0

}
, (4)

where f is the objective function of Problem (2), and the free
set is the complement of the restricted set, i.e., Ick.

Now we construct the projected Newton-like step as follows,

Xk+1 = PΩ

(
Xk − γkPk

)
, (5)

where γk is the step size in the k-th iteration, PΩ is the
projection onto the set Ω := {X |Xij ≤ 0,∀i 6= j}, and Pk
is the approximate Newton direction defined by

pveck(Pk) = Qk pveck(∇f (Xk)), (6)

where Qk is the gradient scaling matrix, which is an
approximate inverse Hessian. We define pveck(X) as follows,

pveck(X) :=

[[
X
]
Ick[

X
]
Ik

]
, (7)
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where [X]Ik ∈ R|Ik| and [X]Ick
∈ R|Ick| denote the two

vectors containing all the elements of X in the sets Ik and
Ick, respectively. According to (7), we can see that pveck(X)
stacks the elements of X into a single vector, which is similar
to vec(X), but it places the elements of X in the sets Ick and
Ik in order.

The approximate Newton direction in (6) may involve
computing the inverse of the Hessian matrix with the dimension
p2 × p2 or solving a system of linear equations of the same
dimension, which is computationally challenging. In what
follows, we aim to simplify the computation in (6). We
construct the gradient scaling matrix Qk as follows,

Qk =

[[
H−1
k

]
IckI

c
k

0

0 Dk

]
,

where Dk is a positive definite diagonal matrix with the
dimension |Ik|×|Ik|, and

[
H−1
k

]
IckI

c
k

is a principal submatrix

of H−1
k keeping rows and columns indexed by Ick, in

which Hk is the Hessian matrix. By calculation, we obtain
Hk = X−1

k ⊗X−1
k , and thus

H−1
k = Xk ⊗Xk. (8)

Following from the property of Kronecker product that
vec (ABC) =

(
C> ⊗A

)
vec(B), we obtain

H−1
k vec (∇f (Xk)) = vec (Xk∇f (Xk)Xk) . (9)

As a result, we can get

Qk pveck(∇f (Xk)) =

[[
H−1
k

]
IckI

c
k

0

0 Dk

][[
∇f
(
Xk

)]
Ick[

∇f
(
Xk

)]
Ik

]

=

[[
XkPIck (∇f (Xk))Xk

]
Ick

Dk

[
∇f
(
Xk

)]
Ik

]
,

where PIck(A) is defined as follows,[
PIck(A)

]
ij

=

{
Aij if (i, j) ∈ Ick,
0 otherwise.

Therefore, we have[
Pk
]
Ick

=
[
XkPIck (∇f (Xk))Xk

]
Ick
.

In each iteration, we only update the variables in the free set,
i.e., [X]Ick , and set the remaining variables in the restricted set
to be zero. Finally, we can rewrite the projected Newton-like
iteration in (5) as[
Xk+1

]
Ick

= PΩ

([
Xk

]
Ick
− γk

[
XkPIck (∇f (Xk))Xk

]
Ick

)
,

and
[Xk+1]Ik = 0.

Note that the Newton-type methods for solving our problem
(2) are usually computationally expensive, because of the
computations of the (approximate) inverse of the Hessian
matrices with the dimension p2 × p2. However, it is observed
that our constructed iterates as shown above only involves the
matrix multiplication with the dimension p× p and gradient
computation. The step size can be computed by the Armijo
step-size rule.

Algorithm 1 Projected Newton-like method

1: Input: Sample covariance matrix S, λ;
2: while Stopping criteria not met do
3: Compute the restricted set by

Ik =
{
(i, j) ∈ [p]2

∣∣ [Xk]ij = 0, [∇f (Xk)]ij < 0
}
;

4: Compute the approximate Newton direction[
Pk

]
Ic
k
=
[
XkPIc

k
(∇f (Xk))Xk

]
Ic
k
;

5: Update Xk+1 by setting [Xk+1]Ik = 0 and

[Xk+1]Ic
k
= PΩ

(
[Xk]Ic

k
− γk

[
Pk

]
Ic
k

)
;

6: k ← k + 1;
7: end while
8: Output: X?.

B. Theoretical Results

In this subsection, we provide theoretical results to show
that the estimator X? defined in (2) can recover the underlying
graph edges correctly under irrepresentability condition.

Let S :=
{

(i, j) |Θij 6= 0
}

be the support set of the
underlying precision matrix Θ, and d be the maximum number
of nonzero elements in any row of Θ. Define

KΣ := max
i∈{1,...,p}

p∑
j=1

Σij , and KH :=
∣∣∣∣∣∣∣∣∣(HSS)

−1
∣∣∣∣∣∣∣∣∣
∞
, (10)

where Σ is the underlying covariance matrix, and HSS is the
principle submatrix of H , with both rows and columns indexed
by S, in which H is the Hessian matrix at Θ.

Assumption 1. There exists some α ∈ (0, 1] such that∣∣∣∣∣∣∣∣∣HScS (HSS)
−1
∣∣∣∣∣∣∣∣∣
∞
≤ 1− α. (11)

Assumption 2. The nonzero elements of the underlying
precision matrix Θ satisfy

min
(i,j)∈S

∣∣Θij

∣∣ ≥ (1 +
α

2

)
KHλ. (12)

Assumption 1 presents the irrepresentability condition that
is almost necessary for the `1-norm approaches to recover the
supports correctly [14]. Assumption 2 imposes a lower bound
on the minimum absolute value of nonzero elements of Θ.

Theorem 1. Suppose the sample covariance matrix satisfies
‖S −Σ‖max ≤

α
4 λ. Under Assumptions 1 and 2, if the

sample size is lower bounded by n ≥ cd2 log p, where
c =

(
3
(
1 + α

2

)
cλKHKΣ max

(
(1 + 2

α )KHK
2
Σ, 1

))2
, then

X? obtained by solving Problem (2) with λ = cλ

√
log p
n can

recover the support of Θ correctly, i.e.,

supp
(
X?
)

= supp
(
Θ
)
, (13)

where cλ is a positive constant.
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Theorem 1 shows that the support of the minimizer X? of
Problem (2) is the same with that of the underlying precision
matrix Θ under the irrepresentability condition, implying that
all the underlying graph edges can be identified correctly
through X?. In addition, the condition ‖S −Σ‖max ≤

α
4 λ

can hold with overwhelming probability 1− c1 exp(−c2 log p)
for Gaussian observations, where c1 and c2 are two positive
constants.

IV. EXPERIMENTAL RESULTS

In this section, we present numerical results on synthetic
data and financial time-series data to verify the performance
of the proposed algorithm. All the experiments are conducted
on a PC with a 2.8 GHz Inter Core i7 CPU and 16 GB RAM.

A. Synthetic Data

We consider to learn Barabasi-Albert graphs that are useful
in many applications. The graph structure and its weights
associated with the edges are generated randomly. We obtain a
weighted adjacency matrix W , where Wij denotes the graph
weight between node i and node j. We construct the underlying
precision matrix by Θ = D −W , where D is a diagonal
matrix, which is generated to ensure that Θ is an M -matrix
and the irrepresentability condition in Assumption 1 holds.

Given the underlying precision matrix Θ ∈ Rp×p, we
generate n independent observations y(1), . . . ,y(n) ∼
N (0,Θ−1), and compute the sample covariance matrix by
S = 1

n

∑n
i=1 y

(i)(y(i))>.
We compare the computational time with the state-of-the-art

BCD [2], and GGL [6] in solving the `1-norm regularized
Gaussian maximum likelihood estimation. It is observed in
Table I that the three methods lead to the same objective
function value, because all of them can obtain the global
minimizer. However, our proposed algorithm takes significantly
less computational time than BCD and GGL. The results are
averaged over 10 Monte Carlo realizations. In addition, GGL
can incorporate connectivity constraints in graph learning.

TABLE I: Comparisons of computational time in learning
Barabasi-Albert graphs. The “Objective” denotes the objective
function value, and the unit of time is seconds.

Methods
p = 500 p = 1000 p = 3000

Time Objective Time Objective Time Objective

Proposed 0.49 495.67 3.10 997.07 92.81 2997.85

BCD 2.08 495.67 16.34 997.07 427.33 2997.85

GGL 2.41 495.67 17.92 997.07 498.65 2997.85

Next, we show that the estimator defined in (2) can recover
the graph edges correctly under irrepresentability condition.
We use F-score to measure the performance of edge recovery,
which is defined by

F-score :=
2TP

2TP + FP + FN
, (14)

where TP denotes the number of true positives, FP denotes the
number of false positives, and FN denotes the number of false

negatives. The F-score takes values in [0, 1], and 1 indicates
perfect structure recovery.

It is observed in Figure 1 that our algorithm can achieve
the F-score to be 1, implying that the graph structure is
identified perfectly under the irrepresentability condition, which
is consistent with our theoretical results in Theorem 1. We
compare our method with the well-known Glasso method [25],
which does not impose the MTP2 constraints. We can observe
that our algorithm can obtain a higher F-score than Glasso in
the region of small sample size ratios. This is expected because
imposing more prior knowledge always helps to improve the
estimation performance especially when the samples are limited.
The results are averaged over 30 realizations.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n/p

F
−

sc
or

e

Glasso
Proposed

Fig. 1: F-score as a function of the sample size ratio of n/p
in learning Barabasi-Albert random graphs. The regularization
parameter for both methods is set as λ = 0.05.

B. Financial Time-series Data

The MTP2 models are justified well on the stock data since
the market factor leads to the positive dependencies among
stocks [3]. The data is collected from 189 stocks composing
the S&P 500 index during a period from Oct. 1st 2017 to Jan.
1st 2018, resulting in 62 observations per stock, i.e., p = 189
and n = 62. We construct the log-returns data matrix by

Xi,j = logPi,j − logPi−1,j , (15)

where Pi,j denotes the closing price of the j-th stock on the
i-th day. The stocks are categorized into 4 sectors: Information
Technology, Industrials, Consumer Staples, and Energy.

It is observed in Figure 2 that the performance of our
algorithm is better than Glasso, because the latter has more
gray-colored connections, which are between stocks from
distinct sectors and often spurious from a practical perspective.
The modularity values for Glasso and the proposed method are
0.41 and 0.45, respectively. A higher modularity value indicates
a better representation of the actual network of stocks.
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(a) (b)

Fig. 2: Stock graphs learned via (a) Glasso, and (b) the
proposed method.

V. CONCLUSIONS

In this paper, we have proposed a projected Newton-like
algorithm to solve the `1-norm regularized Gaussian maximum
likelihood estimation under MTP2 constraints. The proposed
algorithm significantly reduces the computational cost in
computing the approximate Newton direction. We have proved
that our method can recover the graph edges correctly under
the irrepresentability condition, which has been verified by
numerical results. Experiments have demonstrated that the
proposed algorithm takes significantly less computational time
than the state-of-the-art methods.
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