
A simplex method for function minimization

By J. A. Nelder and R. Meadf

A method is described for the minimization of a function of n variables, which depends on the
comparison of function values at the (n 4- 1) vertices of a general simplex, followed by the
replacement of the vertex with the highest value by another point. The simplex adapts itself to
the local landscape, and contracts on to the final minimum. The method is shown to be effective
and computationally compact. A procedure is given for the estimation of the Hessian matrix in
the neighbourhood of the minimum, needed in statistical estimation problems.

Spendley et al. (1962) introduced an ingenious idea for
tracking optimum operating conditions by evaluating
the output from a system at a set of points forming a
simplex in the factor-space, and continually forming
new simplices by reflecting one point in the hyperplane
of the remaining points. This idea is clearly applicable
to the problem of minimizing a mathematical function
of several variables, as was recognized by these authors.
However, they assumed that the relative steps to be made
in varying the factors were known, and this makes their
strategy rather rigid for general use. In the method to
be described the simplex adapts itself to the local land-
scape, elongating down long inclined planes, changing
direction on encountering a valley at an angle, and
contracting in the neighbourhood of a minimum. The
criterion for stopping the process has been chosen with
an eye to its use for statistical problems involving the
maximization of a likelihood function, in which the
unknown parameters enter non-linearly.

The method
We consider, initially, the minimization of a function

of n variables, without constraints. Po, Pu . . . Pn are
the (n + 1) points in n-dimensional space defining the
current "simplex." [The simplex will not, of course, be
regular in general.] We write yt for the function value
at Ph and define

h as the suffix such that yh = max (.>>,) [h for "high"]
and
/ as the suffix such that yl = min (j>,) [/ for "low"].

Further we define p as the centroid of the points with
i # h, and write [P/Pj] for the distance from P, to Pj.
At each stage in the process Ph is replaced by a new
point; three operations are used—reflection, contraction,
and expansion. These are defined as follows: the
reflection of Ph is denoted by P*, and its co-ordinates
are defined by the relation

P* = (1 + *)P - ocPh

where a is a positive constant, the reflection coefficient.
Thus P* is on the line joining Ph and P, on the far side
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of p from Ph with [P*p] = oc[PhP]. If y* lies between
yh and yh then Ph is replaced by P* and we start again
with the new simplex.

If y* <yh i.e. if reflection has produced a new
minimum, then we expand P* to P** by the relation

P** = yP* + (1 - y)P.

The expansion coefficient y, which is greater than unity,
is the ratio of the distance [P**P] to [P*P]. If
y** < yt we replace Ph by P** and restart the process;
but if y** > y, then we have a failed expansion, and we
replace Ph by P* before restarting.

If on reflecting P to P* we find that y* > y, for all
/ =̂ h, i.e. that replacing P by P* leaves y* the maximum,
then we define a new Ph to be either the old Ph or P*,
whichever has the lower y value, and form

P** = pPh + (1 - ft?.
The contraction coefficient j8 lies _between_0 and 1 and
is the ratio of the distance [P**P] to [PP]. We then
accept P** for Ph and restart, unless y** > min (yh, y*),
i.e. the contracted point is worse than the better of Ph
and P*. For such a failed contraction we replace all
the P,'s by (P, + P,)/2 and restart the process.

A failed expansion may be thought of as resulting
from a lucky foray into a valley (P*) but at an angle to
the valley so that P** is well up on the opposite slope.
A failed contraction is much rarer, but can occur when
a valley is curved and one point of the simplex is much
farther from the valley bottom than the others; con-
traction may then cause the reflected point to move
away from the valley bottom instead of towards it.
Further contractions are then useless. The action pro-
posed contracts the simplex towards the lowest point,
and will eventually bring all points into the valley. The
coefficients a, jS, y give the factor by which the volume
of the simplex is changed by the operations of reflection,
contraction or expansion respectively. The complete
method is given as a flow diagram in Fig. 1.

A final point concerns the criterion used for halting
the procedure. The criterion adopted is somewhat
different from that used by Powell (1964) in that it is
concerned with the variation in the y values over the
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simplex rather than with changes in the x's. The form
chosen is to compare the "standard error" of the y's
in the form */{Y,(y, — ~y)2/n} with a pre-set value, and
to stop when it falls below this value. The success of
the criterion depends on the simplex not becoming too
small in relation to the curvature of the surface until the
final minimum is reached. The reasoning behind the
criterion is that in statistical problems where one is
concerned with finding the minimum of a negative
likelihood surface (or of a sum-of-squares surface) the
curvature near the minimum gives the information
available on the unknown parameters. If the curvature
is slight the sampling variance of the estimates will be
large so there is no sense in finding the co-ordinates of
the minimum very accurately, while if the curvature is
marked there is justification for pinning down the
minimum more exactly.

Constraints on the volume to be searched
If, for example, one of the x, must be non-negative in

a minimization problem, then our method may be
adapted in one of two ways. The scale of the x con-
cerned can be transformed, e.g., by using the logarithm,
so that negative values are excluded, or the function can
be modified to take a large positive value for all negative
x. In the latter case any trespassing by the simplex over
the border will be followed automatically by contraction
moves which will eventually keep it inside. In either
case an actual minimum with x = 0 would be inaccess-
ible in general, though arbitrarily close approaches could

be made to it. Clearly either technique can deal with
individual limitations on the range of any number of
x's. Constraints involving more than one x can be
included using the second technique provided that an
initial simplex can be found inside the permitted region,
from which to start the process. Linear constraints that
reduce the dimensionality of the field of search can be
included by choosing the initial simplex to satisfy
the constraints and reducing the dimensions accord-
ingly. Thus to minimize y —f(xu x2, x3) subject to
x, + x2 + x3 = X, we could choose an initial simplex
with vertices (X, 0, 0), (0, X, 0), and (0, 0, X), treating
the search as being in two dimensions. In particular,
any x, may be held constant by setting its value to that
constant for all vertices of the initial simplex.

Results
Three functions, all of which have been used before

for testing minimization procedures, were used to test
the method. The functions, all of which have a minimum
of zero, were:

(1) Rosenbrock's parabolic valley (Rosenbrock (I960))
y = 100(̂ 2 — x])2 + (1 — x,)2, starting point

(-1-2,1).

(2) Powell's quartic function (Powell (1962))
y = (xi + l(hr2)

2 + 5(x3 - x4)
2 + (x2 - 2x3)

4

+ 10(x, - xA)\
starting point (3, — 1, 0, 1).
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Function minimization

(3) Fletcher and Powell's helical valley (Fletcher and
Powell (1963))

y = 100[x3 - lOflfr,, x2)]2

+ W(A + 4) - i]2 + A
where 2-nQ(xu x2) = arctan (x2lx{), x, > 0

= 77 + arctan (*2/*i), *i < 0

starting point (—1, 0, 0).
The stopping criterion used was s/^L^y, — j)2/n}<10~8.
The function value at the centroid of the final simplex
usually deviated from the true minimum by less than
10~8; a sample of runs gave 2-5 x 10~9 as the geo-
metric mean of this deviation. A difficulty encountered
in testing the procedure was that the size and orientation
of the initial simplex had an effect on the speed of con-
vergence and consequently several initial step-lengths
and several arrangements of the initial simplex were
used for each trial (the arrangements consisted of two
forms of the initial simplex, regular, as in Spendley et
al.'s original method, and axial from the starting point,
combined with several orientations). The first set of
trials investigated the different strategies (values of a,
p and y) of the simplex method of minimization, and
the second compared the results for the best strategy
with those of Powell (1964), which are among the best
previously obtained.

An initial trial with function (1) used all combinations
of a = i, f, 1; ft = £, •$-, i; y = 2, 3, 4; and initial step-
lengths i, 1, and 2. The main result was that the lower
values of a and p gave generally slower convergence.
In a second trial with function (1) six main strategies
a = 1, /S = \ or \, and y = 2, 3, 4 with two additional
strategies ($, \, 3) and (f, -J-, 4) were all tried for three
initial step-lengths i, 1, 2, and eight arrangements of the
initial simplex. This trial showed that the additional
strategies were more variable in performance and, on
the average, slower to converge than the six main
strategies. These six strategies gave very similar results,
as was shown by an analysis of variance of the number
of function evaluations, the mean square for strategies
being 197 compared with a residual mean square (after
removing size and orientation effects) of 463.

Using function (2) five strategies were tried: a = 1,
P = i, Y = 2, 3 or 4, and a = 1, p = £ or ±, y = 3.
The latter two strategies gave very variable results, as is
indicated in Table 1 which shows the mean and minimum
numbers of evaluations required for convergence over
eight arrangements.

Analyzing the results for the best three strategies gave
a standard error of difference between the strategy mean
numbers of ±7-0 (based on 70 degrees of freedom),
showing that the results for the three strategies are all
significantly different at the 95 % level.

Using function (3) for the same trial confirmed these
conclusions, the last two strategies converging to false
minima on several occasions.

It was clear, therefore, that the simple strategy
a = 1, p = i, y — 2 was the best, and these values were

Table 1

Mean and minimum numbers of evaluations for function 2

MEAN NUMBER

STEP-LENGTH

0-25
0-5
1
2
4

Mean

0, h 2)

225
210
216
216
226

219

0. h 3)

234
234
229
239
241

235

STRATEGY

(1, h 4)

282
254
260
250
251

259

(1, h 2)

255
300
283
264
249

270

0, i, 2)

344
335
343
253
347

322

MINIMUM NUMBER

0-25
0-5
1
2
4

Mean

191
181
180
180
184

183

205
181
191
194
170

188

241
190
210
201
217

212

172
190
150
174
152

168

189
233
216
117
217

194

used in comparing the method with Powell's (1964)
technique.

Comparison with Powell's results
For this comparison we used the same convergence

criterion; smaller values of the criterion would not be
justifiable when it is remembered that most functions
met with in practice are likely to have a rounding-off
error of this order. We used all three functions with a
range of initial step-lengths 0-1(0-1)1(0-2)3 and eight
initial simplex arrangements. Table 2 shows the results
of these trials.

Apart from the smaller step-lengths the effect of step-
length on number of evaluations required is not very
large and it is reasonable to use the mean number of
evaluations over all the unasterisked step-lengths for
comparison with other methods. The mean values
obtained are 144 evaluations for function (1), 216 for
function (2), and 228 for function (3). Powell's results
for functions (1) and (2) give the evaluations required to
reach our mean final value of 2-5 x 10~9 as 150 and
235 respectively.

An EMA version of Powell's method was written and
for function (3) it was found that the initial step-length
had a considerable effect on the speed of convergence.
Furthermore the optimum initial step-lengths for the
two methods were different. For initial step-lengths in
the range 0-1 to 0 • 95, Powell's method gave numbers
of function values between 177 and 375 (sample of six).
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Function minimization

Table 2

Mean number of evaluations required for convergence for
different step-lengths for functions (1), (2) and (3)

STEP-LENGTH

01
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
10

1-2
1-4
1-6
1-8
20
2-2
2-4
2-6
2-8
30

(1)

165*
161*
159*
162*
143
142
151
150
157
147

145
145
154
138
144
130|
128
134
135
148

FUNCTION

(2)

262*
220
214
215
210
206
210
231
223
216

217
208
217
225
216
197
224
223
241
191

(3)

310*
256
276
256
230
268
264
231
236
213

183
194
188
213
207
206
224
209
233
234

* See text.
t Omitting arrangements where the true minimum was a vertex

of the initial simplex.

There appears, therefore, to be little difference between
the two methods to this degree of accuracy as far as
our evidence goes. However, there are indications that,
with less severe convergence criteria, greater differences
would have been found. This is suggested by the
progress of the two methods on three typical runs, as
shown in Table 3; for all three functions our method
establishes an initial advantage over Powell's. For
function (2) this advantage is maintained approximately
at the same level for the remainder of the run; for
functions (1) and (3) the advantage is further increased
up to the final stage when Powell's method rapidly
closes the gap.

Effect of number of variables
To investigate the effect of increasing the number of

variables, the sum of fourth powers was used as a test
function, starting at (1, 1, 1, . . ., 1). For functions with
2 to 10 variables it was found that the relationship
between the number of variables k and the mean number
of evaluations N for convergence (using a final value of
approximately 2-5 x 10~9) was well described by

N=3-I6(k \2 -11

Discussion
The method presented in this paper differs from most

previously put forward in being based neither on
gradients (first-order derivatives) nor on quadratic
forms (second-order derivatives). As can be seen in
Fig. 1, the algebraic operations on the x, are all linear
(e.g. as in determining P from Ph and P), while those
on the y-t are concerned with finding the maximum or
minimum of a finite set of quantities. This latter type
of operation is non-linear and accounts for the ability
of the method to locate a minimum with arbitrary
accuracy. The remark of Spendley et al. (1962) that
"Continued application of the simplex procedure, with
progressively reduced step size, is inherently as self-
defeating as any other linear technique," is thus some-
what misleading, since the use made of the simplex
at any stage is not to estimate parameters in a
regression equation (in which case only a linear model
could be fitted) but to guide the direction of the next
move.

Out method is highly opportunist, in that the least
possible information is used at each stage and no
account is kept of past positions. No assumptions are
made about the surface except that it is continuous and
has a unique minimum in the area of the search. It
might thus be expected that when the curvature of the
landscape (as measured by the Hessian matrix of second-
order partial derivatives) is changing rapidly, the present
method will do well when compared with methods which
depend on arguments applicable to quadratic forms.
Conversely in the neighbourhood of a minimum, when
the Hessian matrix is relatively stable, it may do worse.
This expectation is borne out by the results obtained
on the test functions. However, the positions of minima
are often needed with only limited accuracy, so that final
rapid convergence is not essential. This is especially
true in statistical problems where the surface may be,
e.g., a sum of squares of residuals, and the position of
the minimum is a function of the random errors in the
observations. An important property of our method is
that it will converge even when the initial simplex
straddles two or more valleys, a property which is not
shared by, e.g., Powell's method.

A general problem encountered by all minimization
methods is that of false convergence at a point other
than the minimum. This difficulty has been found in
using the simplex method on a four-dimensional surface
having a long, curved, valley with extremely steep sides;
along the valley bottom the function varies considerably
compared with the accuracy to which the minimum
function value is required. On meeting the valley, the
simplex may need to undergo a drastic change in both
size and shape, in the course of which the variation
between the function values at the simplex vertices may
become small even when compared with a convergence
criterion of one-tenth of the required accuracy. Merely
refining the convergence criterion would often involve
needless evaluations, and in other more extreme cases
could still be ineffective.
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Table 3

Values of the three functions on 3 typical runs, for simplex method and Powell's (1964) method

NUMBER OF
EVALUATION

1
20
40
60
80

100
120
140
150
160
180
200
220

(1)

Simplex
2-4
2-6
9-7
3-8
8-1
1-3
8-4
7-7
3-3

X
X
X
X
X
X
X
X
X

101

10°
IO- 1

IO- 1

io-2

io-3

io-6

io-9

io-10

Powell
2-4
3-6
2-2
1-1
4-6
1 0
1-7
1 0
1-2

X
X
X
X
X
X
X
X
X

IO1

10°
10°
10°
io-1

io-1

io-2

io-4

io-9

FUNCTION

(2)

Simplex
2-2
1-2
3-0
8-7
1-7
1-2
6-7
3-9

1-2
5-9
2-6
9-3

X
X
X
X
X
X
X
X

X
X
X
X

IO2

IO1

io-1

io-2

io-2

IO-3

io-5

io-6

io-6

io-7

io-8

io- 1 0

Powell
2-2
3-1
4-2
1-5
2-3
6-4
1-1
1-3

2-1
2-1
1-3
1-6

X
X
X
X
X
X
X
X

X
X
X
X

IO2

IO1

10°
10°
io-1

io-3

io-3

io-4

io-5

io-6

io-7

io-8

(3)

Simplex
2-5
1-9
1-2
7-6
3-0
2-0
4-4
1-3

1 0
1-7
3-7
2-7

X
X
X
X
X
X
X
X

X
X
X
X

IO3

10°
10°
io-2

io-2

io-2

io-3

io-4

io-6

io-7

io-8

io-1 0

Powell
2-5
1-9
3-2
7-7
2-0
7-6
3-1
2-3

6-6
3-6
1 1
7-2

X
X
X
X
X
X
X
X

X
X
X
X

IO3

IO2

IO1

10°
10°
io-1

io-1

io-1

io-2

io-3

io-4

io-9

The values for Powell's method were obtained by logarithmic interpolation of the function values at the end of each iteration.
Data for functions (1) and (2) from Powell (1964), data for function (3) from our EMA program of his method.

Powell (1964) suggested a more complex convergence
criterion, for this general problem, based on perturbing
the first minimum found and repeating the method to
find a second minimum, followed by exploration along
the line joining the two. An alternative technique, more
suited to our convergence criterion in terms of function
variation, is to continue after the first convergence for a
prescribed number of evaluations, to test for convergence
again and, if the second test proves successful, to com-
pare the two "converged" function values. Only if these

values are sufficiently close is convergence allowed.
The simplex method is computationally compact; on

the Orion computer the basic routine (without final
printing) contains less than 350 instructions, and the
great majority of orders are additions and subtractions
or simple logical orders. There are few multiplications,
and no divisions at all except on entering and leaving
the routine.

Copies of the routine, written in Extended Mercury
Autocode, are available from the authors.

Appendix

The Hessian matrix at the minimum

The minimization method proposed, being independent
of the properties of quadratic forms, does not yield any
estimate of the Hessian matrix of second derivatives at
the minimum. This matrix is, of course, the information
matrix in statistical problems when the function being
minimized is minus the log. likelihood, and its inverse is
the sample variance-covariance matrix of the estimates.
A convenient way of utilizing a quadratic surface to
estimate the minimum when the simplex is close to that
minimum was given by Spendley et al. (1962) and their
method can be readily extended to give the required
variance-covariance matrix of the estimates.

If the (n + 1) points of the simplex in n dimensions
are given by Po, P{, . . . Pn, then Spendley et al. form
the "half-way points" Pu = (P, + Pj)l2, i ¥=j and fit a
quadratic surface to the combined set of (M + 1)(« + 2)/2

points. If the original points of the simplex are used to
define a set of oblique axes with co-ordinates xh then
the points may be taken as

(0, 0, 0, . . . 0)
(1, 0, 0, . . . 0)
(0, 1, 0, . . . 0)

and (0, 0, 0, . . . 1).

If the quadratic approximation to the function in the
neighbourhood of the minimum is written as

y = aQ

or in vector form as

y = a0 + la'x + x'Bx,
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Function minimization

so that the variance-covariance matrix is given by

a; = 2y0i - (y, + 3yo)/2, i=\,...,n
ba = 2(j>,- + y0- 2y0l), i=l,...,n
bu = 2(yu +y0- yOi - y0J), i ¥^ j ,

where y, is the function value at P; and ya that at Pl7.
The estimated minimum is then given by

and the information matrix is just B.
If Pi denotes the co-ordinates of .P, in the original

system, and if Q is the n x n matrix whose ith column
is />, — p0, then the minimum is estimated to be at

Pmin = Po

_ nrt-i'a.

The minimum value of the function is estimated to be

ymin = Qo — a'B~la.

The information matrix in the original co-ordinate
system is given by

(Q-'YBQ- 1

If normal equal-variance independent errors are involved
and the sum of squares of residuals is minimized, then
this matrix must be multiplied by 2a2, where as usual
a2 would be estimated by ymin/(N — n), N being the
total number of observations, and n the number of
parameters fitted.

In estimating B numerically it is necessary to steer a
course between two hazards. In one the simplex is so
small that (yu + j 0 — yOi — y0J) consists largely of
rounding-off errors incurred in calculating the y's. In
the other the simplex is so large that the quadratic
approximation is poor, and the b's are correspondingly
biased. If the method given in this paper is used, the
former hazard will usually be the important one, and
it may be necessary to enlarge the final simplex before
adding the extra points. A possible way of doing this
is to double the distance of each point /", from the
centroid until the corresponding function value exceeds
that at the centroid by more than a given constant.
The choice of this would depend on the rounding-off
error attaching to the evaluation of the function, and
would need to be at least 103 times that rounding error,
if acceptable estimates of the b's were to be obtained.

References

FLETCHER, R., and POWELL, M. J. D. (1963). "A rapidly convergent descent method for minimization," The Computer Journal
Vol. 6, p. 163.

POWELL, M. J. D. (1962). "An iterative method for finding stationary value of a function of several variables," The Computer
Journal, Vol. 5, p. 147.

POWELL, M. J. D. (1964). "An efficient method for finding the minimum of a function of several variables without calculating
derivatives," The Computer Journal, Vol. 7, p. 155.

ROSENBROCK, H. (1960). "An automatic method for finding the greatest or least value of a function," The Computer Journal,
Vol. 3, p. 175.

SPENDLEY, W., HEXT, G. R., and HIMSWORTH, F. R. (1962). "Sequential Application of Simplex Designs in Optimisation and
Evolutionary Operation," Technometrics, Vol. 4, p. 441.

Correspondence
To the Editor,
The Computer Journal.

An impossible program

Sir,
A well-known piece of folk-lore among programmers
holds that it is impossible to write a program which can
examine any other program and tell, in every case, if it
will terminate or get into a closed loop when it is run.
I have never actually seen a proof of this in print, and
though Alan Turing once gave me a verbal proof (in a
railway carriage on the way to a Conference at the
NPL in 1953), I unfortunately and promptly forgot the
details. This left me with an uneasy feeling that the
proof must be long or complicated, but in fact it is so
short and simple that it may be of interest to casual
readers. The version below uses CPL, but not in any
essential way.

Suppose T[R] is a Boolean function taking a routine
(or program) R with no formal or free variables as its
argument and that for all R, T[R] — True if R terminates
if run and that T[R] = False if R does not terminate.
Consider the routine P defined as follows

rec routine P

§L :if T[P]gotoL

Return §

If T[P] = True the routine P will loop, and it will
only terminate if T[P] = False. In each case T[P] has
exactly the wrong value, and this contradiction shows
that the function T cannot exist.

Churchill College,
Cambridge.

Yours faithfully,
C. STRACHEY.
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