Regular Article

Limit Theorems for the Number of Summands in Integer Partitions

Received 8 November 2000, Available online 1 March 2002

doi:10.1006/jcta.2000.3170

Get rights and content

Under an Elsevier user license


Open Archive

References

    REFERENCES

  • G.E. Andrews

    ,in: G.-C. Rota (Ed.), The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, 2, Addison–Wesley, Reading (1976)

  • F.C. Auluck, S. Chowla, H. Gupta

    On the maximum value of the number of partitions of n into k parts

    J. Indian Math. Soc., 6 (1942), pp. 105–112

  • L. Comtet

    Advanced Combinatorics, the Art of Finite and Infinite Expansions, Reidel, Dordrecht (1974)

  • J. Curtiss

    A note on the theory of moment generating functions

    Ann. Math. Statist., 13 (1942), pp. 430–433

  • N.G. de Bruijn

    On Mahler's partition problem

    Indag. Math., 10 (1948), pp. 531–546

  • A. Erdélyi

    Higher Transcendental Functions, Krieger, Malabar (1953)

  • P. Erdős, J. Lehner

    The distribution of the number of summands in the partitions of a positive integer

    Duke Math. J., 8 (1941), pp. 335–345

  • P. Erdős, M. Szalay

    On the statistical theory of partitions

    Colloquiua Mathematica Societatis János Bolyai, Topics in Classical Number Theory, 34 (1981) p. 397–450

  • P. Erdős, P. Turán

    On some general problems in the theory of partitions, I

    Acta Arithmetica, 18 (1971), pp. 53–62

  • 10 

    P. Flajolet, X. Gourdon, P. Dumas

    Mellin transforms and asymptotics: harmonic sums

    Theoret. Comput. Sci., 144 (1995), pp. 3–58

    Article PDF (3028K)

  • 11 

    P. Flajolet, A.M. Odlyzko

    Singularity analysis of generating functions

    SIAM J. Discrete Math., 3 (1990), pp. 216–240

  • 12 

    P. Flajolet, M. Soria

    Gaussian limiting distributions for the number of components in combinatorial structures

    J. Combin. Theory Ser. A, 53 (1990), pp. 165–182

    Article PDF (842K)

  • 13 

    B. Fristedt

    The structure of random partitions of large integers

    Trans. Amer. Math. Soc., 337 (1993), pp. 703–735

  • 14 

    W.M.Y. Goh, E. Schmutz

    The number of distinct part sizes in a random integer partitions

    J. Combin. Theory Ser. A, 69 (1995), pp. 149–158

    Article PDF (289K)

  • 15 

    C.B. Haselgrove, H.N.V. Temperley

    Asymptotic formulae in the theory of partitions

    Proc. Cambridge Philos. Soc., 50 (1954), pp. 225–241

  • 16 

    J. Herzog

    Weak asymptotic formulas for partitions free of small summands, II

    Acta Math. Hungarica, 62 (1993), pp. 173–188

  • 17 

    A. Hildebrand, G. Tenenbaum

    On integers free of large prime factors

    Trans. Amer. Math. Soc., 296 (1986), pp. 265–290

  • 18 

    H.-K. Hwang

    Large deviations for combinatorial distributions. I. Central limit theorems

    Ann. Appl. Probab., 6 (1996), pp. 297–319

  • 19 

    H.-K. Hwang

    Distribution of integer partitions with large number of summands

    Acta Arithmetica, 78 (1997), pp. 351–365

  • 20 

    H.-K. Hwang

    Large deviations of combinatorial distributions. II. Local limit theorems

    Ann. Appl. Probab., 8 (1998), pp. 163–181

  • 21 

    C. Knessel, J.B. Keller

    Partition asymptotics from recursion equations

    SIAM J. Appl. Math., 50 (1990), pp. 323–338

  • 22 

    L. Kuipers, H. Niederreiter

    Uniform Distribution of Sequences, Wiley, New York (1974)

  • 23 

    D.V. Lee

    The asymptotic distribution of the number of summands in unrestricted Λ-partitions

    Acta Arithmetica, 65 (1993), pp. 29–43

  • 24 

    J.H. Loxton, H.-F. Yeung

    Common summands in partitions

    Acta Arithmetica, 55 (1992), pp. 308–320

  • 25 

    G. Meinardus

    Asymptotische Aussagen über Partitionen

    Math. Z., 59 (1954), pp. 388–398

  • 26 

    F.W.J. Olver

    Asymptotics and Special Functions, Academic Press, New York (1974)

  • 27 

    V.V. Petrov

    Sums of Independent Random Variables, Springer-Verlag, Berlin/Heidelberg/New York (1975)

  • 28 

    L.B. Richmond

    The moments of partitions, I

    Acta Arithmetica, 26 (1975), pp. 411–425

  • 29 

    L.B. Richmond

    Mahler's partition problem

    Ars Combin., 2 (1976), pp. 169–189

  • 30 

    L.B. Richmond

    The moments of partitions, II

    Acta Arith., 28 (1976), pp. 229–243

  • 31 

    L.B. Richmond

    Some general problems on the number of parts in partitions

    Acta Arithmetica, 64 (1994), pp. 297–313

  • 32 

    L.B. Richmond, A. Knopfmacher

    Compositions with distinct parts

    Aequationes Math., 49 (1995), pp. 86–97

  • 33 

    K.F. Roth, G. Szekeres

    Some asymptotic formulae in the theory of partitions

    Quart. J. Math. Oxford Ser. (2), 5 (1954), pp. 241–259

  • 34 

    E. Schmutz

    Part sizes of random integer partitions

    Indian J. Pure Appl. Math., 25 (1994), pp. 567–575

  • 35 

    W. Schwarz

    Einige Anwendungen Tauberscher Sätze in der Zahlentheorie, C. Mahler's Partitionsproblem

    J. Reine Angew. Math., 229 (1967), pp. 182–188

  • 36 

    G. Szekeres

    An asymptotic formula in the theory of partitions, II

    Quart. J. Math. Oxford Ser. (2), 4 (1953), pp. 96–111

  • 37 

    G. Szekeres

    Asymptotic distributions of the number and size of parts in unequal partitions

    Bull. Australian Math. Soc., 36 (1987), pp. 89–97

  • 38 

    G. Tenenbaum

    Introduction à la théorie analytique et probabiliste des nombres, Université de Nancy IInstitut Elie Cartan, Nancy (1990)

  • 39 

    E.C. Titchmarsh

    The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford (1986)

  • 40 

    H. Wilf

    Three problems in combinatorial asymptotics

    J. Combin. Theory Ser. A, 35 (1983), pp. 199–207

    Article PDF (294K)

open in overlay

Communicated by Andrew, Odlyzko

Copyright © 2001 Academic Press. All rights reserved.