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Abstract Networks are used in many scientific fields such as biology, social sci-
ence, and information technology. They aim at modelling, with edges, the way
objects of interest, represented by vertices, are related to each other. Looking for
clusters of vertices, also called communities or modules, has appeared to be a pow-
erful approach for capturing the underlying structure of a network. In this context,
the Block-Clustering model has been applied on random graphs. The principle of
this method is to assume that given the latent structure of a graph, the edges are
independent and generated from a parametric distribution. Many EM-like strategies
have been proposed, in a frequentist setting, to optimize the parameters of the model.
Moreover, a criterion, based on an asymptotic approximation of the Integrated Clas-
sification Likelihood (ICL), has recently been derived to estimate the number of
classes in the latent structure. In this paper, we show how the Block-Clustering
model can be described in a full Bayesian framework and how the posterior distri-
bution, of all the parameters and latent variables, can be approximated efficiently
applying Variational Bayes (VB). We also propose a new non-asymptotic Bayesian
model selection criterion. Using simulated data sets, we compare our approach to
other strategies. We show that our criterion can outperform ICL.

Keywords Bayesian model selection - Block-clustering model - Integrated classifi-
cation likelihood - Random graphs - Variational Bayes - Variational EM

1 Introduction

For the last few years, networks have been increasingly studied. Indeed, many
scientific fields such as biology, social science, and information technology, see
those mathematical structures as powerful tools to model the interactions between
objects of interest. Examples of data sets having such structures are friendship and
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protein—protein interaction networks, powergrids, and the Internet. In this context,
a lot of attention has been paid on developing models to learn knowledge from the
network topology. Many methods have been proposed, and in this work, we focus
on statistical models that describe the way edges connect vertices.

A well known strategy consists in seeing a given network as a realization of a
random graph model based on a mixture distribution (Snijders & Nowicki, 1997;
Daudin, Picard, & Robin, 2008). The method assumes that, according to its connec-
tion profile, each vertex belongs to a hidden class of a latent structure and that, given
this latent structure, all the observed edges are independent and binary distributed.
Many names have been proposed for this model, and in the following, it will be
denoted MixNet, which is equivalent to the Block-Clustering model of Snijders and
Nowicki (1997).

A key question is the estimation of the MixNet parameters. So far, the opti-
mization procedures that have been proposed are based on heuristics or have been
described in a frequentist setting (Daudin et al., 2008). Bayesian strategies have
also been developed but are limited in a sense that they can not handle large
networks. All those methods face the same difficulty. Indeed, the posterior dis-
tribution p(Z|X, &, ), of all the latent variables Z given the observed edges X,
can not be factorized. To tackle such problem, Daudin et al. proposed a variational
approximation of the posterior, which corresponds to a mean-field approximation.

Another difficulty is the estimation of the number of classes in the mixture.
Indeed, many criteria, such as the Bayesian Information Criterion (BIC) or the
Akaike Information Criterion (AIC) are based on the likelihood p(X|e, x) of the
incomplete data set X, which is intractable here. Therefore, Mariadassou and Robin
(2007) derived a criterion based on an asymptotic approximation of the Integrated
Classification Likelihood (also called Integrated Complete-data Likelihood). More
details can be found in Biernacki, Celeux, and Govaert (2000). They found that this
criterion, that we will denote ICL for simplicity, was very accurate in most situations
but tended to underestimate the number of classes when dealing with small graphs.
We emphasize that ICL is currently the only model based criterion developed for
MixNet.

In this paper, we extend the work of Hofman and Wiggins (2008) who devel-
oped a variational Bayes algorithm to learn affiliation models. These are defined
by only two probabilities of connection A and €. Given a network, it is assumed
that the edges connecting nodes of the same class were generated with probability
A while edges connecting nodes of different classes were drawn with probability €.
The algorithm that they proposed can cluster the nodes and estimate the probabilities
A and € very quickly. However, affiliation models can not characterize the complex
topology of most real networks, which have the majority of their nodes with none
or very few links and exhibit some hubs which make them locally dense (Daudin
et al., 2008). Therefore, we propose an efficient Bayesian version of MixNet, which
allows vertices to have different topological behaviors. Thus, after having presented
MixNet in Sect. 2, we introduce some prior distributions and describe the MixNet
Bayesian probabilistic model in Sect. 3. We derive the model optimization equations
using Variational Bayes and we propose a new criterion to estimate the number of
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classes. Finally, in Sect. 4, we carry out some experiments using simulated data sets
to compare the number of the estimated clusters obtained with the ICL criterion and
the variational frequentist strategy, and our approach.

An extended version of this paper with proofs of the results and more experiments
is available (Latouche, Birmelé, & Ambroise, 2008).

2 A Mixture Model for Networks

We consider an undirected binary random graph G, where V' denotes a set of N
fixed vertices and X = {X;;, (i, j) € V?} is the set of all the random edges. We
assume that G does not have any self loop. Therefore, the variables X;; will not be
taken into account.

MixNet assumes that each vertex i belongs to an unknown class ¢ among Q
classes and the latent variable Z; reflects our uncertainty as to which one that is

Z: ~M(1, o= {al,az,...,ag}),

where we denote «, the vector of class proportions. The edge probabilities are then
given by
XiiRZigZj = 1} ~ B(Xij|mq1).

Thus, contrary to affiliation models (Hofman & Wiggins, 2008), we consider a Q X
0O matrix  of connection probabilities. Note that in the case of undirected networks,
7 is symmetric. The latent variables in the set Z = (Zq, ..., ZN) are iid and given
this latent structure, all the edges are supposed to be independent. Thus, we obtain

N N Q
pZla) = [[ M@ 1) =[] e
i=1 i=1qg=1

and

N 0
p(X|Z,7) = [ | p(Xy|Zi. 25, ) = [ [T [ B g 70701

i<j i<j gl

3 Bayesian View of MixNet

3.1 Bayesian Probabilistic Model

We now show how MixNet can be described in a full Bayesian framework. To trans-
form the MixNet frequentist probabilistic model, we first specify some prior distri-
butions for the model parameters. To simplify the calculations, we use conjugate
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priors. Thus, since p(Z;|er) is a multinomial distribution, we choose a Dirichlet
distribution for the mixing coefficients:

-2 ng) 2 i
L@))...Tny) 1"

’

p(ozln0 = {n?,...,nOQ}) Dir(a; n’) =

where we denote ng, the prior number of vertices in the g-th component of the
mixture. In order to obtain a posterior distribution influenced primarily by the net-
work data rather than the prior, small values have to be chosen. A typical choice is
n2 = %, Vq. This leads to a non-informative Jeffreys prior distribution. It is also
possible to consider a uniform distribution on the QO — 1 dimensional simplex by
fixing n2 =1,Vvq.

Since p(Xi;j|Zi,Z;. ) is a Bernoulli distribution, we use Beta priors to model
the connectivity matrix m:

p(n|n°= (o). &° = @3 ) ]_[Beta(m,z, . )

g=l
g F(nq1+§q1) ’Iq/ 1
TGP)TE) ™

oY)

(1 — )b,
q=l

where 172 ; and é‘gl represent respectively the prior number of edges and non-edges
connecting vertices of cluster g to vertices of cluster /. A common choice consists
in setting 172 ;= 531 = 1, Vq. This gives rise to a uniform prior distribution. Since
7 is symmetric, only the terms of the upper or lower triangular matrix have to be
considered. This explains the product over ¢ < /.

Thus, the model parameters are now seen as random variables. They depend on
parameters n’, 3°, and £° which are called hyperparameters in the Bayesian litera-
ture (MacKay, 1992). The joint distribution of the Bayesian probabilistic model is
then given by

pX.Z,a,wn’, n°, % = p(X|Z, 7) p(Z|ex) p(et|n®) p (|5, £°).

For the rest of the paper, since the prior hyperparameters are fixed and in order
to keep the notations simple, they will not be shown explicitly in the conditional
distributions.

3.2 Variational Inference

The inference task consists in evaluating the posterior p(Z, &,  |X) of all the hid-
den variables (latent variables Z and parameters a and m) given the observed
edges X. Unfortunately, under MixNet, this distribution is intractable. To overcome
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such difficulties, we follow the work of Attias (1999) and Corduneanu and Bishop
(2001) on Bayesian mixture modelling and Bayesian model selection. Thus, we first
introduce a factorized distribution:

N
q(Z, o, w) = q(0)q(m)q(Z) = q(@)q(x) [ | 4(Za),

i=1

and we use Variational Bayes to obtain an optimal approximation ¢(Z, «, ) of
the posterior. This framework is called the mean field theory in physics (Parisi,
1988). The Kullback—Leibler divergence enables us to decompose the log-marginal
probability, usually called the model evidence or the log Integrated Observed-data
Likelihood, and we obtain

In p(X) = L(q() + KL(g() || p(.1X). 2)
where
L)) = Z//q(l a, n)ln% p;fzzaan?)} dadm, 3)
and

p(Z, o, |X)
KL(40) 11 (X)) = Z//q(Za o ZEETEN G,

Minimizing (4) is equivalent to maximizing the lower bound (3) of (2). However,
we now have a full variational optimization problem since the model parameters are
random variables and we are looking for the best approximation ¢(Z, &, ) among
all the factorized distributions. In the following, we use a variational Bayes EM
algorithm. We call Variational Bayes E-step, the optimization of each distribution
q(Z;) and Variational Bayes M-step, the approximations of the remaining factors.
We derive the update equations only in the case of an undirected graph G without
self-loop. Our algorithm cycles through the E and M steps until convergence of the
lower bound (11).

3.2.1 Variational Bayes E-Step
The optimal approximation at vertex i is
qZ;) = M(Zi; 1,t; ={11,....Tip}), )

where 7;, is the probability (responsibility) of node i to belong to class ¢. It satisfies
the relation:

N 0
Ty V)= ) TIT1 et (W= g+t + X5 (V= @) )

j#il=1
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where v/(.) is the digamma function. Given a matrix 7°¢, the algorithm builds a new

matrix T"¢" where each row satisfies (6). It then uses T”¢" to build a new matrix and
so on. It stops when ZIN=1 ZQ old _ gnew| < ¢ A rather small values for e has

g=1 1T
to be chosen. In the experiments that we carried out, we chose e = 1074,

iq iq

3.2.2 Variational Bayes M-Step: Optimization of ¢ («)

The optimization of the lower bound with respect to g(a) produces a distribution
with the same functional form as the prior p(e):

g(a) = Dir(e; n), (7

where n, = ng + Zf\':l 7;4 18 the pseudo number of vertices in the g-th component
of the mixture.

3.2.3 Variational Bayes M-Step: Optimization of ¢ (i)

Again, the functional form of the prior p() is conserved through the variational
optimization:

0
q(m) = [ [ BetaCrys |ngr. tqr). (8)
q=l

where 7, and {,; represent respectively the pseudo number of edges and non-
edges connecting vertices of cluster g to vertices of cluster /. For ¢ # [, the
hyperparameter 7, is given by

N N
Ngl = ’721 + ZXijTiqul, and Vq : 14 = ngq + ZXijTiquq. C))
i#] i<y

Moreover, for g # [, the hyperparameter {,; is given by

N N
Ly =80+ > (1=Xi)tgry. and ¥q: &y =0, + Y (1— Xij)TigTjq. (10)
i#j i<j

3.2.4 Lower Bound

The lower bound takes a simple form after the Variational Bayes M-step. Indeed, it
only depends on the posterior probabilities z;, as well as the normalizing constants
of the Dirichlet and Beta distributions:
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L2 n) 12 T(ny) }
(2 ng) T2, T(n9)

2 T, + )T (g T (Cq1) N 0
1 q : - i 1 ig-
+Z n{ C(ng: +é‘q1)F(n21)F(é-gl)§ ZZT,, nt,

q<l i=1q=1

L(q()) =1n§
(11

3.3 Model Selection

We have not addressed yet the problem of estimating the number of classes in the
mixture. Given a set of values of Q, our goal is to select Q* which maximizes the
log-probability of the observed edges In p(X|Q). Unfortunately, this quantity does
not have any analytical expression. Indeed, for each value of Q, it involves inte-
grating over all the hidden parameters as shown in Sect. 3.2. Nevertheless, it can
be approximated using our Variational Bayes algorithm. Given a value of Q, the
algorithm is used to maximize the lower bound (11). Meanwhile, the Kullback—
Leibler divergence between the factorized and the unknown posterior distribution
decreases. After convergence, although this distance can not be computed analyti-
cally, we expect it to be close to zero, and therefore, we can use the lower bound as
an approximation of In p(X| Q). This procedure is repeated for the different values
of Q considered.

Given a value of Q, since MixNet is a mixture model, for any given setting of the
parameters « and & there will be a total of Q! parameters which lead to the same dis-
tribution over the edges. These parameters would differ only through re-labelling of
the components. In a frequentist framework, this redundancy is irrelevant since we
only look for point estimates of the model parameters. In a Bayesian setting, how-
ever, we integrate over all possible parameter values. Since p(X]|Q) is multimodal,
variational techniques will tend to approximate the distribution in the neighborhood
of one of the mode and ignore the others (see Bishop, 2006). Thus, when comparing
different values of O, we need to take this multimodality into account. As a conse-
quence, we define a criterion by subtracting a term In Q! from the lower bound (11)
computed previously.

In the case of networks, we emphasize that our work led to the first criterion
based on a non-asymptotic approximation of the model evidence, also called Inte-
grated Observed-data likelihood. When considering other types of mixture models,
Biernacki et al. (2000) showed that such criteria were very powerful to select the
number of classes.

4 Experiments

We present some results of the experiments we carried out to assess our Bayesian
version of MixNet and the model selection criterion we proposed in Sect.3.3.
Through all our experiments, we compared our approach to the work of Daudin
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et al. (2008) who used ICL as a criterion to identify the number of classes in
latent structures and the frequentist approach of variational EM to estimate the
model parameters. We considered synthetic data, generated according to known ran-
dom graph models and we concentrated on analyzing the capacity of ICL and our
criterion to retrieve the true number of classes in the latent structures.

4.1 Comparison of the Criteria

In these experiments, we consider simple affiliation models where only two types of
edges exist: edges between nodes of the same class and edges between nodes of dif-
ferent classes. Each type of edge has a given probability, respectively m,, = A and
mq = €. Following Mariadassou and Robin (2007) who showed that ICL tended
to underestimate the number of classes in the case of small graphs, we generated
graphs with only N = 50 vertices to analyze the robustness of our criterion. More-
over, to limit the number of free parameters, we studied the case where A = 1 — €.
Thus, we considered three affiliation models shown in Table 1.

For each affiliation model, we analyzed graphs with Qr,, € {2,...,5} classes
mixed in the same proportions @y = -+ = g, = QT; Thus, we studied a total
of 12 graph models.

For each of these graph models, we simulated 100 networks. In order to esti-
mate the number of classes in the latent structures, we applied our algorithm and
the variational EM approach of Daudin et al. (2008) on each network, for various
numbers of classes Q € {l1,...,6}. Note that, we chose ng =1,Vqe{l,...,0}
for the Dirichlet prior and 1721 = {‘gl =1, VY(q.l) € {1,..., Q}? for the Beta pri-
ors. We recall that such distributions correspond to uniform distributions. Like any
optimization technique, the Bayesian and frequentist methods depend on the initial-
ization. Thus, for each simulated network and each number of classes Q, we started
the algorithms with five different initializations of T obtained using a spectral clus-
tering method (Ng, Jordan, & Weiss, 2001). Then, for the Bayesian algorithm, we
used the criterion we proposed in Sect. 3.3 to select the best learnt model, whereas
we used ICL in the frequentist approach. Finally, for each simulated network, we
obtained two estimates Q;c; and Qyp of the number Qr,, of latent classes by
selecting Q € {1,..., 6} for which the corresponding criteria were maximized.

In Table 2, we observe that for the most structured affiliation model, the two
criteria always estimate correctly the true number of classes except when Q7 =
5. In this case, the Bayesian criterion performs better. Indeed, it has a percentage of
accuracy of 95% against 87% for ICL.

Table 1 Parameters of Model 2 6
the th ffiliati del
e three affiliation models ] 09 01
considered
2 0.85 0.15
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Table 2 Confusion matrices for ICL and Bayesian (based on Variational Bayes) criteria. A = 0.9,
e=0.1and Qr, €1{2,....5}

[1 2 3 456 |12 3 4 56
2[0100 0 0 00 2{0100 0 0 00
30 0 100 0 00 3{0 0 100 0 00
40 0 0 10000 40 0 0 100 0 0
500 0 13870 500 0 4 951

(a)QTrue\QICL (b)QTrue\QVB

Table 3 Confusion matrices for ICL and Bayesian (based on Variational Bayes) criteria. A =
0.85,¢ = 0.15and Q7 €{2,...,5}

[1 2 3 456 |12 3 456
20100 0 0 00 2{0100 0 0 00
310 0 1000 00 3{0 0 100 0 0 0
40 0 1 9810 400 09820
50 0 1061290 50 0 1 29655

(@) O07me\QicL (0)O7rue\Ova

Table 4 Confusion matrices for ICL and Bayesian (based on Variational Bayes) criteria. A = 0.8,
e=02and Qr, e €1{2,....5}
[1 2 3 456 |12 3
20100 0 0 00 2(0100 O
310 0 100 0 00 30 0 100 0
4/0 0 14800 40 0 5 9410
510 17 36 4430 5[0 4 18 43296

(a)QTrue\QICL (b)QTrue\QVB

4 56
000
00

These differences increase when considering less structured networks. For
instance, in Tables 3 and 4, when Q7,,. = 5, we notice that the percentage of accu-
racy of ICL falls down (respectively 29% and 3%) whereas the Bayesian criterion
remains more stable (respectively 65% and 29%). Thus, when considering weaker
and weaker modular structures, both criteria tend to underestimate the number of
classes although the Bayesian criterion appears to be much more stable.

In all the tables presented before, we did not specify what happens when
Or1rue = 1. Indeed, both techniques have always a 100% accuracy. We did not stipu-
late either what happens when Qr,, = 6. In general, our results were very similar
to what we obtained when considering Or,, = 5. We also used the Adjusted
Rand Index (Hubert & Arabie, 1985) to evaluate the agreement between the true
and estimated partitions. The computation of this index is based on a ratio between
the number of node pairs belonging to the same and to different classes when con-
sidering the true partition and the estimated partition. Two identical partitions have
an adjusted Rand index equal to 1. In the experiments we carried out, when the vari-
ational EM method and our algorithm were run on networks with the true number
of latent classes, we obtained almost non-distinguishable Adjusted Rand Indices.
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Moreover, we point out that we obtained almost the same results in this set of exper-
iments by choosing uniform distributions (ng =1, Vg € {l,..., Q}) or Jeffreys
distributions (n2 = %, Vg € {l,...,Q}) for the prior over the mixing coeffi-
cients. Finally, we compared the computational costs of the frequentist approach of
variational EM and our Variational Bayes algorithm. Both are equal to O(Q>N?).
Analyzing a sparse network with 200 nodes takes about a minute, and about a hour
for dense networks.

5 Conclusion

In this paper, we showed how the MixNet model, also called the Block-Clustering
model, could be described in a full Bayesian framework. Thus, we introduced pri-
ors over the model parameters and we developed a procedure, based on Variational
Bayes, to approximate the posterior distribution of all the hidden variables given the
observed edges. In this framework, we derived a new non-asymptotic Bayesian cri-
terion to select the number of classes in latent structures. We found that our criterion
was more relevant than the criterion we denoted ICL in this paper and which is based
on an asymptotic approximation of the Integrated Classification Likelihood. Indeed,
by considering small networks and complex modular structures, we found that the
percentage of accuracy of our criterion was always higher. Overall, our Bayesian
approach seems very promising for the investigation of rather small networks and/or
based on complex structures.
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