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Abstract Coordinate descent algorithms solve optimization problems by succes-
sively performing approximateminimization along coordinate directions or coordinate
hyperplanes. They have been used in applications for many years, and their popularity
continues to grow because of their usefulness in data analysis, machine learning, and
other areas of current interest. This paper describes the fundamentals of the coordi-
nate descent approach, together with variants and extensions and their convergence
properties, mostly with reference to convex objectives. We pay particular attention
to a certain problem structure that arises frequently in machine learning applications,
showing that efficient implementations of accelerated coordinate descent algorithms
are possible for problems of this type. We also present some parallel variants and
discuss their convergence properties under several models of parallel execution.

Keywords Coordinate descent · Randomized algorithms · Parallel numerical
computing
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1 Introduction

Coordinate descent (CD) algorithms for optimization have a history that dates to
the foundation of the discipline. They are iterative methods in which each iterate is
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4 S. J. Wright

obtainedbyfixingmost components of the variable vector x at their values from the cur-
rent iteration, and approximately minimizing the objective with respect to the remain-
ing components. Each such subproblem is a lower-dimensional (even scalar) mini-
mization problem, and thus can typically be solved more easily than the full problem.

CD methods are the archetype of an almost universal approach to algorithmic
optimization: solving an optimization problem by solving a sequence of simpler
optimization problems. The obviousness of the CD approach and its acceptable per-
formance in many situations probably account for its long-standing appeal among
practitioners. Paradoxically, the apparent lack of sophistication may also account for
its unpopularity as a subject for investigation by optimization researchers, who have
usually been quick to suggest alternative approaches in any given situation. There
are some very notable exceptions. The 1970 text of Ortega and Rheinboldt [39, Sec-
tion 14.6] included a comprehensive discussion of “univariate relaxation,” and such
optimization specialists as Luo and Tseng [30,31], Tseng [54], and Bertsekas and Tsit-
siklis [5] made important contributions to understanding the convergence properties
of these methods in the 1980s and 1990s.

The situation has changed in recent years. Various applications (including several
in computational statistics and machine learning) have yielded problems for which
CD approaches are competitive in performance with more reputable alternatives. The
properties of these problems (for example, the low cost of calculating one component
of the gradient, and the need for solutions of only modest accuracy) lend themselves
well to efficient implementations ofCD, andCDmethods can be adaptedwell to handle
such special features of these applications as nonsmooth regularization terms and a
small number of equality constraints. At the same time, there have been improvements
in the algorithms themselves and in our understanding of them. Besides their extension
to handle the features just mentioned, new variants that make use of randomization and
acceleration have been introduced. Parallel implementations that lend themselves well
to modern computer architectures have been implemented and analyzed. Perhaps most
surprisingly, these developments are relevant even to the most fundamental problem
in numerical computation: solving the linear equations Aw = b.

In the remainder of this section, we state the problem types for which CD methods
have been developed, and sketch the most fundamental versions of CD. Section 2
surveys applications both historical and modern. Section 3 sketches the types of algo-
rithms that have been implemented and analyzed, and presents several representative
convergence results. Section 4 focuses on parallel CD methods, describing the behav-
ior of these methods under synchronous and asynchronous models of computation.

Our approach throughout is to describe the CD methods in their simplest forms,
to illustrate the fundamentals of the applications, implementations, and analysis. We
focus almost exclusively on methods that adjust just one coordinate on each iteration.
Most applications use block CD methods, which adjust groups of blocks of indices at
each iteration, thus searching along a coordinate hyperplane rather than a single coor-
dinate direction. Most derivation and analysis of single-CD methods can be extended
without great difficulty to the block-CD setting; the concepts do not change funda-
mentally.

We mention too that much effort has been devoted to developing more general
forms of CD algorithms and analysis, involving weighted norms and other features,
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Coordinate descent algorithms 5

that allow more flexible implementation and allow the proof of stronger and more
general (though usually not qualitatively different) convergence results.

1.1 Formulations

The problem considered in most of this paper is the following unconstrained mini-
mization problem:

min
x

f (x), (1)

where f : Rn → R is continuous. Different variants of CD make further assumptions
about f . Sometimes it is assumed to be smooth and convex, sometimes smooth and
possibly nonconvex, and sometimes smooth but with a restricted domain. (We will
make such assumptions clear in each discussion of algorithmic variants and conver-
gence results.)

Motivated by recent popular applications, it is common to consider the following
structured formulation:

min
x

h(x) := f (x) + λΩ(x), (2)

where f is smooth,Ω is a regularization function thatmaybenonsmooth and extended-
valued, andλ > 0 is a regularization parameter.Ω is often convex and usually assumed
to be separable or block-separable. When separable, Ω has the form

Ω(x) =
n∑

i=1

Ωi (xi ). (3)

where Ωi : R → R for all i . The best known examples of separability are the �1-
norm (in which Ω(x) = ‖x‖1 and hence Ωi (xi ) = |xi |) and box constraints (in
which Ωi (xi ) = I[li ,ui ](xi ) is the indicator function for the interval [li , ui ]). Block
separability means that the n × n identity matrix can be partitioned into column
submatrices Ui , i = 1, 2, . . . , N such that

Ω(x) =
N∑

i=1

Ωi

(
UT
i x

)
. (4)

Block-separable examples include group-sparse regularizers in which Ωi (zi ) :=
‖zi‖2. Formulations of the type (2), with separable or block-separable regularizers,
arise in such applications as compressed sensing, statistical variable selection, and
model selection.

The class of problems known as empirical risk minimization (ERM) gives rise to
a formulation that is particularly amenable to CD; see [51]. These problems have the
form

min
w∈Rd

1

n

n∑

i=1

φi

(
cTi w

)
+ λg(w), (5)
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6 S. J. Wright

for vectors ci ∈ R
d , i = 1, 2, . . . , n and convex functions φi , i = 1, 2, . . . , n and g.

We can express linear least-squares, logistic regression, support vector machines, and
other problems in this framework. Recalling the following definition of the conjugate
t∗ of a convex function t :

t∗(y) = sup
z

(
zT y − t (z)

)
, (6)

we can write the Fenchel dual [48, Section 31] of (5) as follows:

min
x∈Rn

1

n

n∑

i=1

φ∗
i (−xi ) + λg∗

(
1

λn
Cx

)
, (7)

where C is the d × n matrix whose columns are ci , i = 1, 2, . . . , n. The dual for-
mulation (7) is has special appeal as a target for CD, because of separability of the
summation term.

One interesting case is the system of linear equations

Aw = b, where A ∈ R
m×n, (8)

which we assume to be a feasible system. The least-norm solution is found by solving

min
w∈Rn

1

2
‖w‖22 subject to Aw = b, (9)

whose Lagrangian dual is

min
x∈Rm

f (x) := 1

2
‖AT x‖22 − bT x . (10)

(We recover the primal solution from (10) by setting w = AT x .) We can see that (10)
is a special case of the Fenchel dual (7) obtained from (5) if we set

C ← AT , g(w) = 1

2
‖w‖22, φi (ti ) = I{bi }(ti ), λ = 1/n,

where I{bi } denotes the indicator function for bi , which is zero at bi and infinite
elsewhere. (Its conjugate is I ∗{bi }(si ) = bi si .) The primal problem (9) can be restated
correspondingly as

min
w∈Rn

1

m

m∑

i=1

I{bi }(Aiw) + 1

n
‖w‖22,

where Ai denotes the i th row of the matrix A in (8), which has the form (5).
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Coordinate descent algorithms 7

1.2 Outline of coordinate descent algorithms

The basic CD framework for continuously differentiable minimization is shown in
Algorithm 1. Each step consists of evaluation of a single component ik of the gradient
∇ f at the current point, followed by adjustment of the ik component of x , in the
opposite direction to this gradient component. (Here and throughout, we use [∇ f (x)]i
to denote the i th component of the gradient∇ f (x).) There is much scope for variation
within this framework. The components can be selected in a cyclic fashion, in which
i0 = 1 and

ik+1 = [ik mod n] + 1, k = 0, 1, 2, . . . . (11)

They can be required to satisfy an “essentially cyclic” condition, in which for some
T ≥ n, each component is modified at least once in every stretch of T iterations, that
is,

∪T
j=0 {ik− j } = {1, 2, . . . , n}, for all k ≥ T . (12)

Alternatively, they can be selected randomly at each iteration (though not necessarily
with equal probability). Turning to steplength αk : wemay perform exact minimization
along the ik component, or choose a value of αk that satisfies traditional line-search
conditions (such as sufficient decrease), or make a predefined “short-step” choice of
αk based on prior knowledge of the properties of f .

Algorithm 1 Coordinate Descent for (1)
Set k ← 0 and choose x0 ∈ R

n ;
repeat

Choose index ik ∈ {1, 2, . . . , n};
xk+1 ← xk − αk [∇ f (xk )]ik eik for some αk > 0;
k ← k + 1;

until termination test satisfied;

The CD framework for the separable regularized problem (2), (3) is shown in Algo-
rithm2.At iteration k, a scalar subproblem is formed bymaking a linear approximation
to f along the ik coordinate direction at the current iterate xk , adding a quadratic damp-
ing term weighted by 1/αk (where αk plays the role of a steplength), and treating the
relevant regularization term Ωi explicitly. Note that when the regularizer Ωi is not
present, the step is identical to the one taken in Algorithm 1. For some interesting
choices of Ωi (for example Ωi (·) = | · |), it is possible to write down a closed-form
solution of the subproblem; no explicit search is needed. The operation of solving
such subproblems is often referred to as a “shrink operation,” which we denote by Sβ

and define as follows:

Sβ(τ ) := min
χ

1

2β
‖χ − τ‖22 + Ωi (χ). (13)
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8 S. J. Wright

By stating the subproblem in Algorithm 2 equivalently as

min
χ

1

2λαk

∥∥∥χ − (xkik − αk[∇ f (xk)]ik )
∥∥∥
2 + Ωi (χ),

we can express the CD update as zkik ← Sλαk (x
k
ik

− αk[∇ f (xk)]ik ).

Algorithm 2 Coordinate Descent for (2),(3)
Set k ← 0 and choose x0 ∈ R

n ;
repeat

Choose index ik ∈ {1, 2, . . . , n};
zkik

← argminχ (χ − xkik
)T [∇ f (xk )]ik + 1

2αk
‖χ − xkik

‖22 + λΩi (χ) for some αk > 0;

xk+1 ← xk + (zkik
− xkik

)eik ;
k ← k + 1;

until termination test satisfied;

Algorithms 1 and 2 can be extended to block-CD algorithms in a straightforward
way, by updating a block of coordinates (denoted by the column submatrix Uik of the
identity matrix) rather than a single coordinate. In Algorithm 2, it is assumed that the
choice of block is consistent with the block-separable structure of the regularization
function Ω , that is, Uik is a concatenation of several of the submatrices Ui in (4).

1.3 Application to linear equations

For the formulation (10) that arises from the linear system Aw = b, let us assume that
the rows of A are normalized, that is,

‖Ai‖2 = 1 for i = 1, 2, . . . ,m. (14)

Applying Algorithm 1 to (10) with αk ≡ 1, each step has the form

xk+1 ← xk −
(
Aik A

T xk − bik

)
eik . (15)

If we maintain and update the estimate wk of the solution to the primal problem (9)
after each update of xk , according to wk = AT xk , we obtain

wk+1 ← wk −
(
Aik A

T xk − bik

)
AT
ik = wk −

(
Aikw

k − bik

)
AT
ik , (16)

which is the update formula for the Kaczmarz algorithm [22]. Following this update,
we have using (14) that

Aikw
k+1 = Aikw

k −
(
Aikw

k − bik

)
= bik ,
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Coordinate descent algorithms 9

so that the ik equation in the system Aw = b is now satisfied. Thismethod if sometimes
known as the “method of successive projections” because it projects onto the feasible
hyperplane for a single constraint at every iteration.

1.4 Relationship to other methods

Stochastic gradient (SG) methods, also undergoing a revival of interest because of
their usefulness in data analysis andmachine learning applications, minimize a smooth
function f by taking a (negative) step along an estimate gk of the gradient ∇ f (xk)
at iteration k. It is often assumed that gk is an unbiased estimate of ∇ f (xk), that is,
∇ f (xk) = E(gk), where the expectation is taken over whatever random variables
were used in obtaining gk from the current iterate xk . Randomized CD algorithms can
be viewed as a special case of SG methods, in which gk = n[∇ f (xk)]ik eik , where
ik is chosen uniformly at random from {1, 2, . . . , n}. Here, ik is the random variable,
and we have

E(gk) = 1

n

n∑

i=1

n
[
∇ f (xk)

]

i
ei = ∇ f (xk),

certifying unbiasedness. However, CD algorithms have the advantage over general SG
methods that descent in f can be guaranteed at every iteration. Moreover, the variance
of the gradient estimate gk shrinks to zero as the iterates converge to a solution x∗,
since every component of ∇ f (x∗) is zero. By contrast, in general SG methods, the
gradient estimates gk may be nonzero even when xk is a solution.

The relationship between CD and SG methods can also be discerned from the
Fenchel dual pair (5) and (7). SG methods are quite popular for solving formulation
(5), where the estimate gk is obtained by taking a single term ik from the summation
and using ∇φik (c

T
ik
w)cik as the estimate of the gradient of the full summation. This

approach corresponds to applying CD to the dual (7), where the component ik of x is
selected for updating at iteration k. This relationship is typified by the Kaczmarz algo-
rithm for Aw = b, which can be derived either as CD applied to the dual formulation
(10) or as SG applied to the sum-of-squares problem

min
w

1

2
‖Aw − b‖22 = 1

2

m∑

i=1

(Aiw − bi )
2. (17)

CD is related in an obvious way to the Gauss–Seidel method for n × n systems of
linear equations,which adjusts the ik variable to ensure satisfactionof the ik equation, at
iteration k. (Successive over-relaxation (SOR) modifies this approach by scaling each
Gauss–Seidel step by a factor (1 + ω) for some constan ω ∈ [0, 1), chosen so as to
improve the convergence rate.) Standard Gauss–Seidel and SOR use the cyclic choice
of coordinates (11), whereas a random choice of ik would correspond to “randomized”
versions of these methods. To make the connections more explicit: The Gauss–Seidel
method applied to the normal equations for (8)—that is, AT Aw = AT b—is equivalent
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10 S. J. Wright

to applying Algorithm 1 to the least-squares problem (17), when the steplength αk is
chosen to minimize the objective exactly along the given coordinate direction. SOR
also corresponds to Algorithm 1, with αk chosen to be a factor (1 + ω) times the
exact minimum. These equivalences allow the results of Sect. 3 to be used to derive
convergence rates for Gauss–Seidel applied to the normal equations, including linear
convergencewhen AT A is nonsingular.Note that these results do not require feasibility
of the original Eq. (8).

2 Applications

We mention here several applications of CD methods to practical problems, some
dating back decades and others relatively new. Our list is necessarily incomplete, but
it attests to the popularity of CD in a wide variety of application communities.

Bouman and Sauer [7] discuss an application to positron emission tomography
(PET) in which the objective has the form (2) where f is smooth and convex and Ω

is a sum of terms of the form |x j − xl |q for some pairs of components ( j, l) of x and
some q ∈ [1, 2]. Ye et al. [56] apply a similar method to a different objective arising
from optical diffusion tomography.

Liu et al. [26] describe a block CD approach for linear least squares plus a regular-
ization function consisting of a sum of �∞ norms of subvectors of x . The technique is
applied to semantic basis discovery, which learns from data how to identify and clas-
sify the functional MRI response of a person’s brain when they hear certain English
words.

Canutescu and Dunbrack [11] describe a cyclic CDmethod for determining protein
structure, adjusting the dihedral angles in a protein chain so that the atom at the end
of the chain comes close to a specified position in space.

Florian and Chen [17] recover origin-destination matrices from observed traffic
flows by alternately solving a bilevel optimization problem over two blocks of vari-
ables: the origin-destination demands and the proportion of each origin-destination
flow assigned to each arc in the network.

Breheny and Huang [10] discuss CD for linear and logistic regression with non-
convex separable regularization terms, reporting results for genetic association and
gene expression studies. The SparseNet algorithm [33] applied to problems with these
same nonconvex separable regularizers uses warm-started cyclic CD as an inner loop
to solve a sequence of problems in which the regularization parameter λ in (2) and the
parameters defining concavity of the regularization functions are varied.

Friedman et al. [18] propose a block CD algorithm for estimating a sparse inverse
covariance matrix, given a sample covariance matrix S and taking the variable in
their formulation to be a modification W of S, such that W−1 is sparse. The resulting
“graphical lasso” algorithm cycles through the rows/columns of W (in the style of
block CD), solving a standard lasso problem to calculate each update. The same
authors [19] apply CD to generalized linear models such as linear least squares and
logistic regression, with convex regularization terms. Their framework include such
formulations as lasso, graphical lasso, elastic net, and the Dantzig selector, and is
implemented in the package glmnet.
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Coordinate descent algorithms 11

Chang et al. [12] use cyclic and stochastic CD to solve a squared-loss formulation
of the support vector machine (SVM) problem in machine learning, that is,

min
w

m∑

i=1

max
(
1 − yi x

T
i w, 0

)2 + λ

2
wTw. (18)

where (xi , yi ) ∈ R
N × {0, 1} are feature vector/label pairs and λ is a regularization

parameter. This problem is an important instance of the ERM form (5). In the best
known early application of CD to SVM, Platt [41] deals with a hinge-loss formula-
tion of SVM, which is identical to (18) except that the square on each term of the
summation is omitted. The dual of this problem has bounds on its variables along
with a single linear constraint. Platt’s procedure SMO (for “sequential minimal opti-
mization”), applied to the dual, changes two variables at a time, with the variable pair
chosen according to a “greedy” criterion and the search direction chosen to maintain
feasibility of the linear constraint.

Sardy et al. [49] consider the basis-pursuit formulation of wavelet denoising:

min
x

1

2
‖Φx − y‖22 + λ‖x‖1.

This formulation is equivalent to the well known lasso of Tibshirani [53] and has
become famous because of its applicability to sparse recovery and compressed sensing.
Although this formulation fits the ERM framework (5) and could thus be dualized
before applying CD, the approach of [49] applies block CD directly to the primal
formulation.

Applications of block CD approaches to transceiver design for cellular networks
and to tensor factorization are discussed in Razaviyayn [44, Section 8].

Finally, we mention several popular problem classes and algorithms that can be
interpreted as CD algorithms, but for which such an interpretation may not be partic-
ularly helpful in understanding the performance of the algorithm. First, we consider
low-rank matrix completion problems in which we are presented with limited infor-
mation about a rectangular matrix M ∈ R

m×n and seek matrices U ∈ R
n×r and

V ∈ R
m×r (with r small) such that UV T is consistent with the observations of M .

When the observations satisfy a restricted isometry property (an assumption commonly
made in compressed sensing; see [45, Definition 3.1] for a definition that applies to
matrix completion), the block CD approach of Jain et al. [21, Algorithm 1] converges
to a solution. This approach defines the objective to be the least-squares fit between
the observations and their predicted values according to the productUV T—a function
that is nonconvex with respect to (U, V )—and minimizes alternately over U and V ,
respectively. Standard analysis of CD for nonconvex functions would yield at best sta-
tionarity of accumulation points, but much stronger results are attained in [21] because
of special assumptions that are made on the problem in this paper.

Second, we consider the “alternating-direction method of multipliers” (ADMM)
[8,13], which has gained great currency in the past few years because of its usefulness
in solving regularized problems in statistics and machine learning, and in design-
ing parallel algorithms. Each major iteration of ADMM consists of an (approximate)
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12 S. J. Wright

minimization of the augmented Lagrangian function for a constrained optimization
problem over each block of primal variables in turn, followed by an update to the
Lagrange multiplier estimates. It might seem appealing to do multiple cycles of updat-
ing the primal variable blocks, in the manner of cyclic block CD, thus finding a better
approximation to the solution of each subproblem over all primal variables and mov-
ing the method closer to the standard augmented Lagrangian approach. Eckstein and
Yao [14] show, however, that this “approximate augmented Lagrangian” approach has
a fundamentally different theoretical interpretation fromADMM, and a computational
comparison between the two approaches [14, Section 5] appears to show an advantage
for ADMM.

3 Coordinate descent: algorithms, convergence, implementations

We now describe the most important variants of CD and present their convergence
properties, including the proofs of some fundamental results. We also discuss the
implementation of accelerated CD methods for problems of the form (7) and for the
Kaczmarz algorithm for Aw = b. As mentioned in the introduction, we deal with
the most elementary framework possible, to expose the essential properties of the
methods.

3.1 Powell’s example

We start with a simple but intriguing example due to Powell [43, formula (2)] of
a function in R

3 for which cyclic CD fails to converge to a stationary point. The
nonconvex, continuously differentiable function f : R3 → R is defined as follows:

f (x1, x2, x3) = −(x1x2 + x2x3 + x1x3) +
3∑

i=1

(|xi | − 1)2+. (19)

It has minimizers at the corners (1, 1, 1)T and (−1,−1,−1)T of the unit cube, but
CD with exact minimization, started near (but just outside of) one of the other vertices
of the cube cycles around the neighborhoods of six points that are close to the six
non-optimal vertices (Fig. 1). Powell shows that the cyclic nonconvergence behavior
is rather special and is destroyed by small perturbations on this particular example, and
we can note that a randomized CD method applied to this example would be expected
to converge to the vicinity of a solution within a few steps. Still, this example and
others in [43] make it clear that we cannot expect a general convergence result for
nonconvex functions, of the type that are available for full-gradient descent. Results
are available for the nonconvex case under certain additional assumptions that still
admit interesting applications. Bertsekas [4, Proposition 2.7.1] describes convergence
of a cyclic approach applied to nonconvex problems, under the assumption that the
minimizer along any coordinate direction from any point x is unique. More recent
work [1,6] focuses onCDwith two blocks of variables, applied to functions that satisfy
the so-called Kurdyka-Łojasiewicz (KL) property, such as semi-algebraic functions.
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Coordinate descent algorithms 13

Fig. 1 Example of Powell [43] showing nonconvergence of cyclic CD

Convergence of subsequences or the full sequence {xk} to stationary points can be
proved in this setting.

3.2 Assumptions and notation

For most of this section, we focus on the unconstrained problem (1), where the objec-
tive f is convex and Lipschitz continuously differentiable. In some places, we assume
strong convexity with respect to the Euclidean norm, that is, existence of a modulus
of convexity σ > 0 such that

f (y) ≥ f (x) + ∇ f (x)T (y − x) + σ

2
‖y − x‖22, for all x, y. (20)

(Henceforth,weuse‖·‖ to denote theEuclideannorm‖·‖2, unless otherwise specified.)
We define Lipschitz constants that are tied to the component directions, and are key
to the algorithms and their analysis. The first set of such constants are the component
Lipschitz constants, which are positive quantities Li such that for all x ∈ R

n and all

123



14 S. J. Wright

t ∈ R we have
|[∇ f (x + tei )]i − [∇ f (x)]i | ≤ Li |t |, (21)

We define the coordinate Lipschitz constant Lmax to be such that

Lmax = max
i=1,2,...,n

Li . (22)

The standard Lipschitz constant L is such that

‖∇ f (x + d) − ∇ f (x)‖ ≤ L‖d‖, (23)

for all x and d of interest. By referring to relationships between norm and trace of a
symmetricmatrix, we can assume that 1 ≤ L/Lmax ≤ n. (The upper bound is achieved
when f (x) = e(eT x), for e = (1, 1, . . . , 1)T .) We also define the restricted Lipschitz
constant L res such that the following property is true for all x ∈ R

n , all t ∈ R, and all
i = 1, 2, . . . , n:

‖∇ f (x + tei ) − ∇ f (x)‖ ≤ L res|t |. (24)

Clearly, L res ≤ L . The ratio
Λ := L res/Lmax (25)

is important in our analysis of asynchronous parallel algorithms inSect. 4. In the case of
f convex and twice continuously differentiable, we have by positive semidefiniteness
of the ∇2 f (x) at all x that

|[∇2 f (x)]i j | ≤
(
[∇2 f (x)]i i [∇2 f (x)] j j

)1/2
,

from which we can deduce that

1 ≤ Λ ≤ √
n.

However, we can derive stronger bounds on Λ for functions f in which the coupling
between components of x is weak. In the extreme case inwhich f is separable, we have
Λ = 1. The coordinate Lipschitz constant corresponds Lmax to the maximal absolute
value of the diagonal elements of the Hessian ∇2 f (x), while the restricted Lipschitz
constant L res is related to the maximal column norm of the Hessian. Therefore, if the
Hessian is positive semidefinite and diagonally dominant, the ratio Λ is at most 2.

The following assumption is useful in the remainder of the paper.

Assumption 1 The function f in (1) is convex and uniformly Lipschitz continuously
differentiable, and attains its minimum value f ∗ on a set S . There is a finite R0 such
that the level set for f defined by x0 is bounded, that is,

max
x∗∈S

max
x

{‖x − x∗‖ : f (x) ≤ f (x0)} ≤ R0. (26)
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Coordinate descent algorithms 15

3.3 Randomized algorithms

In randomized CD algorithms, the update component ik is chosen randomly at each
iteration. In Algorithm 3 we consider the simplest variant in which each ik is selected
from {1, 2, . . . , n} with equal probability, independently of the selections made at
previous iterations. (We can think of this scheme as “sampling with replacement”
from the set {1, 2, . . . , n}.)

Algorithm 3 Randomized CD for (1)
Choose x0 ∈ R

n ;
Set k ← 0;
repeat

Choose index ik with uniform probability from {1, 2, . . . , n}, independently of choices at prior itera-
tions;

Set xk+1 ← xk − αk [∇ f (xk )]ik eik for some αk > 0;
k ← k + 1;

until termination test satisfied;

We denote expectation with respect to a single random index ik by Eik (·), while
E(·) denotes expectation with respect to all random variables i0, i1, i2, . . ..

We prove a convergence result for the randomized algorithm, for the simple
steplength choice αk ≡ 1/Lmax. (The proof is a simplified version of the analysis
in Nesterov [37, Section 2]. A result similar to (27) is proved by Shalev-Schwartz and
Tewari [50] for certain types of �1-regularized problems.)

Theorem 1 Suppose that Assumption 1 holds. Suppose that αk ≡ 1/Lmax in Algo-
rithm 3. Then for all k > 0 we have

E( f (xk)) − f ∗ ≤ 2nLmaxR2
0

k
. (27)

When σ > 0 in (20), we have in addition that

E
(
f (xk)

)
− f ∗ ≤

(
1 − σ

nLmax

)k

( f (x0) − f ∗). (28)

Proof By application of Taylor’s theorem, and using (21) and (22), we have

f (xk+1) = f

(
xk − αk

[
∇ f (xk)

]

ik
eik

)

≤ f (xk) − αk

[
∇ f (xk)

]2
ik

+ 1

2
α2
k Lik

[
∇ f (xk)

]2
ik

≤ f (xk) − αk

(
1 − Lmax

2
αk

) [
∇ f (xk)

]2
ik

= f (xk) − 1

2Lmax

[
∇ f (xk)

]2
ik

, (29)
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16 S. J. Wright

where we substituted the choice αk = 1/Lmax in the last equality. Taking the expec-
tation of both sides of this expression over the random index ik , we have

Eik f (x
k+1) ≤ f (xk) − 1

2Lmax

1

n

m∑

i=1

[
∇ f (xk)

]2
i

= f (xk) − 1

2nLmax
‖∇ f (xk)‖2. (30)

(We used here the facts that xk does not depend on ik , and that ik was chosen from
among {1, 2, . . . , n} with equal probability.) We now subtract f (x∗) from both sides
this expression, take expectation of both sides with respect to all random variables
i0, i1, . . ., and use the notation

φk := E( f (xk)) − f ∗. (31)

to obtain

φk+1 ≤ φk − 1

2nLmax
E

(
‖∇ f (xk)‖2

)
≤ φk − 1

2nLmax

[
E(‖∇ f (xk)‖)

]2
. (32)

(We used Jensen’s Inequality in the second inequality.) By convexity of f we have for
any x∗ ∈ S that

f (xk) − f ∗ ≤ ∇ f (xk)T (xk − x∗) ≤ ‖∇ f (xk)‖‖xk − x∗‖ ≤ R0‖∇ f (xk)‖,

where the final inequality is because f (xk) ≤ f (x0), so that xk is in the level set in
(26). By taking expectations of both sides, we obtain

E(‖∇ f (xk)‖) ≥ 1

R0
φk .

When we substitute this bound into (32), and rearrange, we obtain

φk − φk+1 ≥ 1

2nLmax

1

R2
0

φ2
k .

We thus have

1

φk+1
− 1

φk
= φk − φk+1

φkφk+1
≥ φk − φk+1

φ2
k

≥ 1

2nLmaxR2
0

.

By applying this formula recursively, we obtain

1

φk
≥ 1

φ0
+ k

2nLmaxR2
0

≥ k

2nLmaxR2
0

,

so that (27) holds, as claimed.
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Coordinate descent algorithms 17

In the case of f strongly convex with modulus σ > 0, we have by taking the
minimum of both sides with respect to y in (20), and setting x = xk , that

f ∗ ≥ f (xk) − 1

2σ
‖∇ f (xk)‖2.

By using this expression to bound ‖∇ f (xk)‖2 in (32), we obtain

φk+1 ≤ φk − σ

nLmax
φk =

(
1 − σ

nLmax

)
φk .

Recursive application of this formula leads to (28).

Note that the same convergence expressions can be obtained for more refined
choices of steplength αk , by making minor adjustments to the logic in (29). For exam-
ple, the choice αk = 1/Lik leads to the same bounds (27) and (28). The same bounds
hold too when αk is the exact minimizer of f along the coordinate search direction; we
modify the logic in (29) for this case by taking the minimum of all expressions with
respect to αk , and use the fact that αk = 1/Lmax is in general a suboptimal choice.

We can compare (27) with the corresponding result for full-gradient descent with
constant steplength αk = 1/L [where L is from (23)]. The iteration

xk+1 = xk − 1

L
∇ f (xk)

leads to a convergence expression

f (xk) − f ∗ ≤ 2LR2
0

k
(33)

(see, for example, [36]). Since, as we have noted, L can be as large as nLmax, the bound
in this expression may be equivalent to (27) in extreme cases. More typically, these
two Lipschitz constants are comparable in size, and the appearance of the additional
factor n in (27) indicates that we pay a price in terms of slower convergence for using
only one component of ∇ f (xk), rather than the full vector.

Expected linear convergence rates have been proved under assumptions weaker
than strong convexity; see for example the “essential strong convexity” property of
[28], the “optimal strong convexity” property of [27], the “generalized error bound”
property of [34], and [55, Assumption 2], which concerns linear growth in a measure
of the gradient with distance from the solution set.

A variant on Algorithm 3 uses “sampling without replacement.” Here the compu-
tation proceeds in “epochs” of n consecutive iterations. At the start of each epoch, the
set {1, 2, . . . , n} is shuffled. The iterations then proceed by setting ik to each entry
in turn from the ordered set. This kind of randomization has been shown in several
contexts to be superior to the sampling-with-replacement scheme analyzed above, but
a theoretical understanding of this phenomenon remains elusive.
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18 S. J. Wright

3.3.1 Randomized Kaczmarz Algorithm

It is worth proving an expected linear convergence result for the Kaczmarz iteration
(16) for linear equations Aw = b as a separate,more elementary analysis. In one sense,
the result is a special case of Theorem 1 since, as we showed above, the iteration (16)
is obtained by applying Algorithm 3 to the dual formulation (10). In another sense,
the result is stronger, since we obtain a linear rate of convergence without requiring
strong convexity of the objective (10), that is, the system Aw = b is allowed to have
multiple solutions.

We denote by λmin,nz the minimum nonzero eigenvalue of AAT and let P(·) denote
projection onto the solution set of Aw = b. We have

‖wk+1 − P(wk+1)‖2 ≤ ‖wk − AT
ik (Aikw

k − bik ) − P(wk)‖2

= 1

2
‖wk − P(wk)‖2 − (Aikw

k − bik )
2,

where we have used normalization of the rows (14) and the fact that Aik P(xk) = bik .
By taking expectations of both sides with respect to ik , we have

Eik‖wk+1 − P(wk+1)‖2 ≤ ‖wk − P(wk)‖2 − Eik (Aikw
k − bik )

2

= 1

2
‖wk − P(wk)‖2 − 1

m
‖Awk − b‖2

≤
(
1 − λmin,nz

m

)
‖wk − P(wk)‖2.

By taking expectations of both sides with respect to all random variables i0, i1, . . .,
and proceeding recursively, we obtain

E‖wk − P(wk)‖2 ≤
(
1 − λmin,nz

m

)k

‖w0 − P(w0)‖2.

(This analysis is slightly generalized from Strohmer and Vershynin [52] to allow for
nonunique solutions of Aw = b; see also [24].)

3.4 Accelerated randomized algorithms

The accelerated randomized algorithm, specified here asAlgorithm4,was proposed by
Nesterov [37]. It assumes that an estimate is available of modulus of strong convexity
σ ≥ 0 from (20), as well as estimates of the component-wise Lipschitz constants Li

from (21). (The algorithm remains valid if we simply use Lmax in place of Lik for
all k.)

The approach is a close relative of the accelerated (full-)gradient methods that have
become extremely popular in recent years. These methods have their origin in a 1983
paper of Nesterov [35] and owe much of their recent popularity to a recent incarnation
known as FISTA [2] and an exposition in Nesterov’s 2004 monograph [36], as well
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Coordinate descent algorithms 19

Algorithm 4 Accelerated Randomized CD for (1)
Choose x0 ∈ R

n ;
Set k ← 0, v0 ← x0, γ−1 ← 0;
repeat

Choose γk to be the larger root of

γ 2
k − γk

n
=

(
1 − γkσ

n

)
γ 2
k−1.

Set

αk ← n − γkσ

γk (n2 − σ)
, βk ← 1 − γkσ

n
; (34)

Set yk ← αkv
k + (1 − αk )x

k ;
Choose index ik ∈ {1, 2, . . . , n} with uniform probability and set dk = [∇ f (yk )]ik eik ;
Set xk+1 ← yk − (1/Lik )d

k ;

Set vk+1 ← βkv
k + (1 − βk )yk − (γk/Lik )d

k ;
k ← k + 1;

until termination test satisfied;

as ease of implementation and good practical experience. In their use of momentum
in the choice of step—the search direction combines new gradient information with
the previous search direction—these methods are also related to such other classical
techniques as the heavy-ball method (see [42]) and conjugate gradient methods.

Nesterov [37, Theorem 6] proves the following convergence result for Algorithm 4.

Theorem 2 Suppose that Assumption 1 holds, and define

S0 := sup
x∗∈S

Lmax‖x0 − x∗‖2 +
(
f (x0) − f ∗)/n2.

Then for all k ≥ 0 we have

E( f (xk)) − f ∗

≤ S0
σ

Lmax

[(
1 +

√
σ/Lmax

2n

)k+1

−
(
1 −

√
σ/Lmax

2n

)k+1
]−2

(35)

≤ S0

(
n

k + 1

)2

. (36)

In the strongly convex case σ > 0, the term (1 + √
σ/Lmax/(2n))k+1 eventually

dominates the second term in brackets in (35), so that the linear convergence rate
suggested by this expression is significantly faster than the corresponding rate (28) for
Algorithm 3. Essentially, the measure σ/Lmax of conditioning in (28) is replaced by
its square root in (35), suggesting a decrease by a factor of

√
Lmax/σ in the number of

iterations required to meet a specified error tolerance. In the sublinear rate bound (36),
which holds even for weakly convex f , the 1/k bound of (27) is replaced by a 1/k2
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20 S. J. Wright

factor, implying a reduction from O(1/ε) to O(1/
√

ε) in the number of iterations
required to meet a specified error tolerance.

3.5 Efficient implementation of the accelerated algorithm

One fact detracts from the appeal of accelerated CD methods over standard methods:
the higher cost of each iteration of Algorithm 5. Both standard and accelerated variants
require calculation of one element of the gradient, but Algorithm 3 requires an update
of just a single component of x , whereas Algorithm 4 also requires manipulation
of the generally dense vectors y and v. Moreover, the gradient is evaluated at xk in
Algorithm 3, where the argument changes by only one component from the prior
iteration, a fact that can be exploited in several contexts. In Algorithm 4, the argument
yk for the gradient changes more extensively from one iteration to the next, making
it less obvious whether such economies are available. However, by using a change
of variables due to Lee and Sidford [23], it is possible to implement the accelerated
randomized CD approach efficiently for problems with certain structure, including the
linear system Aw = b and certain problems of the form (5).

Algorithm 5 Accelerated Randomized Kaczmarz for (8), (14)
Choose w0 ∈ R

n ;
Set k ← 0, ṽ0 ← w0, γ−1 ← 0;
repeat

Choose γk to be the larger root of

γ 2
k − γk

n
=

(
1 − γkσ

n

)
γ 2
k−1.

Set

αk ← n − γkσ

γk (n2 − σ)
, βk ← 1 − γkσ

n
; (37)

Set ỹk ← αk ṽ
k + (1 − αk )w

k ;
Choose index ik ∈ {1, 2, . . . ,m} with uniform probability and set d̃k = (Aik ỹ

k − bik )A
T
ik
;

Set wk+1 ← ỹk − d̃k ;
Set ṽk+1 ← βk ṽ

k + (1 − βk )ỹk − γk d̃
k ;

k ← k + 1;
until termination test satisfied;

We explain the Lee-Sidford technique in the context of the Kaczmarz algorithm
for (8), assuming normalization of the rows of A (14). As we explained in (16),
the Kaczmarz algorithm is obtained by applying CD to the dual formulation (10) with
variables x , but operating in the space of “primal” variablesw using the transformation
w = AT x . If we apply the transformations ṽk = AT vk and ỹk = AT yk to the other
vectors in Algorithm 4, and use the fact of normalization (14) (and hence (AAT )i i = 1
for all i = 1, 2, . . . ,m) to note that Li ≡ 1 in (21), we obtain Algorithm 5.

When the matrix A is dense, there is only a small factor of difference between the
per-iteration workload of the standard Kaczmarz algorithm and its accelerated variant,
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Coordinate descent algorithms 21

Algorithm 5. Both require O(m + n) operations per iteration. However, when A is
sparse, the computational difference between the two algorithms becomes substantial.
At iteration k, the standard Kaczmarz algorithm requires computation proportion to
a small multiple of the number of nonzeros in row Aik (which we denote by |Aik |).
Meanwhile, iteration k of Algorithm 5 requires manipulation of the dense vectors ṽk

and ỹk—both O(n) processes—and the benefits of sparsity are lost. This apparent
defect was partly remedied in [29] by “caching” the updates to these vectors, resulting
in a number of cycles within which updates gradually “fill in.” The more effective
approach of [23] performs a change of variables from ṽk and ỹk to two other vectors
v̂k and ŷk that can be updated in O(|Aik |) operations. To describe this representation,
we start by noting that if we substitute forwk andwk+1 in the formulas of Algorithm 5,
we obtain the updates to ṽk and ỹk in the following form:

[
ṽk+1 ỹk+1

] = [
ṽk ỹk

]
Rk − Sk, (38)

where

Rk :=
[

βk αk+1βk

(1 − βk) (1 − αk+1βk)

]
,

Sk :=
(
Aik ỹ

k − bik

)
AT
ik

[
γk (1 − αk+1 + αk+1γk)

]
.

Note that Rk is a 2× 2 matrix while Sk is an n × 2 matrix with nonzeros only in those
rows for which AT

ik
has a nonzero entry. We define a change of variables based on

another 2 × 2 matrix Bk , as follows:

[
ṽk ỹk

] = [
v̂k ŷk

]
Bk, (39)

where we initialize with B0 = I . By substituting this representation into (38), we
obtain

[
v̂k+1 ŷk+1

]
Bk+1 = [

v̂k ŷk
]
Bk Rk − Sk,

so we can maintain validity of the representation (39) at iteration k + 1 by setting

Bk+1 := Bk Rk,
[
v̂k+1 ŷk+1

] := [
v̂k ŷk

] − Sk B
−1
k+1. (40)

The computations in (40) can be performed in O(|Aik |) operations, and can replace
the relatively expensive computations of ỹk and ṽk+1 in Algorithm 5. The only other
operation of note in this algorithm—computation of Aik ỹ

k − bik—can also be per-
formed in O(|Aik |) operations using the (v̂k, ŷk) representation, by noting from (39)
that

Aik ỹ
k = (Aik v̂

k)(Bk)12 + (Aik ŷ
k)(Bk)22.

This efficient implementation can be extended to the dual empirical risk mini-
mization problem (7) for certain choices of regularization function g(·), for example,
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g(z) = ‖z‖2/2; see [25]. As pointed out in [23], the key requirement for the efficient
scheme is that the gradient term [∇ f (yk)]ik can be evaluated efficiently after an update
to the two vectors in the alternative representation of yk , and to the two coefficients in
this representation. Another variant of this implementation technique appears in [16,
Section 5].

3.6 Cyclic variants

We have the following result from [3] for the cyclic variant of Algorithm 1.

Theorem 3 Suppose that Assumption 1 holds. Suppose that αk ≡ 1/Lmax in Algo-
rithm 1, with the index ik at iteration k chosen according to the cyclic ordering (11)
(with i0 = 1). Then for k = n, 2n, 3n, . . ., we have

f (xk) − f ∗ ≤ 4nLmax(1 + nL2/L2
max)R

2
0

k + 8
. (41)

When σ > 0 in the strong convexity condition (20), we have in addition for k =
n, 2n, 3n, . . . that

f (xk) − f ∗ ≤
(
1 − σ

2Lmax(1 + nL2/L2
max)

)k/n (
f (x0) − f ∗) . (42)

Proof The result (41) follows from Theorems 3.6 and 3.9 in [3] when we note that (i)
each iteration of Algorithm BCGD in [3] corresponds to a “cycle” of n iterations in
Algorithm 1; (ii) we update coordinates rather than blocks, so that the parameter p in
[3] is equal to n; (iii) we set L̄max and L̄min in [3] both to Lmax.

Comparing the complexity bounds for the cyclic variant with the corresponding
bounds proved in Theorem 1 for the randomized variant, we see that since L ≥ Lmax
in general, the numerator in (41) is O(n2), in contrast to O(n) term in (27). A similar
factor of n in seen in comparing (28) to (42), when we note that (1− ε)1/n ≈ 1− ε/n
for small values of ε. The bounds in Theorem 3 are deterministic, however, rather than
being bounds on expected nonoptimality, as in Theorem 1.

We noted in Sect. 3.2 that the ratio L/Lmax lies in the interval [1, n] when f is
a convex quadratic function and both parameters are set to their best values. Lower
values of this ratio are attained on functions that are “more decoupled” and larger values
attained when there is a greater dependence between the coordinates. Larger values
lead to weaker bounds in Theorem 3, which accords with our intuition; we expect CD
methods to require more iterations to resolve the coupling of the coordinates.

We are free to make other, larger choices of Lmax; they need only satisfy the con-
ditions (21) and (22). Larger values of Lmax lead to shorter steps αk = 1/Lmax and
different complexity expressions. For Lmax = L , for example, the bound in (41)
becomes

4n(n + 1)LR2
0

k + 8
,
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which is worse by a factor of approximately 2n2 than the bound (33) for the full-step
gradient descent approach. For Lmax = √

nL , we obtain

8n3/2LR2
0

k + 8
,

which still trails (33) by a factor of 4n3/2.

3.7 Extension to separable regularized case

In this section we consider the separable regularized formulation (2), (3) where f is
smooth and strongly convex, and eachΩi , i = 1, 2, . . . , n is convex.We prove a result
similar to the second part of Theorem 1 for a randomized version of Algorithm 2. The
proof is a simplified version of the analysis from [47]. It makes use of the following
assumption.

Assumption 2 The function f in (2) is uniformly Lipschitz continuously differen-
tiable and strongly convex with modulus σ > 0 [see (20)]. The functions Ωi , i =
1, 2, . . . , n are convex. The function h in (2) attains its minimum value h∗ at a unique
point x∗.

Our result uses the coordinate Lipschitz constant Lmax for f , as defined in (22).
Note that the modulus of convexity σ for f is also the modulus of convexity for h. By
elementary results for convex functions, we have

h(αx + (1 − α)y) ≤ αh(x) + (1 − α)h(y) − 1

2
σα(1 − α)‖x − y‖2. (43)

Theorem 4 Suppose that Assumption 2 holds. Suppose that the indices ik in
Algorithm 2 are chosen independently for each k with uniform probability from
{1, 2, . . . , n}, and that αk ≡ 1/Lmax. Then for all k ≥ 0, we have

E
(
h(xk)

)
− h∗ ≤

(
1 − σ

nLmax

)k (
h(x0) − h∗) . (44)

Proof Define the function

H
(
xk, z

)
:= f

(
xk

)
+ ∇ f

(
xk

)T (
z − xk

)
+ 1

2
Lmax‖z − xk‖2 + λΩ(z),

and note that this function is separable in the components of z, and attains its minimum
over z at the vector zk whose ik component is defined in Algorithm 2. Note by strong
convexity (20) that

H
(
xk, z

)
≤ f (z) − 1

2
σ‖z − xk‖2 + 1

2
Lmax‖z − xk‖2 + λΩ(z)

= h(z) + 1

2
(Lmax − σ)‖z − xk‖2. (45)
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We have by minimizing both sides over z in this expression that

H
(
xk, zk

)
= min

z
H

(
xk, z

)

≤ min
z

h(z) + 1

2
(Lmax − σ)‖z − xk‖2

≤ min
α∈[0,1] h

(
αx∗ + (1 − α)xk

)
+ 1

2
(Lmax − σ)α2‖xk − x∗‖2

≤ min
α∈[0,1] αh∗

+ (1 − α)h(xk) + 1

2

[
(Lmax − σ)α2 − σα(1 − α)

]
‖xk − x∗‖2

≤ σ

Lmax
h∗ +

(
1 − σ

Lmax

)
h(xk), (46)

where we used (45) for the first inequality, (43) for the third inequality, and the par-
ticular value α = σ/Lmax for the fourth inequality (for which value the coefficient
of ‖xk − x∗‖2 vanishes). Taking the expected value of h(xk+1) over the index ik , we
have

Eik h
(
xk+1

)
= 1

n

n∑

i=1

⎡

⎣ f (xk + (zki − xki )ei ) + λΩi (z
k
i ) + λ

∑

j �=i

Ω j (x
k
j )

⎤

⎦

≤ 1

n

n∑

i=1

⎧
⎨

⎩ f (xk) + [∇ f (xk)]i (zki − xki ) + 1

2
Lmax(z

k
i − xki )

2

+λΩi (z
k
i ) + λ

∑

j �=i

Ω j (x
k
j )

⎫
⎬

⎭

= n − 1

n
h(xk) + 1

n

[
f (xk) + ∇ f (xk)T (zk − xk)

+ 1

2
Lmax‖zk − xk‖2 + λΩ(zk)

]

= n − 1

n
h(xk) + 1

n
H

(
xk, zk

)
.

By subtracting h∗ from both sides of this expression, and using (46) to substitute for
H(xk, zk), we obtain

Eik h
(
xk+1

)
− h∗ ≤

(
1 − σ

nLmax

) (
h(xk) − h∗) .
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By taking expectations of both sides of this expression with respect to the random
indices i0, i1, i2, . . . , ik−1, we obtain

E
(
h(xk+1)

)
− h∗ ≤

(
1 − σ

nLmax

) (
E(h(xk)) − h∗) .

The result follows from a recursive application of this formula.

A result similar to (27) can be proved for the case in which f is convex but not
strongly convex, but there are a few technical complications, and we refer the reader
to [47] for details.

An extension of the fixed-step approach to separable composite objectives (2), (3)
with nonconvex smooth part f is discussed in [40], where it is shown that accumulation
points of the sequence of iterates are stationary and that a measure of optimality
decreases to zero at a sublinear (1/k) rate.

3.8 Computational notes

A full computational comparison between variants of CD (and between CD and other
methods) is beyond the scope of this paper. Nevertheless it is worth asking whether
various aspects of the convergence analysis presented above—in particular, the dis-
tinction between CD variants—can be observed in practice. To this end, we used these
methods to minimize a convex quadratic f (x) = (1/2)xT Qx (with Q symmetric and
positive semidefinite) for which x∗ = 0 and f ∗ = 0. We constructed Q by choosing
an integer r from 1, 2, . . . , n and parameters η ∈ [0, 1] and ζ > 0, and defining

Q := Vr,η�V T
r,η + ζ11T , (47a)

Vr,η := ηV + (1 − η)Er , (47b)

Er := [
Ir×r | 0r×(n−r)

]T
. (47c)

where V ∈ R
n×r is a random matrix with r ≤ n orthogonal columns, � is an r × r

positive diagonal matrix whose diagonal elements were chosen from a log-uniform
distribution to have a specified condition number (with maximum diagonal of 1), and
1 is the vector (1, 1, . . . , 1)T . For convenience, we normalized Q so that its maximum
diagonal—and thus Lmax (22)—is 1.

By choosing η and ζ appropriately, we can obtain a range of values for the quantities
described in Sect. 3.2, which enter along with the smallest singular value into the con-
vergence expression. For example, by setting ζ = 0 and η = 0 we obtain a randomly
oriented matrix, possibly singular, with a specified range of nonzero eigenvalues.
Nonzero values of η and ζ induce different types of orientation bias. In particular, we
see thatΛ (25) increases toward its upper bound of

√
n as ζ increases away from zero.

We tested three CD variants.

– CYCLIC: Cyclic CD, described in Sect. 3.6.
– IID: Randomized CD using sampling with replacement: Algorithm 3.
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– EPOCHS: The “sampling without replacement” variant of Algorithm 3, described
following the proof of Theorem 1.

For each variant, we tried both a fixed steplength αk ≡ 1/Lmax and the optimal
steplength αk = 1/Qik ,ik . Thus, there were a total of six algorithmic variants tested.

The starting point x0 was chosen randomly, with all components from the unit
normal distribution N (0, 1). The algorithms were terminated when the objective was
reduced by a factor of 10−6 over its initial value f (x0).

The speed of convergence varied widely according to the problem construction
parameters η, λ, and cond(�), but we can make some general observations. First, on
problems that are not well conditioned, the function values f (xk) decreased rapidly at
first, then settled into a linear rate of decrease. This linear rate held even for problems
inwhich Q was singular—a significant improvement over the sublinear rates predicted
by the theory. Second, the EPOCHS variant of randomized CD tended to converge
faster than the IID version, though rarely more than twice as fast. Third, the use of
the optimal step was usually better than the fixed step (with sometimes up to six times
fewer iterations), but this was by no means always the case. Fourth, while there were
extensive regimes of parameter values in which all six variants performed similarly,
there were numerous “stressed” settings in which the CYCLIC variants are much
slower than the randomized variants, by factors of 10 or more.

4 Parallel CD algorithms

CDmethods lend themselves to different kinds of parallel implementation. Even basic
algorithm frameworks such as Algorithm 1 may be amenable to application-specific
parallelism, when the computations involved in evaluating a single element of the
gradient vector are substantial enough to be spread out across cores of a multicore
computer. We concern ourselves here with more generic forms of parallelism, which
involve multiple instances of the basic CD algorithm, running in parallel on multiple
processors.

We can distinguish different types of parallel CD algorithms. Synchronous algo-
rithms are those that partition the computation into pieces that can be executed in
parallel on multiple processors (or cores of a multicore machine), but that synchronize
frequently across all processors, to ensure consistency of the information available to
all processors at certain points in time. For example, each processor could update a
subset of components of x in parallel (with the subsets being disjoint), and the synchro-
nization step could ensure that the results of all updates are shared across all processors
before further computation occurs. The synchronization step often detracts from the
performance of algorithms, not only because some processors may be forced to idle
while others complete their work, but also because the overheads associated with
(hardware and software) locking of memory accesses can be high. Thus, asynchro-
nous methods, which weaken or eliminate the requirement of consistent information
across processors, are preferred in practice. Analysis of suchmethods is more difficult,
but results have been obtained that accord with practical experience of such methods.
Indeed, it can be verified that in certain regimes, linear speedup can be expected across
a modest number of processors.
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4.1 Synchronous parallelism

We mention several synchronous parallel variants of CD that appear in the recent
literature. We note that in the some of these papers, the computational results were
obtained by implementing the methods in an asynchronous fashion, disregarding the
synchronization step required by the analysis.

Bradley at al. [9] consider a bound-constrained problem that is a reformulation of
the problem (2) with specific choices of f and with Ω(x) = ‖x‖1. Their algorithm
performs short-step updates of individual components of x in parallel on P processors,
with synchronization after each round of parallel updating. This scheme essentially
updates a randomly-chosen block of P variables at each cycle. By modifying the
analysis of [50], they show that the 1/k sublinear convergence rate bound is not
affected provided that P is no larger than n/L , where L is the Lipschitz constant from
(23).

Jaggi et al. [20] perform a synchronized CD method on the dual ERM model (7)
for the case of g(w) = g∗(w) = (1/2)‖w‖2, partitioning components of the dual
variable x between cores and sharing a copy of the vector Ax across cores, updating
this vector at each synchronization point. The approach can be thought of as a nonlinear
block Gauss-Jacobi method (by contrast with the coordinate Gauss–Seidel approaches
discussed in Sect. 3).

Richtarik and Takac [46] describe a method for the separably regularized formula-
tion (2), (3) in which a subset of indices Sk ⊂ {1, 2, . . . , n} is updated according to
the formula in Algorithm 2. The work of updating the components in Sk is divided
between processors; essentially, a synchronization step takes place at each iteration.
This scheme is enhanced with an acceleration step in [15]; the extra computations
associated with the acceleration step too are parallelized, using ideas from [23]. In
the scheme of Marecek, Richtarik, and Takac [32], the variable vector x is partitioned
into subvectors, and each processor is assigned the responsibility for updating one of
these subvectors. On each processor, the updating scheme described in [46] is applied,
providing a second level of parallelism. Synchronization takes place at each outer
iteration. Details of the information-sharing between processors required for accurate
computation of gradients in different applications are described in [32, Section 6].

4.2 Asynchronous parallelism

In asynchronous variants of CD, the variable vector x is assumed to be accessible to
each processor, available for reading and updating. (For example, x could be stored
in the shared-memory space of a multicore computer, where each core is viewed as
a processor.) Each processor runs its own CD process, shown here as Algorithm 6,
without any attempt to coordinate or synchronize with other processors. Each iteration
on each processor chooses an index i , loads the components of x that are needed to
compute the gradient component [∇ f (x)]i , then updates the i th component xi . Note
that this evaluation may need only a small subset of the components of x ; this is the
case when the Hessian ∇2 f is structurally sparse, for example. On some multicore
architectures (for example, the Intel Xeon), the update of xi can be performed as a
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unitary operation; no software or hardware locking is required to block access of other
cores to the location xi .

Algorithm 6 Coordinate Descent for (1) (running on each Processor)
repeat

Choose index i ∈ {1, 2, . . . , n};
Evaluate [∇ f (x)]i , reading components of x from shared memory as necessary;
Update xi ← xi − α[∇ f (x)]i for some α > 0;

until termination;

We can take a global view of the entire parallel process, consisting of multiple
processors each executing Algorithm 6, by defining a global counter k that is incre-
mented whenever any processor updates an element of x : see Algorithm 7. Note that
the only difference with the basic framework of Algorithm 1 is in the argument of the
gradient component: In Algorithm 1 this is the latest iterate xk whereas in Algorithm 7
it is a vector x̂ k that is generally made up of components of vectors from previous
iterations x j , j = 0, 1, . . . , k. The reason for this discrepancy is that between the
time at which a processor reads the vector x from shared storage in order to calcu-
late [∇ f (x)]i , and the time at which it updates component i , other processors have
generally made changes to x . In consequence, each update step is using slightly stale
information about x . To prove convergence results, we need to make assumptions on
how much “staleness” can be tolerated, and to modify the convergence analysis quite
substantially. Indeed, proofs of convergence even for the most basic asynchronous
algorithms are quite technical.

Algorithm 7 Asynchronous CD for (1)

Set k ← 0 and choose x0 ∈ R
n ;

repeat
Choose index ik ∈ {1, 2, . . . , n};
xk+1 ← xk − αk [∇ f (x̂k )]ik eik for some αk > 0;
k ← k + 1;

until termination test satisfied;

Asynchronous CD algorithms are distinguished from each other mostly by the
assumptions they make on the the choice of update components ik and on the “ages”
of the components of x̂ k , that is, the iterations at which each component of this vector
was last updated. In the terminology of Bertsekas and Tsitsiklis [5], the algorithm is
totally asynchronous if

(a) each index i ∈ {1, 2, . . . , n} of x is updated at infinitely many iterations; and
(b) if νkj denotes the iteration at which component j of the vector x̂ k was last updated,

then νkj → ∞ as k → ∞ for all j = 1, 2, . . . , n.

In other words, each component of x is updated infinitely often, and all components
used in successive evaluation vectors x̂ k are also updated infinitely often.
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The following convergence result for totally asynchronous variants of Algorithm 7
is due to Bertsekas and Tsitsiklis; see in particular [5, Sections 6.1, 6.2, and 6.3.3].

Theorem 5 Suppose that the problem (1) has a unique solution x∗ and that f is convex
and continuously differentiable. Suppose that Algorithm 7 is implemented in a totally
asynchronous fashion. Suppose that the mapping T defined by T (x) := x − α∇ f (x)
for some α > 0 (for which x∗ is the unique fixed point) is strictly contractive in the
�∞ norm, that is,

‖T (x) − x∗‖∞ ≤ η‖x − x∗‖∞, for some η ∈ (0, 1). (48)

Then if we set αk ≡ α in Algorithm 7, the sequence {xk} converges to x∗.

We cannot expect to obtain a convergence rate in this setting (such as sublinear with
rate 1/k), given that the assumptions on the ages of the components in x̂ k are so weak.
Although this result can be generalized impressively and its proof is not too complex,
we should note that the �∞ contraction assumption (48) is quite strong. It is violated
even by some strictly convex objectives f . For example, when f (x) = (1/2)xT Qx
with

Q =
[
1 1
1 2

]
,

we have f strictly convex with minimizer x∗ = 0. However the mapping T (x) = (I −
αQ)x is not contractive for any α > 0; we have for example that ‖T (x)‖∞ ≥ ‖x‖∞
when x = (1,−1)T .

We turn now to partly asynchronous variants of Algorithm 7, in which we make
stronger assumptions on the ages of the components of x̂ k . Liu and Wright [27] con-
sider a version of Algorithm 7 that is the parallel analog of Algorithm 3, in that each
update component ik is chosen independently and randomly with equal probability
from {1, 2, . . . , n}. They assume that no component of x̂ k is older than a nonnegative
integer τ—the “maximumdelay”— for any k. Specifically, they express the difference
between xk and x̂ k in terms of “missed updates” to x , as follows:

xk = x̂ k +
∑

l∈K ( j)

(
xl+1 − xl

)
, (49)

where K ( j) is a set of iteration numbers drawn from the set { j−q : q = 1, 2, . . . , τ }.
The value of τ is related to the number of processors P involved in the computation.
If all processors are performing their updates at approximately the same rates, we
could expect τ to be a modest multiple of P—perhaps τ = 2P or τ = 3P , to allow a
safety margin for occasional delays. Hence the value of τ is an indicator of potential
parallelism in the algorithm.

In [27], the steplengths in Algorithm 7 are fixed as follows:

αk ≡ γ

Lmax
, (50)
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where γ is chosen to ensure that Algorithm 7 progresses steadily toward a solution, but
not too rapidly. Too-rapid convergence would cause the information in x̂ k to become
too stale too quickly, so the gradient component [∇ f (x̂ k)]ik would lose its relevance
as a suitable update for the variable component xik at iteration k. Steady convergence
is enforced by choosing some ρ > 1 and requiring that

E‖xk−1 − x̄ k‖2 ≤ ρE‖xk − x̄ k+1‖2, (51)

where x̄ k is the vector that would hypothetically be obtained if we were to apply the
the update to all components, that is,

x̄ k+1 := xk − γ

Lmax
∇ f (x̂ k),

and the expectations E(·) are taken over all random variables i0, i2, . . .. Condition
(51) ensures that the “expected squared update norms” decrease by at most a factor of
1/ρ at each iteration.

Themain results in [27] apply to composite functions (2), (3), but for simplicity here
we state the result in terms of the problem (1), where f is convex and continuously
differentiable, with nonempty solution set S and optimal objective value f ∗. We use
PS to denote projection onto S, and recall the definition (25) of the ratio Λ between
different varieties ofLipschitz constants. The results alsomake use of anoptimal strong
convexity condition, which is that the following inequality holds for some σ > 0:

f (x) − f ∗ ≥ σ

2
‖x − PS(x)‖2, for all x . (52)

The following result is a modification of [27, Corollary 2].

Theorem 6 Suppose that Assumption 1 holds, and that

4eΛ(τ + 1)2 ≤ √
n. (53)

Then by setting γ = 1/2 in (50) (that is, choosing steplengths αk ≡ 1/(2Lmax)), we
have that

E
(
f (xk)

)
− f ∗ ≤ n(Lmax‖x0 − PS(x0)‖2 + f (x0) − f ∗)

n + k
. (54)

Assuming in addition that (52) is satisfied for some σ > 0, we obtain the following
linear rate:

E
(
f (xk)

)
− f ∗

≤
(
1 − σ

n(σ + 2Lmax)

)k (
Lmax‖x0 − PS(x0)‖2 + f (x0) − f ∗) . (55)
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A comparison with Theorem 1, which shows convergence rates for serial randomized
CD (Algorithm 3) shows a striking similarity in convergence bounds. The factor-of-2
difference in steplength between the serial and parallel variants accounts for most
of the difference between the linear rates (28) and (55), while there is an extra term
n in the denominator of the sublinear rate (54). We conclude that we do not pay q
high overhead (in terms of total workload) for parallel implementation, and hence that
near-linear speedup can be expected. (Indeed, computational results in [27] and [28]
observe near-linear speedup for multicore asynchronous implementations.)

These encouraging conclusions depend critically on the condition (53), which is
an upper bound on the allowable delay τ in terms of n and the ratio Λ from (25). For
functions f with weak coupling between the components of x (for example, when
off-diagonals in the Hessian ∇2 f (x) are small relative to the diagonals), we have Λ

not much greater than 1, so the maximum delay can be of the order of n1/4 before there
is any attenuation of linear speedup. When stronger coupling exists, the restriction on
τ may be quite tight, possibly not much greater than 1. A more general convergence
result [27, Theorem 1] shows that in this case, we can choose smaller values of γ in
(50), allowing graceful degradation of the convergence bounds while still obtaining
fairly efficient parallel implementations.

We note that an earlier analysis in [28] made a stronger assumption on x̂ k—that it
is equal to some earlier iterate x j of Algorithm 7, where k ≥ j ≥ k − τ , that is, the
earlier iterate is no more than τ cycles old. (A similar assumption was used to analyze
convergence of as asynchronous SG algorithm in [38].) This stronger assumption
yields stronger convergence results, in that the bound on τ in (53) can be loosened.
However, the assumption may not always hold, since some parts of x in memory may
be altered by some cores as they are being read by another core, a phenomenon referred
to in [27] as “inconsistent reading.”

5 Conclusion

Wehave surveyed the state of the art in convergence ofCDmethods, with a focus on the
most elementary settings and the most fundamental algorithms. The recent literature
containsmany extensions, enhancements, and elaborations; we refer interested readers
to the bibliography of this paper, and note that new works are appearing at a rapid
pace.

Coordinate descent method have become an important tool in the optimization
toolbox that is used to solve problems that arise in machine learning and data analy-
sis, particularly in “big data” settings. We expect to see further developments and
extensions, further customization of the approach to specific problem structures, fur-
ther adaptation to various computer platforms, and novel combinations with other
optimization tools to produce effective “solutions” for key application areas.
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