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Empirical evidence suggesting that living systems might operate in
the vicinity of critical points, at the borderline between order and
disorder, has proliferated in recent years, with examples ranging
from spontaneous brain activity to flock dynamics. However, a
well-founded theory for understanding how and why interact-
ing living systems could dynamically tune themselves to be poised
in the vicinity of a critical point is lacking. Here we use tools from
statistical mechanics and information theory to show that complex
adaptive or evolutionary systems can be much more efficient in
coping with diverse heterogeneous environmental conditions
when operating at criticality. Analytical as well as computational
evolutionary and adaptive models vividly illustrate that a commu-
nity of such systems dynamically self-tunes close to a critical state
as the complexity of the environment increases while they re-
main noncritical for simple and predictable environments. A more
robust convergence to criticality emerges in coevolutionary and
coadaptive setups in which individuals aim to represent other
agents in the community with fidelity, thereby creating a collective
critical ensemble and providing the best possible tradeoff be-
tween accuracy and flexibility. Our approach provides a parsimo-
nious and general mechanism for the emergence of critical-like
behavior in living systems needing to cope with complex en-
vironments or trying to efficiently coordinate themselves as
an ensemble.

evolution | adaptation | self-organization

Physical systems undergo phase transitions from ordered to
disordered states on changing control parameters (1, 2).

Critical points, with all their remarkable properties (1, 2), are
only observed upon parameter fine tuning. This is in sharp
contrast to the ubiquity of critical-like behavior in complex living
matter. Indeed, empirical evidence has proliferated that liv-
ing systems might operate at criticality (3)—i.e. at the border-
line between order and disorder—with examples ranging from
spontaneous brain behavior (4) to gene expression patterns (5),
cell growth (6), morphogenesis (7), bacterial clustering (8), and
flock dynamics (9). Even if none of these examples is fully con-
clusive and even if the meaning of “criticality” varies across these
works, the criticality hypothesis—as a general strategy for the
organization of living matter—is a tantalizing idea worthy of
further investigation.
Here we present a framework for understanding how self-

tuning to criticality can arise in living systems. Unlike models of
self-organized criticality in which some inanimate systems are
found to become critical in a mechanistic way (10), our focus
here is on general adaptive or evolutionary mechanisms, specific
to biological systems. We suggest that the drive to criticality
arises from functional advantages of being poised in the vicinity
of a critical point.
However, why is a living system fitter when it is critical? Living

systems need to perceive and respond to environmental cues and
to interact with other similar entities. Indeed, biological systems
constantly try to encapsulate the essential features of the huge
variety of detailed information from their surrounding complex

and changing environment into manageable internal representa-
tions, and they use these as a basis for their actions and responses.
The successful construction of these representations, which
extract, summarize, and integrate relevant information (11), pro-
vides a crucial competitive advantage, which can eventually make
the difference between survival and extinction. We suggest here
that criticality is an optimal strategy to effectively represent the
intrinsically complex and variable external world in a parsimoni-
ous manner. This is in line with the hypothesis that living systems
benefit from having attributes akin to criticality—either statisti-
cal or dynamical (3)—such as a large repertoire of dynamical re-
sponses, optimal transmission and storage of information, and
exquisite sensitivity to environmental changes (2, 5, 12–16).
As conjectured long ago, the capability to perform complex

computations, which turns out to be the fingerprint of living
systems, is enhanced in “machines” operating near a critical
point (17–19), i.e., at the border between two distinct phases:
a disordered phase, in which perturbations and noise propagate
unboundedly—thereby corrupting information transmission
and storage—and an ordered phase where changes are rapidly
erased, hindering flexibility and plasticity. The marginal, crit-
ical situation provides a delicate compromise between these
two impractical tendencies, an excellent tradeoff between re-
producibility and flexibility (12, 13, 16) and, on larger time scales,
between robustness and evolvability (20). A specific example of
this general framework is genetic regulatory networks (19, 21).
Cells ranging from those in complex organisms to single-celled
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microbes such as bacteria respond to signals in the environment
by modifying the expression of their genes. Any given genetic
regulatory network, formed by the genes (nodes) and their
interactions (edges) (22), can be tightly controlled to robustly
converge to a fixed almost-deterministic attractor—i.e. a fixed
“phenotype”—or it can be configured to be highly sensitive to
tiny fluctuations in input signals, leading to many different
attractors, i.e., to large phenotypic variability (23). These two
situations correspond to the ordered and disordered phases,
respectively. The optimal way for genetic regulatory networks to
reconcile controllability and sensitivity to environmental cues is
to operate somewhere in between the two limiting and imprac-
tical limits alluded to above (19) as has been confirmed in dif-
ferent experimental setups (5, 7, 24). Still, it is not clear how such
tuning to criticality comes about.
Our goal here is to exploit general ideas from statistical me-

chanics and information theory to construct a quantitative
framework showing that self-tuning to criticality is a convenient
strategy adopted by living systems to effectively cope with the
intrinsically complex external world in an efficient manner,
thereby providing an excellent compromise between accuracy
and flexibility. To provide some further intuition, we use genetic
regulatory networks as a convenient guiding example, but one
could equally well consider neural networks, models for the
immune response, groups of animals exhibiting collective be-
havior, etc., with each specific realization requiring a more de-
tailed modeling of its special attributes.
We uncover coevolutionary and coadaptive mechanisms by

which communities of living systems, even in the absence of other
forms of environmental complexity, converge to be almost critical
in the process of understanding each other and creating a “col-
lective entity.” The main result is that criticality is an evolutionary/
adaptive stable solution reached by living systems in their striving

to cope with complex heterogeneous environments or when trying
to efficiently coordinate themselves as an ensemble.

Results
Mathematical Framework. The external environment in which
living systems operate is highly variable, largely unpredictable,
and describable in terms of probability distribution functions.
Living systems need to modify their internal state to cope with
external conditions, and they do so in a probabilistic manner. To
be specific, but without loss of generality, we represent an en-
vironmental cue “perceived” and processed by a living system as
a string of N (binary) variables, s = (s1, s2, . . . sN). A specific
environmental source is modeled by the probability distribution
Psrc with which it produces each of the 2N possible states. For
concreteness, this distribution is assumed to depend on a set
of parameters, α = (α1, α2, . . .), accounting for environmental
variability. We turn now to an individual living system or “agent,”
which seeks to adapt itself to cope with the perceived stimuli/
signals emanating from a given environmental source. This
is accomplished by changing its internal state, encapsulated
in a second probability distribution function, Pint, specified
by a different—smaller in principle—parameter set β = (β1,
β2, . . .) aimed at capturing the essential features of Psrc in the
most efficient—although in general imperfect—way (see Fig. 1).
Henceforth we will denote the external source and its internal
representation by Psrc(sjα) and Pint(sjβ) respectively.
In our guiding example, the external cues could be, for in-

stance, the environmental (temperature, pH, . . .) conditions,
which are variable and can only be probabilistically gauged by
a cell/bacterium. The binary vector s = (s1, s2, . . . sN) can be
thought of as the on/off state of the different N genes in its
(Boolean) genetic regulatory network (19, 21, 22). In this way,
Psrc(sjα) can be interpreted as the probability that the most
convenient state aimed at by the system to cope with a given

Fig. 1. Living systems coping with the environment. A illustrates a living system responding to an environmental source (e.g., a bacteria responding to some
external conditions such as the presence/absence of some nutrients, pH concentration, or temperature). A given source, labeled by the set of parameters α,
can only be probabilistically gauged by the system. Psrc(sjα) is the most accurate representation that the system can potentially generate in terms of the
Boolean variables (or bits) s. However, such a representation might not be accessible to the system by merely changing its internal state parameters, β, and the
actual internal state, Pint(sjβ) (e.g., the probability of a gene expression pattern), is usually an imperfect proxy for Psrc(sjα). The optimal choice of parameters
β—aiming at capturing the most relevant features of the environment—is obtained by minimizing the KL divergence of Pint(sjβ) from Psrc(sjα). In genetic
networks, changing internal parameters is equivalent to changing the interactions between the different (Boolean) variables (nodes of the networks in the
figure). B shows a more complex scenario, where the system has to cope with multiple and diverse sources. The internal state has to be able to accommodate
each of them. In C, the environment is not imposed ad hoc but, instead, it is composed of other individuals, and every agent needs to cope with (“un-
derstand”) the states of the others. Each agent evolves similarly to the others in the community, trying to exhibit the same kind of state, generating in this
way a self-organized environment. In the case of sufficiently heterogeneous externally imposed sources as well as in the self-organized case, we find that
evolutionary/adaptive dynamics drive the systems to operate close to criticality.
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environmental condition is s, while Pint(sjβ) is the actual
probability for the genetic network state (attractor) of
a given individual—with its limitations—to be s. Without loss of
generality, we consider that there is (at least) one control pa-
rameter, say β1, such that—other parameters being fixed—it
determines in which phase the network is operating.
Our thesis is that the capacity of living systems to tune their

internal states to efficiently cope with variable external con-
ditions provides them with a strong competitive advantage. Thus,
the internal state Pint(sjβ) should resemble as closely as possible
the one most in accord with the environmental signal Psrc(sjα); in
other words, one seeks the distribution that the system should
express to best respond to the external conditions. Information
theory provides us with a robust measure of the “closeness”
between the aimed (source) and the actual (internal) probability
distribution functions. Indeed, the Kullback−Leibler (KL) di-
vergence (25), D(αjβ), quantifies the information loss when the
internal state is used to approximate the source (see Materials
and Methods). The KL divergence is asymmetric in the two in-
volved probability distributions, it is never negative, and it van-
ishes if and only if the two distributions are identical (SI
Appendix, section S2). Minimizing the KL divergence with re-
spect to the internal state parameters, β, generates the optimal,
although in general imperfect, internal state aimed at repre-
senting or coping with a given source (see Fig. 1A).
More generally, in an ever-changing world, the requirement

for an individual is not just to reproduce a single source with
utmost fidelity but rather to be able to successfully cope with
a group of highly diverse sources (see Fig. 1B). A particularly
interesting example of this would comprise a community of
similar individuals who together strive to establish some kind of
a common collective language (see Fig. 1C). In any of these
complex situations, our working hypothesis is that an individual
has a larger “fitness” when a characteristic measure, e.g., the
mean, of its KL divergences from the set of diverse sources is
small, i.e., fit agents are those whose internal states are close to
those required by existing external conditions.
As an illustrative example, consider two individual agents A

and B—the source for A is B and vice versa—each of them with
its own probabilistic gene network. The relative fitnesses of A
and B are determined by how well the set of cues (described by
the probability distribution Psrc) of one organism is captured by
the other with minimum information loss, and vice versa [for
utter simplicity, we could assume that the distributions associ-
ated with A and B correspond to equilibrium distributions of an
Ising model (1, 2) at similar inverse temperatures βA and βB]. If
βA = βB, the two distributions would be identical and the KL
divergence would vanish. However, this is not a stable solution.
Indeed, if the two parameters are not identical but close, the
difference between their respective KL divergences from each to
the other is (see Materials and Methods):

DðβA + δβjβAÞ−DðβAjβA + δβÞ ’ 1
6
∇χðβAÞδβ3; [1]

where χ is the generalized susceptibility also known as “Fisher
information” (defined in Materials and Methods). This implies
that the individual whose parameters correspond to the state
with larger χ has a smaller KL divergence and is thus fitter.
However, it is well known that χ peaks at the critical point,
and thus our key finding is that, for a family of individuals with
similar parameters, the fittest possible agent sits exactly at crit-
icality, and it is best able to encapsulate a wide variety of distri-
butions. As we illustrate in what follows with a number of
examples, the optimal encoding parameters of stable solutions
lie always around the peak of the generalized susceptibility χ,
which is the region of maximal variability, where different com-
plex sources can be best accounted for through small parameter

changes (see Materials and Methods). This is in line with the recent
finding—based on concepts of information geometry—that many
more distinguishable outputs can be reproduced by models poised
at the peak of χ, i.e., at criticality (26).

Computational Experiments
We have developed diverse computational evolutionary and
adaptive models exploiting the ideas above. The dynamical rules
used in these models are not meant to, necessarily, mimic the
actual dynamics of living systems; rather, they are efficient ways
to optimize fitness. In the evolutionary models, inspired by
the genetic algorithm (21, 27), a community of M individuals—
each one characterized by its own set of internal parameters
β—evolves in time through the processes of death, birth, and
mutation (see Materials and Methods). Individuals with larger
fitness, i.e., with a smaller mean KL divergence from the rest of
sources, have a larger probability to produce an offspring, which—
apart from small random mutations—inherits its parameters
from its ancestor. On the other hand, agents with low fitness
are more likely to die and be removed from the community. In the
adaptive models, individuals can change their internal parame-
ters if the attempted variation implies an increase of their
corresponding fitnesses (see Materials and Methods). These
evolutionary/adaptive rules result in the ensemble of agents
converging to a steady state distribution, which we aim at char-
acterizing. We obtain similar results in two families of models,
which differ in the way in which the environment is treated. In
the first, the environment is self-generated by a community of
coevolving/coadapting individuals, while, in the second, the
variable external world is defined ad hoc.

Coevolutionary Model. The environment perceived by each in-
dividual consists of the other M − 1 systems in the community,
which it aims at “understanding” and coping with. In the simplest
computational implementation of this idea (see Materials and
Methods), a pair of individual agents is randomly selected from
the community at each time step and each of these two indi-
viduals constitutes the environmental source for the other. Given
that the KL divergence is not symmetric (see Materials and
Methods), one of the two agents has a larger fitness and thus
a greater probability of generating progeny, while the less fit
system is more likely to die. This corresponds to a fitness
function of agent i, which is a decreasing function of the KL
divergence from the other. In this case, as illustrated in Fig. 2
(and in Movies S1 and S2), the coevolution of M = 100 agents—
which [n their turn are sources—leads to a very robust evolution-
arily stable steady-state distribution. Indeed, Fig. 2 Left shows that
for three substantially different initial parameter distributions
(very broad, and localized in the ordered and in the disordered
phases, respectively), the community coevolves in time to a unique
localized steady state distribution, which turns out to be peaked
at the critical point (i.e., where the Fisher information peaks; see
Fig. 2 Right and SI Appendix, section S4). This conclusion is ro-
bust against model details and computational implementations:
the solution peaked at criticality is an evolutionary stable
attractor of the dynamics. The same conclusions hold for an
analogous coadaptive model in which the systems adapt rather
than dying and replicating (see SI Appendix, section S6).

Evolutionary Model.An ensemble ofM agents are exposed at each
particular time to a heterogeneous complex environment con-
sisting of S independent environmental sources, each one with
a different Psrc and thus parametrized by diverse αs (see Fig. 3).
The set of S sources is randomly extracted from a broadly dis-
tributed pool of possible sources occurring with different prob-
abilities, ρsrc(α). The fitness of an individual with parameters β
with respect to any given environment is taken to be a decreasing
function of the average KL divergence from the diverse external
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stimuli: dðρsrcjβÞ :=
R
dαρsrcðαÞDðαjβÞ. In the special case of just

one internal state parameter, β1, we find that upon iterating the
genetic algorithm (see Materials and Methods), the distribution
evolves toward a steady-state stable distribution. Computer
simulations show that in the case of very homogeneous envi-
ronments, occurring when all sources in the pool are similar—
ρsrc(α) sufficiently narrow—the optimal β strongly depends on
the specific sources, resulting in detail-specific internal states
(see Fig. 3 Bottom). On the other hand, if the external world is
sufficiently heterogeneous (see SI Appendix, section S5), the
optimal internal state becomes peaked near the critical point
(see Fig. 3 and Movie S3 illustrating the evolution of agents
toward the vicinity of the critical point). We note that the ap-
proach to criticality is less precise in this model than in the co-
evolutionary one, in which the environment changes progressively
as the agents coevolve, allowing the system to systematically ap-
proach the critical point with precision. Similar conclusions hold
for an analogous “adaptive model” (see SI Appendix, section S6).
Finally, one might wonder whether the resulting closeness to
criticality in these models is not just a byproduct of the envi-
ronment itself being critical in some way. In fact, it has been
recently shown that complex environments, when hidden vari-
ables are averaged out, can be effectively described by the Zipf’s
law (28), a signature of criticality (3). This observation applies to
some of the heterogeneous environments analyzed here which,
indeed, turn out to be Zipfian; however, as shown in SI Appendix,
section S5, there are simple yet heterogeneous environments,
which are not Zipfian but nevertheless result in the same behavior.

Analytical Results for the Dynamical Models
A generic probability distribution can be rewritten to parallel the
standard notation in statistical physics, P(sjγ) = exp(−H(sjγ))/Z
(γ), where the factor Z(γ) is fixed through normalization. The
function H can be generically written as HðsjγÞ=P

μγμϕ
μðsÞ,

where ϕμ(s) are suitable functions (“observables”) of the varia-
bles s. For a specific set of parameters α characterizing an en-
vironmental source, the best possible internal state—minimizing
the KL divergence—can be shown to obey hϕμ

intiα = hϕμ
intiβ,

where the index μ runs over the whole set of parameters and
ðϕμ

intÞα :=
P

s ϕ
μ
intðsÞPintðsjαÞ and ðϕμ

intÞα :=
P

s ϕ
μ
intðsÞPintðsjαÞ.

This result implies that the optimal internal state is the one
which best reproduces the lowest moments of the original source
distribution it seeks to cope with (the number of moments co-
inciding with—or being limited by—the number of free param-
eters). By evaluating the second derivatives (Hessian matrix), it is
easy to verify that, if a solution exists, it actually corresponds to
a minimum of the KL divergence (see SI Appendix, section S3).
To proceed further, we need to compute the internal state

distribution in the presence of diverse sources distributed with
ρsrc(α). In this case, we compute the value of β which minimizes
the average KL divergence to the sources α as written above (an
alternative possibility—which is discussed in SI Appendix, section S3—
is to identify the optimal β for each specific source and then
average over the source distribution), leading to the condition:
hϕμ

intiβ =
R
dα ρsrcðαÞ hϕμ

intiα. We consider the simple example in
which both the sources and the system are characterized by
a single parameter and, assuming that a phase transition occurs
at some parameter value α = αc, i.e.,〈ϕ〉α has a sigmoid shape
(which becomes steeper as N increases) with an inflection point
at α = αc (our analysis can be extended to more general cases
where there is no built-in phase transition in the source dis-
tributions but they are merely sufficiently heterogeneous). The
two plateaus of the sigmoid function correspond to the so-
called disordered and ordered phases, respectively. When
ρsrc(α) has support on both sides of the sigmoid function, i.e.,
when it is “heterogeneous,” by solving the equation for the
optimal β, it is obvious that the moment to be reproduced lies
somewhere in between the two asymptotic values of the sigmoid

Fig. 2. Coevolutionary model leads self-consistently to criticality: A community of M living systems (or agents) evolves according to a genetic algorithm dy-
namics (27). Each agent i (i = 1, . . . , M) is characterized by a two-parameter (βi1,β

i
2) internal state distribution Pintðsjβi1,βi2Þ, and the rest of the community acts as

the external environment it has to cope with, i.e., the agents try to “understand” each other. At each simulation step, two individuals are randomly chosen and
their respective relative fitnesses are computed in terms of the KL divergence from each other’s internal state probability distribution. One of the two agents is
removed from the community with a probability that is smaller for the fitter agent; the winner produces an offspring, which (except for small variations/
mutations) inherits its parameters. (Left) These coevolutionary rules drive the community very close to a unique localized steady state. As shown (Right), this is
localized precisely at the critical point, i.e., where the generalized susceptibility or Fisher information of the internal state distribution exhibits a sharp peak (as

shown by the contour plots and heat maps). The internal state distributions are parameterized as Pintðsjβ1,β2Þ∝ exp
�
β1

N
2

�PN
k=1

sk
N

�2
+ β2

PN
k=1sk

�
representing

a global (all-to-all) coupling of the internal nodes (see Materials and Methods). Much more complex probability distributions in which all units are not coupled
to all other units—i.e., more complex networked topologies—are discussed in SI Appendix, section S4.
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with the values of β for which intermediate moments are con-
centrated near the inflection or critical point, αc. Indeed, as
χ =−dhϕiβ

dβ , the critical region, where the generalized susceptibility
χ has a peak, is the region of maximal variability in which dif-
ferent complex sources can be best accounted for through small
parameter changes, in agreement with the finding that many
more distinguishable outputs can be reproduced by models
poised close to criticality (26).

Discussion and Conclusions
Under the mild assumption that living systems need to construct
good although approximate internal representations of the outer

complex world and that such representations are encoded in terms
of probability distributions, we have shown—by using concepts
from statistical mechanics and information theory—that the
encoding probability distributions do necessarily lie where the
generalized susceptibility or Fisher information exhibits a peak
(25), i.e., in the vicinity of a critical point, providing the best pos-
sible compromise to accommodate both regular and noisy signals.
In the presence of broadly different ever-changing hetero-

geneous environments, computational evolutionary and adap-
tive models vividly illustrate how a collection of living systems
eventually clusters near the critical state. A more accurate con-
vergence to criticality is found in a coevolutionary/coadaptive
setup in which individuals evolve/adapt to represent with fidelity
other agents in the community, thereby creating a collective
“language,” which turns out to be critical.
These ideas apply straightforwardly to genetic and neural

networks—where they could contribute to a better understanding
of why neural activity seems to be tuned to criticality—but have
a broader range of implications for general complex adaptive
systems (21). For example, our framework could be applicable to
some bacterial communities for which a huge phenotypic (in-
ternal state) variability has been empirically observed (29). Such
a large phenotypic diversification can be seen as a form of
“bet hedging,” an adaptive survival strategy analogous to stock
market portfolio management (30), which turns out to be a
straightforward consequence of individuals in the community
being critical. Usually, from this point of view, generic networks
diversify their “assets” among multiple phenotypes to minimize
the long-term risk of extinction and maximize the long-term
expected growth rate in the presence of environmental un-
certainty (30). Similar bet-hedging strategies have been detected
in viral populations and could be explained as a consequence of
their respective communities having converged to a critical state,
maximizing the hedging effect. Similarly, criticality has been re-
cently shown to emerge through adaptive information processing
in machine learning, where networks are trained to produce
a desired output from a given input in a noisy environment; when
tasks of very different complexity need to be simultaneously
learned, networks adapt to a critical state to enhance their per-
formance (31). In summary, criticality in some living systems
could result from the interplay between their need for producing
accurate representations of the world, their need to cope with
many widely diverse environmental conditions, and their well-
honed ability to react to external changes in an efficient way.
Evolution and adaptation might drive living systems to criticality
in response to this smart cartography.

Materials and Methods
Kullback–Leibler Divergence. Given two probability distributions P(s) and Q(s)
for variables s, the KL divergence of Q(s) from P(s),

DðPjQÞ :=
X
s

PðsÞlog
�
PðsÞ
QðsÞ

�
, [2]

quantifies the loss of information when Q(s) is used to approximate P(s) (25).
Indeed, in the large T limit, the probability L that the model Q(s) generates
a sequence of T observations compatible with P(s) can be computed as
L∼ expð−TDðPjQÞÞ up to leading order (see SI Appendix, section S2). There-
fore, maximizing the likelihood of a trial probability distribution function Q
is equivalent to minimizing its KL divergence from the original one, P. In
Results we use the notation D(αjβ) when P(s) = Psrc(sjα) and Q(s) = Pint(sjβ).

Fisher Information and Criticality. Given a probability distribution P(sjγ)—
where γ can stand either for α or β—the Fisher Information is defined as

χμνðγÞ :=
�
∂ logPð · jγÞ

∂γμ
∂ log Pð · jγÞ

∂γν

	
γ

, [3]

where μ and ν are parameter labels and the average 〈·〉γ is performed with
respect to P(·jγ). It measures the amount of information encoded in the
states s about the parameters γ (25). This follows from the Cramér−Rao

Fig. 3. Evolutionary model leading to near to criticality in complex envi-
ronments. A community of M agents undergoes a genetic algorithm
dynamics (27). Each agent is simultaneously exposed to diverse stimuli
s provided by S different sources, each one characterized by a probability
Psrc(sjαu) with u = 1, . . . , S, fully specified by parameters αu. At each time step,
S sources are randomly drawn with probability ρsrc(αu) (in this case, a uniform
distribution with support in the colored region). Each agent i (i = 1, . . . , M)
has an internal state Pint(sjβi) aimed at representing—or coping with—the
environment. Agents’ fitness increases as the mean KL divergence from the
set of sources to which they are exposed decreases. The higher the fitness of
an individual, the lower its probability of dying. An agent that is killed is
replaced by a new individual with a parameter β inherited from one of the
other agents (and, with some probability, a small variation/mutation). The
community dynamically evolves and eventually reaches a steady state dis-
tribution of parameters, p(β). The six panels in the figure correspond to
different supports (colored regions) for uniform source distributions, ρsrc(αu).
The dashed line is the generalized susceptibility (Fisher information) of the
internal probability distribution, which exhibits a peak at the critical point
separating an ordered from a disordered phase. Heterogeneous source pools
(Top and Middle) lead to distributions peaked at criticality, whereas for
homogeneous sources (Bottom), the communities are not critical but spe-
cialized. Stimuli distributions are parametrized in a rather simplistic way as

PsrcðsjαuÞ∝ exp
�
αuN2

�PN
k=1

sk
N

�2
�
, while internal states are identical but

replacing αu by βi (see Materials and Methods). In the guiding example of
genetic regulatory networks, this example corresponds to an extremely
simple fully connected network in which the state of each gene is equally
determined by all of the other genes, and hence the probability of a given
state depends only on the total number of on/off genes, controlled by
a single parameter.
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inequality, which states that the error made when we estimate γ from one
state s is, on average, greater than (or at least equal to) the inverse of the
Fisher information (25). In particular, if χ happens to diverge at some point,
it is possible to specify the associated parameters with maximal precision
(26). With the parametrization used in the main text, the Fisher information is
the generalized susceptibility in the statistical mechanics terminology and
measures the response of the system to parameter variations: χμνðγÞ=−∂hϕμiγ

∂γν
=

hϕμϕνiγ − hϕμiγhϕνiγ , and is well known to peak at critical points (1, 2).

Coevolutionary Model. The kth agent of the community is described by
a probability distribution Pint(sjβk) ∝ exp{−Hint(sjβk)}, with HintðsjβkÞ=PI

μβ
k
μϕ

μ
intðsÞ, depending on parameters βk. Starting with an ensemble of

M agents whose internal parameters are extracted from an arbitrary distri-
bution, p(β), two individuals, i and j, are randomly selected at each time step.
Their relative fitnesses f ðjÞi and f ðiÞj are computed as f ðjÞi = 1−Dðβ j



βiÞ=
½Dðβ j



βiÞ+Dðβi

β jÞ�, and similarly for f ðiÞj (as the KL divergence is not sym-
metric, f ðjÞi ≠ f ðiÞj unless βi = βj). One of the two individuals—selected with
probability equal to its relative fitness—creates an offspring, while the other
one is removed from the community. The offspring inherits its parameters
from its ancestor (with probability 1 − ν) or mutates with a probability ν,
modifying its parameters from β to β → β + ξ, where ξ is a multivariate
Gaussian random vector, with uncorrelated components, zero mean, and
deviation σ. Time is updated to t → t + 1/M, another couple of individuals
i′ and j′ is picked, and the process is iterated. Variants of this model are
described in SI Appendix, section S4.

Evolutionary Model.A community of agents receiving external stimuli from an
outer and heterogeneous environment is modeled as follows. Every specific
environmental source corresponds to a probability distribution Psrc(sjα) ∝ exp
(−Hsrc(sjα)), with HsrcðsjαÞ=

PE
μαμϕ

μ
srcðsÞ, where the parameters α are drawn

from the distribution ρsrc(α). The kth agent in the community constructs an
internal representation of the observed source described by Pint(sjβk) ∝ exp
(−Hint(sjβk)) with HintðsjβkÞ=

PI
μβ

k
μϕ

μ
intðsÞ, with parameters βk. We start with

M individuals, each one equipped with some initial parameter set extracted
from some arbitrary distribution p(β). At every time step, we generate S
external sources, {αu}u=1, . . . , S, from the source pool ρsrc(α). Then we compute
the average KL divergence of every individual’s internal state distribution
from the external sources dðfαugjβkÞ :=PS

u=1DðαujβkÞ=S The kth individual
of the community is removed with a probability proportional to its average
KL divergence (or any increasing function of it) PkillðkÞ=dðfαugjβkÞ=P

ldðfαugjβlÞ, and it is replaced by an offspring of another individual randomly
selected from the rest of the community. The offspring inherits its parameters
from the parent, and time is updated as in the coevolutionary model.
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