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Abstract

In this work we consider the problem of extracting a set of interaction parameters from

an high-dimensional dataset describing T independent configurations of a complex

system composed of N binary units. This problem is formulated in the language of

statistical mechanics as the problem of finding a family of couplings compatible with

a corresponding set of empirical observables in the limit of large N . We focus on the

typical properties of its solutions and highlight the possible spurious features which are

associated with this regime (model condensation, degenerate representations of data,

criticality of the inferred model). We present a class of models (complete models)

for which the analytical solution of this inverse problem can be obtained, allowing

us to characterize in this context the notion of stability and locality. We clarify

the geometric interpretation of some of those aspects by using results of differential

geometry, which provides means to quantify consistency, stability and criticality in the

inverse problem. In order to provide simple illustrative examples of these concepts we

finally apply these ideas to datasets describing two stochastic processes (simulated

realizations of a Hawkes point-process and a set of time-series describing financial

transactions in a real market) .
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Chapter 1

Introduction

The generations living during the last twenty or thirty years witnessed a huge scien-

tific revolution which has been, essentially, technology driven. An impressive amount

of computational power became cheaply available for people and institutions, while

at the same time the quantity of data describing many aspects of our world started

to grow in a seemingly unbound fashion: the human genoma can be efficiently se-

quenced in some days [75, 88], the interactions among proteins in a human body can

in principle be enumerated one-by-one [69], financial transactions are recorded with

resolutions well below one second [1], the dynamics of networks of all kinds (social,

economics, neural, biological) can be tracked in real-time. Parallel to this, the widely

accepted scientific paradigm according to which it is necessary to ground reliable

models on solid first principles started to crumble: promising results evidenced that

it is possible to extract accurate statistical models from empirical datasets without

even trying to guess what is their underlying structure, nor to characterize which

input-output relations govern their behavior. Large datasets can be automatically

and faithfully compressed in small sets of coefficients [31], their features can be de-

scribed accurately with unsupervised algorithms, new data can be predicted with a

given degree of accuracy on the basis of the older one (see for example [3]). Google
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CHAPTER 1. INTRODUCTION

uses pattern recognition and Bayesian techniques to translate from one language to

the other regardless of the formal rules of the grammar [2], and Netflix can predict

how much you will rate a movie (one to five) with an error around 0.85 without know-

ing anything about you but a few of your former preferences [4]. The embarrassing

success of this approach compels a basic epistemological question about modeling:

does an approach based solely on statistical learning lead to any actual understand-

ing? What does one learn about a system when processing data in this way?

This problem is particularly relevant when dealing with the task of high-dimensional

inference, in which a typically large set of parameters is extracted from an even larger

dataset of empirical observations. What meaning has to be associated with each of

the many parameters extracted from data? Are there combinations of such numbers

describing global, macroscopic features of the system? A prototypical example is

provided by the study of networks of neurons, in which one would like to understand

how the brain works (e.g., the presence of collective states of the network, the possi-

bility to store and retrieve informations) by processing data describing the behavior

of a huge set of elementary units (the neurons). This task can be thought of as a

seemingly hopeless one: in a way it is similar to reverse-engineering how a laptop

works by probing the electric signal propagating through its circuitry. A modern

answer to this type of arguments is the idea that if data is sufficient and the inference

algorithm is good enough, some of the actual features of the system will eventually

be detected. In the case of a laptop, one can think to extract from data not only the

wiring pattern a set of cables, but to detect collective features such as the fact that

a computer is an essentially deterministic object (in contrast to biological networks,

where fluctuations are essential), or that it possesses multiple collective states (say,

switched-on, switched-off or sleepy).

Physics, and in particular statistical mechanics, has much to do with all of this picture

for two main reasons. The first one is technical: while the high-dimensional limit is

2



CHAPTER 1. INTRODUCTION

a relatively new regime in the field of statistical inference, statistical mechanics has

since long developed mathematical descriptions of systems composed by a very large

(or better, infinite) number of interacting components [40]. Hence, mapping prob-

lems of statistical inference onto problems of statistical mechanics opens the way to

a remarkable amount of mathematical machinery which can be used to solve quickly

and accurately problems which become very complicated for large systems [45, 79].

This is even more true since the study of heterogeneous and glassy materials pro-

duced sophisticated tools (replica trick, cavity methods) suitable to study systems

in which no apparent symmetry or regularity is present, as often found in data de-

scribing complex systems [56]. The second, and more philosophical, reason is that

statistical mechanics is naturally built to explain collective behaviors on the basis of

individual interactions. Just as the ideal gas can be understood by studying the ag-

gregate behavior of many non-interacting particles, or the emergence of spontaneous

magnetization can be derived by studying the interactions of single spins, statistical

mechanics can be used to predict the collective behavior of biological, social and eco-

nomic systems starting from a given set of rules describing the interaction of some

fundamental units [30]. In 1904 Ludwig Boltzmann, almost a century before anyone

could take him literally, anticipated that

“The wide perspectives opening up if we think of applying this science to

the statistics of living beings, human society, sociology and so on, instead

of only to mechanical bodies, can here only be hinted at in a few words.”

Hence, from the perspective of (large-scale) statistical learning, it is natural to use

statistical mechanics methods to study the emergence of collective properties of a

system once the microscopic interactions of the fundamental units have been recon-

structed through a careful analysis of empirical data.

Unfortunately, even if one is able to do that, it is not always easy to understand

how much of the inferred model faithfully describes the system: it is possible, and

3



CHAPTER 1. INTRODUCTION

it is often the case, that the procedure which is used to perform the data analysis

influences so much the outcome that the actual properties of the system get lost along

the way, and the inferred model shows a spurious behavior determined just by the

fitting procedure. For example, models with binary interactions may describe very

well systems in which the interaction is actually multi-body [39], just as critical mod-

els (strongly fluctuating statistical systems) may fit random set of observables much

better than ordinary ones [53]. Noise itself may be fitted very well by sophisticated

models, while non-stationary systems might be accurately described by using equilib-

rium distributions [84]. In all of these cases, it is important to develop quantitative

tools which allow to distinguish between spurious features of the inferred model and

genuine ones.

The purpose of this work is precisely to inquire some of those aspects in the simpler

setting in which we consider a statistical system consisting in a string of N binary vari-

ables, used to model T independently drawn configurations. We will show that, while

the small N regime the problem of inference can be completely controlled (chapter

2), the large N regime becomes computationally intractable and non-trivial collective

properties may emerge (chapter 3). Such features be observed independently of the

data, and have to be associated uniquely with the properties of the model which is

used to perform the inference, regardless of the system which one is trying to describe.

In chapter 4 we will show under which conditions the problem of inferring a model

is easy, showing in some cases its explicit solution. We will also evidence the limits

of non-parametric inference, highlighting that for under-sampled systems correlations

might be confused with genuine interactions. In chapter 5 we will provide a geometric

interpretation for the problem of inference, showing a metric which can be used to

meaningfully assess the collective phase of an inferred system. We will apply these

ideas to two datasets, describing extensively the results of their analysis in the light

of our approach.

4



Chapter 2

Binary Inference

In this chapter we will describe the problem of extracting information from empirical

datasets describing a stationary system composed of a large number of interacting

units. Interestingly, this problem has almost simultaneously received a great deal of

attention from the literature of diverse communities (biology [77, 87], genetics [22],

neuroscience [72, 76, 24], economy, finance [48, 59, 29], sociology). This can be traced

back to two main reasons: first, it is now possible across many fields to analyze the

synchronous activity of the components of a complex system (e.g., proteins in a cell,

neurons in the brain, traders in a financial market) due to technological advantages

either in the data acquisition procedures or in the experimental techniques used to

probe the system. Secondly, data highly resolved in time is often available, which

(beyond implying that finer time-scales can be explored) provides researchers with a

large number of observations of the system. Defining as N the number of components

of the system and as T the number of available samples, these last observations can

be summarized by asserting that the limit of large N and large T can be accessed

for a large number of complex systems. In this work we will restrict ourselves to the

more specific case in which such systems are described by binary units, reminding

to the reader that (i) most of what will be shown can be generalized to the case of

5



CHAPTER 2. BINARY INFERENCE

non-binary (Potts) or continuous variables [85] and (ii) the binary case already allows

to describe in detail several systems [72, 76, 24]. In section 2.1 we describe the models

that we consider, which usually go under the name of exponential families and are

justified on the basis of the maximum entropy principle (appendix A.1), and state

the direct problem, alias the calculation of the observables given the model. In section

2.2 we present the problem of inferring a model from data (the inverse problem) and

characterize it as the Legendre-conjugated of the direct one. In section 2.3 we present

the regularization techniques which can be used to cure the pathological behavior of

some inverse problems and improve their generalizability. Although the results pre-

sented in this chapter are far from being original, we aim to show as transparently as

possible the deep connections between information theory and statistical mechanics,

emphasizing the strong analogy between direct and inverse problems.

2.1 The direct problem

We introduce in this section the direct problem – which deals with finding the ob-

servables associated with a given statistical model – as a preliminary step towards

the formulation of an inference problem. This is the problem typically considered by

statistical mechanics, hence we will adopt most of the terminology and the notation

from this field. The main results that we will present are associated with the free

energy – which we use in order to generate the averages and the covariances of the

model – and to its relations with the notion of Kullback-Leibler divergence and the

one of Shannon entropy. Finally, we will characterize the large and small deviation

properties of the empirical averages of the observables under the model.

6



CHAPTER 2. BINARY INFERENCE

2.1.1 Statistical model

We consider a system of N binary spins s = (s1, . . . , sN) ∈ {−1, 1}N = Ω, indexed

by i ∈ V = {1, . . . , N}. A probability density p is defined as any positive function

p : Ω→ R such that
∑

s p(s) = 1, while the space of all possible probability densities

on Ω is denoted asM(Ω). We also consider a families of real-valued functions φ : Ω→

R|φ| with components φ(s) = (φ1(s), . . . , φ|φ|(s)), which will be referred as binary

operators, and are more commonly known in the literature of statistical learning as

sufficient statistics or potential functions [85], and will be used in order to construct

a probability density on the configuration space of the system.

Definition 2.1. Given a set of binary operators φ = {φµ}Mµ=1 and a vector of real

numbers g = {gµ}Mµ=1 a statistical model is defined as the pair (φ, g). Its associated

probability density p = (ps)s∈Ω is given by

p(s) =
1

Z(g)
exp

(
M∑

µ=1

gµφµ(s)

)
, (2.1)

whereas the normalization constant Z(g) is defined as

Z(g) =
∑

s

exp

(
M∑

µ=1

gµφµ(s)

)
(2.2)

and is referred as the partition function of the model. The free energy F (g) is defined

as F (g) = − logZ(g).

For conciseness, the identity operator will always be labeled as the zero operator

φ0(s) = 1, in order to reabsorb the normalization constant Z(g) into its conjugated

coupling g0. The probability density will be written as p(s) = ps, so that (2.1) will

be compactly written as

ps = exp

(
M∑

µ=0

gµφµ,s

)
. (2.3)

7



CHAPTER 2. BINARY INFERENCE

With these definitions, the coupling g0 results equal to the free energy g0 =

− logZ(g) = F (g). Given a family of operators φ, we also denote as M(φ) the set

of all the statistical models of the form (2.1) obtained by varying the coupling vector

g. Given the probability density (2.1) and a generic subset Γ ⊆ V (which we call a

cluster), we also define the marginal pΓ(sΓ) as

pΓ(sΓ) =
∑

si|i 6∈Γ

p(s) , (2.4)

which expresses the probability to find spins belonging to the Γ in a given configura-

tion once the degrees of freedom associated with spins outside such cluster have been

integrated out (whereas p∅ = 1 and pV (s) = p(s)).

This construction will be used to study inference problems in which the M operators

φ(s) are a priori known. We will disregard for the moment the issue of optimally

selecting the most appropriate operators in order to describe a given set of data,

an important problem known as model selection. Let us indeed remind that models

of the form (2.1) can be justified on the basis of the maximum entropy principle,

which will be stated in appendix A.1. The next notions which will be defined are the

one of ensemble average and the one of susceptibility which will be extensively used

throughout our discussion.

Definition 2.2. Given a statistical model (φ, g) of the form (2.1), we define the

ensemble average of an operator φµ as the quantity

〈φµ〉 =
∑

s

φµ,sps , (2.5)

while the generalized susceptivity matrix χ̂ is defined as the covariance matrix whose

elements are given by

χµ,ν = 〈φµφν〉 − 〈φµ〉〈φν〉 . (2.6)

8



CHAPTER 2. BINARY INFERENCE

Beyond describing fluctuations around the ensemble average of the φ operators,

the generalized susceptibility χ̂ is a fundamental object in the field of information

theory [27], in whose context is more often referred as Fisher information, and is

more commonly defined as

χµ,ν = −
〈
∂2 log ps
∂gµ∂gν

〉
. (2.7)

Its relevance in the field of information theory and statistical learning will later be

elucidated by properties (2.23) and (2.24) which concern with the direct problem.

Sanov thorem (2.35), Cramér-Rao bound (2.38), together with equations (2.36) and

(2.37), clarify its role in the context of the inverse problem.

Proposition 2.1. The free energy function enjoys the properties

〈φµ〉 = − ∂F
∂gµ

(2.8)

and

χµ,ν = − ∂2F

∂gµ∂gν
, (2.9)

thus it is the generating function of the averages and of the fluctuations of the oper-

ators φµ contained in the model.

Equation (2.9) implies that covariances χµ,ν are related to the response of the

ensemble averages with respect to changes of the couplings through

χµ,ν = 〈φµφν〉 − 〈φµ〉〈φν〉 =
∂〈φµ〉
∂gν

, (2.10)

a relation known as fluctuation-dissipation relation, which is a direct consequence

of the stationary nature of the probability distribution (2.1). Another fundamental

property of the free energy function F (g) is its concavity, which will later allow us to

9



CHAPTER 2. BINARY INFERENCE

relate the field of statistical inference with the one of convex optimization (appendix

C). It can be shown (appendix A.2) that:

Proposition 2.2.

• The susceptibility matrix χ̂ is a positive semidefinite matrix, thus the free energy

F (g) is a concave function.

• If the family of operators φ is minimal (i.e. it doesn’t exist a non-zero vector x

such that
∑

µ xµφµ,s is constant in s), then the susceptibility matrix χ̂ is strictly

positive definite and the free energy F (g) is strictly concave.

Definition 2.3. Given a statistical model (φ, g) of the form (2.1), the direct problem

is defined as the calculation of the free energy F (g), of the averages 〈φ〉 and of the

susceptibility matrix χ̂ as functions of the coupling vector g.

2.1.2 Entropy and Kullback-Leibler divergence

In this section we will define the concept of Shannon entropy, which will be used as

an information theoretic measure of the information content of a distribution.

Definition 2.4. Given a probability density p, we define the Shannon entropy S(p)

as the function

S(p) = −
∑

s

ps log ps (2.11)

The quantity S(p) measures the amount of disorder associated with the random

variable s, and satisfies the following properties:

• 0 ≤ S(p) ≤ log |Ω|. In particular S(p) = 0 for p(s) = δs,s′ (when the variable

s is maximally informative), while S(p) = log |Ω| for the flat case p(s) = 1/|Ω|

(in which s is maximally undetermined).

• The function S(p) is concave in p.

10



CHAPTER 2. BINARY INFERENCE

They can be proven straightforwardly, as for example in [27]. Another information-

theoretic notion which will be extensively used is the Kullback-Leibler divergence

DKL(p|q), which characterizes the distance between two probability distributions.

Although it doesn’t satisfy the symmetry condition nor the triangular inequality

required to define a proper measure of distance, in chapter 5 we will show that indeed

a rigorous concept of distance can be extracted by means of the Kullback-Leibler

divergence.

Definition 2.5. Given a pair of probability densities p and q, the Kullback-Leibler

divergence DKL(p||q) is defined as

DKL(p||q) =
∑

s

ps log
ps
qs

(2.12)

Such quantity enjoys the following properties:

• DKL(p||q) ≥ 0 for any pair of probability densities p, q.

• DKL(p||q) = 0 if and only if p = q.

• DKL(p||q) is a convex function in both p and q.

These property justify the role played by the Kullback-Leibler divergence in informa-

tion theory, and can be proven straightforwardly (see [27]). Notice indeed that given

two statistical models (φ, g) and (φ, g′) respectively associated with densities p and

p′, the entropy and the Kullback-Leibler divergence can be written as

S(p) = −F (g)−
M∑

µ=1

gµ〈φµ〉g (2.13)

D(p||p′) = F (g)− F (g′) +
M∑

µ=1

(gµ − g′µ)〈φµ〉g , (2.14)

11
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so that the concavity properties of S(p) and DKL(p||q) can be related to the ones of

the free energy F (g). These quantities will be relevant in order to characterize the

large deviation properties both for the direct and of the inverse problem.

2.1.3 Observables

Throughout all our discussion, we will focus on the case in which T independent,

identically distributed (i.i.d.) configurations of the system denoted as ŝ = {s(t)}Tt=1

are observed. The joint probability of observing the dataset ŝ (also called likelihood)

given a statistical model (φ, g) is

PT (ŝ|g) =
T∏

t=1

p(s(t)) = exp

(
T

M∑

µ=0

gµφ̄µ

)
(2.15)

where the quantities

φ̄µ =
1

T

T∑

t=1

φµ(s(t)) (2.16)

are called empirical averages. It is worth remarking that PT (ŝ) depend on the ob-

served configurations just through the empirical averages φ̄. We will denote averages

over the measure PT (ŝ|g) with the notation 〈. . . 〉T . We also define the empirical

frequencies (also known as type) p̄ as the vector with components

p̄s =
1

T

T∑

t=1

δs,s(t) , (2.17)

which enjoys the following properties:

• It is positive and normalized (
∑

s p̄s = 1), thus it defines a probability density

on Ω (i.e., p̄ ∈M(Ω)).

• The empirical averages φ̄ can be obtained as φ̄µ =
∑

s φµ,sp̄s .

12
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• If the dataset ŝ is generated by a probability distribution p, then p̄ is distributed

according to the multinomial distribution

PT (p̄|p) =

(∏

s

pTss
Ts!

)
T ! δ

(
T −

∑

s

Ts

)
, (2.18)

where Ts = T p̄s. Its first and second momenta are

〈p̄s〉T = ps (2.19)

〈p̄sp̄s′〉T − 〈p̄s〉〈p̄s′〉T =
1

T
(δs,s′ps − psps′) . (2.20)

Finally, given a collection of operators φ we will denote the set of all empirical averages

φ̄ that are compatible with at least one probability density in Ω with

G(φ) =

{
φ̄ ∈ RM

∣∣∣∣∣ ∃ p̄ ∈M(Ω) s.t. φ̄µ =
∑

s

φµ,sp̄s ∀µ
}
, (2.21)

which is called in the literature marginal polytope [85]. It can be proven that (see for

example [85]):

• G(φ) is a convex set (i.e., given φ̄, φ̄′ ∈ G(φ), for any α ∈ [0, 1] also

αφ̄+ (1− α)φ̄′ ∈ G(φ)).

• G(φ) = conv{φ(s) ∈ RM | s ∈ Ω}, where conv{·} denotes the convex hull

operation.

• G(φ) is characterized by the Minkowski-Weyl theorem as a subset of RM iden-

tified by a finite set of inequalities. More formally, one can find a set of vectors

{xa, ya}da=1 with d finite such that

G(φ) =

{
φ ∈ RM

∣∣∣∣∣
M∑

µ=1

xµ,aφ̄µ ≥ ya ∀a ∈ {1, . . . d}
}

(2.22)

13
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2.1.4 Small and large deviations

In the case of the direct problem it is natural to formulate the following questions:

1. What are the most likely values for the empirical averages φ̄?

2. How probable it is to find rare instances ŝ?

The first question is relatively easy to answer, and characterizes the role of the gen-

eralized susceptivity in the direct problem as ruling the convergence of the empirical

averages to the ensemble averages1, as shown in the following and proven in appendix

A.3.

Proposition 2.3. Given a statistical model (φ, g), the empirical averages φ̄ satisfy

the relations

〈φ̄µ〉T = 〈φµ〉 (2.23)

〈φ̄µφ̄ν〉T − 〈φ̄µ〉T 〈φ̄ν〉T =
χµ,ν
T

. (2.24)

The explicit form of the likelihood function (2.15) allows to answer exhaustively

also to the second question.

Proposition 2.4. Given a probability density p defined by a statistical model (φ, g),

the function Ip(p̄) = − 1
T

logPT (p̄|p) = −F (g) −∑M
µ=1 gµφ̄µ is the large deviation

function for the direct problem.

This implies that the probability of observing dataset a generic ŝ decays expo-

nentially in T , with a non-trivial rate function Ip(p̄) determined by the empirical

1In the framework that we are considering (i.i.d. sampling of configurations drawn by the same
distribution) empirical averages always converge to ensemble averages with an error scaling as 1/

√
T .

Indeed it makes sense to model the case in which the probability measure p breaks into states, so
that for any finite length experiment, just samples belonging to the same state are observed. This
is meant to model the phenomenon of ergodicity breaking, which we will comment about in section
3.4.
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averages φ̄ only. Also notice that the large deviation function can be expressed en-

tirely in terms of the entropy and the Kullback-Leibler divergence as

Ip(p̄) = DKL(p̄||p) + S(p̄) . (2.25)

2.2 The inverse problem

In this section we introduce the inverse problem of extracting a coupling vector g?

given a set of operators φ and a vector of empirical averages φ̄. We will present this

problem as dual with respect to the direct one, showing that just as the knowledge of

the free energy F (g) completely solves the direct problem, the Legendre transform of

F (g) denoted as S(φ̄) and characterized as the Shannon entropy, analogously controls

the inverse one.

2.2.1 Bayesian formulation

We will be interested in calculating the set of couplings g? which best describes a given

set of data ŝ of length T within the statistical model (φ, g). Bayes theorem provides a

mathematical framework in which the problem can be rigorously stated, by connecting

the likelihood function PT (ŝ|g) described in section 2.1.3 to the posterior of the model

PT (g|ŝ), which specifies the probability that the data ŝ has been generated by model

g. Bayes theorem states in fact that

PT (g|ŝ) ∝ PT (ŝ|g)P0(g) , (2.26)

where P0(g) is known as the prior, and quantifies the amount of information which

is a priori available about the model by penalizing or enhancing the probability of

models specified by g by an amount P0(g). Bayes theorem also links the concept

of prior to the one of regularization which will be discussed in section 2.3, but for
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the moment we will consider the prior P0(g) to be uniform (i.e. a g-independent

constant), so that it can be reabsorbed into the pre factor of equation (2.26). In this

case finding the best model to describe the empirical averages may mean:

• Finding the point in the space of couplings g in which the function PT (ŝ|g) is

maximum (maximum likelihood approach).

• Finding the region of the space of couplings in which such probability is high

(Bayesian approach).

These two approaches lead to very similar results in the case in which the likelihood

function is strictly concave, as one can prove by means of large deviation theory (see

section 2.2.4 and appendix A.6). Roughly speaking, when the number of observa-

tions T is large, the posterior PT (g|ŝ) concentrates around the maximum likelihood

parameter, being the rate of convergence fixed by the stability matrix of the maximum

and the number of samples T . Hence we will later define as the inverse problem the

characterization of the maximum likelihood parameters and of their linear stability,

disregarding the detailed shape of the function PT (g|ŝ).

2.2.2 Maximum likelihood criteria

The maximum likelihood criteria requires to find the maximum of the likelihood

function PT (ŝ|g), whose solution is obtained by differentiation of equation (2.15)

with respect to the couplings gµ, and reads for each µ

〈φµ〉 = φ̄µ , (2.27)

a condition which will be referred as momentum matching condition. Thus, the best

parameters g? describing a set of data ŝ under the model (2.1) in absence of prior are

the ones for which the ensemble averages of the model are matched with the empirical

ones.
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Remark 2.1. It is easy to see that the matching condition (2.27) can alternatively be

obtained by minimizing the Kullback-Leibler divergence DKL(p̄|p) between the proba-

bility distribution defined by the empirical frequencies p̄ and the probability density p

defined by the statistical model (φ, g).

2.2.3 Statement of the inverse problem

The concavity properties of the likelihood function (or equivalently, of the free

energy F (g)), allow for a characterization of the problem of inferring the maximum

likelihood parameters g? given data ŝ in terms of a Legendre transform of F (g).

Definition 2.6. Given a minimal set of operators φ and a set of empirical averages

φ̄, the function S(φ̄) is defined as the Legendre transform

−S(φ̄) = max
g

(
M∑

µ=1

gµφ̄µ + F (g)

)
. (2.28)

We denote with g? the (only) value of g maximizing equation (2.28). Such quantity

satisfies

φ̄µ = −∂F (g)

∂gµ

∣∣∣∣∣
g=g?

. (2.29)

By construction the statistical model (φ, g?) verifies the matching condition (2.27).

By considering the Shannon entropy S(p) = −∑s ps log ps and by plugging prob-

ability density p? inside its definition, one can see that it holds

S(p?) = −
M∑

µ=1

g?µφ̄µ − F (g?) = S(φ̄) , (2.30)
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which characterizes the Legendre transformation (2.28) of the free energy F (g): S(φ̄)

is the Shannon entropy of the distribution expressed as a function of the empirical

averages.

Remark 2.2. The existence of a solution g?(φ̄) to the minimization problem defining

the entropy S(φ̄) is guaranteed by a general result stating that given any operator set

φ defining a marginal polytope G(φ), the empirical averages φ̄µ =
∑

s φµ,sp̄s can be

matched by ensemble averages 〈φ?〉 associated with the statistical model (φ, g?), with

g? ∈ (R∪{−∞,+∞})M . The interested reader is referred to [85] for the mathematical

details.

Proposition 2.5. By differentiation of equation (2.28) one finds that

− ∂S

∂φ̄µ
= g?µ , (2.31)

while by applying the chain rule to the equation δµ,ν = ∂gµ/∂gν one finds that

− ∂2S

∂φ̄µ∂φ̄ν
= χ−1

µ,ν . (2.32)

Equations (2.31) and (2.32) are analogous to equations (2.8) and (2.9) which

relate to the direct problem. Just as the free energy F (g) generates averages and

susceptibilities in the direct problem, the entropy S(φ̄) is the generating function for

the inverse one. Hence, an inference problem can be solved by explicitly computing the

Shannon entropy S(φ̄) and finding its maximum (either analytically or numerically).

Definition 2.7. The problem of determining the entropy S(φ̄), the inferred couplings

g? and the inverse susceptibility χ̂−1 as functions of the averages φ̄ will be referred

as the inverse problem.
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2.2.4 Small and large deviations

Two questions analogous to the ones formulated in section 2.1.4 in the case of the

direct problem can be formulated for the inverse problem, namely: (i) what are the

most likely values for the inferred coupling g? obtained by a dataset ŝ of length T?

and (ii) how likely it is that such dataset has been generated by a model very different

from the maximum likelihood one? In order to answer to those two questions we need

to consider the large deviation function for the inverse problem. This can be obtained

by noting that in absence of a prior, Bayes theorem and equation (2.25) imply that

PT (p|p̄) ∝ PT (p̄|p) = e−T (DKL(p̄||p)+S(p̄)) ∝ e−TDKL(p̄||p) (2.33)

so that we can prove the following proposition.

Proposition 2.6. Given a vector of empirical frequencies p̄, the large deviation func-

tion for the inverse problem Ip̄(p) ∝ − 1
T

logPT (p|p̄) is given by the Kullback-Leibler

divergence

Ip̄(p) = DKL(p̄||p) . (2.34)

This implies that the probability for data p̄ to be generated by any model p decays

exponentially fast in T with a rate function given by the large deviation function

DKL(p̄||p). This result can be seen as a particular case of a more general theorem,

which is known as Sanov theorem and whose proof can be found in appendix A.4.2

Theorem 2.1. Consider a statistical model defined by a probability distribution p,

and a (compact) set of probability densities M ⊆ M(Ω). Then if p̄ is a vector of

2We won’t adopt the informal version of the theorem often found in literature (see for example
[54]), which doesn’t require the introduction of the set M′. In such form the theorem is not valid
when, for any value of T ,M has empty intersection with the set of realizable empirical frequencies,
as the probability for any point in M to be realized is strictly zero regardless of T .
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empirical frequencies sampled from the distribution PT (ŝ|p), it holds that

lim
δ→0

lim
T→∞

− 1

T
log Prob(p̄ ∈M′) = DKL(q?||p) , (2.35)

where q? = arg minq∈MDKL(q||p) and M′ is the compact set M′ = {p+ δp = p′ ∈

M(Ω) | p ∈M , δp ∈ [−δ, δ]|Ω| }.

Building on these results, we can provide an answer for our first question and find

out what are the most likely distributions p having generated data p̄. In particular,

it is possible to expand the Kullback-Leibler divergence around its minimum and

perform a saddle-point estimation, obtaining the following result.

Proposition 2.7. Consider a generic dataset ŝ defining the empirical distribution

p̄ ∈ M(Ω). Then, given a family of operators φ, the posterior probability (with

uniform prior) PT (g|p̄) ∝ PT (p̄|g) defines a probability measure on space M(φ),

parametrized by the coupling vector g which defines the statistical model p. The

averages and the covariances under this measure are given in the large T limit by

∫
dg gµe

−TDKL(p̄||p)

∫
dg e−TDKL(p̄||p)

−−−→
T→∞

g?µ (2.36)

∫
dg gµgν e

−TDKL(p̄||p)

∫
dg e−TDKL(p̄||p)

− g?µg?ν −−−→
T→∞

χ−1
µ,ν

T
. (2.37)

where g? is the maximum likelihood estimator of g and χ̂−1 is the inverse of the

Fisher information matrix calculated in g?.

This result (proved in appendix A.6) characterizes the inverse of the generalized

susceptibility as the matrix quantifying the speed in T at which the probability mea-

sure on the inferred couplings concentrates around the maximum likelihood estimate.

The centrality of this matrix in the inverse problem is also provided by a rigorous

bound that can be proven for the covariance of any unbiased estimator, and known as
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Cramér-Rao bound. From this perspective, χ−1
µ,ν , can be seen as establishing a bound

to the maximum rate of convergence for the estimator of a coupling.

Theorem 2.2. Consider a statistical model (φ, g) with F (g) strictly concave and

an unbiased estimator of the couplings g? (i.e., such that 〈g?µ〉T = gµ). Then the

covariance matrix of g? under the measure 〈. . . 〉T satisfies

〈
(g? − g)(g? − g)T

〉
T
� χ̂

−1

T
(2.38)

where with X̂ � Ŷ we indicate that the matrix X̂ − Ŷ is positive semidefinite.

The proof of this theorem is presented in the appendix A.5.

2.2.5 Examples

Independent spins model

The simplest model of the form (2.1) which can be considered is of the form

p(s) =
1

Z(h)
exp

(∑

i∈V
hisi

)
(2.39)

and will be called independent spin model. The model contains N operators of the

form {φ{i}(s) = si}i∈V (called in the following magnetizations), whose conjugated

couplings are denoted as g{i} = hi (and referred as external fields). The empirical

magnetizations will be denoted as s̄i = mi. The direct problem can be solved by

evaluating the partition function of the model, so that the free energy F (h) results

F (h) = −N log 2−
∑

i∈V
log coshhi . (2.40)
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The ensemble averages and generalized susceptibilities can be obtained by differenti-

ation, and are given by

mi = tanhhi (2.41)

χi,j =
δi,j

cosh2 hi
(2.42)

The inverse problem is also easily solvable, as the Legendre transformation of F (h)

can explicitly be computed, and the entropy results

S(m) = −
∑

i∈V

(
1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

)
(2.43)

while by differentiation one finds

h?i = arctanh mi (2.44)

χ−1
i,j =

δi,j
1−m2

i

(2.45)

The additivity both of the entropy and of the free energy, which are crucial in order to

solve the model, descend directly by the independence of p(s), which can be written

as a product of single spin marginals

p(s) =
∏

i∈V
p{i}(si) . (2.46)

Notice that the existence of the solution is guaranteed for any m in the hypercube

[−1, 1]N , while its uniqueness is enforced by the minimality of the operator set {si}Ni=1

(which is additionally an orthogonal set in the sense that will be defined in (4.1)). As

expected, for mi = ±1, the estimator h?i is divergent, so that h?i (mi = ±1) = ±∞.
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The pairwise model

The next model that will be presented is known in a large variety of fields with

different names (Ising model in physics, graphical model in the field of statistical

learning), and is defined by the probability density

p(s) =
1

Z(h, Ĵ)
exp


∑

i∈V
hisi +

∑

(i,j)∈E
Jijsisj


 , (2.47)

where E is a given set of edges, that is, a given subset of {(i, j) ∈ V × V | i < j}.

While in statistical mechanics it has been extensively used since 1925 as a prototypical

model to study magnetic materials [41, 15], it has deserved a special interest in the

field of statistical learning as it is the simplest model which is able to capture the

correlation structure of a given dataset3. The operator content of this model is a set

of N magnetizations, conjugated to their corresponding external fields (as in section

2.2.5), and a set of |E| ≤ N(N−1)
2

operators {φ{i,j}(si, sj) = sisj}(i,j)∈E conjugated to a

set of pairwise couplings g{i,j} = Jij. We will call empirical correlations the averages

sisj = cij.

Remark 2.3. This direct problem for the pairwise model is hard to solve in the

general case for even moderate values of N , in the sense that the calculation of the

partition function Z(g) is a problem which is known to belong to the #P-complete class

[43, 42]. Only for some subclasses of this general problem an exact, analytical solution

for the partition function can be obtained (e.g., regular lattices, trees) and evaluated

in polynomial time, while in general just approximate solutions can be obtained in

polynomial time [42]. Another possible approach consists in finding approximated

expressions for the partition function Z(h, Ĵ) which are proven to converge in the

3This can be shown via the maximum entropy principle, which is presented and thoroughly
commented in appendix A.1.
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limit of large system size or weak interaction to the exact result for the free energy of

the model (mean-field approximations).

In the next sections we will introduce specific versions of model (2.47) for which

we will be able to solve the inverse problem, namely the fully connected ferromagnet

(section 3.3) and the pairwise tree (section 4.2.3).

2.3 The regularized inverse problem

The inverse problem described in section 2.2 may appear extremely easy to solve due

to the concavity of the free energy F (g). The optimization of concave functions is

usually very easy because fast algorithms such as gradient ascents can find in short

time a maximizer (if any) for F (g) (appendix C). Despite that, there are several

cases in which this procedure may be problematic, so that the function F (g) is of-

ten replaced by a modified function F (g) − H0(g) which enforces a better behavior

for the inverse problem. In this case the function H0(g) is called a regularizer. In

a Bayesian setting, regularization can be understood as an injection of a priori in-

formation about a statistical model. Indeed the issue of regularization is a topic of

fundamental importance in the field of statistical inference well beyond the need of

enforcing mathematical tractability of the model. In particular it can be used to deal

with these cases:

• Divergencies: Regularization can cure divergencies, by removing infinite cou-

plings. A solution to any inverse problem is guaranteed to exist for any set of

empirical averages φ̄ ∈ G(φ), but such solution may be located at the bound-

ary of the coupling space, in whose case one or more couplings are divergent.

Penalizing large couplings with a regularizer ensures that the inferred couplings

attain a finite value. This is often the case for neurobiological or protein data
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and can be related to undersampling, as motivated in sections 4.2.1, 4.2.3 and

4.2.4 [25, 72, 87, 24, 26].

• Uniqueness: Regularization can enforce uniqueness for the solution of the

inverse problem, by removing the zero models of the χ̂ matrix. Such modes

can arise if the family φ is not minimal (appendix A.2), or can be linked to the

large N limit (chapter 3).

• Generalizability: Regularization can be used to improve generalizability of

a statistical model in the case of under sampling: if the inferred probability

has a much smaller entropy with respect to the true one, an inferred model

is likely not to be predictive. A compromise between faithfulness to the data

and simplicity of the model can nevertheless be achieved by penalizing the

complexity of the model with a regularization term, which is expected to lift

the entropy of the inferred model. The balance between over and under fitting

can be heuristically evaluated by using cross-validation methods (e.g., by using

one half of the data to calibrate the model and by computing the likelihood of

the other half) or by using a complexity measure for the inferred model (such

as the Akaike information criterium [7] or the Bayesian information criterion

[73]), in order to tune the regularizer to a correct value (see also section 5.1.3).

• Model selection: Finally, regularization can be used as a tool to perform

model selection. In the case in which data are distributed according to a spe-

cific, unknown, statistical model, it is possible to perform inference by using a

more general distribution which is likely to contain (or to be very close) to the

true one. By adding a suitable regularizing term (such as an L-1 or L-0 norm)

it is sometimes possible to recover the original model as a particular sub-class

of a more general distribution. For example, this has been used in the con-

text of graph reconstruction, where models defined by specific topologies have
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been successfully selected by a regularizer out of the space of all possible graph

structures [63, 86].

2.3.1 Bayesian formulation

Consider an empirical dataset ŝ and a model defined by a set of operators φ. Then

the posterior of the model can be written as in (2.26), in which it is PT (g|ŝ) ∝

PT (ŝ|g)P0(g), so that the problem of inference can be reformulated as the minimiza-

tion of the function

H(g|ŝ) = − logPT (ŝ|g)− logP0(g) = −T
M∑

µ=0

gµφ̄µ − logP0(g) . (2.48)

Definition 2.8. Given a statistical model (φ, g) and a positive prior function P0(g)

we define a regularizer as the function H0(g) = − logP0(g).

Notice that due to convexity of the χ̂ matrix, if the regularizer H0(g) is (strictly)

convex, also H(g|ŝ) is (strictly) convex. Hence, the introduction of a strictly convex

prior can be used to remove zero modes from the χ̂ matrix thus enforcing a unique

solution for the inverse problem. In our analysis we will restrict to the case of convex

regularizers. Also notice that if H0(g) = +∞ when any component of g? is divergent,

the solution of the inverse problem is confined to a finite region of the coupling space.

2.3.2 Two popular regularizers

We present two known regularization schemes, with the purpose of providing simple

examples of convex regularizers, while showing at the same time two widely used

regularization mechanisms. The details about the properties and the implementation

of the algorithms used to solve these regularized problems are reminded in appendix

C.
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L-2 regularization

Given a statistical model (φ, g), a set of empirical frequencies φ̄ and a vector β such

that it is component-wise βµ > 0, we consider the minimization problem

H(g) = −T
M∑

µ=0

gµφ̄µ +
M∑

µ=1

βµ
2
g2
µ , (2.49)

which we call the L-2 regularized inverse problem. This choice for H0(g) enforces

strict concavity of the problem and finiteness of the values of g?, which should satisfy

the set of equations

φ̄µ − 〈φµ〉 −
βµ
T
gµ = 0 . (2.50)

This regularization corresponds to the Gaussian prior P0(g) ∝ exp
(
−∑µ

βµ
2
g2
µ

)
.

Notice also that the regularizer is differentiable, so that a solution of this problem

can be addressed efficiently by using techniques such as the ones described in the first

part of appendix C. As in the non-regularized case, the main computational limitation

consists in calculating the gradient of the minus log-likelihood function − logPT (φ̄|g),

which requires the knowledge of the averages 〈φ〉 as functions of the coupling vector

g. This regularization procedure is typically used to remove infinite values arising in

the solution of the non-regularized inverse problem.

L-1 regularization

We also present the L-1 regularized inverse problem, which is defined by the mini-

mization problem

H(g) = −T
M∑

µ=0

gµφ̄µ +
M∑

µ=1

βµ|gµ| , (2.51)

corresponding to the choice of an exponentially decaying prior exp
(
−∑µ βµ|gµ|

)

∝ P0(g) for the coupling vector g. Analogously to the L-2 case, this regularizer is

convex and enforces a finite value for the inferred couplings g?. Unlike that, this
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regularizer is non-differentiable. This introduces some difficulties in the solution of

the minimization problem, as shown in the second part of appendix C, where it is

shown that the inferred coupling vector should satisfy the equation

0 ∈ φ̄µ − 〈φµ〉 − βµ sgn(gµ) , (2.52)

where sgn(x) is the set-valued function defined by equation (C.11). The main interest

in this regularizer arises from its efficacy as a feature-selector, as it is able to provide

sparse solutions for g?, i.e., to put exactly to zero some components of the inferred

couplings vector. Despite being first used in the field of compressed-sensing, in which

the use of the L-1 regularizer has been exploited to solve underconstrained sets of lin-

ear equations [31], this regularized has been successfully applied in the field of binary

inference (also called logistic regression), in which it has been useful to reconstruct

the structure of an interaction network of the form (2.47) [63, 86] and even in more

general cases dealing with non-binary interaction [71].

Remark 2.4. The two regularizers presented so far are special cases of the L-p reg-

ularization scheme, which is associated with the choice H0(g) ∝ ∑µ βµ||gµ||p, where

||x||p = |x|p is the L-p norm of x. Notice that the L-p regularizer is convex (hence

leading to computationally tractable minimization problems) for p ≥ 1, and is strictly

so for p > 1. In particular, the L-1 regularizer can be seen as the simple ( alias,

convex) regularizer that is closer to the L-0 one, which is associated with the problem

of minimizing the number of inferred parameters for a fixed value of the posterior, a

criterium which one would think to use in order to minimize the complexity of the

inferred model.
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2.3.3 Examples

Independent spins model

Consider the model defined by the probability density (2.39). Then we can consider

the regularized inverse problems in which one tries to minimize

H(h|ŝ) = −T
∑

i∈V

(
himi −N log 2− log coshhi

)
+H0(h) , (2.53)

in the two cases H0(h) =
∑

i
βi
2
h2
i and H0(h) =

∑
i βi|hi| corresponding respectively

to the L-2 and L-1 norm. In the first case the (decoupled) set of equations which has

to be solved in order to find the vector h is

mi − tanh(hi) =
βi
T
hi , (2.54)

whose graphical solution is depicted in figure 2.1. Such plot and equation (2.54) also

0.5 1.0 1.5 2.0
mi

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Figure 2.1: Graphical solution of equation (2.54) yielding the inferred field h?i for
the L-2 regularized independent spin model. The blue curve displays the quantity
mi − tanhhi in the case mi = 0.8, while the red ones show the product βihi/T for
βi/T = 0.5, 1, 2. The dashed line plotted for reference corresponds to the line mi− 1.

show that the inferred couplings hi attain a finite value for any of −1 ≤ mi ≤ 1 and

0 ≤ βi < ∞. In the case of the L-1 norm, one has to solve the decoupled set of
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-1.0 -0.5 0.5 1.0
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hi

ø

Figure 2.2: Solution for the inferred field h?i for the L-1 (blue line) and L-2 (red
line) regularized independent spin model as a function of the empirical magnetization
for βi/T = 0.5. The solution for the non-regularized problem is also plotted for
comparison (yellow line).

equations

mi − tanhhi =
βi
T

sgn(hi) , (2.55)

whose solution is

hi =





0 if βi
T
> |mi|

arctanh [mi − βi
T

sign(mi)] if βi
T
≤ |mi|

. (2.56)

The solution for hi in the two cases for a specific value of βi is plotted in figure 2.2.

Notice that:

• Both regularizations schemes produce a finite hi in the case |mi| = 1.

• The zero-field solutions of the L-1 regularized problem can be seen as aris-

ing from a complexity related criteria, stating that operators which do not add

enough descriptive power to the model should be suppressed by the assignment of

zero weight to their conjugated coupling. In this example the notion of “enough
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descriptive power” is quantified through the comparison of βi against the direc-

tional derivative of the log-likelihood ∂hi logPT (mi ≷ 0|hi)|hi→0± = Tmi.

Despite its trivial solution, we have chosen to present this problem as it shows with

simplicity some basic features of the L-1 and L-2 regularizers which are retained even

in more complicated scenarios.
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Chapter 3

High-dimensional inference

Rigorous results in information theory – such as the ones presented in section 2.2.4

– are able to provide both qualitative and quantitative understanding of the inverse

problem in the regime of finite N and large T , the case most of the literature on

statistical learning deals with, while computational techniques such as the ones de-

scribed in appendix C provide efficient means to find its solution. Nevertheless, recent

technological advances in several fields (such as biology, neuroscience, finance, econ-

omy) are pushing the fields of statistical learning towards a less trivial regime, in

which both N and T are large, with a given relation among system size and number

of samples keeping fixed their scaling. The reason for this change of perspective is

that it is now possible for several complex systems to record a large number of data

samples describing simultaneous the activity of the many microscopic constituents

[22, 72, 76, 24, 48, 59, 29]. The question that naturally arises in this case is whether

it makes sense to consider a model with a large (possibly very large) number of

parameters, if the data available is also very large. The answer is non-trivial, and

requires the addition of some degree of complexity to the problem of inference. The

first problem which has to be addressed (section 3.1) is of purely technical nature,

and deals with the problem of finding the minimum of a convex function when its
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gradient is computationally intractable. Then, we will describe some interesting con-

ceptual problems which arise when considering the large N limit. For simplicity, we

will consider initially the problem in which both N and T are large, but the number

of inferred parameters M is finite (section 3.2). Discussing the case in which M scales

with N as well will require the introduction of the notion of disorder, which we will

briefly comment about in section 3.5.

3.1 Computational limitations and approximate

inference schemes

In appendix C we show how it is possible to construct algorithms which are guaranteed

to find a minimum (if any) for a convex function. Then the solution of the inverse

problem can be written as a minimization problem over a convex function H(g) of

the form

H(g) = − logPT (s̄|g)− logP0(g) , (3.1)

that problem is in principle solved. Indeed, the problem which often arises in many

practical cases is that the naive minimization of this function can be extremely slow,

and ad-hoc techniques have to be implemented in order to overcome this problem.

3.1.1 Boltzmann Learning

One of the most intuitive algorithms to solve the inverse problem is provided by

the Boltzmann learning procedure [6], which consists in the application of algorithm

C.1.1 to the inverse problem described in section 2.2. In that case, the minimization

procedure of H(g) consists in constructing a succession {g(k)}Kk=1 of the form

g(k+1) = g(k) − εk∇H(g(k)) (3.2)
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where {εk}Kk=1 is a schedule satisfying the set of conditions (C.4) which enforce the

convergence of g(k) to the minimum (if any) g?. Indeed the computation of each of

the g(k) requires the evaluation of H(g(k)) and the calculation of a gradient of the

form

∇H(g(k)) = T
(
〈φµ〉g(k) − φ̄µ

)
+

∂

∂gµ
H0(g(k)) . (3.3)

The calculation of the gradient (or the sub-gradient) of H(g) requires evaluating the

ensemble averages of the operators φ, which is a computationally challenging task if

N is even moderately large. This is true even when the function H and the ensemble

averages 〈φ〉 are not computed via direct enumeration (which would in principle entail

a summation over 2N states for each of the M operators plus the identity), and are

instead calculated with Monte Carlo methods. The number of iterations required

to calculate each of the gradients and the function H with a controlled precision is

in fact typically fast growing in N , being the quality of the approximation and the

time computational power required to obtain it dependent on the algorithm which is

adopted to compute the averages (see for example [6, 54, 50, 47]). Summarizing:

• Boltzmann learning is able to solve with arbitrary precision any inverse problem.

• The computational power required to solve the inverse problem through the

Boltzmann learning procedure with a given degree of accuracy (i.e. H(g(K))−

H(g?) smaller than a fixed ε) grows fast in N .

3.1.2 Mean field approaches for pairwise models

An alternative approach to the Boltzmann learning procedure can be constructed

by adopting so-called mean-field techniques, which allow to obtain efficient approx-

imations for the free energy F (g) and the averages 〈φ〉 of a statistical model. Such

techniques are suitable for systems whose partition function can be quickly, although

approximately, evaluated with a precision which either increases with the system size
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N or decreases with the magnitude of the interactions, so that in many practical ap-

plications the difference between the approximated observables and the exact ones is

very small [68, 67]. For pairwise models of the form (2.47), mean-field approximations

are well-known since long time in statistical physics. In particular we will consider ap-

proaches in which the free energy of the model (2.47) is expanded in a series around a

non-interacting or a weakly correlated model (naive mean field, TAP approximation,

Sessak-Monasson approximation), or obtained by assuming a factorization property

of the probability distribution in terms of one and two body marginals (Bethe ap-

proximation). We will briefly describe these approximate inference schemes without

providing explicit derivations, supplying the interested reader with the necessary ref-

erences.

In order to motivate the mean-field approach, we first state the result [62].

Proposition 3.1. Consider a pairwise model of the form

p(s) =
1

Z(h, βĴ)
exp


∑

i∈V
hisi + β

∑

(i,j)∈E
Jijsisj


 , (3.4)

where β > 0 is an expansion parameter. Then its free energy can be written as

Fβ(h,J) =
∞∑

n=0

βn
∂nFβ
∂βn

(3.5)

where the terms
∂nFβ
∂βn

are functions such that: (i) depend only on the couplings Jij and

the ensemble magnetizations 〈si〉 (ii) for n ≥ 1 the n-th term involves n-th powers of

Jij (iii) the ensemble magnetizations satisfy the self-consistency equations

∂Fβ(h, βĴ)

∂〈si〉
= 0 . (3.6)

.
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Leaving aside the problem of convergence of the series (3.5), the free energy for

a generic pairwise model can in principle be obtained by setting β = 1 in the above

expansion.

• Naive mean field: The naive mean field approximation can be obtained by

truncating the series (3.5) for n = 2, thus obtaining the expression

FnMF (h,J) =
∑

i

[
1 + 〈si〉

2
log

1 + 〈si〉
2

+
1− 〈si〉

2
log

1− 〈si〉
2

]

−
∑

i∈V
hi〈si〉 −

∑

(i,j)∈E
Jij〈si〉〈sj〉 , (3.7)

while the self-consistency equations become

〈si〉 = tanh


 ∑

(i,j)∈E
Jij〈sj〉+ hi


 . (3.8)

The solution of the inverse problem within this inference scheme can be obtained

by inserting the momentum matching condition 〈si〉 = mi in the previous ex-

pression, yielding a first set of relations among h?, Ĵ? and m. Matching the

correlations cij with the ensemble averages 〈sisj〉 requires instead the use of

linear response theory1 [45], which can be used to to prove that

χ{i},{j} =
∂〈si〉
∂hj

= cij −mimj . (3.9)

1Nor by using this inference scheme, nor by using TAP approximation one is able to enforce the
momentum matching condition for the correlations without resorting to linear response. This is due
to the decorrelation property of the mean-field approximation, which will be thoroughly commented
for a simpler model in section 3.3.
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Putting those informations together, one finds that

(ĉ−mmT )−1
ij =

δij
1−m2

i

− J?ij (3.10)

h?i = atanh(mi)−
∑

i<j

J?ijmj (3.11)

• TAP approximation: The Thouless-Anderson-Palmer (TAP) approximation

can be obtained by considering an additional term in the expansion (3.5), often

denoted as Onsager reaction [81], leading to the expression for the free energy

FTAP (h,J) =
∑

i

[
1 + 〈si〉

2
log

1 + 〈si〉
2

+
1− 〈si〉

2
log

1− 〈si〉
2

]
(3.12)

−
∑

i∈V
hi〈si〉 −

∑

(i,j)∈E
Jij〈si〉〈sj〉 −

1

2

∑

(i,j)∈E
J2
ij(1−m2

i )(1−m2
j) ,

and the self-consistency relation2

〈si〉 = tanh


 ∑

(i,j)∈E
Jij
[
〈sj〉 − Jij(1− 〈sj〉2)〈si〉

]
+ hi


 . (3.13)

Also in this case, in order to apply this approximation to the inverse problem

[79], one has to use the momentum matching conditions together with linear

response theory, leading to the expression [64]

(ĉ−mmT )−1
ij =

[
1

1−m2
i

+
∑

k∈V
J?ik(1−m2

k)

]
δij − J?ij − 2J?2ij mimj (3.14)

h?i = atanh(mi)−
∑

i<j

J?ij
[
mj − J?ij(1−m2

j)mi

]
. (3.15)

2Notice that the potential emergence of multiple solutions of equation (3.13) is a known feature
of several pairwise models, and is generally associated with the emergence of an instability linked
with the presence of a glassy phase [8].
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While the expansion (3.5) is a series for F (h, Ĵ), and is hence associated with the

direct problem, it is also possible to find an analogous expansion for the entropy

S(m, ĉ) due to Sessak and Monasson which is more naturally associated with the

inverse problem [74].

Proposition 3.2. Given a pairwise model of the form (2.47), the entropy S(m, ĉ)

can be expanded as

S(m, βδĉ)
∞∑

n=0

βn
∂nS(m, βδĉ)

∂βn
(3.16)

where β > 0 is a parameter controlling the expansion and δĉ = ĉ−mmT . One can

see that (i) the terms S(m,βδĉ)
∂βn

depend upon m and δĉ, (ii) for n ≥ 1 the n-th term

of the expansion contains powers of the connected correlation cij −mimj of order n.

By setting β = 1, it is also possible to use such an expansion to construct a

mean field approximation: the terms in (3.16) can be constructed explicitly through

a recursion relation, and each of those can be represented by a diagram, converting

the series (3.16) into a diagrammatic expansion.

• Sessak-Monasson expansion An infinite number of terms of the expansion

(3.16) (which are associated with loop diagrams and two-spin diagrams) are

analytically resumed in [74], where it is found that their contribution leads to

J?ij = δij(1−m2
i )− (ĉ−mmT )−1

ij

+
1

4
log

[
(1 +mi +mj + cij)(1−mi −mj + cij)

(1 +mi −mj − cij)(1−mi +mj − cij)

]
(3.17)

− cij −mimj

(1−m2
i )(1−m2

j)− (cij −mimj)2
,

which is commonly referred as the Sessak-Monasson approximation.

Notice that the expansion (3.16) automatically leads to a series expansion for the

external fields and the couplings by using relation (2.31) and exploiting the linearity
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of the derivative, without the need of resorting to linear response theory.

A different type of approximation is the so-called Bethe approximation, in which the

free energy is written as

FBA(h,J) = −
∑

(i,j)∈E
p{i,j}(mi,mj, cij) log p{i,j}(〈si〉, 〈sj〉, 〈sisj〉)

−
∑

i∈V
(1− |∂i|)p{i}(〈si〉) log p{i}(〈si〉) (3.18)

−
∑

i∈V
hi〈si〉 −

∑

(i,j)∈E
Jij〈sisj〉 ,

where ∂i = {(i, j) ∈ E} and the averages 〈si〉 and 〈sisj〉 are self-consistently cho-

sen in order to minimize (3.18). This approximate expression is exact whenever

the probability distribution p(s) can be written as a product of one and two body

marginals, which is true in the case of trees (see section 4.2.3 and appendix D.2).

Notice that for generic systems, the self-consistence equations are not guaranteed to

yield a unique, stable solution, being the solutions to the minimization conditions

associated with fixed points of the so-called Belief-Propagation (BP) algorithm for

constraint satisfaction problems [54]. The expression for the averages obtained by

using the free-energy (3.18) is given by [64]

〈si〉 = tanh


hi +

∑

j|(i,j)∈∂i
atanh [tanh(Jij)f(〈si〉, 〈sj〉, tanh Jij)]


 , (3.19)

where

f(m1,m2, t) =
1− t2 −

√
(1− t2)2 − 4t(m1 −m2t)(m2 −m1t)

2t(m2 −m1t)
. (3.20)

• Bethe approximation The use of linear response theory together with equa-

tion (3.20) allows to find a solution of the inverse problem in Bethe approxima-
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tion, yielding

Jij = atanh

[
mimj −

1

2
(
δ̂c
−1
)
ij

√
1 + 4(1−m2

i )(1−m2
j)
(
δ̂c
−1
)2

ij
(3.21)

+
1(

δ̂c
−1
)
ij

(
1

4
−mimj

(
δ̂c
−1
)
ij

√
1 + 4(1−m2

i )(1−m2
j)
(
δ̂c
−1
)2

ij

+ (2m2
im

2
j −m2

i −m2
j)
(
δ̂c
−1
)2

ij

)1/2]

hi = atanh (mi)−
∑

j∈V
atanh [tanh(Jij)f(mi,mj, tanh(Jij))] (3.22)

where δ̂c = ĉ −mmT . Notice that this equation describes the fixed point

solution of the susceptibility propagation algorithm (SuscProp) [55] without

the need of numerically iterating the algorithm itself [64].

Remark 3.1. The techniques described above have been extensively used in order to

solve the inverse problem for the pairwise model. Indeed no general result for the

quality of these approximations is rigorously known, thus it is worth remarking that

(i) several approximations have been tested on synthetic and experimental data (see

for example [24, 68, 67, 52, 64, 12, 26]) in order to check their performance and

(ii) those approximations describe the correct expression of the free energy for some

specific models. In particular the free energy (3.7) is the exact free energy for the

(either homogeneous or heterogeneous) Curie-Weiss model in the limit of large N ,

(3.12) is the correct free energy for the Sherrington-Kirkpatrick model [62] and the

Bethe approximation is exact for loop-less graphs (appendix D.2).

3.2 The large N , finite M regime

We will be interested in sketching some features of the inverse problem which arise

for large values of N (a regime known in statistical mechanics as the thermodynamic
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limit), and in commenting about their role in the solution of an inference problem

such as the one described in section 2.2. In particular we will consider the following

issues:

• Loss of concavity: A model defined by a strictly concave free-energy F (g)

may develop null-modes associated with the matrix χ̂. This implies that the

solution of the inverse problem may lose its uniqueness or, more precisely, large

regions of the space M(φ) might be associated with similar sets of empirical

averages φ̄.

• Model condensation: Models undergoing a so-called second order phase tran-

sition display a divergence of one or more components of the generalized suscep-

tibility matrix χ̂. This indicates that large portions of the marginal polytope

G(φ) can be described by slightly shifting the values of g around the critical

point in which χ̂ diverges. More generally, even for non-critical points finite

regions of the space of the empirical averages can be mapped by the inverse

problem onto sets of apparently vanishing measure of the space M(φ). We

call this behavior model condensation, a phenomenon which will be discussed

in great detail in chapter 5.

• Ergodicity breaking: The probability measure p may break in a set of P

states, each of them characterized by a different probability density p(α) (with

p =
∑P

α=1 qαp
(α) and

∑P
α=1 qα = 1). If this is the case, empirical averages

produced with a finite amount of data T � |Ω| by any realistic dynamics con-

centrate according to the measure p(α) rather than the full measure p. Then,

equation (2.23) fails to hold and the sampled averages are no longer representa-

tive of the global probability measure. Hence, the notion of ergodicity breaking

deals with the direct problem more than with the inverse one, as it relates to

the problem of the convergence of the averages φ̄ to the empirical ensemble
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averages 〈φ〉. As the discussion of this phenomenon will require the addition of

some structure to the direct problem, we will briefly comment its role in section

3.4.

Those features are expected to be universal, i.e., present in several models in the limit

N → ∞ limit. Nevertheless, we will just study a single model known as the fully

connected ferromagnet, and try to underline the characteristics which are expected

to generalize also to other type of models.

3.3 Fully-connected ferromagnet

We want to illustrate some of the features described above by discussing a completely

solvable model. Such model is a particular case of the pairwise model (2.47), and is

also known as the Curie-Weiss model of magnetism. It has been used as a prototyp-

ical model to study the emergence of a spontaneous magnetization in ferromagnetic

materials, as it is one of the simplest statistical models which are able to describe a

thermodynamic phase transition between a non-ordered phase and an ordered one.

Definition 3.1. Consider the pair of operators φ =
(∑

i si,
1
N

∑
i<j sisj

)
, and the

statistical model (φ, g) defined by g = (h, J), so that its associated probability density

is given by

p(s) =
1

Z(h, J)
exp

(
J

N

∑

i<j

sisj + h
∑

i

si

)
. (3.23)

We call this model a fully connected ferromagnet. As for the pairwise model, we will

write m = 1
N

∑
i s̄i and c = 2

N(N−1)

∑
i<j sisj.

Due to symmetry, we will consider without loss of generality the model in the

region h ≥ 0. The free energy of the model F (h, J) can be calculated in the large N
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limit using a saddle-point approximation, and can be written as

F (h, J) −−−→
N→∞

J

2
+ F0(h, J) + Ffluct(h, J) + Ftrans(h, J) , (3.24)

where F0(h, J) is the leading term of the saddle point expansion, Ffluct(h, J) describes

the Gaussian fluctuations around the saddle point solution and Ftrans(h, J) accounts

for the presence of multiple solutions (the details of the expansion and the definition

of the terms can be found in appendix B.1). Due to linearity of the derivative, it is

possible to solve the direct problem taking into account the contributions of those

terms separately. The phenomenology of the model is well-known, and can be roughly

described keeping into account only the term F0(h, J). In particular for low values

of J the direct problem has only one stable solution (paramagnetic phase), while for

high values of J two stable solutions for the empirical averages emerge (ferromagnetic

phase). In the case h = 0 the two regimes are separated by a phase transition in which

the fluctuations of the average magnetization diverge.

3.3.1 The mean-field solution

The solution of the direct problem considering only F0(h, J) will be called mean-field

solution. Notice that due to the scaling F0(h, J) ∝ N , for large values of N this

contribution dominates the free energy F (h, J).

Proposition 3.3. For all i 6= j the mean-field solution for the fully connected ferro-

magnet is :

〈∑

i

si

〉

0

= N ms.p.(h, J) (3.25)

〈
1

N

∑

i<j

sisj

〉

0

= N
m2
s.p.(h, J)

2
(3.26)
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while the susceptibility matrix is given by

χ0 = N χs.p.




1 ms.p.

ms.p. m2
s.p.


 , (3.27)

where ms.p. is the absolute minimum of the function fh,J(m) = 1+m
2

log 1+m
2

+

1−m
2

log 1−m
2
− Jm2

2
− hm and χs.p. = ∂ms.p./∂h.

Remark 3.2. It is easy to check that the mean-field solution describes independent

spins. In fact equations (3.25) and (3.26) imply that for large N and i 6= j

〈si〉2 = 〈sisj〉 . (3.28)

This fact is a consequence of the pathological behavior of the mean-field solution

of this model. In particular this implies that the inverse problem has a solution just

along the line (m, c) = (m,m2), while it is easy to see(appendix B.1.3) that for a

generic distribution p̄ ∈ M(Ω) the set of all possible empirical averages (i.e., the

marginal polytope associated with the fully connected ferromagnet) is

G(φ) =

{
(m, c) ∈ R2

∣∣∣∣∣m ∈ [−1, 1] ∧ c ∈
[
m2 − 1/N

1− 1/N
, 1

]}
(3.29)

This implies the following fact concerning the inverse problem.

Proposition 3.4. The inverse problem for the fully connected ferromagnet has a

mean-field solution if and only if (m, c) = (m,m2). In that case, the entropy is given

by

S(m,m2) = N

(
1 +m

2
log

1 +m

2
+

1−m
2

log
1−m

2

)
(3.30)
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while the couplings belong to the space

h? = arctanh m− δJ m (3.31)

J? = δJ (3.32)

restricted to the region in which sign(m) = sign(h). Finally, the inverse susceptibility

matrix is divergent.

This last fact can be understood by checking that the matrix χ0 has eigenvalue

decomposition N
(

0,
1−m4

s.p.

1−J+Jm2
s.p.

)
. In particular, the null eigenvalue has eigenvector

(−m, 1) which indicates that the mean field solution of the direct problem is invariant

under the change of couplings

(h, J)→ (h− δJms.p., J + δJ) . (3.33)

Thus, the inverse problem maps all the points belonging to the one-dimensional re-

gion (m,m2) on the two-dimensional plane (h, J). This apparently contradicts the

remark in section 2.2 about the existence of solutions to the inverse problem for

any point belonging to the marginal polytope G(φ). Indeed, we will show in the

next section that keeping properly into account the presence of the h = 0, J > 1

line allows to understand this discrepancy. Interestingly, the two-dimensional region

G(φ)\{(Nm, N−1
2
m2) | m ∈ [−1, 1]} is mapped on such one-dimensional line.

3.3.2 Finite N corrections

Keeping into account the terms Ffluct and Ftrans allows to describe the transition from

the finite N regime to the mean-field one. In particular, the Gaussian fluctuations

around the mean-field solution extend the region in which the inverse problem is

solvable to a strip of finite width in the space G(φ).
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Proposition 3.5. Given (Nm, N−1
2
c) ∈ G(φ), the inverse problem for a fully con-

nected ferromagnet described by the terms F0 and Ffluct of equation (3.24) has solution

if and only if c = m2 + δc
N

with δc finite, and reads3

h = arctanh m− Jm (3.35)

J =
δc

(1−m2)(1−m2 + δc)
. (3.36)

Proof. This can easily be proved by keeping into account the contributions to the

averages 〈. . . 〉0, 〈. . . 〉fluct shown in appendix B.1 and imposing ms.p. = m + δm/N ,

c = m2 + δc/N in the momentum matching condition.

The null eigenvalue of the matrix χ̂0 is lifted to a finite value, as one can see that

det
(
χ̂0 + χ̂fluct

)
= N

χ3
s.p.

2
> 0 , (3.37)

and is of order N (instead of N2 as could be expected on the basis of the scaling

of the leading term χ0). Summarizing, data with small connected correlations (i.e.,

c −m2 ∼ 1/N) are described by a fully connected model with finite h. Conversely,

it must hold that the whole space G(φ) stripped of the quasi-one dimensional region

(Nm, 2
N−1

m2 + δc) is mapped on the region of the (J, h) plane in which J > 1 and

h ∼ 1/N . To show this, we consider the approximation in which the only relevant

terms of the free energy F (h, J) are F (h, J) = F0(h, J) + Ftrans(h, J).

Proposition 3.6. The inverse problem for the fully connected ferromagnet described

by the terms F0 +Ftrans has solution for any point (m, c) ∈ G(φ) excluding the region

3In the literature concerning the so-called inverse Ising model, this result is typically derived by
differentiating the relation

arctanh mi = hi +
1

N

∑

k

Jikmk (3.34)

with respect to mj , and by recognizing that through linear response one can write (∂h/∂m)−1ij =
cij −mimj ≈ δcij/N [45, 68].
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c−m2 ∼ 1/N . The points (h?, J?) satisfy the equations

m = ms.p. − (hχs.p. +ms.p.)[1− tanh(Nhms.p.)] (3.38)

c = m2
s.p. + hms.p.χs.p.[1− tanh(Nhms.p.)] (3.39)

ms.p. = tanh(Jms.p. + h) . (3.40)

Also in this case one can show that in the limit h � N , the null mode of χ̂0 is

lifted due to

det(χ̂0 + χ̂trans) −−−→
N→∞

N3χs.p.m
4
s.p.sech(hNms.p.) . (3.41)

Finally, one can draw the following conclusion, which despite being a trivial con-

sequence of what shown above, shows that the N → ∞ limit can lead to counter-

intuitive results.

Remark 3.3. Consider the solution of the inverse problem for a fully connected

ferromagnet and a point φ̄ = (Nm, N−1
2
c) drawn from the space of empirical averages

G(φ) with uniform measure. Then for any ε > 0, J?(φ̄) > 1 and h?(φ̄) ∈ [−ε, ε] with

probability P −−−→
N→∞

1.

This simple example shows some of the features discussed above concerning the

limit of large N , namely:

1. The free energy loses (strict) concavity, as one has det χ̂ −−−→
N→∞

det χ̂0 = 0. This

indicates that some directions in the coupling space cannot be discriminated. In

this example, when N is large, interactions are no longer distinguishable from

external fields due to the presence of an eigenvector (−m, 1) associated with

the null eigenvalue.

2. Model condensation takes place, as all the region G(φ) but a set of null measure

is mapped on a one-dimensional strip. This will be better elucidated in chapter
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5, where we will be able to quantify the density of models contained in a finite

region of the space (h, J).

3.4 Saddle-point approach to mean-field systems

In this section we generalize the procedure employed in the case of the fully connected

ferromagnet to the case in which a saddle-point approach is used to solve the direct

problem for a generic system. In particular, we consider a statistical model (φ, g)

with partition function

Z(g) =
∑

s∈Ω

exp

(
M∑

µ=1

gµφµ,s

)
, (3.42)

and suppose that the operators φµ,s can be written as functions of a small set of

parameters ψ(s) = (ψ1(s), . . . , ψA(s)), so that for any µ one has φµ(s) = φµ[ψ(s)].

Then it is possible to write

Z(g) =

∫
dψ
∑

s

exp

(
M∑

µ=1

gµφµ(ψ)

)
δ (ψ −ψ(s))

=

∫
dψ exp

(
M∑

µ=1

gµφµ(ψ) + Σ(ψ)

)
, (3.43)

where eΣ(ψ) =
∑

s δ (ψ −ψ(s)), and Σ(ψ) is often referred as entropy for the value

of the order parameter ψ. For many statistical models, one has that the limit

f(ψ) = lim
N→∞

1

N

(
−

M∑

µ=1

gµφµ(ψ)− Σ(ψ)

)
(3.44)

is finite, and f(ψ) is often called (intensive) free-energy for the value of the order

parameter ψ. In this case, one can exploit a saddle-point approximation to evaluate

48



CHAPTER 3. HIGH-DIMENSIONAL INFERENCE

the partition function Z(g) at large N . It results

Z(g) −−−→
N→∞

e−Nf(ψ?)

√
2π

N det (f (2)(ψ?))
. (3.45)

where we use the notation f (n)(ψ) for the tensor with components f
(n)
a1,...,an =

∂ψa1
. . . ∂ψanf(ψ), and ψ? is the global minimum of the function f(ψ), which in

particular satisfies

∂

∂ψa
f(ψ) = 0 . (3.46)

Besides providing us with a mean to calculate the free energy F (g), the ensemble

averages 〈φ〉 and the susceptibilities χ̂, the notions defined above allow us to introduce

the concept of state, which we will use to characterize the phenomenon of ergodicity

breaking.

Definition 3.2. Consider a statistical model (φ, g) which can be described by a

set of order parameters ψ, and such that at large N its partition function can be

approximated by (3.45). Then we call a state any local minima of the saddle-point

equations (3.46).

We will label any of those minima as ψ(α) with α = 1, . . . , P , and use the a

superscript α to identify quantities associated with the state α, as for example

F (α)(g) = − logZ(α)(g) . (3.47)

In principle just the state with smallest free energy F (α) should be relevant for the

computation of the partition function (3.45). Indeed all the other states have an

interpretation according to the dynamics which governs the system. Such states are

relevant in order to model the phenomenon of ergodicity breaking, which occurs when-

ever the configurations of a large system s ∈ Ω cannot be sampled according to the
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probability distribution p(s) in experiments of finite length T .4

In particular we informally remind that for large statistical models (φ, g) endowed

with a realistic dynamics (e.g., Metropolis-Hastings [80, 36]) leading in the limit of

exponentially large T to the stationary distribution p associated with (φ, g), states

naturally emerge when observing a finite amount of configurations. In fact, the itera-

tion of a dynamics for T � 2N time steps typically produces configurations belonging

to the same state as the initial one, while in the opposite limit of large T the proba-

bility of observing a state belonging to a configuration α is proportional to eNf(ψ(α)).

Hence, unless data obtained from an experiment are exponentially large in the size

of the system (which isn’t typically the case in real world applications of the inverse

problem), one expects empirical averages to concentrate around averages which are

in principle different from the ensemble ones, and that are associated with a specific

state α. Accordingly, we define the notion of state average 〈φ(α)〉, which is expected

in the regime of T � 2N to model the averages obtained by experiments of finite

length as follows:

Definition 3.3. Given a system (φ, g) whose partition function can be approximated

by the partition function (3.45), we define the state averages

〈φ(α)
µ 〉 = −∂F

(α)

∂gµ
(3.48)

and the state susceptibilities

χ(α)
µ,ν = − ∂

2F (α)

∂gµ∂gν
. (3.49)

The correctness of above construction has been verified for several statistical mod-

els subject to different dynamics [57, 89], nevertheless to the best of our knowledge

4 We won’t explicitly refer to the dynamics leading to the loss of ergodicity, even though this
phenomenon is naturally associated with the stochastic process leading to the stationary distribution
(2.1) and is more naturally discussed in the framework of a Markov chain [34].
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no fully general, rigorous result concerning this phenomenon is available yet. In

particular, in order to rigorously motivate the notion of state average, it would be

necessary to show that for a generic, local dynamics a decomposition property of the

form ps −−−→
N→∞

∑P
α=1 qαp

(α)
s where

∑P
α=1 qα = 1 and p(α) ∈M(Ω) holds for the Gibbs

measure, which again is known to be correct just for specific models.

In that case, the state averages and the susceptibilities can be explicitly computed

by explicitly deriving the above free-energy, allowing to prove the following result.

Proposition 3.7. The direct problem for a statistical model (φ, g) which can be

described with order parameters ψ and an order parameter free-energy f(ψ) can be

solved in saddle-point approximation in any state α, leading to

F (α)(g) = Nf(ψ(α)) +
1

2
log det f (2)(ψ(α))− 1

2
log

2π

N
(3.50)

〈φ(α)
µ 〉 = φµ(ψ(α)) +

1

N

[
(f (2))−1

a,bφ
(2)
µ;a,b − (f (2))−1

a,bf
(3)
b,a,d(f

(2))−1
d,eφ

(1)
µ;e

]
(3.51)

χ(α)
µ,ν = [(f (2))−1

a,b]
(1)
ν φ

(2)
µ;b,a − [(f (2))−1

a,b]
(1)
ν f

(3)
b,a,d(f

(2))−1
d,eφ

(1)
µ;e (3.52)

− (f (2))−1
a,bf

(3,1)
b,a,d;ν(f

(2))−1
d,eφ

(1)
µ;e − (f (2))−1

a,bf
(3)
b,a,d[(f

(2))−1
d,e]

(1)
ν φ(1)

µ;e

+
1

N

[
[(f (2))−1

a,b]
(1)
c (f (2))−1

c,dφ
(1)
ν;dφ

(2)
µ;b,a + (f (2))−1

a,bφ
(3)
µ;a,b,c(f

(2))−1
c,dφ

(1)
ν;d

− [(f (2))−1
a,b]

(1)
f f

(3)
b,a,d(f

(2))−1
d,eφ

(1)
µ;ef

(2)
f,gφ

(1)
ν;g − (f (2))−1

a,bf
(4)
b,a,d,f (f

(2))−1
d,eφ

(1)
µ;ef

(2)
f,gφ

(1)
ν;g

− (f (2))−1
a,bf

(3)
b,a,d(f

(2))−1
d,eφ

(1)
µ;ef

(2)
f,gφ

(1)
ν;g − (f (2))−1

a,bf
(3)
b,a,d[(f

(2))−1
d,e]

(1)
f φ

(2)
µ;e,ff

(2)
f,gφ

(1)
ν;g

]

where φ
(n)
µ;a1,...,an indicates the tensor ∂

∂ψa1
. . . ∂

∂ψan
φµ(ψ(α)),

f
(m,n)
a1,...,am;µ1...,µN = ∂

∂ψa1
. . . ∂

∂ψam

∂
∂gµ1

. . . ∂
∂gµn

f(ψ(α)) and by convention repeated index

are summed.

This result allows us to characterize the behavior of the inverse problem in the

large N limit. In fact one can see that at leading order in N , the momentum matching
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condition (2.27) becomes

〈φ(α)
µ 〉 −−−→

N→∞
φµ(ψ(α)) = φ̄ , (3.53)

where we remark that the averages in the state α do not depend explicitly on g, being

their dependence contained in the order parameter ψ(α). This implies that, given two

statistical models (φ, g) and (φ, g′) with g 6= g′ such that there exist a couple of

states (respectively α and α′) solving the saddle point equations with ψ(α) = ψ′(α
′),

in the large N limit those models cannot be discriminated.

Remark 3.4. Consider an empirical dataset φ̄(α) generated by a system in state α.

Unless one doesn’t consider a matching condition in which the state average contains

the corrections of order 1/N indicated in the right term of formula (3.51), it is not

generally guaranteed that it is possible to reconstruct the state α which generated the

empirical averages.

A rough criteria which can be used in order to check the expected number of

solutions for the inverse problem is provided by the comparison of the number of

solutions of the saddle-point equations P , the number of order parameters A and the

number of couplings M . If in particular M > A, then the saddle-point equations are

expected to have a continuous number of solutions g? specifying the same value of

the order parameters for any of the P states ψ(α). If M < A a unique set of couplings

is expected to be associated with a value of an order parameters. Finally, if M = A,

then a finite number of solutions for the couplings has to be expected.

3.4.1 Ergodicity breaking for a fully connected pairwise

model

Consider the fully-connected pairwise model of section 3.3. In that case the con-

struction above can be trivially applied by considering the only order parameter
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ψ(s) =
∑N

i=1 si (so that A = 1). The saddle-point equation for this model

m = tanh (Jm+ h) (3.54)

can have either one solution m? (thus, P = 1) or two stable solutions m?
+ and m?

−

(P = 2) according to the values of h and J . We consider as an illustrative example

the case in which J = J− = 4 and h = h− = 0.1, hence P = 2 solutions are present.

For this model the metastable state is characterized by m?
− ≈ −0.9991754, and it is

easy to show that any pair (J, h) satisfying

m?
− = tanh

(
Jm?

− + h
)

(3.55)

has the same saddle point magnetization. In particular, it is possible to find h < 0

solutions corresponding to the stable α = + state characterized by the same value of

the magnetization. For example, the stable state of the model (J+ ≈ 3.39950, h+ =

−0.5) has magnetization m−(J−, h−) = m+(J+, h+). In figure 3.1 we show how the

models (J−, h−) and (J+, h+) lead to the same value of the state averages m and c

in the thermodynamic limit N → ∞: not even the state of a large fully connected

ferromagnet can be reconstructed on the basis of a finite length experiment, unless

the state averages are known with large precision. The difference of this result with

10 100 1000 104
N
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10-4

0.001

È m-Hh-,J-L - m+Hh+,J+L È

10 100 1000 104
N

10-6

10-4

0.01

1

È c-Hh-,J-L - c+Hh+,J+L È

Figure 3.1: Absolute difference among the ensemble averages of models describing
two different states of a fully connected model, as a function of the system size N .
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respect to what found in section (3.3) lies in the fact that state averages can be

matched by any solution of the form

h? = arctanh m− δJ m (3.56)

J? = δJ , (3.57)

regardless of the sign of h? (while in that case it had to be taken sign (h?) = sign (m̄)).

In both cases a continuous number of solutions for the inverse problem is present.

3.5 Disorder and heterogeneity: the regime of

large N and large M

The results presented in section 3.3 for the Curie-Weiss model refer to a specific

statistical model whose associated inverse problem shows interesting features in the

limit of large N . Despite the fact that such properties generally hold for similar kind

of models (section 3.4) one could wonder whether this behavior is retained in the more

relevant case in which a large number of inferred parameters is present. Consider for

example a general pairwise model (2.47), characterized by a set of N external fields

and N(N−1)
2

pairwise couplings. In this case one may have several problems in studying

the features introduced in section 3.2 as we did above. In particular:

• The averages m, ĉ and the generalized susceptibility χ̂ are hard to compute

for a generic value of Ĵ and h. Therefore, it is not possible to understand

which points of marginal polytope G(φ) are associated with zero modes in χ̂.

Moreover, the limit N →∞ is ambiguously defined if no prescription is provided

for how should the empirical averages scale with N .
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• For the same reason, it is not possible to find in which points one expects model

concentration to occur, as this would require knowing which eigenvalues of χ̂ are

divergent in the thermodynamic limit N →∞ for generic points (m, ĉ) ∈ G(φ).

• No saddle-point approach is justified for generic empirical averages m, ĉ. Thus,

an approach analogous to the one in 3.4 cannot be considered, and the notion

of state cannot be described in such terms.

These difficulties could be overcome by resorting to the notion of disorder, which

is commonly used in the field of statistical mechanics of heterogeneous systems. In

particular we want to show, as a possible outlook of this work, an approach to the

analysis of the large M limit borrowed from that field [56] which could be applied to

this problem.

3.5.1 Self-averaging properties and inverse problem

Given an operator set φ, consider a set of statistical modelsM(φ) and a prior P0(g)

on this space. Then, suppose that a statistical model (φ, g) is sampled according

to P0(g), and successively a set of empirical data of length T is drawn by such

distribution. Several functions of the estimator g?(φ̄) can be built in order to analyze

the properties of an instance of the inverse problem, such as the quantities

∆(φ̄, g) =

√√√√
M∑

µ=1

1

M

(
g?µ(φ̄)− gµ

)2
, (3.58)

which quantifies the average error in the inferred coupling and

1

M
log det χ̂(g?(φ̄)) =

1

M
tr log χ̂(g?(φ̄)) , (3.59)

whose divergence signals critical properties of the generalized susceptibility matrix χ̂.

If these of quantities are self-averaging for largeN and T (i.e., they concentrate around
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an average value determined by P0(g)), then one expects that specific instances of

inverse problems drawn by the same prior P0(g) to share the same collective features.

As an example, if one considers a Gaussian prior for the ferromagnetic model of the

type P0(h, Ĵ) ∝ exp
(
−N∑i<j

(Jij−J0/N)2

2 δJ2

)
exp

(
−∑i

(hi−h0)2

2 δh2

)
with J0 6= 0, then

it is known that the macroscopic behavior of the model approaches in the large N

limit the one of a fully-connected ferromagnet (3.23) defined by the only parameters

(h0, J0) [56]. In section 5.3 we will support this claim through a specific example,

showing a case in which the properties of a homogeneous model allow to describe

very accurately the collective features of the inverse problem for an heterogeneous

one. Nevertheless, it would be interesting to repeat the calculations shown in the

previous sections in this more general scenario in which disorder is present, and prove

through the so-called replica formalism [56] the correctness of these expectations.

Remark 3.5. The idea of disorder in the context of the inverse problem is obviously

linked to the existence of a prior P0(g) on the space M(φ), so that in principle

the case of a flat prior cannot be treated with these techniques. Nevertheless, fixing

implicitly a specific class of models through P0(g) is the price to pay to answer to very

interesting questions, which wouldn’t otherwise be well-posed namely: (i) can a specific

model be learnt with high probability according to a given inference prescription? (ii)

Are the global properties of an heterogeneous system equivalent the the ones of an

homogeneous one? (iii) Is it possible to understand the generic properties of χ̂?
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Complete representations

In this chapter we will introduce the notion of complete family of operators, which

can be used to gain some insight about the inverse problem. Although in general this

approach may introduce a high degree of over fitting, dealing with complete families

allows to discuss very transparently some features of inference which are related to

algorithmic complexity (section 4.2.1). Moreover, completeness allows for an explicit

reparametrization of the probability distribution (2.1) in terms of state probabilities,

allowing for a complete understanding of properties of the inverse problem which are

less clear by using the Gibbs form for the probability density. More interestingly, in

this language we will be able to differentiate local features of the direct and of the

inverse problem, which in turn rely on the locality of the marginals. In this chapter

the inverse problem for some models will be exactly and explicitly solved, while some

ideas will be presented in order to generalize this methods to more relevant problems

(sections 4.2.3 and 4.2.4). In section 4.3 we will present some specific examples

illustrating these ideas.
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4.1 Orthogonality and completeness

We define in this section the notion of orthogonality and completeness for families

of operators. While the orthogonality condition is related to the one of minimality,

the one of completeness will allow to formally invert the relation among ensemble

averages 〈φ〉 and couplings g.

Definition 4.1. Given a family of operators φ, we call it orthogonal if it satisfies

1

|Ω|
∑

s

φµ,sφν,s = δµ,ν , (4.1)

while it will be called complete if it holds

1

|Ω|
∑

µ

φµ,sφµ,s′ = δs,s′ . (4.2)

Property (4.1) can be seen as expressing the fact that in an orthogonal family any

pair of operators decorrelate when averaged with respect to a uniform probability den-

sity (at infinite temperature in the language of statistical mechanics). Additionally,

if φ0 ∈ φ, one can see that in an orthogonal family, for µ 6= 0

1

|Ω|
∑

s

φµ,s = 0 , (4.3)

i.e., φµ has zero mean at infinite temperature for any µ 6= 0. Finally, if φ is an orthog-

onal family, then it is easy to see that φ\{φ0} is minimal. The main result that derives

instead from equation (4.2) is the explicit one-to-one mapping between couplings g,

state probabilities p and averages 〈φ〉, as clarified by the next proposition.
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Proposition 4.1. Given a family φ satisfying (4.1) and (4.2), the statistical model

(φ\{φ0}, g) associated with the probability density p satisfies

〈φµ〉 =
∑

s

φµ,s exp

(∑

ν

gνφν,s

)
(4.4)

gµ =
1

|Ω|
∑

s

φµ,s log

(
1

|Ω|
∑

ν

〈φν〉φν,s
)
. (4.5)

Additionally, state probabilities can be expressed as

ps =
1

|Ω|
∑

µ

〈φµ〉φµ,s . (4.6)

Proof. These relations are a direct consequence of the axioms (4.1) and (4.2) and can

be checked by direct substitution.

Monomials

Throughout most of the following discussion, we will focus on families of operators φ

formed by monomials, for which axiom (4.1) trivially applies. More precisely, given

a cluster of spins Γ, we define the monomial φΓ(s) as

φΓ(s) =
∏

i∈Γ

si , (4.7)

while the identity is associated with the empty cluster φ0(s) = φ∅(s) = 1. It is easy

to show the following:

Proposition 4.2. Given a collections of clusters (Γ0, . . . ,ΓM) with Γi 6= Γj ∀ (i, j)

it holds for the family φ = {φΓ0 , . . . , φΓM} that

• φ is an orthogonal family;

• φ is complete if and only if it contains all possible monomials, whose number

is |Ω| = 2N .
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Moreover, monomials satisfy a very important relation which will be used exten-

sively in the following.

Proposition 4.3. Consider a complete family of monomials φ. Then the marginals

of the probability density p associated with the model (φ\{φ0}, g) can be expressed as

pΓ(sΓ) =
1

2|Γ|

∑

Γ′⊆Γ

〈φΓ′〉φΓ′,s (4.8)

Proof. This can be checked by using equation (4.6) and showing that for each mono-

mial it holds

1

2

∑

si

φΓ,s = δi 6∈Γ φΓ,s . (4.9)

This property expresses the locality of marginals once they are expressed in terms

of ensemble averages. This should be compared with the expression of a marginal

written as a function of the couplings (2.4), in whose form the locality properties are

hidden by the interaction structure.

4.2 Inference on complete models

4.2.1 The complete inverse problem

The techniques shown in the above section can be used to write a formal solution

of the inverse problem in full generality. The main drawback of this procedure is

the overfitting issue which has to be associated with the presence of an exponential

number of couplings, which in practical cases makes this approach unfeasible unless

the system has small size (typically N ∼ 101). Indeed, as the solution of the complete

inverse problem illustrates with simplicity some very general features of many inverse

problem, we choose to present its solution.
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Definition 4.2. The complete inverse problem is the inverse problem associated with

the statistical model defined by the complete family of monomials {φΓ(s)}Γ⊆V . Its

probability density can be written as

p(s) = exp

(∑

Γ⊆V
gΓφΓ(s)

)
. (4.10)

It is easy to write the formal solution for the entropy by using the relation (4.2),

while its differentiation (or the direct use of the relation (4.5)) leads to an exact

expression for the couplings and the susceptibility matrix.

Proposition 4.4. The expression for the entropy of the complete inverse problem

reads

S(φ̄) = − 1

|Ω|
∑

s

(∑

Γ⊆V
φ̄Γ φΓ,s

)
log

(
1

|Ω|
∑

Γ′⊆V
φ̄Γ′ φΓ′,s

)
, (4.11)

while the inferred couplings g? and the inverse susceptibility matrix χ̂−1 result

g?Γ =
1

|Ω|
∑

s

φΓ,s log

(
1

|Ω|
∑

Γ′⊆V
φ̄Γ′ φΓ′,s

)
(4.12)

χ−1
Γ,Γ′ =

1

|Ω|2
∑

s

φΓ,sφΓ′,s
1
|Ω|
∑

Γ′⊆V φ̄Γ′ φΓ′,s

. (4.13)

This solution has a simple interpretation in terms of empirical frequencies, once

one rewrites above expression using the relation p̄s = |Ω|−1
∑

Γ′⊆V φ̄Γ′ φΓ′,s as

g?Γ =
1

|Ω|
∑

s

φΓ,s log p̄s (4.14)

χ−1
Γ,Γ′ =

1

|Ω|2
∑

s

φΓ,sφΓ′,s

p̄s
. (4.15)

In this form it is possible to appreciate that the solution simply corresponds to a

matching of state probabilities with empirical probabilities.
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Remark 4.1. This last observation can be made more precise by exploiting the iden-

tity

logPT (ŝ|g) = T
∑

Γ

gΓφ̄Γ = T
∑

s

log ps p̄s , (4.16)

which can be used to express the log-likelihood function as a function of the probabilities

p instead of the coupling vector g. Its maximization can be seen equivalently as

performed over the state probabilities p. In this case, the obvious solution is p? = p̄,

so that the expression (4.14) is describing an approach in which the state probabilities

are matched with the empirical ones one-by-one. In particular, if a configuration is

not observed, the inferred probability for that configuration is strictly zero.

Divergencies

The formal solution (4.14) shows that the inferred couplings can be infinite if there

are states which are never sampled in the data ŝ. In particular if data are generated

by an actual probability distribution p assigning zero weight to some configuration,

the Ω space splits into an accessible and a non-accessible sector, and divergencies

can be seen as are required to implement an hard constraint on the set of accessible

configurations. Couplings obtained by using this scheme are finite either when all

states are measured or when divergencies cancel out for a given region of the coupling

space. Indeed, the presence of an unaccessible sector has to be considered a spurious

result unless ps ≈ p̄s , which is expected to hold just in the large T limit. In particular

for T < |Ω| , p̄s = 0 for at least |Ω|−T > 0 configurations, regardless of the presence or

absence of a forbidden sector. Therefore it is not possible to distinguish if divergencies

are due to the presence of an unaccessible sector or to poor sampling. In this case,

regularization schemes such as the use of Laplacian smoothing or an L-2 norm can

be used to obtain finite results. This basically corresponds to lift the probability for

non-measured configurations from zero to some finite value. For example, Laplacian
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smoothing procedure [70] corresponds to the choice:

p?s =
p̄s + λ

1 + |Ω|λ (4.17)

Finally, we remark that the same type of divergence arises in all the cases that will be

analyzed (see sections 4.2.3 and 4.2.4), and is a very general characteristic of inverse

problems, which typically relates to under sampling. This is the simplest setting in

which this problem can be analyzed in full generality.

Observed sector

The expression for the inferred couplings (4.14) involves a summation over all the

configuration space Ω, so that a summation over |Ω| = 2N terms seems to be required

to calculate any of them. Indeed, those expressions may be rewritten exploiting the

orthogonality relation (4.1), which implies that

1

|Ω|
∑

s∈Ī
φΓ,s = δΓ,0 −

1

|Ω|
∑

s 6∈Ī
φΓ,s (4.18)

where Ī = {s ∈ Ω | p̄s > 0} is the set of observed configuration. Then, one can

rewrite (4.14) as

g?Γ =
1

|Ω|
∑

s∈Ī
φΓ,s log p̄s + log p̄0

(
δΓ,0 −

1

|Ω|
∑

s∈Ī
φΓ,s

)
, (4.19)

where the term proportional to p̄0 = 0 account for the divergencies, and the sum

over states runs over a number |Ī| ≤ T terms. In the case of the regularized com-

plete inverse problem (section 4.2.2), we will see that it will be possible to write an

analogous expression for the couplings, in which the weight assigned to non-observed

configuration will be finite.

63



CHAPTER 4. COMPLETE REPRESENTATIONS

Rate of convergence

Given an underlying statistical model p for the complete inverse problem, large devi-

ation theory (as described in section 2.2.4) states that for large T the variance of the

inferred couplings g with respect to the measure given by PT (p|p̄) ∝ PT (p̄|p) is

Var(g?Γ) =
χ−1

Γ,Γ

T
=

1

T

(
1

|Ω|2
∑

s

1

ps

)
. (4.20)

Incidentally, the same quantity can also be obtained by averaging with respect to

the 〈. . . 〉T measure, a result which allows to express the rate of convergence for the

complete inverse problem (appendix D.1). While the 1/T pre factor expresses the

expected scaling for the error on the inferred coupling, the χ−1
Γ,Γ term is non trivial.

In particular we observe that:

1. The fluctuations of the inferred couplings are identical for all the operators.

2. The value of the fluctuations is bound by the inequality:

1

T
≤ Var(g?Γ) ≤ 1

T |Ω|pmin
(4.21)

where pmin = mins ps.

3. The speed of convergence is limited by the presence of rare configurations. In

particular if pmin = 0, the variance diverges.

The generalization to the case in which the sector of observable states I = {s ∈

Ω | ps > 0} is smaller than the entire phase space I ⊂ Ω is straightforward (appendix

D.1). Indeed, it is necessary to define a set of regular operators φreg such that

φreg = {φΓ ∈ φ |
∑

s∈I φΓ,s = 0}. For couplings associated with regular operators it
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holds the asymptotic property

Var(g?regΓ ) =
1

T |Ω|2
∑

s∈I

1

ps
. (4.22)

If the sector of observable states has cardinality |I| = α|Ω|, then the fluctuations on

the regular couplings satisfy the bound

α2

T
≤ Var(g?regΓ ) ≤ α

T |Ω|pmin
(4.23)

where pmin = mins∈I ps. Even in the cases analyzed in section 4.2.3 and 4.2.4 the

presence of rare configurations will limit the speed of convergence of the inferred

couplings to their actual value.

4.2.2 Regularization of the complete inverse problem

The generality of the complete inverse problem renders its regularization relevant for

a strong theoretical reason. In fact, the complete inverse problem is totally non-

parametric in the sense that the probability distribution (4.10) contains all possible

statistical models describing a set of N binary variables. Then one could think of

selecting the most appropriate statistical model to describe a dataset of binary data

simply by applying a suitable regularizer to this general problem, and let the regu-

larization term itself perform the task of model selection (an approach successfully

adopted in [63, 86] in a less general scenario). We present in the following the results

obtained by using different regularization terms, and comment about the interpreta-

tion of the solutions of the regularized inverse problem. Finally, we will characterize

a symmetry property of regularizers which can be used to study their suitability in

the field of high-dimensional inference (i.e., for large values of N).
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L-2 regularization

The simplest regularized version of the complete inverse problem is the one defined

by the function

H(g|ŝ) = −T
M∑

µ=0

gµφ̄µ +
β

2

M∑

µ=1

g2
µ (4.24)

which implements the Gaussian prior over the L-2 norm of the coupling vector de-

scribed in section 2.3.2. In terms of state probabilities, equation (4.24) can be written

as

H(p|ŝ) = −T
∑

s

log ps p̄s +
β

2



(

1

|Ω|
∑

s

log2 ps

)
−
(

1

|Ω|
∑

s

log ps

)2

 (4.25)

and its minimization with respect to ps (constrained to
∑

s ps = 1) leads to the set

of implicit equations

p?s = p̄s −
β

T |Ω|

(
log p?s −

1

|Ω|
∑

s′

log p?s′

)
. (4.26)

Its solution determines the value of the couplings g through the relation

g?µ =
1

|Ω|
∑

s

φµ,s log p?s . (4.27)

We observe that:

1. The summation over the configuration space requires considering in principle

an exponential number of terms, but this issue can be avoided as explained in

section 4.2.1.

2. The expression for g?µ is always finite, as the presence of infinite couplings is

suppressed by the cost associated with the L-2 norm.
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3. The parameter β controls the total value of the L-2 norm of the coupling vector

g? and the entropy of the inferred distribution. In particular the total L-2 norm

can be expressed as
∑

µ

g?2µ =
1

|Ω|
∑

s

log2 p?s , (4.28)

where the statistical weights p? are fixed by equation (4.26).

4. The additional problem of solving the system of equations for ps requires in prin-

ciple the numerical solution of |Ω| = 2N equations. Indeed, all equations linked

with unobserved configurations are equal, and defining as above the probability

p0 for non-measured configurations, the number of independent equations that

have to be solved is |Ī|+ 1 ≤ |I|+ 1 ≤ T + 1.

This considered, the expression for the couplings obtained using this regularization

scheme is

g?µ =
1

|Ω|
∑

s∈I
φµ,s log

(
p?s
p?0

)
+ δµ0 log p?0 , (4.29)

where the ps and the p0 satisfy the set of implicit equations:





p?s = − β
|Ω|T

(
log p?s − 1

|Ω|
∑

s′∈I log p?s′ − |Ω|−|I||Ω| log p?0

)
+ p̄s

p?0 = − β
|Ω|T

(
log p?0 − 1

|Ω|
∑

s′∈I log p?s′ − |Ω|−|I||Ω| log p?0

)
.

(4.30)

We remark that the calculation of the regularized couplings can be performed in

polynomial time in T .

Entropy regularization

Another choice for the regularization is motivated by the following argument. If a

dataset ŝ of length T is associated with an entropy S(p̄) ∼ log T , with log T � N , it

is likely for the model to be in the under sampled regime, as the entropy per variable
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is expected to be finite (i.e., S(p) ∼ N) for well-behaved models. Then, it is possible

to consider a regularizing term which penalizes low entropy distribution, so that

H(g|ŝ) = −T
M∑

µ=0

gµφ̄µ − βS(p) , (4.31)

where as usual p is the density associated with the statistical model (φ, g), so that

S(p) = −∑M
µ=0 gµ〈φµ〉. The minimization of above expression with respect to gµ

leads to

φ̄µ = 〈φµ〉+
β

T

M∑

ν=1

gν
∂〈φν〉
∂gµ

. (4.32)

After some manipulation and after using the completeness relation (4.2) one finds

that

p̄s = ps +
β

T
ps log ps −

β

T
ps

(∑

s′

ps′ log ps′

)
. (4.33)

Finally, by writing ss = −ps log ps, one is led to a set of implicit equations

ps =
p̄s + β

T
ss

1 + β
T

∑
s′ ss′

, (4.34)

which is analogous to the one described in the L-2 case. Also in this case the system

has to be solved numerically, by exploiting the fact that the probabilities ps depend

on the s index through the empirical frequency p̄s (i.e., states visited the same number

of times are associated with the same inferred probability). Equation (4.2) can finally

be used to extract the inferred couplings from the probability density of ps.

Susceptibility regularization

The inverse generalized susceptibility of a model χ̂−1 provides an indication of the

generalizability of an inference procedure through equation (2.32), which implies that
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the response of the inferred couplings g? to a shift of the empirical averages φ̄ is

χ−1
µ,ν =

∂g?µ
∂φ̄ν

. (4.35)

Then one could think to favor generalizability in an inference procedure by introducing

a regularization term of the form

H(g|ŝ) = −T
M∑

µ=0

gµφ̄µ + β tr
(
χ̂−1

)
. (4.36)

By employing equation (4.13) it is easy to see that the inverse susceptibility matrix

can be written as a function of the coupling vector g as

χ−1
µ,ν =

1

|Ω|2
∑

s

φµ,sφν,s exp

(
−

M∑

ρ=0

gρφρ,s

)
, (4.37)

so that the total energy can be written as

H(g|ŝ) = −T
M∑

µ=0

gµφ̄µ + β

( |Ω| − 1

|Ω|2
)∑

s

p−1
s . (4.38)

Its minimization leads to

φ̄µ = 〈φµ〉+
β

T

( |Ω| − 1

|Ω|2
)∑

s

[
〈φµ〉 − φ̄µ

]
p−1
s (4.39)

whose solution requires solving a set of implicit equations analogous to (4.30) and

(4.34) of the form

ps =
p̄s + β

T

(
|Ω|−1
|Ω|2

)
p−1
s

1 + β
T

(
|Ω|−1
|Ω|2

)∑
s′ p
−1
s′

. (4.40)

By using equation (4.6) the solution p? can be used to explicitly express g?.
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Remark 4.2. Notice that this regularization scheme artificially pushes the inferred

couplings g? towards regions of the space M(φ) in which fluctuations are high. This

is a very general feature of inference procedures which favor the stability of the inferred

model: requiring a model to be stable forces the generalizes susceptibility to be large,

or equivalently, ensemble averages to have strong fluctuations.

L-1 regularization

We will write the L-1 regularized problem for the complete inverse problem described

as in section 2.3.2, with the idea that its solution it would be equivalent to a complete,

non-parametric solution of the problem of binary inference. In the more optimistic

scenario, the problem of model selection would be implicitly solved by the L-1 norm,

without the need of explicitly breaking the symmetry among the operators by choosing

(a priori) the more relevant ones, as it is usually done by means of the maximum

entropy principle (appendix A.1). Relevant operators should arise as conjugated to

non-zero couplings in a regularized problem of the form

H(g|ŝ) = −T
M∑

µ=0

gµφ̄µ + β
M∑

µ=1

|gµ| . (4.41)

The minimization of above expression with respect to g leads to

ps ∈ p̄s −
β

T |Ω|
M∑

µ=1

sgn(gµ)φµ,s , (4.42)

where we define the set valued function sgn(x) as in appendix C. We remark several

issues concerning this regularizer:

1. Unlike the L-2 case, the completeness relation does not allow to switch from a

summation on operators to a summation over configurations, hence algebraic

properties cannot be fully exploited to manipulate the above equation.
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2. The minimization condition is a system of |Ω| implicit equations in which the

inferred values of ps on non-observed configurations are generally different. This

is due to the term
∑

µ(sgn gµ)φµ,s, which is different even for s /∈ I (see example

4.3.2).

3. L-1 norm is associated with a compact description of the probability distribu-

tion (it is used to enforce sparsity in the number of non-zero couplings), while

in the case T � 2N one deals with few observations of the system (sparsity in

the number of observed configurations). As the change of parametrization (4.6)

from p to g is strongly non-local (i.e., what is sparse in a parametrization is

not sparse in the other one), the problem becomes hard to solve due to frustra-

tion, alias the simultaneous request of incompatible conditions in a constraint

satisfaction problem.

4. Even if a fast (i.e., polynomial in N) algorithm to find a solution for a single

coupling gµ was available, a preliminary selection of the couplings to focus

on would nevertheless be needed. In fact, even in the scenario in which the

calculation of a single gµ can be achieved in polynomial time, a constrained

optimization problem should be formulated in order to select which subset of

couplings is non-zero given a specific value of β.

Explicit selection of couplings

An interesting case is the one in which a specific inverse problem – such as the inverse

pairwise model – is seen as a regularized version of the complete inverse problem.

This implicitly implies that unlike with the previous regularizers, in this particular

example we are not interested in the problem of model selection, but we mean to offer a

different perspective on a problem which is known to be hard, in order to characterize

it from a different point of view. In particular, we consider the regularized minus-log-
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likelihood

H(g|ŝ) = −T
M∑

µ=0

gµφ̄µ +
β

2

M∑

µ=1

θµ g
2
µ (4.43)

in which θ ∈ {0, 1}M determines the couplings that are penalized by the L-2 norm, and

we consider the limit of large, positive β, so that g?µ ≈ 0 if θ = 1. The minimization

of (4.43) leads to the set of equations

φ̄µ =
∑

s

p?sφµ,s +
β

T
θµg

?
µ , (4.44)

which in the parametrization of states becomes

p̄s = p?s +
β

T |Ω|
∑

µ

φµ,sθµg
?
µ . (4.45)

The last term in (4.45) is finite in the limit of large β, and encodes the constraint

specified by θ. Within this formulation the intrinsic difficulty of an inverse, non-

complete problem emerges as the fact that the probabilities p?s can be different for

states visited with the same frequency. This is associated with the dependence of the

second term of equation (4.45) upon the index s associated with the operators φµ,s,

and is analogous to the case of the L-1 norm described above.

Remark 4.3. A formal solution for this problem can be written by studying the limit

β → ∞, which is associated with couplings g?µ = 0 for θµ 6= 0. The equation g?µ = 0

can be expressed in term of operator averages by using equation (4.5) as follows:

1 =
∏

s

(
1

|Ω|
∑

ν

〈φ?ν〉φν,s
)φµ,s

, (4.46)

where 〈φ?ν〉 indicates the ensemble average of the operator φµ under the distribution p?s.

This result expresses a relation among observables which must hold whenever couplings
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are zero, which is typically used to express higher order correlations in terms of low

order ones, which can be expressed as roots of polynomial equations. Then equation

(4.5) can be used to write the remaining couplings, and the roots of equation (4.46)

can in principle be used to obtain an expression for the non-zero components of g?.

Symmetry properties of the regularizers

The limit of large N of the regularized complete inverse problem provides an insight on

the structure of the regularizers which have been examined in the previous sections. In

particular, we can consider the regime in which N is large, while T scales polynomially

in N (T ∼ Nα) so that T � |Ω| = 2N , and provide an argument about the behavior

of the regularized inverse problem. Indeed, we will first need to define the notion of

symmetric regularizer.

Definition 4.3. Consider the complete inverse problem defined by the model

({φΓ}Γ⊆V \φ∅, g) and a regularizer H0(g). Then, we call H0(g) a symmetric regular-

izer if for any pair of states s and s′ it holds

p̄s = p̄s′ ⇒ p?s = p?s′ (4.47)

For example, the L-2 regularizer, the entropy regularizer and the susceptibility

regularizer analyzed above are symmetric regularizers. Obviously, the non-regularized

problem H0(g) = 0 is also symmetric. The following proposition holds for symmetric

regularizers.

Proposition 4.5. Consider the complete inverse problem defined by the model

({φΓ}Γ∈V \φ∅, g) and a symmetric regularizer H0(g). Suppose additionally that the

empirical probability vector p̄ has elements only in p̄ ∈ {0, 1/T}|Ω|. Then the solution

73



CHAPTER 4. COMPLETE REPRESENTATIONS

of the regularized inverse problem is given by

g?µ ∝ φ̄µ . (4.48)

This result intuitively indicates that symmetric regularizers are unable to distin-

guish correlations and interactions unless states are sampled more than once. As in

the large N regime described above one expects (for well-behaved probability dis-

tributions) single states to appear either one or zero times, then this indicates that

non-parametric inference procedures should be performed with non-symmetric reg-

ularizers in order to extract informative results about interactions. From another

perspective, this shows that in the extremely under sampled limit T � |Ω|, the more

biased couplings are the ones associated with biased empirical averages. Notice that

while in the case of the explicit coupling selection the regularizer is expected not to

be symmetric by construction (states are biased according to their overlaps with the

explicitly selected operators), it is interesting to see that the L-1 norm breaks the

state symmetry without the need of biasing specific operators (example 4.3.2).

Proof. To prove the above proposition it is sufficient to notice that by symmetry the

coupling vector g? depends on the two values p?0 and p?1/T associated with the states

sampled zero (p̄s = 0) and once (p̄s = 1/T ). Then equation (4.6) implies that

g?µ =
1

|Ω| log

(
p?1/T
p?0

)∑

s∈Ī
φµ,s + δµ0 log p?0

=
T

|Ω| log

(
p?1/T
p?0

)
φ̄µ + δµ0 log p?0 . (4.49)

Remark 4.4. The symmetry broken by the L-1 regularizer and by the explicit coupling

selection is associated with the following consideration: in principle, unless there is

an explicit information that allows to distinguish between states s and s′ that are
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observed the same number of times, then inference should assign the same weight to

those states. In the first case such symmetry is spontaneously broken (the information

injected by the prior doesn’t specifically favor any state), while in the second it is

explicitly broken.

4.2.3 Pairwise model on trees

One of the simplest cases in which the pairwise model defined by equation (2.47) can

be explicitly solved is when the topology of the interaction matrix J is the one of a

tree. In that case it is well known that message passing algorithms [54] can find the

solution to the direct problem in a time linear in N . Indeed, there are several reasons

which make the inverse problem worth studying. The first one is the observation

that the factorization property (4.51) allows to write an explicit, closed form solution

of the inverse problem. The second one is the exceptional stability of the inverse

problem with respect to the direct one. Finally, the a full analogy with the complete

case can be discussed, and a general scheme for the structure of solutions for inverse

problems can be sketched speculating on this simple example.

Definition 4.4. Consider the pairwise model described in section 2.2.5, defined by

the probability density

p(s) =
1

Z(h, Ĵ)
exp


∑

i∈V
hisi +

∑

(i,j)∈E
Jijsisj


 , (4.50)

in the case in which the set of edges E does not contain any cycle. Then this model

is called a tree (see appendix D.2 for a more precise definition).
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For such models the inverse problem is easy to solve due to the factorization

property shown in appendix D.2, which allows to write the probability density as

p(s) =
∏

(i,j)∈E
p{i,j}(si, sj)

∏

i∈V
[p{i}(si)]

1−|∂i| , (4.51)

where ∂i = {φ{i,j} ∈ φ | (i, j) ∈ E}. Hence, the entropy can be written as

S(m, ĉ) =
∑

(i,j)∈E
S{i,j}(mi,mj, cij) +

∑

i∈V
(1− |∂i|)S{i}(mi) (4.52)

and the inverse problem can be solved, as shown in the next proposition.

Proposition 4.6. For a the pairwise model of the form (2.47) with a tree topology,

the entropy S(m, ĉ) can be written as

S(m, ĉ) =
∑

(i,j)∈E

∑

si,sj

[
1

4
(1 +misi +mjsj + cijsisj)

]
log

[
1

4
(1 +misi +mjsj + cijsisj)

]

+
∑

i∈V
(1− |∂i|)

∑

si

[
1

2
(1 +misi)

]
log

[
1

2
(1 +misi)

]
, (4.53)

while the fields h? and the couplings J? result

h?i =
1

4

∑

j∈∂i

∑

si,sj

si log

[
1

4
(1 +misi +mjsj + cijsisj)

]

+
1

2
(1− |∂i|)

∑

si

si log

[
1

2
(1 +misi)

]
(4.54)

J?ij =
1

4

∑

si,sj

sisj log

[
1

4
(1 +misi +mjsj + cijsisj)

]
,
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and the inverse susceptibility matrix χ̂−1 is given by

χ−1
{i,j},{k,l} =

1

16

∑

si,sj

δi,kδj,l + δi,lδj,k
p̄{i,j}(si, sj)

χ−1
{i,j},{k} =

1

16

∑

si,sj

δi,ksj + δj,ksi
p̄{i,j}(si, sj)

(4.55)

χ−1
{i},{j} =

1

16

∑

k∈∂i

∑

sisk

δi,j + siskδk,j
p̄{i,k}(si, sk)

+
1

4
(1− |∂i|)

∑

si

δi,j
p̄{i}(si)

The structure of this solution is reminiscent of the one shown in the case of the

complete inverse problem described in section 4.2.1, and can intuitively be understood

as follows. To solve an inverse problem it is necessary to find the clusters which allow

to express the entropy (in that case all clusters had to be included, while in this

case single spin and two spins clusters alone are sufficient to write the full entropy).

Couplings are obtained as sums over cluster contributions, in which each of them

contributes with a value proportional to the average of the conjugated operator,

weighted by the log-probability of each cluster configuration. Inverse generalized

susceptibilities quantify the amount of cluster fluctuations, and are large if local

fluctuations are rare.

The presence of a large number of delta functions is due to the fact that the entropy is

built by a small number of cluster contributions, so that the response of the couplings

to a shift in the value of the conjugated average is strongly localized: either the

perturbation is applied to a neighbor, in whose case the response is finite, or it is

zero. This has to be compared with the direct problem, in which a perturbation in

the couplings changes the average of a finite number of operators in general. In that

case, one roughly expects that

χ{i},{j} ∝ e|i−j|/ξ , (4.56)
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where ξ is the correlation length of the system. This was first noted in [25, 26], where

it is shown that for a large number of statistical models that the structure of χ̂ is

dense, while the one of χ̂−1 tends to be sparse.

4.2.4 One-dimensional periodic chain with arbitrary range

couplings

An interesting application of the inference scheme presented in this chapter concerns

the solution of the inverse problem for one-dimensional chains. Despite the fact that

an exact solution of this problem has been first presented in [35], we will be interested

in providing a rigorous proof relying on completeness properties. Also in this case a

complete analogy with the previous example can be drawn. Consider a set of binary

spins s ∈ Ω and a family of operators of range R (i.e. acting on the first R spins)

φ(s1, . . . , sR) = (φ1(s1, . . . , sR), . . . , φM(s1, . . . , sR)) subject to the periodic boundary

conditions si = si+N . Then the notion of one-dimensional chain can be introduced

through the action of translation operators T = {Tn}N/ρ−1
n=0 , defined through their

action on the φ

Tnφµ(s1, . . . sR) = φµ(s1+nρ, . . . , sR+nρ) , (4.57)

which corresponds to a shift of the argument of φ on the next set of nρ spins, so that

ρ < R is characterized as the periodicity of the chain.

Definition 4.5. A one-dimensional chain is defined as the probability distribution

on the space s ∈ Ω

p(s) =
1

Z(g)
exp




M∑

µ=1

gµ

N/ρ−1∑

n=0

Tnφµ(s)


 , (4.58)

where T is a set of translation operators characterized by a periodicity parameter ρ

and φ is a set of M operators of range R.
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We are interested in solving the inverse problem for this type of system, which

means to calculate the entropy S(T φ̄) as a function of the empirical averages of the

operators Tφ =
∑N/ρ

n=0 Tnφ. In order for the entropy to be well-behaved, and in order

to exploit the property of completeness (4.2), we need to require a specific choice for

the set φ.

Definition 4.6. A one-dimensional chain defined by a family of operators φ and

translation operators T is orthogonal and complete if

• For any m,n ∈ (0, . . . , N/ρ− 1),
∑

s Tnφµ,sTmφν,s = δm,nδµ,ν

• For any generic operator φ 6= 1 of range R, and any m ∈ (0, . . . , N/ρ−1), there

exist n and µ such that Tmφ = Tnφµ.

A possible choice for a family φ satisfying those requirements is provided by a

suitable choice of monomials. More precisely, one can to define a set Γ0 = {1, . . . , R}

and a set γ0 = {ρ+1, . . . , R}, so that the family of operators φ = {φΓ}Γ⊆Γ0\{φγ}γ⊆γ0

describes the |φ| = 2R(1− 2−ρ) monomials belonging to Γ0 which are not contained

in γ0 (appendix D.3). Intuitively, this corresponds to define the problem through all

operators located inside the unit cell, so that any other operator of range R can be

generated in a unique way by using the translation operators T .

For a one-dimensional chain, it is possible to prove (appendix D.3) that the prob-

ability density p can be factorized as

p(s) =

N/ρ−1∏

n=0

pΓn(sΓn)

pγn(sγn)
, (4.59)

where Γn = TnΓ0 = {1+nρ, . . . , R+nρ} while γn = Tnγ0 = {1+(n+1)ρ, . . . , R+nρ}.

Consequently the entropy can be written as

S(T φ̄) =

N/ρ−1∑

n=0

[
SΓn(pΓn)− Sγn(pγn)

]
. (4.60)
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This relation, together with equation (4.9) which expresses the locality of marginals,

allows to explicitly find the expression of the entropy of a one-dimensional chain.

Proposition 4.7. The inverse problem for an orthogonal, complete one-dimensional

chain of monomials has the following solution. The entropy can be expressed as1

S(T φ̄) =
N

ρ

{∑

sΓ0

[
1

2R

∑

Γ∈Γ0

∑

µ∈φ
cµ,Γ φ̄µ φΓ,sΓ0

]
log

[
1

2R

∑

Γ∈Γ0

∑

µ∈φ
cµ,Γ φ̄µ φΓ,sΓ0

]

−
∑

sγ0

[
1

2R−ρ

∑

γ∈γ0

∑

µ∈φ
cµ,γ φ̄µ φγ,sγ0

]
log

[
1

2R−ρ

∑

γ∈γ0

∑

µ∈φ
cµ,γ φ̄µ φγ,sγ0

]}
,

(4.61)

where cµ,Γ = 1 if ∃n such that Tnφµ = φΓ and cµ,Γ = 0 otherwise. The couplings

result

g?µ =
∑

sΓ0

[
1

2R

∑

Γ∈Γ0

cµ,Γ φΓ,sΓ0

]
log

[
1

2R

∑

Γ∈Γ0

∑

ν∈φ
cν,Γ φ̄ν φΓ,sΓ0

]

−
∑

sγ0

[
1

2R−ρ

∑

γ∈γ0

cµ,γ φγ,sγ0

]
log

[
1

2R−ρ

∑

γ∈γ0

∑

ν∈φ
cν,γ φ̄ν φγ,sγ0

]
(4.62)

while the inverse susceptibilities are given by

χ−1
µ,ν =

ρ

N

{∑

sΓ0

[
1

2R

∑
Γ∈Γ0

cµ,Γ φΓ,sΓ0

] [
1

2R

∑
Γ∈Γ0

cν,Γ φΓ,sΓ0

]

p̄Γ0(T φ̄)

−
∑

sγ0

[
1

2R

∑
γ∈γ0

cµ,γ φγ,sγ0

] [
1

2R

∑
γ∈γ0

cν,γ φγ,sγ0

]

p̄γ0(T φ̄)

}
. (4.63)

Also in this case the structure of the solution is analogous to the one found in

section 4.2.1 for the complete inverse problem and in section 4.2.3 for the inverse

pairwise tree. The expression of the entropy is a sum of cluster contributions asso-

ciated with unit cells. Such contributions are all equal due to periodicity, so that

1 Notice that with abuse of notation we are writing φ̄µ instead of ρ
N

∑
n Tnφ̄µ.
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two clusters only (Γ0 and γ0) are sufficient to write the exact expression for the full

entropy. The stability of the problem is instead determined by the fluctuations inside

Γ0 and γ0, and divergencies occur whenever any state in Γ0 is not observed.

Remark 4.5. In the case of a one-dimensional chain, the role which in the previous

examples was played by of the number of observations T is played by the quantity

TN/ρ, which measures the number of sampled unit cells. For this type of system even

in the case of one single observation (T = 1) the noise on the inferred couplings can

be small if the system is large enough.

Remark 4.6. In order to apply these ideas to empirical data, the information about

the one-dimensional nature of the problem should be a priori known. Indeed, the exact

nature of the interactions needs not to be known, provided that the R parameter is

larger than the actual range of the interactions.

4.3 Applications

4.3.1 Complete inverse problem

The techniques shown in section 4.2.1 have been tested on synthetic datasets in order

to check their performance. As expected, they are suitable for systems in the small

N regime, due to the slow convergence in T of the inferred coupling vector g? to

the true coupling vector g, which can be seen as a consequence of the over fitting

problem associated with the presence of an exponential number of couplings. We

have considered for simplicity a system of N = 8 spins, with couplings corresponding

to several models, namely:

1. Pure Noise: A model with gΓ = 0 describing the flat distribution ps = 1/|Ω|.

2. Pairwise model: A model with two body interactions (i.e., gΓ = 0 if φΓ is

such that |Γ| 6= 2), and couplings equal to gΓ = 1/N .
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3. Arbitrary couplings and hidden sector: A model with infinite couplings

associated to four random operators, in order to test the behavior of the algo-

rithm in presence of divergent couplings.

In all those cases, we were able to compute by enumeration the partition function

of the model, and to sample from the exact probability distribution a set of T ∈

{100, . . . , 50000} states which have been used to construct the vectors of empirical

frequencies p̄ and empirical averages φ̄. Formulas derived in the above sections have

been used to solve the inverse problem for those sets of sampled states. For the case 1.

of a flat probability distribution, we were able to check formula (4.20) describing the

concentration of the couplings towards their expected value gµ = 0, as shown in figure

4.1. Beyond the naive inference scheme described in section 4.2.1, we have employed

500 1000 5000 1´104 5´104
T

0.01

0.05

0.10

0.50

1.00

5.00

Var@gGD

Figure 4.1: Variance of the inferred coupling vector as a function of the number
of samples T for a flat probability distribution. Un-regularized inference procedure
(4.14) corresponds to the blue line, the yellow one indicates an L-2 regularization
scheme with β = 10 while the red one is obtained by using a cutoff in the divergencies
of the form p0 ∝ log ε = −1

2
log T . The green line corresponds to the expected scaling

for the error (4.20) in the case of a flat distribution.

an L-2 regularization scheme (yellow line) and a simple cutoff for divergencies of

the form log ε = −1
2

log T (red line). This last prescription is motivated by the

simple consideration that for a multinomial distribution the variance on the empirical
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probabilities scales as T−1, so that the error on the sampled probability p0 is expected

to be of the order of T−1/2. In figure 4.2, we plot an histogram of the couplings

obtained for various values of T in order to show the shape of the posterior PT (g|ŝ).

Finally, we show in figure 4.3 that there is no cluster size |Γ| which dominates the

coupling vector for any value of T , implying that no model is favored by this inference

scheme. For the case 2. of a pairwise model (section 2.2.5), we have considered a
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Figure 4.2: We plot the histogram of the inferred couplings for a complete model with
N = 8 and gΓ = 0, hence describing the posterior probability PT (g|ŝ) for T = 237
(left panel) and T = 2657 (right panel). We employed the same type of regularizers
as in figure 4.1.
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Figure 4.3: We plot the average mean inferred coupling
(
N
k

)−1∑
|Γ|=k g

?
Γ (blue line)

and the average mean absolute coupling (red dots)
(
N
k

)−1∑
|Γ|=k |g?Γ| for T = 237 (left

panel) and T = 2657 (right dots) in units of the error
√

Var(g?Γ). The figure indicates
that no specific size for the cluster Γ is preferred, as predicted by the expression for
the error (4.20).

model with hi = 0 ∀i and Jij = 1/N ∀i < j. We performed the same analysis and

collected the same statistics as in the previous case. In figure 4.4 we plot the variance
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of the inferred coupling distribution against the number of samples T , finding that as

indicated by the inequality (4.21), the pre factor 1
|Ω|2
∑

s
1
ps

controlling the convergence

to zero of the errors is higher than for a flat probability distribution. Also in this case
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Figure 4.4: Variance of the inferred coupling vector as a function of the length of the
number of samples T , for a pairwise model with N = 8, hi = 0 and Jij = 1/N . See
figure 4.1 for the color convention and the type of regularizers adopted. The green
line shows the expected scaling of the variance for a flat distribution, indicating that
the reconstruction of a pairwise model is affected by a higher error than the one of a
flat distribution.

we plot the histogram of the inferred coupling for various values of T , comparing the

unimodal distribution of couplings in the noise-dominated regime (T . 103) with the

bimodal distribution emerging for large sample size (T & 103), in which the shrinking

noise peak leaves room for the genuine signal concentrated in gΓ ≈ 1. The plot of

the mean value and the mean absolute value of the couplings with fixed cluster size

shows that even in this case no particular cluster size is biased except for |Γ| = 2.

Finally, we show how this procedure might be employed in the case in which one

or more couplings are infinite. We consider complete models in which all couplings

gΓ are put to zero, but a random set which are set to gΓ = ∞. As an illustrative

example, we consider the case g{1} = g{7} = {3, 6} = {1, 4, 5, 7} = ∞, which lead to

a set of observable states I with |I| = 24, and a set of regular (i.e., non divergent)
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Figure 4.5: Histogram of the inferred couplings for the pairwise model described in
figure 4.4 for T = 1121 (left panel) and T = 14934 (right panel), where the color
convention is also described. Notice the transition from a unimodal distribution in
the noise-dominated regime to the bimodal distribution obtained for large T .
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Figure 4.6: Average mean inferred coupling (blue points) and average mean absolute
coupling (red points) for T = 1121 (left panel) and T = 14934 (right panel) in units
of the error

√
Var(g?Γ). Just clusters with |Γ| = 2 are favored (and hence out of scale

in this plot).

couplings greg of size |greg| = 240. We plot in figure 4.7 the variance of the regular

inferred couplings to their exact value against the length of the dataset T , while in

figure 4.8 we show how non-regular couplings approach infinity.

4.3.2 L-1 norm vs L-2 norm: emergence of state symmetry

breaking

In section 4.2.2 we have defined a notion of symmetry for the regularizers of the

complete inverse problem, by saying that a regularizer is symmetric if it holds for

any pair of states s, s′ that p̄s = p̄s′ ⇒ p?s = p?s′ . We want to show through a very
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Figure 4.7: Variance of the regular (i.e., non-divergent) couplings as a function of
the length of the number of samples T , for a model with N = 8 a set of |I| = 16
observable states. Blue and yellow line respectively denote the non-regularized and
the L-2 regularized value of the couplings (with β = 5). The green line shows the
expected scaling of the variance for a flat distribution over the set of observable states.

simple example that the L-1 norm is non-symmetric and hence, according to the

argument presented in section 4.2.2, it is not expected to have a trivial limit in the

high-dimensional inference regime T ∼ Nα � |Ω|. To show this, we consider a system

of N = 3 spins, described by a complete model consisting of |φ| = 7 operators and

compare the inferred probability p? obtained by using an L-1 regularization with the

one obtained by using an L-2 regularization. To do this, we numerically minimized

(see appendix C for the details) the function

H(g|ŝ) = −T


F (g) +

∑

Γ⊆V 6=∅
gΓφ̄Γ


+H0(g) (4.64)

with either H0(g) = β
∑

Γ⊆V,6=∅ |gΓ| or H0 = β
2

∑
Γ⊆V 6=∅ g

2
Γ for respectively the L-1 and

the L-2 norm. We assumed the sampled configuration vector to be p̄ = 1
3
(δs,−−− +

δs,+−+ + δs,+++), in order to deal with only two different values for the empirical

probability vector p̄. The results obtained in the case of the L-2 norm for the inferred

probabilities are shown in figure 4.9, where it is possible to appreciate the uniform
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Figure 4.8: Divergence with T of the non-regular couplings, for the model described
in previous plot. Red and yellow line respectively denote the values obtained putting
log ε = −1

2
log T and using an L-2 regularization (β = 5). Notice that the divergence

is very slow, as it is expected to be logarithmic in T .

lifting of non-observed configurations, while probabilities associated with observed

states are uniformly decreased as predicted by equation (4.30). In the case of the
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Figure 4.9: Inferred probability p? for the L-2 regularized complete inverse problem,
in the case β = 0.1 (left panel) and β = 0.8 (right panel) in the highly under sampled
limit p̄s ∈ {0, 1/T}. Equal empirical frequencies p̄s are mapped to equal inferred
probabilities p?s.

L-1 norm (figure 4.10) we found that the vector of inferred probabilities can assign

three different weights to the inferred state probability vector p?. In particular the

configuration corresponding to the non-observed state (−1,−1,−1) is lifted to a non-

trivial value which breaks the state symmetry.
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Figure 4.10: Inferred probability p? for the L-1 regularized complete inverse problem
with N = 3, in the case β = 0.1 (left panel) and β = 0.3 (right panel) in the highly
under sampled limit p̄s ∈ {0, 1/T}. The state symmetry which associates the same
weight to configurations sampled the same number of times is spontaneously broken.

4.3.3 Pairwise model on a tree

We tested the results shown in section 4.2.3 providing a solution for the inverse

problem for pairwise models with tree-like structure. We considered trees of size

N = 50, and studied the behavior of the solution of the inverse problem for samples

of length T up to 106. The model which we considered was defined by the couplings J

and h randomly and uniformly drawn in the interval [0, 1]. Datasets that we used did

not consist of i.i.d. configurations sampled from the exact probability distribution,

rather we sampled the states by using a Monte-Carlo simulation of T sweeps with a

Metropolis-Hastings algorithm [50, 47]. We selected an initial condition of the form

{1, . . . , 1} in order to enforce a solution of positive m in case of ergodicity breaking.

Figure 4.11 shows the variance of the inferred couplings as a function of the length of

the time series T , comparing it against a reference scaling 1/T for a random instance

of a problem (i.e., a specific choice of h and J). We find that formula (4.54) correctly

predicts the inferred couplings and their scaling to the actual ones. We remark that

in this case, errors arise not only due to the finite number of samples, but is also

introduced from an imperfect sampling of the empirical averages m and c. Indeed,

as long as 〈φ〉 − φ̄ ∼ T−1/2, the results obtained display the correct scaling of the

variance. We also considered the case in which we produce a random instance of the
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Figure 4.11: Variance of the inferred couplings h (red line) and J (blue line) against
the number of samples T for a pairwise tree. The dashed lines plotted for reference
indicates the error predicted by equation (4.55).

problem, and consider all the models obtained by multiplying the couplings with an

inverse temperature β controlling the width of the fluctuations, in order to model the

cases in which the noise is enhanced (β large) and the one in which it is suppressed

(β → 0). In particular, we considered a random instance of the model defined by

couplings g randomly extracted in [0, 1], and multiplied by a parameter β ∈ [1/2N, 1],

from which we extracted via MonteCarlo a set of T = 105 samples. In figure 4.12 we

plotted the variance of the inferred coupling against the inverse temperature β. This

plot shows that it is not possible to discriminate an overall strength of a couplings

from a temperature parameter modulating the fluctuations. This implies that the

maximum accuracy in inferring the products βh and βJ is obtained when fluctuations

are maximum (hi = Jij = 0), while the maximum accuracy for the inferred vector

(h, J) is achieved by finding a compromise between maximum signal (favoring high

couplings) and minimum noise (favoring high temperature, or equivalently low β).

We also studied how the quality of the reconstruction of the couplings degrades by

raising the β parameter. We find that within this inference scheme it is possible to

reconstruct accurately the couplings as long as local fluctuations are sampled. More
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Figure 4.12: Variance of the inferred couplings h? (red line) and J? (blue) against
the inverse temperature β for a pairwise tree, obtained by using T = 105 MonteCarlo
samples. We plot both the variance of h? and J? (left panel) and the one of the
products h?β and J?β (right panel), in order to show that this inference procedure
cannot discriminate an overall interaction strength from an inverse temperature. The
dashed lines indicate the value of the error estimated through equation (4.55).

precisely, expression (4.55) states that couplings can be accurately reconstructed as

long as all the four possible states belonging to clusters of interacting spins (i, j)

are well-sampled. This indicates that pushing β to large values, the configuration

(si, sj) = (1, 1) gets more biased, eventually leading to the absence of other states if

T is finite. Then, error can be large or divergent as shown in section 4.2.1 for the

case of the complete inverse problem.

Remark 4.7. Notice that an accurate reconstruction of the couplings is obtained when

local fluctuations (i.e., fluctuations relative to clusters of two spins) are sampled. It

is not necessary to probe global fluctuations, which indicates that even in a phase

in which ergodicity is broken, it is possible to accurately reconstruct the couplings,

although no global fluctuations of the empirical average m = 1
N

∑
imi are observed.

This indicates that it is not crossing the critical point what degrades the quality of the

inference procedure, rather it is the lack of local fluctuations in the empirical samples.
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4.3.4 One-dimensional periodic chain

We studied the performance of the inference procedure described in section 4.2.4 in

inferring the couplings of a one-dimensional periodic chain with arbitrary range inter-

actions. The analysis confirms the validity of the expression (4.62) for the couplings

and (4.63) for the inverse susceptibilities. As an illustrative example, we consider the

case of a periodic complete chain of size N = 50 with interactions of range R = 4

and periodicity parameter ρ = 2. We sampled via MonteCarlo a set of up to 106

configurations for a model in which the couplings gΓ have been randomly and uni-

formly extracted from the interval [0, 1/2N ] (see above section for the details about

the sampling procedure). The results for the variance of the inferred couplings (a

set of |g?| = 2R(1− 2−ρ) values) are represented in figure 4.13, where we study their

dependence on the number of sampled unit cells NT/ρ. As we did above, we studied
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Figure 4.13: Variance of the inferred coupling vector g? (blue line) plotted against
the number of sampled unit cells NT/ρ, obtained by MonteCarlo sampling of a model
describing a complete one-dimensional periodic chain of size N = 50, range R = 4
and periodicity ρ = 2. The green dashed line shows the error predicted by equation
(4.63).

the behavior of this inference procedure after modulating the interaction strength

with an overall inverse temperature parameter β controlling the intensity of the fluc-
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tuations for a random instance of the model . The results are shown in figure 4.14,

where we show both the variance for the parameters g? and the one for the product

βg?. Also in this case it is apparent that for a flat distribution (β = 0) the error
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Figure 4.14: Variance of the inferred couplings g? (blue line) against the inverse tem-
perature β for a one dimensional periodic chain. We have sampled 105 configurations
via MonteCarlo to construct the empirical averages φ̄. The left panel shows the re-
sults for the inferred couplings g?, while the right one displays the results for the
product βg?. The dashed lines indicate the estimation of the error obtained through
equation (4.63).

on βg? is minimum, while for the parameters g? the reconstruction error is minimal

for a finite value of β which optimize the signal-to-noise ratio. We remark that also

in this case the quality of the reconstruction of the couplings is determined by the

sampling of the configurations belonging to clusters of R spins. If local fluctuations

are not sampled well-enough, the error on the inferred couplings is large as predicted

by equation (4.63). As observed above, it is not necessary to probe global fluctuations

of the system in order to accurately reconstruct the couplings.
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Chapter 5

Information geometry and

criticality

In this chapter we will be interested in studying the natural structure of Riemannian

manifold which characterizes the space of probability distributions [9]. This structure

provides a mean to rigorously define a distance between statistical models, which

can be used to characterize the consistency of the solution of the inverse problem

through the notion of distinguishable distribution [61]. The metric structure of the

coupling space becomes especially interesting in the case of models displaying a critical

behavior at large N , as it allows for a characterization of (second-order) criticality

from the point of view of information theory. In this scenario critical points can

be seen as regions of the space of statistical models which are infinitely descriptive,

in the sense that any finite region of the coupling space around a critical point can

encode an anomalously high number of distinguishable statistical models. We call this

phenomenon model condensation. An illustrative example is presented by discussing

the thermodynamic limit of a fully connected ferromagnet. Finally, we will introduce

a model of a stochastic point-process known as Hawkes process which we will use as

a toy model to study the features of the inverse problem when applied to a realistic
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dataset, and compare the results to the ones obtained by studying real data describing

financial transactions in a stock market. This will allow to distinguish among spurious

and the genuine collective features which emerge from the analysis of empirical data

similar to the one considered in [72, 76, 24] in the context of neurobiology.

5.1 Metric structure of the probability space

5.1.1 Fisher information as a metric

Any statistical model (φ, g) of the form (2.1) defines a probability density p(s) on the

configuration space Ω which is parametrically specified by a coupling vector g. As

such, one can see the spaceM(φ) of all the probability densities obtained by varying

the coupling vector g ∈ RM as an M -dimensional, smooth manifold, in which the role

of the coordinates is played by the coupling vector g. The advantage gained by taking

this point of view is that the spaceM(φ) is no longer associated with any particular

parametrization of the probability space, rather it is characterized in term of the

densities p independently of their functional form. This is the point of view taken

in the field of information geometry, in which the geometric properties of the space

of probability distributions are inquired by using methods of differential geometry

(see [9, 10] and [11] for a pedagogical review), which we will briefly present in the

following sections. We will be interested in using these methods to answer several

questions, namely: (i) is it possible to define a meaningful measure of distance in the

spaceM(φ)?(ii) Is it possible to define a notion of volume in suchM(φ)? (iii) Can a

measure of complexity be defined? We will see that a positive answer to those points

can be given by means of the Fisher information matrix.

Definition 5.1. Consider a minimal family φ and its corresponding mani-

fold M(φ). Then its tangent space T (φ) is equipped by a canonical basis
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(∂1, . . . ∂M) = ( ∂
∂g1
, . . . , ∂

∂gM
), and given two tangent vectors1 X =

∑M
µ=1Xµ∂µ

and Y =
∑M

µ=1 Yµ∂µ and a point p ∈ T (φ) one can define the scalar product

〈·, ·〉p : T (φ)× T (φ)→ R as:

〈X, Y 〉p =
∑

µ,ν

χµ,ν XµYν . (5.1)

It can be shown (appendix A.2) that for any X, Y ∈ T (φ) one has

〈X, Y 〉p > 0 (5.2)

〈X, Y 〉p = 〈Y,X〉p (5.3)

Hence, 〈·, ·〉p is a metrics which we define the Fisher metrics associated with M(φ).

Notice that the scalar product 〈X, Y 〉p is independent of the parametriza-

tion used to describe the distribution p due to the transformation law of χµ,ν =

〈∂µ log p(s)∂ν log p(s)〉. This fact, and the choice of this metric itself, will be intu-

itively justified in the next section where the notion of distinguishable distribution

will be introduced. The Fisher metrics allows to define the length of a curve in the

space M(φ).

Definition 5.2. Given a curve γ, i.e., a one-to-one function γ : [a, b] ⊂ R →M(φ)

with components γ = (γ1, . . . γM), we define its length as

`(γ) =

∫ b

a

dt

√∑

µ,ν

dγµ
dt

dγν
dt
χµ,ν (5.4)

It is easy to show that the length of a curve (i) is independent of the parametriza-

tion of γ, (ii) is independent of the parametrization of M(φ) (iii) is additive, i.e.,

1 It is customary in literature to use superscripts for contravariant tensors and superscripts for
covariant ones. We will disregard for simplicity this distinction and use lower indices for any tensor
or vector field, as their use will be unambiguous.
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given a < b < c, γ1 : [a, b] → M(φ), γ2 : [b, c] → M(φ) and γ : [a, c] → M(φ)

such that γ(t) = γ1 if t < b and = γ2 if t ≥ b, one has `(γ) = `(γ1) + `(γ2). Finally,

a notion of distance d(·, ·) : M(φ) ×M(φ) → R between points in M(φ) can be

defined through

d(p, q) = min
γ∈γ(p,q)

`(γ) (5.5)

where γ(p, q) denotes the set of curves in M(φ) starting in p and ending in q.

Definition 5.3. The curve

γ? = arg min
γ∈γ(p,q)

`(γ) (5.6)

is called a geodesics, and its coordinates γ? = (γ?1 , . . . , γ
?
M) satisfy the linear differen-

tial equation

∂2γµ
∂t2

+
∑

ν,ρ

Γµν,ρ
∂γν
∂t

∂γρ
∂t

= 0 , (5.7)

where the Christoffel symbols Γµν,ρ are given by

Γµν,ρ =
1

2
χ−1
µ,σ

(
∂χσ,ν
∂gρ

+
∂χσ,ρ
∂gν

− ∂χν,ρ
∂gσ

)
(5.8)

In appendix (E.1) we prove this well-known result by explicitly varying the length

functional `(γ).

Proposition 5.1. The function d(·, ·) : M(φ) × M(φ) → R satisfies for any

p,p′,p′′ ∈ M(φ) the following relations: (i) d(p,p′) ≥ 0, (ii) d(p,p′) = 0 if and

only if p = p′, (iii) d(p,p′) = d(p′,p), (iv) d(p,p′) ≤ d(p,p′′) + d(p′′,p′). Hence, it

is a proper measure of distance.

We will show in the next section that this distance relates to the inverse problem

by intuitively counting how many error bars away are two distributions away one from

the other, given a fixed experiment length T . A related concept is the one of volume,
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which can be used to quantify the number distributions that cannot be distinguished

one from the other on the basis of an experiment of finite length.

Definition 5.4. Given a sub-manifold M ⊆ M(φ), we define the volume of M as

the value

N (M) =

∫

M
dg
√

det χ̂ , (5.9)

which can trivially be shown to be invariant under reparametrization of p.

Finally, we define along the lines of [61] the complexity of a manifold M(φ) as

the integral

N (M(φ)) =

∫

M(φ)

dg
√

det χ̂ . (5.10)

The relevance of this measure will be elucidated in section 5.1.3.

5.1.2 Sanov theorem and distinguishable distributions

The metric introduced in section 5.1.1 can be justified by providing an intuitive

interpretation in terms of distinguishable distribution, a concept which we will present

starting from a simple consistency requirement. Suppose to be given a dataset ŝ of

length T generated by an underlying (unknown) distribution. Then, given an operator

set φ it is possible to construct the empirical averages φ̄ and to infer the maximum

likelihood estimate of the couplings g = g?(φ̄) describing the data, and to use them

to generate a different dataset ŝ′ of the same length as ŝ. The maximum likelihood

estimator g′ = g?(φ̄′) of ŝ′ will, in general, be different from g. Thus, distributions

labeled by g and g′ cannot be distinguished on the basis of a dataset of length T , as

sketched in figure 5.1. What one expects is that by increasing T , the model g′ gets

closer and closer to g. This idea can be rigorously formulated by means of Sanov

theorem (presented in section 2.2.4), which allows to prove the following corollary.
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Figure 5.1: Cartoon illustrating the notion of indistinguishable distributions.

Corollary 5.1. Consider a statistical model (φ, g) associated with a probability den-

sity p. Then, given a set of empirical averages φ̄ generated by p and a maximal like-

lihood estimator g?, the probability that the maximum likelihood estimator g? takes a

value close to g′ on the dataset associated with φ̄ is given by

lim
δ→0

lim
T→∞

− 1

T
log Prob(g?(φ̄)− g′ ∈ δg) = DKL(p′||p) , (5.11)

where p′ is defined by the statistical model (φ, g′) and δg = [−δ, δ]M .

The proof of this corollary is presented in appendix (E.3). What it implies is that

the Kullback-Leibler divergence controls the probability that after the resampling

procedure explained above one ends in a model very different from the starting one.

As expected, such probability is exponentially small in T . We will informally rewrite

above corollary in the form

− 1

T
log Prob(g?(φ̄) = g′) −−−→

T→∞
DKL(p′||p) , (5.12)

implying a choice of δ enforcing δg very close to 0. This will allow us to characterize

the concept of indistinguishable distribution.

Definition 5.5. Consider two models g and g′ within the same family of operators

φ. Then, given a dataset of length T and empirical averages φ̄ sampled by the
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model (φ, g) and an accuracy ε > 0, we say that g and g′ are indistinguishable if the

maximum likelihood estimator g? satisfies

− log Prob[g?(φ̄) = g′] ≤ ε (5.13)

Given corollary (5.11), it is easy to prove (appendix E.3) that for large T the

distinguishability of two distributions is determined by the generalized susceptibility,

as stated in the next proposition.

Proposition 5.2. Given two models (φ, g) and (φ, g′), in the limit of large T they

are indistinguishable if

1

2

[
(g′ − g)T χ̂ (g′ − g)

]
≤ ε

T
. (5.14)

Remark 5.1. Although the notion of indistinguishability inherits asymmetry in g

and g′ from the Kullback-Leibler divergence DKL(p||p′), above proposition shows that

for large T the definition symmetrizes.

Remark 5.2. This proposition clarifies the role of the Fisher metric (5.1): it shows

that the distance among two close-by distributions is proportional to the log-probability

that the maximum likelihood estimator of a statistical model (φ, g) takes value g? = g′.

From this perspective, it is non-trivial to notice that this result is invariant after

reparametrization of the probability densities.

This last property identifies an approximatively elliptical region of indistinguisha-

bility in the space M(φ) around each statistical model (φ, g), whose volume VT,ε(g)

can be easily calculated in the large T limit, and is given by

VT,ε(g) =
1√

det χ̂

[
1

Γ(M
2

+ 1)

(
2πε

T

)M
2

]
(5.15)
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as shown in appendix E.4. Besides displaying the scaling of the volume with T

expected by dimensional analysis, equation (5.15) shows that the Fisher information

controls how wide is each region of indistinguishability inside the space M(φ). In

particular, the more the fluctuations are relevant in a given region M ⊆M(φ), the

better models in M can be discriminated on the basis of a finite length experiment.

Finally, the volume VT,ε(g) allows to define the concept of density of models, and to

link it to the metrics described in section 5.1.1.

Definition 5.6. Consider the statistical model (φ, g) and the space of modelsM(φ).

Then for any fixed T and ε > 0 we define the density of states ρT,ε(g) as

ρT,ε(g) =
1

VT,ε(g)
∝
√

det χ̂ . (5.16)

For large enough values of T , the density of models can be used to count the

number of distinguishable models NT,ε(M) =
∫
M dg ρT,ε(g) ∝ N (M) in a region of

the spaceM(φ). Then the Fisher metrics (5.1) has a natural interpretation through

the notion of indistinguishable distributions, and the integration measure
√

det χ̂

induced by the metric χ̂ is proportional to the density of models ρT,ε(g). The notion of

distance defined in the previous section also has a simple interpretation in this setting.

Consider in fact the discretization of the manifoldM(φ) induced by a sample size T

and an accuracy ε, in which a curve γ : [a, b] ∈ R→M(φ) is given. Suppose that one

is interested in counting the number of ellipsoids (i.e., regions of indistinguishability)

crossed by γ. Then one can see using equation (5.14) that the number of such regions

`T,ε(γ) tends in the large T limit to

`T,ε(γ)

(
2ε

T

)1/2

−−−→
T→∞

∫ b

a

dt
√
χµ,ν γ̇µ(t)γ̇ν(t) = `(γ) . (5.17)

A geodesic is interpreted in this setting as measuring the minimum number of models

which have to be crossed to link two probability densities p and q with a curve γ, and
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the corresponding distance d(p, q) is proportional to such number through the trivial

pre factor (T/2ε)1/2. Summarizing, the link among the notions of length and volume

defined in 5.1.1 and the corresponding notions in the field of statistical learning is

provided by the relations

`T,ε(γ) = `(γ)

(
T

2ε

)1/2

(5.18)

dT,ε(p, q) = d(p, q)

(
T

2ε

)1/2

(5.19)

NT,ε(M) = N (M)

[
Γ

(
M

2
+ 1

)(
T

2πε

)M
2

]
(5.20)

5.1.3 Complexity measures and criticality

One of the most relevant problems in the field of statistical learning is the one of

choosing the most appropriate model in order to fit an empirical dataset ŝ generated

by an unknown distribution. In particular it is well-known that models containing a

large number of parameters typically lead to large values for the likelihood function

PT (ŝ|g), while parsimonious models tend to produce worst in-sample values. Con-

versely, parsimonious models tend to generalize better, while complex models tend to

fit noisy components of data leading to a poor out-of-sample performance. Using a

prior function P0(φ, g) which keeps into account the complexity of the model itself is

a practical strategy which can be used to find an optimal compromise between faith-

fulness to the data and generalizability of the model. Popular priors used to achieve

those goals are:

• Akaike informetion criterion: The Akaike information criterion (AIC) can

be associated with the choice of a prior which penalizes the number of inferred

parameters M through [7]

P0(φ, g) = e−M , (5.21)

101



CHAPTER 5. INFORMATION GEOMETRY AND CRITICALITY

which leads to the score

AIC = 2H(φ, g|ŝ) = 2M + 2H0(φ, g|ŝ) . (5.22)

• Bayesian informetion criterion: The Bayesian information criterion (BIC)

considers a prior of the type [73]

P0(φ, g) = e−
M
2

log T , (5.23)

leading to a score of the form

BIC = 2H(φ, g|ŝ) = M log T + 2H0(φ, g|ŝ) , (5.24)

in which both the number of parameters and the sample size are taken into

account. The BIC is closely related to the so-called Minimal Description Length

criterion (MDL), in the sense that the score function H(g|ŝ) is proportional to

the one obtained in [66, 65] by favoring models which lead to compressible data

descriptions. In this sense, the notion of simplicity for a statistical model is

related to the one compressibility and algorithmic complexity.

We will show in the following that the above results of information geometry allow to

construct a measure of complexity which generalizes the BIC stated above, retaining

the main feature of being completely invariant under reparametrization of the model

[61, 13]. In order to do this, we consider the prior:

P0(φ, g) =

√
det χ̂

N (φ)
, (5.25)

where the term N (φ) is the volume of M(φ) defined in (5.10).
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Proposition 5.3. Consider the probability for an unknown dataset ŝ of length T to

belong to a given class of statistical models φ. Under the prior (5.25) this is given by

P (φ|ŝ) ∝
∫

M(φ)

dgPT (ŝ|g)

(√
det χ̂

N (φ)

)
. (5.26)

In the limit T →∞, this quantity concentrates according to:

P (φ|ŝ) −−−→
T→∞

(
PT (ŝ|g?)
N (φ)

)(
2π

T

)M/2

, (5.27)

where g? is the maximum likelihood estimator of g.

The proof of this result is completely analogous to the one shown in appendix A.6,

and is obtained through a saddle-point expansion of the likelihood function PT (ŝ|g).

This result implies that the score assigned to the model φ converges to (up to an

irrelevant constant in φ)

− logP (φ|ŝ) −−−→
T→∞

− logPT (ŝ|g?) +
M

2
log T + logN (φ) . (5.28)

Remark 5.3. The first two terms of the score (5.28) match the ones obtained by

considering the BIC. The extra term logN (φ) quantifies a geometric contribution

to the complexity of the model, which takes into account not only the number of

parameters M , but also the detailed shape of the manifold M(φ).

Our interest lies in the fact that, assuming that on the basis of dimensional analysis

the complexity measure logN (φ) scales like

logN (φ) ∼M log ` , (5.29)

where ` is a characteristic length scale, when high-dimensional models are considered,

the scaling of the complexity might be anomalous, in the sense that ` can scale in the
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limit N → ∞ as a power of N . This argument additionally suggests that models φ

containing critical points should be penalized by the prior (5.25), which assigns low

scores to complex models. Intuitively, it has to become very costly to describe critical

points even if the number of parameters of the model M is not large.

More specifically, if one assumes the scaling ` ∼ Nα, then it is

H(φ|ŝ) = − logP (φ|ŝ) ∼ H0(φ, g?|ŝ) +M

(
1

2
log T + α logN

)
, (5.30)

where one has the scaling H0(φ, g?|ŝ) ∼ T . Then one can intuitively expect that a

fixed scaling of T,N and M is required in order for the inverse problem to be mean-

ingful (i.e., the left term side of (5.30) to dominate the score). Hence, when dealing

with high-dimensional inference, avoiding overfitting requires not only to study how

M scales with N , but also to consider that the geometric properties of the model

themselves can play a role through the logarithmic correction in the last term of

(5.30).

5.1.4 Examples

The independent spin case

Consider the independent spin model described in section 2.2.5. By using equation

(2.45) it is possible to find that

det χ̂ =
∏

i∈V
cosh−2 hi . (5.31)

Hence, the number of distinguishable independent spin models which can be described

in an experiment of final length T with accuracy ε is

NT,ε =

∫
dh ρT,ε(h) =

[
Γ

(
N

2
+ 1

)(
π T

−2 log ε

)N
2

]
, (5.32)
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so that for example, just NT,ε ≈ 5 distinguishable models can be described by means

of T = 100 observations of N = 1 spin with an accuracy of e−ε = 1%, while for

T = 1000 and e−ε = 10% one gets NT,ε ≈ 23. The finiteness of NT,ε also implies that

infinite regions of the h ∈ RN space belong to the same distinguishable distribution.

This can easily be checked, and one can see for example that for N = 1 the condition

1 =

∫ hmin

−∞
dhρT,ε(h) (5.33)

implies that for T = 100 and e−ε = 1% all models with h smaller than hmin ≈ −1.16

(or h larger than hmax = −hmin) belong to the same region of indistinguishability.

Fully connected ferromagnet

Let’s consider the fully connected ferromagnet described in section 3.3. In that case

the calculation of det χ̂ is non-trivial, and requires an analysis of the finite N correc-

tions to the saddle-point solution of the model presented in appendix B.1, where it is

shown that to leading order in N one has

√
det χ̂ =

√
N

2

(
χ3/2
s.p. + δ(h)θ(J − 1)

√
2π2m2

s.p.χs.p.

)
(5.34)

Also in this case it is possible to count the number of distinguishable models in a

given region of space by explicitly integrating this measure. For example, we can

calculate NT,ε in the semiplane J ≥ Jmax � 1 stripped of the h = 0 line. In that case

it results that

det χ̂ ≈
√
N
(

4
√

2 e−3(J+|h|)
)
, (5.35)

which implies that in such region NT,ε ≈ T
√
N
(

4
√

2
−9π log ε

)
e−3Jmax . This indicates

that no J & Jmax ∼ 1
3

log T + 1
6

logN can be discriminated by Jmax unless h ≈ 0.

Interestingly, the number of models contained in the critical line h ≈ 1/N dominates

NT,ε in the semiplane J > Jmax. In fact the term of (5.34) proportional to δ(h)
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contributes with ∫ +∞

−∞
dh det χ̂ ≈

√
N
(
2πe−J

)
, (5.36)

so that keeping into account the transition line one gets NT,ε ≈ T
√
N
(

1
− log ε

)
e−Jmax ,

and values of J which cannot be discriminated by Jmax are the ones for which J &

log T + 1
2

logN . Finally, one can notice that χs.p. is divergent for (h, J) = (0, 1). In

particular the analysis of
√

det χ̂ shows that along the line J = 1, the divergence is

of the type
√

det χ̂ ∝ |h|−1, while for h = 0 and J < 1, one has
√

det χ̂ ∝ |1− J |−3/2.

Both divergencies are non-integrable, implying that the number of distinguishable

models contained in a finite region around the point (0, 1) dominates the total volume

of the coupling space. This singularity is smeared out by finite-size effects when

N <∞, indeed those characteristics emerge by studying the scaling for finite N of the

volume N , as shown in figure 5.2. We plot in figure 5.3 the density of distinguishable

1000500200 2000300 3000150 1500700
N
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1000

104

Det H Χ
`

L

Figure 5.2: Finite size scaling of the measure
√

det χ̂ for a fully connected ferromagnet
computed via exact enumeration. The value obtained for the models (h, J) = (0, 1)
(red points) and (h, J) = (0, 0) (blue points) are plotted.

models for this model in the case N = 100, computed both by exact enumeration and

via saddle point approximation. The geodesics for this model can also be numerically

computed by solving the differential equation (5.7) explicitly. As an example, we
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Figure 5.3: Density of models ρ(h, J) ∝ det χ̂ for the fully connected ferromagnet.
The left panel shows the exact value calculated for N = 100, while the right panel
displays the saddle-point approximation described in appendix B.1.

plot in figure 5.4 a set of geodesics of length `(γ) = 1 calculated for a system of size

N = 50.

5.2 Inference of a non-equilibrium model

Many recent works in the field of neurobiology focus on neuronal ensembles which

are described by means of strings of binary variables encoding the activity pattern of

a set of N ∼ 101 or N ∼ 102 neurons [72, 76, 24]. Such compact description of the

fundamental units of those system has been argued to be meaningful, triggering the

expectation that techniques such as the ones described in chapter 2 might be applied

on empirical data in order to extract relevant information about the interaction pat-

terns of networks of real neurons. As a result of those expectations, striking features

of neural ensembles started to emerge from the solution of the inverse problems ap-

plied to experimental data [82, 58, 78]. These findings posed a challenging question,

whose answer has yet to be fully clarified in order to assess their validity, namely:

how much of those emerging features depends on the inference procedure which has

been applied, and how much is intrinsically associated with structural properties of the
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Figure 5.4: Three sets of geodesics of length `(γ) = 1 plotted for a system of size
N = 50. Blue (respectively, red, yellow) lines describe curves passing through the
points (h, J) = (0, 1), (0.3, 0.3), (0.4, 1). It is possible to notice how volume shrinks
around the critical point (0,1) and the presence of a quasi-null mode of χ̂ along the
direction (−m, 1).

system? The implications of the answer go well beyond the field of neurobiology, and

apply more generally to the field of statistical learning. In this section we want to

provide a partial answer to this point, and show that procedures similar to the ones

used to study such neural networks may generate spurious features in the inferred

models, as well as genuine ones. We address in particular the issue of criticality,

which we identify from the point of view of statistical mechanics with the presence of

long-range correlations in a system as a result of strong collective interactions among

its constituents. We apply those ideas to two datasets whose nature is similar to the

one considered in [72, 76, 24]: a set of simulated realizations of a Hawkes point-process

[38, 37] and a dataset describing transactions in a financial market.
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5.2.1 The Hawkes process

We will introduce the Hawkes point-process as a null-model to describe a system

consisting of N interacting units which are able produce events in time and cross-

influence each other in absence of remarkable collective behaviors (i.e., the emergence

of long-range correlations in time or space). The study of the discretized version

of this model will allow an analysis of the genuine and the spurious features of the

inferred model under the procedure described in chapter 2.

Definition and basic properties

We will briefly remind the notion of point process, which we will use to construct the

Hawkes process, addressing the reader to [14, 19] for a more detailed description.

Definition 5.7. We consider an N -variate point-process described by a non-

decreasing, right-continuous counting function X = (X1, . . . , XN) : [0,∞) ⊂ R →

NN , such that

Prob(dXi(τ) = 1|X(τ ′)(τ ′ < τ))

dτ
−−−→
dτ→0

λi(τ |X(τ ′)(τ ′ < τ)) (5.37)

Prob(dXi(τ) > 1|X(τ ′)(τ ′ < τ))

dτ
−−−→
dτ→0

0 , (5.38)

where dXi(τ) = Xi(τ + dτ) − Xi(τ), and the (possibly stochastic) value λ(τ) =

(λ1(τ), . . . , λN(τ)) is referred as the conditional intensity (or more simply, intensity)

function.

Intuitively, Xi(τ) counts the number of events of type i falling in the interval [0, τ ],

being the probability of the occurrence of an event in (τ, τ + dτ ] equal to λi(τ)dτ ,

and being the one associated with the outcome of two events of order smaller than

dτ . A well-known example is provided by the Poisson process, which is a point-

processes specified by a constant, deterministic value for the intensity λi(τ) = µi.
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Finally, we will say that a point-process is (asymptotically, weak-sense) station-

ary if the mean E[dX(τ)]
τ→∞−−−→
dτ→0

λ(τ) dτ is independent of τ and the covariance

Cov(dXi(τ), dXj(τ
′))

τ→∞−−−→
dτ→0

σij(τ, τ
′) dτ 2 depends just upon the difference τ − τ ′.

Definition 5.8. We will call a Hawkes point-process the stationary, N -variate point-

process X(τ) = (X1(τ), . . . XN(τ)) defined by a stochastic intensity vector λ(τ) =

(λ1(τ), . . . , λN(τ)) of the form

λi(τ) = µi +
N∑

j=1

∫ τ

−∞
dXj(τ

′)Kij(τ − τ ′) , (5.39)

such that K̂(τ) is a positive matrix kernel satisfying

Kij(τ) ≥ 0 if τ ≥ 0 (5.40)

Kij(τ) = 0 if τ < 0 (5.41)

max
n
|Kn| < 1 , (5.42)

where {Kn}Nn=1 are the eigenvalues of the Fourier transform K̂(ω) =
∫
dωeiωτK̂(τ)

calculated in the point ω = 0, so that condition (5.42) ensures the stationarity of the

process (5.39).

This model describes a self-excitatory process (i.e., Cov(dXi(τ), dXj(τ
′)) ≥ 0)

due to the positive, linear coupling of the stochastic intensities λi(τ) with the process

itself. The interest in this model resides in the fact that it can describe clustering of

events: just as non-interacting (i.e., Poisson) point-processes describe events which

occur at times uniformly drawn from the time axis, Hawkes point-processes model

events which tend to take place in close-by regions in time due to an attractive

interaction modeled by the kernel K̂(τ).

We focus on the properties of this model in the stationary regime, which is guaran-

teed to exist for the choice of the spectral radius of the kernel K̂(τ) that we specified
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through (5.42). Despite the fact that both averages and two point correlations of

X(τ) can be analytically computed for a large class of functions K̂(τ) [38, 37], in

the following discussion we will just require the knowledge of the average intensity

λ = E [λ(τ)].

Proposition 5.4. Given a stationary Hawkes point-process, the average intensity

vector λ is given by

λ =
(
δ̂ − K̂(ω = 0)

)−1

µ , (5.43)

as one can easily see by taking the expectation value of equation (5.39) and imposing

the stationarity condition λ(τ) = λ.

We employ the notation E [. . .] to indicate an average taken in the stationary state

of the model, and δ̂ denotes the identity matrix in dimension N .

We want to highlight some of the features of the Hawkes process which differentiate

it from statistical models such as the ones described in section 2.1.

• Dynamics: The Hawkes process describes a stochastic process characterized by

the dynamics (5.39), while a statistical model (φ, g) of the form (2.1) describes

a stationary probability density. This implies that any information concerning

the directionality in time (e.g., causality) of the interactions is lost when passing

to a description in terms of i.i.d. binary strings.2

• Non-stationarity: For any non-stationary generalization of the Hawkes pro-

cess in which the kernel changes in time (i.e., it is of the form K̂(τ, τ ′)), or

the exogenous intensity is a function µ(τ), it is likely that inferring a stationary

model may lead to errors in the interpretation of the results. In particular, what

is described as an interacting, stationary system in the language of the inferred

2This can be understood by noting that any dataset π[ŝ] = {s(πt)}Tt=1 obtained by applying any
permutation πt to a raw dataset ŝ = {s(t)}Tt=1 leads to the same inverse problem.
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model p(s) ∝ exp
(
J
∑

i<j sisj + h
∑

i si

)
may correspond to a non-interacting,

non-stationary real system [84].

• Criticality: The divergence of the mean intensity E [λ(τ)] doesn’t indicate

criticality of the statistical model describing the stationary state of the Hawkes

process. In particular, the divergence of λ(τ) is not linked to collective effects,

as it is present even for finite N , while a proper phase transition in the statistical

mechanics sense can arise just in the large N limit.

These considerations also apply when considering the binary encoding of the stochas-

tic process describing spiking neurons, or more generally when considering any point-

process which is binned and discretized in order to perform an inference procedure

such as the one described in chapter 2.

The fully-connected Hawkes process

We introduce here the notion of fully-connected Hawkes process, which we will relate

to the fully-connected pairwise model in the following part of the discussion.

Definition 5.9. Consider an N -dimensional Hawkes point-process, whose intensity

vector λ(τ) is defined by

λi(τ) = µi +
∑

j

∫ t

−∞
dXj(τ

′) αije
−β(τ−τ ′) , (5.44)

which corresponds to the choice of an exponentially decaying influence kernel Kij(τ−

τ ′) = αije
−β(τ−τ ′)θ(τ − τ ′). Let α̂ be a matrix of the form

αij =
α

N − 1
(1− δij) (5.45)

and the vector µ to be equal to µi = µ for each i. Then such process will be called a

fully-connected Hawkes process.
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For a fully-connected Hawkes process, it is easy to see by employing formula (5.43)

that

E [λi(τ)] = µ

(
1− α

β

)−1

, (5.46)

while the stationarity condition (5.42) reduces to α < β.

Binning and discretization

In order to establish a connection between a spin system and a Hawkes process, we

consider a discretization in time and a binarization of the signal dealt according to

the following procedure.

Definition 5.10. Given a realization of an N -dimensional Hawkes process described

by a counting function X(τ) with τ ∈ [0, τmax] and a bin size δτ , we define for any

i ∈ {1, . . . , N} and t ∈ {1, . . . , τmax/δτ = T} the binning functions

b
(t)
i (X, δτ) = min {1, Xi(t δτ)−Xi(t δτ − δτ)} (5.47)

which is 1 is any event of type i occurred in the interval τ ∈ δτ [t − 1, t] and zero

otherwise. We analogously define the functions

s
(t)
i (X, δτ) = 2b

(t)
i (X, δτ)− 1 , (5.48)

which evaluate to 1 if an event of type i occurred in the interval τ ∈ δτ [t− 1, t] and

to −1 otherwise.

In order to shorten the notation, we will often write b
(t)
i = b

(t)
i (X, δτ) and

s
(t)
i (X, δτ) = s

(t)
i . Those functions provide a mean to map an Hawkes process to

an empirical dataset ŝ through (X, δτ) → ŝ = {s(t)
i (X, δτ)}Tt=1. Notice that an

empirical dataset ŝ constructed according to this procedure does not consist in

general of i.i.d. observations.
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5.2.2 Trades in a financial market

Financial markets are complex systems in which a large number of individuals in-

teracts by buying and selling contracts at variable prices according to an unknown,

dynamically varying set of criteria (e.g., their specific needs, their past experience,

their future expectations). In this sense, markets can be seen as intermediary entities

implicitly defined by a set of trading rules which mediate the interactions of individ-

uals. Those rules should be such that efficient allocation of resources is achieved, so

that price of traded goods reflects correct information about their fundamental value

[33]. Evidence that this is not always the case has dramatically emerged in recent

times [16, 46, 83]. Part of the responsibility has been attributed to the instability of

the microscopic mechanism by means of which financial markets process information,

producing prices and providing liquidity for investors [17]. Hence, it makes sense to

characterize empirically how such mechanism operates, and to identify its weaknesses,

its sources of inefficiencies and potential causes of its instability. With this ideas in

mind, we want to characterize from the empirical point of view a part of the complex

process leading to price formation.

Types of market data

In modern financial markets the action of the participants is constantly recorded,

and most of the events taking place during its activity are electronically stored. In

some cases, part of this data is available for investigation. In particular some main

categories of datasets describing market activity which can be identified and classified

on the basis of the timescale they are associated with. The most detailed level of de-

scription (timescales ranging from tens of milliseconds to the second) is achieved when

informations about single market events triggered by individual agents are available

[48, 59, 29]. A more coarse-grained description of the market is obtained by focusing

on the price process and its variations. More precisely, it is possible to define an
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instantaneous price for any contract, and to keep track of all its variations (tick-by-

tick data) throughout the duration of the market activity. Data describing all events

changing the price (called either trade or quote events) are necessary to achieve this

level of description (being the typical time resolution required the one of the second)

[28]. Finally, data corresponding to market behavior at lower frequencies are often

publicly available, and involve, beyond the daily opening and closing price, the vol-

ume traded and the highest and lowest daily price for all traded goods (e.g., they

can be found in [5]). In this discussion, we focus on data describing trade events,

which belong to the intermediate regime in which the price process is monitored with

the resolution of around one second. Any of those trade events corresponds to the

transfer of a contract from a seller to a buyer at a given price, for a given quantity

(volume) of a good.

Cross-correlation of trade events

It has been observed in empirical data across several markets that trade events of sin-

gle securities are not independent one from another, rather they influence each other

leading to interesting clustering phenomena. Moreover, by considering multiple secu-

rities traded in the same market venue, it is possible to check that even event times

associated with the to trade of different instruments are strongly correlated among

each other. Then, one can be interested in answering the following question: do cor-

relations in trading times arise from correlated exogenous phenomena driving market

activity, or do they form due to an endogenous contagion process spreading across the

market? While the former scenario would correspond to a picture in which market

activity reflects fundamental exogenous information, the latter would be associated

with the scenario of a (potentially unstable) market which self-interacts without nec-

essarily assimilating external information. Those scenarios can in principle coexist,

although it is not easy to construct a quantitative, empirically measurable notion dis-
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tinguishing the two regimes [44]. It should also be added that part of the explanation

for long-range correlation in trading times has been identified in the mechanism of

order-splitting : the finite amount of liquidity available in the market forces traders to

split large orders (meta-orders, care-orders or hidden-orders) in smaller lots which are

traded incrementally, leading to long-range correlation of trading times (from hours

to days, sometimes even up to weeks). Indeed a relevant role could also be played

by collective interactions across different securities, which could lead to correlated

order flow. This possibility is empirically inquired in section (5.3.2), where we apply

the techniques described in chapter 2 to this type of financial system, and try to

understand the results on the basis of what we presented in the early part of this

chapter.

5.3 Applications

With these ideas in mind, we consider two sets of realizations of a point-processes

X(τ).

• Hawkes processes: We considered simulated data corresponding to several

realizations of a multivariate (N = 100) fully-connected Hawkes processes with

parameters in a variable range.

• Financial data: We studied trade events corresponding to one year of activity

(2003) in a specific stock market, the New York Stock Exchange (NYSE), for

the N = 100 most traded assets.

The counting functions X(τ) have been discretized in both cases by using a sliding

window of size δt in order to build the datasets ŝ(X, δt) by using the binning func-

tion (5.48). Datasets ŝ have been used to construct the empirical magnetizations

m = (mi)i∈V and the correlation matrix ĉ = {cij}i<j∈V , together with the average
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magnetization m =
∑N

i=1 mi and the average correlation c = 2
N(N−1)

∑
i<j∈V cij. Then

we solved the inverse problem for this sets of data by considering two type of models:

• Fully-connected ferromagnet: We considered the operator set φ =

{∑i si,
1
N

∑
i<j sisj} defining the model (3.23) and extracted the conjugated

parameters g? = (h?, J?) given the empirical averages φ̄ = (Nm, N−1
2
c) as

shown in section 3.3.

• Disordered fully-connected ferromagnet: We considered the operator

set φ = {si}i∈V ∪ { 1
N
sisj}i<j∈V defining the model (2.47) and extracted the

conjugated parameters g? = {h?, Ĵ?) given the empirical averages φ̄ = (m, ĉ)

by using the algorithms described in section 3.1.2

5.3.1 Pairwise fully-connected model for Hawkes processes

In the case of the fully-connected Hawkes process, we considered N -variate models

with N = 100 for various set of parameters (µ, α, β). We fixed without loss of

generality µ = 0.011 s−1 (as a common factor in the choice of the parameters can be

reabsorbed into a suitable definition of the time coordinate τ) and simulated datasets

consisting of 5×103 events with α in the range [0, β]. We first studied the behavior of

the average magnetization and correlations, finding the results summarized in figure

5.5 for the generic case µ = 0.011 s−1, α = 0.015 s−1, β = 0.03 s−1 and described in

the following.

Relations among bin size and empirical observables

• The average magnetization ranges from -1 to 1 depending on δτ , being the

crossover determined from the value of E[λ(τ)]. We plot for reference the curve

1 − 2e−δτµ/(1−α/β) corresponding to the average value of the magnetization in

the stationary state.
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Figure 5.5: Average magnetization (left panel) and average correlation (right panel)
as functions of the bin size δτ (in units of seconds) for simulated data correspond-
ing to a fully-connected Hawkes process defined by parameters µ = 0.011 s−1, α =
0.015 s−1, β = 0.03 s−1. δc indicates the normalized connected correlation δc =
N(c − m2) defined in section 3.3. The dashed line in the left panel indicates the
reference value m = 1− 2e−µδt / (1−α/β).

• Correlations drop to zero as the window δτ is made smaller (a phenomenon

known in the field of finance as Epps effect [32]). In particular if the δτ is

smaller than the natural scale for the dynamics of the system β−1, one expects

correlations not to be fully developed. Conversely, when the bin size includes

on average multiple events (δτ ∼ E[λ(τ)]−1) correlations start to drop due to

the binarization of the data.

This leads to a general consideration involving the optimal bin size required to perform

inference: while a large δτ implies less statistics (due to T = τmax/δτ) and leads to

multiple events thus decreasing correlations, it generates less correlated samples (as

the auto-correlation decays exponentially in βδτ). Conversely, small values of δτ

imply more statistics, at the price of decreasing the independence of the samples.

Eventually, for δτ very small no dynamics is observed due to Epps effect. All those

features can be qualitatively motivated in a simple approximation which allows to

compute the averages E[s
(t)
i ] and E[s

(t)
i s

(t)
j ] (appendix E.5).
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Features of the inferred models

Extracting the couplings of a fully connected model from the values of magnetization

and correlation described above leads to the results depicted in figure 5.6, where we

consider both the disordered case g = (h, Ĵ) and the two-parameter model g = (h, J).

We stress in the following some of the main features.
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Figure 5.6: Inferred couplings obtained for several choices of Hawkes processes, for
various choices of the bin size δτ . We considered models with µ = 0.01 s−1, α =
0, 0.0075, 0.015, 0.0225 s−1, β = 0.03 s−1 (respectively, blue, red , yellow, green line),
and bin sizes ranging from 20 to 80 s. Circles correspond to average couplings inferred
from a heterogeneous model, while squares indicate couplings obtained by fitting a
homogeneous model.

• The Poisson point-process is mapped on the line J = 0, while models with

increasing interaction parameter α for a fixed β are mapped on monotonically

increasing values of J . In this sense, interactions in the original model are gen-

uinely mapped in couplings J within the inferred model. Moreover, increasing

interaction parameters lead to curves which are closer to the critical point.

• The inferred fields do not increase monotonically in δτ , and the asymptotic

behavior when δτ → +∞ may be either h → +∞ (for α > β/2) or h → −∞

(α < β/2). This indicates that the inference procedure that we use can generate
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metastable states (see section 3.4) as legitimate solutions of the inverse prob-

lem. The metastability can be understood as a spurious result of the inference

procedure, as it doesn’t correspond to any instability of the underlying Hawkes

point-process.

• Adopting a criterium of maximum information efficiency in order to select δτ

would lead to a choice of an inferred model which is maximally close to the

critical point, where the stability of the model is infinite (section 5.1.4). Equiv-

alently, adding to the criteria required to choose δτ listed above also the stability

would poise the inferred model artificially close to the critical point, where sta-

tistical models generalize better.

• Interestingly, the inferred model doesn’t lie on the line h = 0 where most models

concentrate (section 3.3). This is because the scaling ∼ 1/N of the kernel K̂(τ)

leads to correlations proportional to 1/N (see appendix E.5 for a qualitative

understanding of this behavior).

These results have been obtained both for the disordered (using naive mean-field and

TAP equations, which lead to similar results) and the non-disordered model (using

formulae (3.35) and (3.36)) in order to check the artificial degree of heterogeneity

which the inference procedure would have induced if the permutational symmetry

among the N spins wouldn’t have been known in advance. In figure 5.7 we plot an

histogram of the off-diagonal elements of the connected correlation matrix cij−mimj

and of the inferred couplings Jij for a specific case. In figure 5.8 we plot the histogram

of the eigenvalues obtained in the same case.
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Figure 5.7: Histogram of the off-diagonal values of the correlation matrix ĉ−mmT

(left panel) and the inferred interaction matrix Ĵ? (right panel) for an Hawkes process
defined by µ = 0.01 s−1, α = 0.025 s−1, β = 0.03 s−1, binned with a resolution of
δτ ≈ 30 s. Data corresponds to 5000 events, corresponding to approximatively T =
τmax/δτ ≈ 4167.
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Figure 5.8: Histogram of the eigenvalues of the connected correlation matrix ĉ−mmT

for the Hawkes process described in figure 5.7. Notice that due to symmetry, one
would expect for large T to have N−1 degenerate eigenvalues of size 1−m2−δc/N ≈
0.62 and a larger eigenvalue of size 1−m2 + δc (N − 1)/N ≈ 1.26, whose associated
eigenvector is of the form (1, . . . , 1)/

√
N .

5.3.2 Pairwise fully-connected model for NYSE trade events

We now focus on a dataset describing 100 days of trading activity (from 02.01.2003

to 05.30.2003) in the NYSE for the 100 most traded stocks. We consider only on

the central part of each trading day (τmax = 104 s), in order to avoid non-stationary

effects linked with the opening and the closing hours of the market [19]. Any financial
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transaction in this period has been defined as an event, independently on the buy

or sell direction of the trade. The total data available allowed us to study 106 s

of market activity corresponding to ∼ 105 trade events, which have been binned by

using sliding windows of size δt ∈ {2, . . . , 100} s. The results obtained for the average

magnetization and the average correlations as functions δt are reported in figure (5.9),

in which it is possible to appreciate at which scale the magnetization changes from

-1 to 1 (around 10 s), the one at which correlations form (∼ 10 s) and decrease due

to the presence of multiple events (∼ 30 s).
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Figure 5.9: Average magnetization (left panel) and average correlation (right panel)
for data corresponding to 100 days of financial transactions in the NYSE. δτ indicates
the bin size in seconds, δc is the normalized correlation coefficient. The plot refers
to a representative stock of the ensemble, specifically it is associated with the asset
Analog Devices Inc. (ADI).

Features of the inferred model

By considering a fully-connected ferromagnet, such φ̄ = (m, c) data has been inverted

in order to obtain the interactions g = (h, J), as shown in figure 5.10, where we

also plotted the quantities ( 1
N

∑N
i=1 hi,

2
N(N−1)

∑
i<j Jij) obtained by considering a

disordered fully-connected ferromagnet. While for the non-disordered model we used

formula (3.36) to invert the averages for the couplings, in the case of the disordered

model we used mean-field equations – both naive Mean-Field (equations (3.10) and
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Figure 5.10: Inferred couplings h? and J? obtained with financial data, for various
choices of the bin size δτ . Squares indicate the result of inferring a homogeneous
model, while circles indicate the averages of the vector h and of the matrix Ĵ obtained
by inferring a disordered model.

(3.11)) and TAP equations (equations (3.14) and (3.15)) – which produced consistent

results. We stress some features of the results we obtained:

• The ratio h/J changes according to δt, so that it is not possible to interpret h as

measuring exogenous driving factors and J as a genuine interaction. Moreover,

as explained in section 3.3), this inference procedure may mix interactions with

external fields due to the approximate symmetry g? → g? + δJ(−m, 1). What

is possible to say is that the Hawkes process which best describes this (h, J)

curve is defined by parameters µ ≈ 0.011 s−1, α ≈ 0.022 s−1, β ≈ 0.03 s−1, so

that the exogenous intensity µ corresponds to approximatively one fourth of the

average intensity E[λ(τ)].

• Results describing the Hawkes process allow to understand the proximity of the

inferred parameters (h, J) to the critical point as related to the divergence of

the average intensity E[λ(τ)], rather than arising from a collective effect.

• As in the previous case, the inferred model doesn’t lie on the critical line h = 0.

This is due to the fact (section 3.3) that correlations are of the order of 1/N ,

so that a description in terms of fully-connected ferromagnet leads to a non-

degenerate description of the data.
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Remark 5.4. A procedure which has been proposed to estimate the distance of an

inferred model from the critical point consists in rescaling of all the couplings by

a common factor β (i.e., performing a shift g? → βg?) which is interpreted as a

fictitious inverse temperature. Studying how the elements of the susceptibility matrix

χ̂ vary with respect to β should allow to identify criticality in the inferred model by

the presence of peaks close to β = 1 in specific components of the matrix. We perform

this procedure with our data and plot the results in figure 5.11, finding that:

• This procedure is not isotropic, in the sense that the shift g → βg implicitly

indicates that the direction (1, . . . , 1) should be the preferred one in order to

evaluate distances in the coupling space.

• This type of measure does not describe the distance of the inferred model from

the critical point in term of distinguishable models (equivalently, this measure of

distance is not invariant under reparametrization of the statistical model (φ, g)).

These points can lead to problems when model condensation is present: very different

models may be described by slightly shifting β. Moreover an inferred model may lie

close to the critical point due not only due to model condensation, but also due to the

choice of a stable inference procedure, so that it is likely that χ̂ attains large value in

the point g?, and that by moving from that point one can expect fluctuations to strongly

decrease. A better measure of distance would be provided by considering geodesics in

the coupling space under the Fisher metrics χ̂, as shown in section 5.1.2. We remind

that properties (2.36) and (2.37) allows to informally identify this measure as counting

how many error bars is one away from the critical point. This approach doesn’t specify

any privileged direction in the coupling space (as the geodesic distance is associated

with whatever path in the coupling space is minimizing the number of such error bars),

nor varies according to the reparametrization (as in that case also error bars are

reparametrized accordingly). As an example, one finds that the distance dT,ε(pcrit,p
?)
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Figure 5.11: In the left panel we plot the regions of the phase space which are probed
by shifting the inferred couplings for financial data g? by a fictitious inverse temper-
ature β for various bin sizes (blue, red yellow and green correspond, respectively, to
δτ = 24, 26, 28, 30 s), while the background shows the model density ρ(g) ∝ det χ̂. In
the right plots we show the specific heat β2Var[− log p/β] and the susceptibility χh,h
as a function of the inverse temperature for the same bin sizes as in the left plot.

defined by equation 5.19 between the critical point and the inferred parameters for

δτ = 28 s (h? ≈ 0.14, J? ≈ 0.96) is dT,ε(pcrit,p
?) & 102 for ε = − log 1% and

T ∼ 106 s/28 s.

We also performed an analysis of the empirical connected correlation matrix ĉ−mmT

and of the inferred interaction matrix Ĵ? in order to check the compatibility of data

with an homogeneous model. The corresponding histograms have been plotted in

figure 5.12, showing that data is qualitatively similar to the one which would have

been obtained with an homogeneous model. The principal component analysis of the

matrices ĉ−mmT and Ĵ indicates in both cases the presence of a large eigenvalue,

whose associated eigenvector is roughly of the form 1√
N

(1, . . . , 1) as shown in the

histogram (5.13). This findings can be interpreted as indicating that a significant part
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Figure 5.12: Histogram of the off-diagonal values of the correlation matrix ĉ−mmT

(left panel) and the inferred interaction matrix Ĵ? (right panel) for financial data,
binned with a resolution of 30 s.
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Figure 5.13: Histogram of the eigenvalues of the correlation matrix ĉ −mmT for
financial data, binned with a resolution of 30 s.

of the structure of the cross-excitatory network can be captured by an homogeneous

model.3

3This is somewhat similar to what one finds for the statistics of stock price variations [51, 18].
In that case the correlation matrix has a large eigenvalue of size proportional to N (also called
market mode), together with a small number of isolated eigenvalues, whose associated eigenvectors

usually identify financial sectors. Interestingly, the inspection of the eigenvalues of ĉ and Ĵ beyond
the largest one evidences different sectors with respect to the ones found by studying stock price
variations.
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Conclusion

In this work we have presented a general approach to the field of statistical learning, in

which the problem of estimating parameters describing a complex system is seen as an

inverse problem in the field of statistical mechanics. This perspective has been proven

to be especially relevant in order to study extended systems, which in this language

are associated to physical systems in the thermodynamic limit. This regime is well-

known in physics, and several techniques (mean-field approximations) are known to

solve the inverse problem in this framework with high accuracy. Interesting collective

features emerge in this regime: models can condensate leading to regions of the space

of parameters which are able to describe anomalously well very diverse datasets,

and null-modes can develop leading to degenerate representations of a dataset. All

of these factors have to be kept into account when studying inverse problem for

empirical datasets, in order to disentangle the genuine features of a system from the

spurious ones depending on the inference procedure which is applied. We have also

shown that complete representations of the inverse problem lead to the exact solution

of several systems (complete systems, one-dimensional systems, tree-like interaction

networks), and allow a general understanding of the locality and stability features

of the inverse problems, which are easier and more resilient to noise than the direct
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ones. The notion of regularizer has also been discussed and its use has been clarified

by specific, solvable examples, in order to show general features of non-parametric

inference. We find that a symmetry property characterizes the regularizers, and a

tradeoff between computational complexity and relevance of the inference procedure

has to be sought on the basis of such symmetry in order to perform model selection.

Finally, we have shown how differential geometry can be used to understand the

consistency of the inverse problem, and how the special features associated with

the large N limit have a clear geometric interpretation in terms of distance and

volume. In this language, criticality of the inferred model is related to the strong

divergence of the number of datasets which can be described through a small shift

of the inferred parameters. Finally, we have presented the application of these ideas

to two datasets, a synthetic one describing a self-excitatory point process and an

empirical one describing transactions in a financial market. We used those datasets

in order to illustrate our ideas by separating genuine features of the inferred model and

spurious ones, finding that the dataset describing financial transactions can be well-

described by a fully-connected ferromagnet in which interactions play a prominent

role with respect to external driving factors.
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Appendix A

Binary Inference

A.1 Maximum entropy principle

Consider a set of data ŝ = {s(t)}Tt=1, and a family of operators φ. The maximum

entropy principle states that among all probability distributions p such that 〈φ〉 = φ̄

(where as usual φ̄ = 1
T

∑T
t=1 φµ,s(t)), the one which maximizes the Shannon entropy

S(p) is given by the statistical model (2.1)

p?s =
1

Z(g)
exp

(
M∑

µ=1

g?µφµ,s

)
(A.1)

in which each of the g?µ is seen as a Lagrange multiplier enforcing the condition

〈φµ〉 = φ̄µ.

This principle is often invoked in order to justify the model (2.1) as the simplest (i.e.,

with higher entropy) one which is able to explain a given set of empirical averages

[85]. Indeed it should be observed that this principle doesn’t completely solve the

problem of selecting the most appropriate model in order to explain data ŝ, rather

it converts it into the problem of selecting the best set of observables φ̄. In both

cases a family φ has to be specified, and this has to be done on the basis of some a

priori information (e.g., which operators are likely to be contained in the model), or
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according to the specific goal of the inference problem which one is trying to solve

(e.g., which observables are considered relevant for a particular application).

Proof. The proof of this result amounts to solve the constrained optimization problem

p? = arg max
p

[
S(p) + (g0 + 1) +

M∑

µ=1

gµ
(
〈φµ〉 − φ̄µ

)
]
, (A.2)

in which the Lagrange multipliers {gµ}Mµ=1 constrain the averages 〈φµ〉 to their em-

pirical values, while g0 enforces the normalization. By differentiation with respect to

ps, one can easily obtain equation (2.1). The conditions for the existence and the

uniqueness of such solution are the same ones required in order to solve the inverse

problem, and are described in section 2.2.

A.2 Concavity of the free energy

Consider the free energy F (g) defined as in section 2.1. We want to prove that it is

a concave function by showing that the susceptibility matrix χ̂ defined in equation

(2.6) is positive semidefinite.

Proof. First one can show that

χµ,ν = − ∂2F

∂gµ∂gν
=
∑

s

(φµ,s − 〈φµ〉) (φν,s − 〈φν〉) ps (A.3)

which allows to proof that for any vector x, the quadratic form xT χ̂x is greater or

equal than zero. In fact one has that

∑

µ,ν>0

xµχµ,νxν =
∑

s

ps

[∑

µ>0

xµ(φµ,s − 〈φµ〉)
][∑

ν>0

xν(φν,s − 〈φν〉)
]

(A.4)

=

〈[∑

µ>0

xµ(φµ,s − 〈φµ〉)
]2〉

≥ 0 . (A.5)
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Additionally, if the operators φµ,s are minimal in the sense defined in section 2.1 above

expression has to be strictly larger than zero for x 6= 0. In fact if xT χ̂x = 0, then it

must hold for each state s that

∑

µ>0

(φµ,s − 〈φµ〉)xµ = 0 , (A.6)

which by minimality of φ implies that xµ = 0 for each µ.

A.3 Small deviations of the empirical averages

We want to show that given a statistical model (φ, g), equations (2.23) and (2.24)

hold for the empirical averages φ̄.

Proof. For the averages, it is sufficient to show that due to the factorization property

of PT (ŝ|g) one has

〈φ̄µ〉T =
1

T

T∑

t=1

〈φµ,s(t)〉T =
1

T

T∑

t=1

〈φµ〉 = 〈φµ〉 , (A.7)

while for the covariances one can write

〈φ̄µφ̄ν〉T − 〈φ̄µ〉T 〈φ̄ν〉T =
1

T 2

T∑

t,t′=1

[
〈φµ,s(t)φν,s(t′)〉T − 〈φµ,s(t)〉T 〈φν,s(t′)〉T

]
. (A.8)

By noting that due to independence all terms with t 6= t′ vanish from previous

expression, one recovers equation (2.24).

A.4 Sanov theorem

We want to prove Sanov theorem (2.35), which states that given a probability distri-

bution p and a compact set of probability densities M ⊆ M(Ω), one has that the
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empirical frequencies p̄ sampled from PT (ŝ|p) obey the large deviation principle

lim
δ→0

lim
T→∞

− 1

T
log Prob(p̄ ∈M′) = DKL(q?||p) . (A.9)

where q? = arg minq∈MDKL(q||p) andM′ is the compact setM′ = {p′ = p+ δp ∈

M(Ω) | p ∈M, δp ∈ [−δ, δ]|Ω| }

Proof. We will provide a simple combinatorial proof of Sanov theorem along the lines

of [60], which requires some preliminary definitions. Given an empirical frequency

q̄, we denote with ŝ(q̄) the set ŝ(q̄) = {ŝ ∈ ΩT | q̄s = 1
T

∑T
t=1 δs,s(t)} of empirical

datasets compatible with q̄. We also define the set of all possible empirical frequencies

as MT (Ω). For those sets it holds that:

• The cardinality of ŝ(q̄) is bound by

1

P1(T )
eTS(q̄) ≤ |ŝ(q̄)| ≤ P2(T )eTS(q̄) , (A.10)

where P1(T ),P2(T ) are polynomials in T with positive coefficients. This de-

scends from applying Stirling bounds on the factorial to the exact relation

|ŝ(q̄)| = T !∏
s (T q̄s)!

. (A.11)

and plugging the definition of Shannon entropy (2.11) in the resulting expres-

sion.

• The cardinality of MT (Ω) is bound by

|MT (Ω)| ≤ (T + 1)|Ω| . (A.12)

because each configuration s is visited a number of times between 0 and T .
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• Due to compactness of M and continuity of DKL(q||p), one has that

minq∈MDKL(q||p) exists and is attained in the (unique, due to convexity)

point q? ∈M.

By using those properties, we can find an upper bound for the large deviation function

as follows:

Prob(p̄ ∈M′) =
∑

q̄∈MT (Ω)∩M′
Prob(p̄ = q̄)

=
∑

q̄∈MT (Ω)∩M′

∑

ŝ∈ŝ(q̄)

PT (ŝ|p)

≤
∑

q̄∈MT (Ω)∩M′
P2(T )eTS(q̄)e−T [S(q̄)+DKL(q̄||p)]

≤ (T + 1)|Ω|P2(T )e−TDKL(q?′||p) . (A.13)

where q?′ = arg minq∈M′ DKL(q||p). This trivially implies

lim
T→∞

1

T
log Prob(p̄ ∈M) ≤ −DKL(q?′||p) . (A.14)

By taking the limit δ → 0, one recovers q?′ → q?. For the lower bound, one needs to

notice that for any δ it is possible to find a sufficiently large T and a δp ∈ [−δ, δ]|Ω|

such that q̄? ∈MT (Ω)∩M′ is close enough to q? (due to density of rational numbers

into real numbers), so that |DKL(q̄?||p) − DKL(q?||p)| < ε with ε arbitrary. Then

one can write that

Prob(p̄ ∈M′) ≥ Prob(p̄ = q̄?) =
∑

ŝ∈ŝ(q̄?)

PT (ŝ|p) ≥ 1

P1(T )
e−TDKL(q̄?||p) , (A.15)

which due to the arbitrarity of ε allows to prove the lower bound

lim
T→∞

1

T
log Prob(p̄ ∈M) ≥ −DKL(q̄?||p) ≥ −DKL(q?||p)− ε . (A.16)

133



APPENDIX A. BINARY INFERENCE

A.5 Cramér-Rao bound

Cramér-Rao bound states that given a statistical model (φ, g) with F (g) strictly

convex and an unbiased estimator of g denoted as g?, the covariance matrix of g?

under the measure 〈. . . 〉T is bound according to equation (2.38).

Proof. First, it is necessary to prove that to prove that, after defining Vµ = ∂ logPT (ŝ|g)
∂gµ

,

and using equation (2.15) one has

〈Vµ〉T =
〈
T
[
φ̄µ − 〈φµ〉

]〉
T

= 0 , (A.17)

where we also used equation (2.23) (i.e., 〈φµ〉 = 〈φµ〉T ). Then, it is possible to

compute the covariance

Cov(Vµ, g
?
ν − gν) = 〈Vµ[g?ν − gν ]〉T − 〈Vµ〉T 〈g?ν − gν〉T

= 〈Vµg?ν〉T − 〈Vµ〉T gν − 〈Vµ〉T 〈g?ν − gν〉T

=
∑

ŝ

[
1

PT (ŝ|g)

∂PT (ŝ|g)

∂gµ
g?ν

]
PT (ŝ|g) =

∂gν
∂gµ

= δµ,ν (A.18)

and exploit Cauchy-Schwartz inequality, which implies that for any pair of vectors

x,y it holds that

(
xT
〈
V [g − g?]T

〉
T
y
)2 ≤

〈
(xTV )2

〉
T

〈
([g? − g]Ty)2

〉
T

(A.19)
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Equation (A.17) fixes the value of the left-hand side term of equation (A.19) to be

xTy, while the right-hand side can be expanded into

〈
(xTV )2

〉
T

〈
([g? − g]Ty)2

〉
T

= T
(
xT χ̂ x

) (
yT
〈
[g? − g][g? − g]T

〉
T
y
)
, (A.20)

where we used that 〈V V T 〉T = T χ̂ due to equation (2.24). Finally, by choosing the

arbitrary vector x to be x = χ̂−1y/T (χ̂ is invertible due to strict concavity of F (g)),

it holds for any y that

1

T

(
yT χ̂−1 y

)
≤
(
yT
〈
[g? − g][g? − g]T

〉
T
y
)

(A.21)

which proves the thesis (2.38).

A.6 Convergence of the inferred couplings

Given a set of empirical frequencies p̄, we want to prove that for a generic set of

models described by an operator set φ the mean and the covariances of couplings

g defining a probability distribution p, weighted by the measure provided by the

posterior PT (g|p̄) are given in the limit of large T by equations (2.36) and (2.37).

Proof. To calculate them, we first notice that, by defining

Z(φ̄) =

∫
dg e−TDKL(p̄||p) =

∫
dg eT

∑M
µ=0 gµφ̄µ (A.22)

it is possible to write

∂Z(φ̄)

∂φ̄µ
= T

∫
dg gµ e

−TDKL(p̄||p) (A.23)

∂2Z(φ̄)

∂φ̄µ∂φ̄ν
= T 2

∫
dg gµgν e

−TDKL(p̄||p) , (A.24)
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so that the calculation of the generating function logZ(φ̄) allows to find the required

momenta of g. In the limit of large T it is possible to perform a saddle-point esti-

mation of the function Z(φ̄) around the minimum of the convex function DKL(p̄||p)

(or, equivalently, the maximum of the concave free energy F (g)), which requires the

expansion of the Kullback-Leibler divergence. This procedure yields

Z(φ̄) =

∫
dg exp

[
T

(
F (g?) +

M∑

µ=1

g?µφ̄µ +
1

2

∑

µ,ν

∂2F (g)

∂gµ∂gν
(gµ − g?µ)(gν − g?ν) + . . .

)]

−−−→
T→∞

e−TS(φ̄)

√
2π

T det χ̂
, (A.25)

where – as shown in section 2.2 – the maximum likelihood estimator g? can be defined

as the minimizer of the Kullback Leibler divergence. The differentiation of logZ(φ̄)

finally leads to

1

T

∂ logZ(φ̄)

∂φ̄µ
−−−→
T→∞

−∂S(φ̄)

∂φ̄µ
= g?µ (A.26)

1

T 2

∂2 logZ(φ̄)

∂φ̄µ∂φ̄ν
−−−→
T→∞

− 1

T

∂2S(φ̄)

∂φ̄µ∂φ̄ν
=
χ−1
µ,ν

T
, (A.27)

where we used equation (2.31) and (2.32) to express the derivatives of the entropy

S(φ̄).
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High-dimensional inference

B.1 The fully-connected ferromagnet: saddle-

point calculation

We want to prove that the free energy F (h, J) of a fully connected ferromagnet

described by the probability density (3.23) can be written as in (3.24).

Proof. This can be shown by noting that by using Stirling formula and approximating

the sum with an integral one can write

Z(h, J) = e−J/2
N∑

N+=0

δ

[
Nm−

(
N +N+

2

)](
N

N+

)
exp

[
N

(
Jm2

2
+ hm

)]

−−−→
N→∞

e−J/2
∫ 1

−1

dm exp

[
N

(
Jm2

2
+ hm+ s(m)

)]
, (B.1)

with s(m) = −1+m
2

log 1+m
2
− 1−m

2
log 1−m

2
. For (h, J) independent of N , above in-

tegral can be evaluated by saddle-point, and is dominated by the (absolute) min-

imum ms.p.(h, J) of the function fh,J(m) = −Jm2

2
− hm − s(m). By substituting
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F (h, J) = − logZ(h, J) one finds

F (h, J) −−−→
N→∞

J

2
+Nfh,J(ms.p.(h,J))−

1

2
log

2π

N∂2
mfh,J(ms.p.(h, J))

, (B.2)

where ms.p.(h, J) satisfies the saddle-point equation

m = tanh (Jm+ h) . (B.3)

Instead for large, finite N , J > 1 independent of N and 0 ≤ h ∝ 1/N equation (B.3)

has two minima m+ and m−, whose contribution can be kept into account through

Z+ + Z− = Z+

(
1 +

Z−
Z+

)
= Z+ e

log(1+Z−/Z+)

= Z+ e
−Ftrans (B.4)

which yields the last term of equation (3.24).

B.1.1 The leading contribution F0.

The main features of the model can be described by keeping into account the term

F0(h, J), which is the only one in equation (3.24) proportional to N . It is given by

F0(h, J) = Nfh,J(ms.p.(h, J)) , (B.5)

where

fh,J(m) = −hm− Jm2

2
+

(
1 +m

2
log

1 +m

2
+

1−m
2

log
1−m

2

)
, (B.6)
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and ms.p.(h, J) is defined as the absolute minimum of the function fh,J(m), hence it

satisfies the transcendental equation

m = tanh (Jm+ h) . (B.7)

The contribution of F0(h, J) to the ensemble averages is

〈∑

i

si

〉

0

= −∂F0

∂h
= N ms.p. (B.8)

〈
1

N

∑

i<j

sisj

〉

0

= −∂F0

∂J
= N

m2
s.p.

2
, (B.9)

while the one to the susceptibility matrix χ̂ is given by

χ̂0 = N χs.p.




1 ms.p.

ms.p. m2
s.p.


 , (B.10)

where χs.p. = ∂ms.p./∂h. Its eigenvalues are given by Nχs.p.(0, 1 +m2
s.p.).

The role of Gaussian fluctuations

The term Ffluct(h, J) allows to compute the eigenvalue decomposition for the matrix

χ̂, whose smallest eigenvalue receives a contribution which grows in N , and is related

to the Gaussian integral (B.1). It results

Ffluct(h, J) = −1

2
log

(
2π

N∂2
mfh,J(ms.p.(h, J))

)
. (B.11)
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The contribution of Ffluct(h, J) to the solution of the direct problem is

〈∑

i

si

〉

fluct

= −χ2
s.p.

m

(1−m2)2
(B.12)

〈
1

N

∑

i<j

sisj

〉

fluct

= −χ
2
s.p.

2

(
J − 1− 3m2

(1−m2)2

)
(B.13)

and

χ̂fluct = χ4
s.p. (1−m2

s.p.)
−3 â(J,m) , (B.14)

with

a11(J,m) = −(1− J − 3Jm2) (B.15)

a12(J,m) = a2,1(J,m) = −(3− 3J − 3Jm2) (B.16)

a22(J,m) = 1− 2J + J2 − 11m2 + 14Jm2 (B.17)

− 3J2m2 − 4Jm4 + 3J2m4 − J2m6

B.1.2 Transition line and metastability

The function fh,J(m) may display either one or two local minima according to the

value of the couplings h and J . In the case h ≥ 0 that we are considering, whenever

two local minima m+ and m− are present, one has ms.p. = m+ with δfh,J = fh,J(m−)−

fh,J(m+) ≥ 0. The contribution of the state m− to the saddle point integral vanishes

in the large N limit as long as δfh,J is finite, but for δfh,J ≈ 1/N , the contribution

of the m− cannot be neglected, and requires the introduction of a term in the free

energy of the form

Ftrans(h, J) = − log


1 + e−Nδfh,J

√√√√J − 1
1−m2

+

J − 1
1−m2

−


 . (B.18)
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For small enough values of h, the values of the minima become m+ = −m−, and

above term can be written as

Ftrans(h, J) = − log
(
1 + e−2Nhms.p.

)
. (B.19)

Hence, this term describes the region of the coupling space which we call transition

line, where hms.p. � 1/N . The contribution to the averages and to the generalized

susceptibility of this term is given by

〈∑

i

si

〉

trans

= −N [1− tanh(Nhms.p.)](hχs.p. +ms.p.) (B.20)

〈
1

N

∑

i<j

sisj

〉

trans

= N hms.p. χs.p.[1− tanh(Nhms.p.)] (B.21)

and

χ̂trans = N2 b̂(h, J,m) . (B.22)

The matrix b̂(h, J,m) (whose explicit form is not particularly illuminating) can be

obtained by deriving above averages with respect to h and J .

Determinant of the generalized susceptibility

The term
√

det χ̂ is shown in chapter 5 to be relevant in order to count the number of

distinguishable statistical models inside a given region of the space (h, J). It can be

calculated at leading order in N by keeping into account the different contributions

to the free energy F (h, J). The region in which |h| � 1/N is described by F −−−→
N→∞

F0 + Ffluct, and it results

det χ̂ −−−→
N→∞

det(χ̂0 + χ̂fluct) −−−→
N→∞

det χ̂0 +
N

2
χ3
s.p.

=
N

2
χ3
s.p. , (B.23)
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while the region h� 1/N is dominated by the contribution F0 + Ftrans, implying

det χ̂ −−−→
N→∞

det(χ̂0 + χ̂trans) −−−→
N→∞

N3

(
m4
s.p.χs.p.

cosh2(Nhms.p.)

)
+O(N2) . (B.24)

B.1.3 Marginal polytope for a fully connected ferromagnet

We want to characterize the marginal polytope G(φ) for the fully connected ferro-

magnet (3.23), that is, the set of empirical averages (m, c) ∈ R2 compatible with at

least one probability density p ∈M(Ω).

Proof. Due to density of the empirical frequency p̄ in the spaceM(Ω), we will consider

the large T limit of a sequence of observations {m(t)}Tt=1. Fixed any m ∈ [−1, 1], one

needs to require

m =
1

T

T∑

t=1

m(t) (B.25)

and ask for a possible arrangement of the sequence {m(t)}Tt=1 compatible with a cor-

relation c, that is,

c =
1

T

T∑

t=1

(m(t))2 − 1/N

1− 1/N
, (B.26)

where, after easy combinatorics, we used the fact that the correlation c(t) measured in

the observation number t depends just upon the total magnetization m(t). Finding a

solution to this problem is easy due to convexity of
∑

t(m
(t))2. In particular by taking

the limit T →∞ a solution can be found for any m, while then the minimum and the

maximum value of c are given respectively by m2−1/N
1−1/N

and 1. Interestingly, the same

result can be obtained with more simplicity by exploiting the necessary condition

Var[
∑

i si] ≥ 0. Notice also that for large N the connected correlation coefficient

c−m2 is bound from below by (m2 − 1)/N : equivalently no large system, subject to

whatever type of interaction, can be globally anti-correlated.
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Convex optimization

In this appendix we will briefly remind part of the theory which has been developed

in order solve unconstrained minimization problems of convex functions of the form

H(g) : RM → R, addressing the interested reader to [21] for a more complete analysis.

C.1 Differentiable target

Consider a convex, differentiable function H(g) : RM → R. Then for each point g it

exists a gradient ∇H(g) =
(

∂
∂g1
, . . . , ∂

∂gM

)
H(g) and a positive semi definite Hessian

matrix χ̂(g) with elements χµ,ν = ∂µ∂νH(g). Then the following properties hold:

1. The gradient is a global under estimator of H(g), namely for any g′ one has

that

H(g) ≥ H(g′) +∇H(g′)T (g − g′) . (C.1)

2. The gradient defines a descent direction v = −∇H(g), which means that for

all g it exists an ε such that

H(g − ε∇H(g)) ≤ H(g) (C.2)

143



APPENDIX C. CONVEX OPTIMIZATION

3. The Hessian defines the descent direction v = −χ̂−1(g)∇H(g). Algorithms

exploiting this property usually go under the name of Newton’s methods.

These properties are simples consequences of differentiability and convexity of H(g),

and allow to solve the problem the problem of its minimization. The first property

implies that given a g such that ∇H(g) = 0, g is a global minimum of H(g). If

this equation can be explicitly solved, the minimum can be found. Indeed if, as it

often is the case, the condition ∇H(g) = 0 is non-analytically solvable, it is possible

to exploit properties 2. and 3. in order to build iterative algorithms which decrease

the target function H(g) at each step. In particular, iterative algorithms exploiting

property 2. are expected to achieve linear convergence to the minimum, while more

sophisticated algorithms (Newton methods) constructed by using the Hessian can

achieve quadratic convergence. More efficient schemes (quasi-Newton methods) such

as the L-BFGS approximation [49, 23] exploit an approximation for the Hessian in

order to save memory and computational power by exploiting successive updates of

the gradient. We present in the following an example of a simple algorithm which

can be used to minimize a convex differentiable H(g), which we use mainly as a proof

of principle for the solvability of this type of problem. Secondly, the efficiency of

the Boltzmann learning algorithm presented in section 3.1 is rooted in the gradient

descent method.

C.1.1 Gradient descent algorithm

Given a convex, differentiable H(g) and starting point g(0), we consider a sequence

{g(k)}Kk=1 built according to the iterative scheme

g(k+1) = g(k) − εk∇H(g(k)) , (C.3)
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where we introduced the schedule {εk}Kk=1. Suppose that each of the εk is chosen in

order to satisfy the (Armijo) condition

H(g(k+1)) ≤ H(g(k))− εkβ||∇H(g)||2 , (C.4)

for a given 0 < β < 1, by considering the initial value εk = 1 and iterating the map

εk ← εk/τ for τ < 1 until (C.4) is satisfied. Then it holds that either ming∈RM H(g) =

−∞ or limk→∞ ||∇H(g)||2 = 0, that is, if a minimum exists, the sequence {g(k)}Kk=1

can approximate it with arbitrary precision.

Remark C.1. Searching the optimal εk is usually called a line search, and the pro-

cedure that we introduce to find it is guaranteed to find an εk satisfying (C.4) if the

maximum eigenvalue of χ̂ is bounded by a given χmax. In particular the convexity of

H(g) and a straightforward application of Taylor theorem allow to prove that any εk

in the interval

0 ≤ εk ≤
2(1− β)

χmax

(C.5)

satisfies the Armijo condition (C.4).

Proof. In order to prove that the convergence of the algorithm, one can use (C.4) to

iteratively build the inequality

H(g(K)) ≤ H(g(K−1))−βεk||∇H(g(K−1))||2 ≤ H(g(0))−β
K∑

k=0

εk||∇H(g(k))||2 . (C.6)

Then, as the succession H(g(K))−H(g(0)) is strictly decreasing in K, it has a limit.

Such limit can be either −∞ (in which case H(g) has no minimum) or can be finite.

The finiteness of the limit implies that

H(g(∞))−H(g(0)) = lim
K→∞

K∑

k=0

εk||∇H(g(k))||2 (C.7)
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which leads to

lim
K→∞

εK ||∇H(g(K))||2 = 0 . (C.8)

Notice that the rate of convergence inK of this algorithm can be rather slow, which

is the reason why more sophisticated algorithms are commonly used to perform this

task (see [21]).

C.2 Non-differentiable target

If a convex function is not differentiable in all of its domain the solution of the

minimization problem is technically more complicated, but it is still possible to take

advantage of the convexity property in order to build efficient minimization algorithms

(see [20, 21]). Consider a convex function H(g) : RM → R. Then one can define a

sub-gradient as any global underestimator of H(g), namely v ∈ RM is a subgradient

of H(g) in g′ if for any g one has

H(g) ≥ H(g′) + vT (g − g′) . (C.9)

The set of all the sub-gradients of H(g) in g′ is called the sub-differential of H(g),

and is denoted with ∇̃H(g). One can show that

• ∇̃H(g) is non-empty if H(g) is locally convex and bounded around g.

• ∇̃H(g) is closed and convex.

• The sub-differential is additive, so that ∇̃[H1(g) +H2(g)] = ∇̃H1(g) + ∇̃H2(g).

• The sub-differential has the scaling property ∇̃λH(g) = λ∇̃H(g) for λ > 0.

• If H(g) is differentiable, then ∇̃H(g) = {∇H(g)}.
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This properties characterize the sub-differential as a notion generalizing the ordinary

differential, which is suitable to solve problems involving non-differentiable functions.

In particular the properties shown above for differentiable functions generalize to:

1. If 0 ∈ ∇̃H(g) then g is a global minimum of H(g).

2. The direction v = −ε∇̃H(g) is not in general a descent direction.

This implies that in order to minimize a non-differentiable function it is still possible

to find the points whose sub-differential is equal to zero, but that a naive sub-gradients

descent similar to (C.3) is not guaranteed to find a solution.

An example: the absolute value

Consider the function H(g) : R → R defined as H(g) = Hd(g) + |g|, with Hd(g)

convex and differentiable. Then the sub-differential of H(~g) is given by

∇̃H(g) = ∇Hd(g) + sgn(g) (C.10)

where

sgn(g) =




sign(g) if g 6= 0

[−1, 1] if g = 0
. (C.11)

which is minimum for

x = 0 if |∇Hd(0)| ≤ 1

x ≷ 0 if ∇Hd(x) = ∓1 . (C.12)

The notion of sub-gradient also allow us to generalize the gradient descent algo-

rithm to non-differentiable functions, as shown in the following.
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C.2.1 Sub-gradient descent algorithm

Consider a convex H(g), a starting point g(0), and a sequence {g(k)}Kk=1 built accord-

ing to the iterative scheme

g(k+1) = g(k) − εkv(k) , (C.13)

where v(k) ∈ ∇̃H(g(k)) is a sub-gradient in g(k), and where we introduced the schedule

{εk}Kk=1. Then, one can show that if H(g) has a minimum g?, then

H(gbest)−H(g?) ≤ R2 +G2
∑K

k=1 ε
2
k

2
∑K

k=1 εk
(C.14)

where gbest = arg ming∈g(k) H(g), while R and G enforce respectively a bound of

the initial distance from the minimum ||g(1) − g?||2 ≤ R and the Lipschitz bound

|H(g)−H(g′)|
||g−g′|| ≤ G1. In particular, by choosing εk ∝ 1/k, one can show that in that case

lim
k→∞

H(gbest)−H(g?) = 0 (C.15)

Proof. To prove this result, it is necessary to consider the Euclidean distance to the

minimum g?, which due to the property (C.9) satisfies

||g(K) − g?||2 = ||g(K−1) − εK−1v
(K−1) − g?||2 (C.16)

= ||g(K−1) − g?||2 − 2εK−1(g(K−1) − g?)Tv(K−1) + ε2k||v(K−1)||2

≤ ||g(K−1) − g?||2 − 2εK−1(H(g(K−1))−H(g?)) + ε2k||v(K−1)||2 ,
1Although the hypothesis of Lipschitz bounded H(g) is not strictly required, for the sake of

clarity we have chosen choose to present the algorithm in this simpler form.
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so that one can recursively build the inequality

||g(K) − g?||2 ≤ ||g(0) − g?||2 − 2
K∑

k=0

εk(H(g(k))−H(g?)) +
K∑

k=0

ε2k||v(k)||2

≤ R2 − 2[H(gbest)−H(g?)]
K∑

k=0

εk +G2

K∑

k=0

ε2k . (C.17)

Finally, by using ||g(K)−g?||2 ≥ 0, one can rearrange the terms and obtain the bound

(C.14).

Notice that in this case the sequence εk is not optimized on-line, rather it is

fixed at the beginning of the algorithm. This is because the sub-gradient doesn’t

specify necessarily a descent direction, hence the sub-gradient descent may increase

the functionH(g), requiring the values gbest andH(gbest) to be stored at each iteration

step.
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Complete families

D.1 Rate of convergence for the complete inverse

problem

Consider a statistical model p in which all states have strictly positive probability

(i.e. it exists a pmin 6= 0 such that ∀s pmin ≤ ps). We want to show how within

inference scheme (4.14) the inferred couplings concentrate around their actual values

at fixed N in the limit T →∞.

Proof. The expression for g?µ is:

g?µ =
1

|Ω|
∑

s

φµ,s log p̄s , (D.1)

while the probability to observe a given set empirical frequencies p̄ out of the measure

of T samples is given by the multinomial distribution described in section 2.1.4. Its

mean and correlations are sufficient to completely determine the convergence for large

enough values of T . In particular one finds that

〈g?µ〉T −−−→
T→∞

1

|Ω|
∑

s

φµ,s log〈p̄s〉 = gµ , (D.2)
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while the fluctuations of the inferred couplings are equal to

Var(g?µ) = 〈(g?µ)2〉T − 〈g?µ〉2T −−−→
T→∞

1

|Ω|2
∑

s,s′

φµ,sφµ,s′
Cov(p̄s, p̄s′)

psps′
(D.3)

=
1

T

[(
1

|Ω|2
∑

s

1

ps

)
− δµ0

]
, (D.4)

which is the result shown in equation (4.15). This can be generalized to the case in

which the set of states with strictly positive probabilities is a subset I ⊂ Ω, so that

one can define the set of regular operators φreg = {φµ ∈ φ | ∑s∈I φµ,s = 0}. The

same proof as above can be performed for regular operators on the estimator

g?regµ =
1

|Ω|
∑

s∈I
φµ,s log p̄s , (D.5)

finding the result described in equation (??).

D.2 Factorization property for tree-like models

In this section we prove a fundamental property of statistical models whose the in-

teraction structure is loop-less, which we call trees and rigorously define as follows.1

Definition D.1. Consider a statistical model (φ, g) of the form (2.1), with gµ 6= 0 for

all gµ ∈ g. Then the set φ is called a tree if it is not possible to find a cycle connecting

any set of vertices, i.e., it doesn’t exist a closed path {i1, . . . , iL−1, iL = i1} ∈ V L such

that for each couple {in, in+1} there exist an operator φin,in+1 ∈ φ depending on both

sin and sin+1 , with φin,in+1 6= φim,im+1 for all n 6= m ∈ {1, . . . , L− 1}.

For trees we will show along the lines of [54] that the following factorization

property holds.

1This definition corresponds to what is often referred in literature as a forest, while the word tree
is typically reserved to each connected component of a forest. For simplicity we will disregard such
difference, and make no distinction among trees and forests.
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Theorem D.1. Consider a tree-like statistical model (φ, g). Then its associated

probability density p can be written as

p(s) =
M∏

µ=1

p∂φµ(s∂φµ)
∏

i∈V
p{i}(si)1−|∂i| , (D.6)

where ∂i = {φµ ∈ φ | φµ(s) depends upon si} while ∂φ = {i ∈ V | φ(s) depends upon si}.

Proof. The theorem can be proved by induction on the number of operators M .

Consider the case M = 1 in which just one operator is present (φ = {φ}). Then, it

is trivial to see that equation (D.6) holds due to

p(s) ∝ exp [gφ(s)] ∝ p∂φ(s∂φ)
∏

i∈V \∂φµ

p{i}(si) . (D.7)

Let then property (D.6) hold for the case of M operators, and consider a statistical

model in which |φ| = M + 1. Then, as (φ, g) is a tree, it is possible to consider

without loss of generality an operator φµ ∈ φ such that |∂j| = 1 for all j ∈ ∂φµ but

at most a single variable. Suppose that such variable exists, and label it as i. Then

by defining the cluster Γ = {j ∈ V |j 6∈ ∂φµ} ∪ {i}, a straightforward application of

Bayes rule yields

p(s) = pΓ(sΓ)pV \Γ(sV \Γ|sΓ)

= pΓ(sΓ)
p∂φµ(s∂φµ)

p{i}(s{i})
. (D.8)

Additionally, the marginal pΓ(sΓ) can be written in the form

pΓ(sΓ) ∝ exp


 ∑

φν∈φ\∂φµ

gνφν(s
Γ)


 ∑

sj | j 6∈Γ

exp
(
gµφµ(s∂φµ)

)

︸ ︷︷ ︸
≡ ψ(si)

. (D.9)
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Then it is possible to reabsorb the ψ(si) factor inside a new operator obtained by the

following change on a generic φρ ∈ ∂i\φµ:

φρ(s
∂φρ)→ φ′ρ(s

∂φρ) = φρ(s
∂φρ) +

logψ(si)

gρ
. (D.10)

The statistical model describing the reduced problem for Γ spins can thus be described

by using M operators, so that it is possible to use the inductive hypothesis to show

that

pΓ(sΓ) = p{i}(si)
1−(|∂i|−1)

∏

φν∈φ\{φµ}
p∂φν (s∂φν )

∏

j∈V \{i}
p{j}(sj)

1−|∂j| . (D.11)

Above expression can finally be plugged into equation (D.8) so to obtain equation

(D.6). In order to prove the thesis (D.6) in full generality it is nevertheless necessary

to perform an analogous derivation in the case in which no such i variable exist, an

exercise which for the sake of conciseness we leave to the reader.

D.3 Factorization property of the one-dimensional

periodic chain

Consider a one-dimensional periodic chain of size N , range R and periodicity ρ defined

by a complete, orthogonal set of operators φ and a set of translation operators T .

We want to show that for such chain it holds the factorization property

p(s) =

N/ρ−1∏

n=0

pΓn(sΓn)

pγn(sγn)
. (D.12)

where the sets Γn and γn are defined as in section 4.2.4.
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Proof. To obtain this result, one needs to define a two-dimensional model defined by

the log-probability

log pλ(s, t) = − logZ(g) +

N/ρ−1∑

n=0

∑

µ∈φ
gµφµ(sn1+nρ, . . . , s

n
R+nρ)

+ λ

N/ρ−1∑

n=0

nρ+R∑

i=(n+1)ρ+1

[
(tni − sni )2 + (tni − sn+1

i )2
]
, (D.13)

in which the configuration space contains the degrees of freedom are sni ∈ {−1, 1}

(with n = 0, . . . , N/ρ − 1 and i = 1 + nρ, . . . , R + nρ) and tni ∈ {−1, 1} (with

n = 0, . . . , N/ρ − 1 and i = 1 + (n + 1)ρ, . . . , R + nρ). The model is sketched in

figure D.1, in which it is possible to appreciate the connection with the original one-

dimensional chain. In particular, the interaction mediated by λ controls the strength

of the bonds in the auxiliary dimension (labeled by n), so that in the limit λ → ∞

the model describes the original chain, with the obvious identification sni → si and

tni → si. By defining the row variables sn = {sni }i=R+nρ
i=1+nρ and tn = {tni }i=R+nρ

i=1+(n+1)ρ, one

n = 1

n = 2

n = 3

R

⇢

s1

s2

s3

t3

t2

t1

Figure D.1: Two dimensional auxiliary model pλ(s) associated with the original dis-
tribution p(s) describing a one-dimensional periodic chain.

can see that the log-probability for the two dimensional model can be written as

log pλ(s, t) = − logZλ(g)−
N/ρ−1∑

n=0

[
Hn
λ(sn) +Hn,n

λ (sn, tn) +Hn,n+1
λ (tn, sn+1)

]
, (D.14)
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hence the distribution over the degrees of freedom sn and tn and whose log-probability

is given by (D.14) defines a tree, because only successive row of variables interact2.

For such a model, one can straightforwardly generalize the result of appendix D.2 to

the case of the non-binary variables sn and tn to show that the full measure pλ(s, t)

can be decomposed into the product of the marginals

pλ(s, t) =

∏
n p

Γn∪γn
λ (sn, tn)p

γn∪Γn+1

λ (tn, sn+1)∏
n p

Γn
λ (sn)pγnλ (tn)

, (D.15)

where Γn and γn are analogously defined in the case of the two-dimensional model.

By taking the λ→∞ limit, the identification

pΓn∪γn
λ (sn, tn) −−−→

λ→∞
pΓn(snρ+1, . . . , snρ+R) (D.16)

pΓn
λ (sn) −−−→

λ→∞
pΓn(snρ+1, . . . , snρ+R) (D.17)

pγnλ (tn) −−−→
λ→∞

pγn(s(n+1)ρ+1, . . . , snρ+R) . (D.18)

allows to recover the factorization property which had to be proven.

2Periodic boundary conditions enforce the presence of a single loop of length N , so that the model
is not exactly a tree. Nevertheless, for N large enough and for g sufficiently distant from critical
points of the model, if any, the presence of such loop can be neglected.
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Geometry

E.1 Geodesics

We want to find that the condition which a curve γ : [a, b] ∈ R → M(φ) has to

satisfy order to minimize a functional `(γ) of the form

`(γ) =

∫ b

a

dt

√
χµ,ν

dγµ
dt

dγν
dt

, (E.1)

(in which summations on repeated indices are implicit) is given by equation (5.7).

Proof. In order for γ to be a minimum, it needs to extremize the functional `(γ), so

that by constructing the variation γ → γ + δγ we can impose δ`(γ + δγ) − `(γ) =

δ`(γ) = 0. This implies

δ`(γ) =

∫ b

a

dt

(
χµ,ν

dγµ
dt

dγν
dt

)−1/2(
1

2
∂ρχµ,ν

dγµ
dt

dγν
dt
δγρ + χµ,ν

dγµ
dt

d

dt
δγν

)
= 0 .

(E.2)

By changing variable to

dt =

(
χµ,ν

dγµ
dt

dγν
dt

)−1/2

du , (E.3)

156



APPENDIX E. GEOMETRY

one obtains

δ`(γ) =

∫ ub

ua

du

(
1

2
∂ρχµ,ν

dγµ
du

dγν
du

δγρ + χµ,ν
dγµ
du

d

du
δγν

)
= 0 , (E.4)

which after integration by parts and some manipulation reads

δ`(γ) = −
∫ ub

ua

du

[
χµ,ρ

d2γµ
du2

+
1

2
(∂νχµ,ρ + ∂µχν,ρ − ∂ρχµ,ν)

dγµ
du

dγν
du

]
δγρ = 0 . (E.5)

Imposing the integrand of above expression to be equal to zero and composing with

the inverse Fisher information χ̂−1 yields equation (5.7).

E.2 Property of the maximum likelihood estima-

tor

We want to prove that, given a probability density p defined by a statistical model

(φ, g), for any empirical dataset of length T generated by p producing empirical

averages φ̄, the probability of the maximum likelihood estimator g?(φ̄) taking a

given value g′ satisfies

lim
δg→0

lim
T→∞

− 1

T
log Prob(g?(φ̄) = g′ + δg) = DKL(p′||p) , (E.6)

being p′ the density associated with the statistical model (φ, g).

Proof. To prove this relation, we first need to define the set M(φ, g′) of probability

distributions compatible with g′, defined by

M(φ, g′) =

{
q ∈M(Ω)

∣∣∣∣∣ ∀φµ ∈ φ,
∑

s

qsφµ,s =
∑

s

φµ,s exp

(
M∑

µ=0

g′µφµ,s

)
= 〈φµ〉g′

}

(E.7)

It can be shown that:
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1. M(φ, g′) is compact.

2. p̄ ∈M(φ, g′), if and only if g?(φ̄) = g′.

3. Due to continuity of the functions g?(φ̄) and φ̄(p̄) it holds

lim
q̄→p̄

g?(φ̄(q̄)) = g?(φ̄(p̄)) (E.8)

Then, Sanov theorem (section 2.2.4) applied to the set M(φ, g) implies that

lim
δ→0

lim
T→∞

− 1

T
log Prob[p̄ ∈M′(φ, g′)] = DKL(q?||p) (E.9)

where q? = arg minq∈M(φ,g′) [DKL(q||p)]. In order to find the minimum, one can show

that for q ∈M(φ, g′) it holds

DKL(q||p) = −S(q) + F (g) +
M∑

µ=1

gµ〈φ〉g′ , (E.10)

where only the term −S(q) depends on the distribution q. Then the maximum

entropy principle (appendix A.1) states that the density q ∈ M(φ, g′) maximizing

S(q) is the statistical model described (φ, g′), whose associated probability density

has been called p′. Then one has

lim
δ→0

lim
T→∞

− 1

T
log Prob[p̄ ∈M′(φ, g′)] = DKL(p′||p) (E.11)

finally, by using property 2. ofM(φ, g′) and the continuity property 3. one has that for

δ sufficiently small, Prob[p̄ ∈M′(φ, g′)] is arbitrarily close to Prob[g?(φ̄)− g′ ∈ δg],

which together with (E.11) proves the thesis (5.11).
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E.3 Expansion of the Kullback-Leibler divergence

We want to prove that, given a pair of statistical models (φ, g) and (φ, g′) and an

accuracy parameter ε, for large T they are indistinguishable if condition (5.14) holds.

Proof. If g and g′ are indistinguishable, then corollary (5.11) implies that, for large

T , DKL(p′||p) ≤ ε/T . As DKL(p′||p) = 0 ⇔ p = p′, one can expand DKL(p′||p)

around the point g′ = g, obtaining

DKL(p′||p) ≈ DKL(p||p) +
M∑

µ=1

∂DKL(p′||p)

∂g′µ

∣∣∣∣∣
g′=g

(g′µ − gµ) (E.12)

+
1

2

M∑

µ,ν=1

∂2DKL(p′||p)

∂g′µ∂g
′
ν

∣∣∣∣∣
g′=g

(g′µ − gµ)(g′ν − gν) . (E.13)

It is easy to see that for the probability distributions p and p′ associated respectively

to g and g′ it holds equation (2.14), which reads

DKL(p′||p) = F (g′)− F (g) +
M∑

µ=1

(g′µ − gµ)〈φµ〉p′ . (E.14)

As equation (E.14) implies DKL(p||p) = 0, ∂µDKL(p′||p)|g′=g = 0 and

∂ν∂µDKL(p′||p)|g′=g = χµ,ν , equation (5.14) is proven.

E.4 Volume of indistinguishability

Given the spaceM(φ) identified by the minimal operator set φ, we want to show that

the volume of the space of indistinguishable distributions around a point g is given

by equation (5.15), where T is the length of the dataset and ε > 0 is the accuracy

parameter.
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Proof. The volume VT,ε(g) is given by

VT,ε(g) =

∫

Mind

dg , (E.15)

while property (5.14) characterizes the region of indistinguishability Mind around

g as Mind −−−→
T→∞

{
p′ ∈M(Ω) |1

2
(g′ − g)T χ̂(g′ − g) ≤ ε

T

}
⊆ M(φ). We also need

to require that T large enough in order to neglect the variations of χ in Mind, so

that we can treat it as constant in g′. Due to symmetry of χ̂, the components of

Fisher information matrix can be decomposed as χµ,ν =
∑M

λ=1 uµ,λ χλ uν,λ, while due

to minimality of φ the eigenvalues χλ are strictly positive, suggesting the change of

coordinates

ηλ =
M∑

µ=1

(g′µ − gµ)uµ,λ
√
χλ . (E.16)

Then the region Mind is mapped into the spherical region

Mind =
{
p′ ∈M(Ω) |1

2
ηTη ≤ ε

T

}
so that the volume becomes

VT,ε(g) =
1√

det χ̂

∫

Mind

dη , (E.17)

where 1/
√

det χ̂ 6= 0 is the Jacobian of transformation (E.16). It is then sufficient to

remind that the volume of a sphere of radius
√

2ε
T

in M dimensions is given by

∫

Mind

dη =

(
π
M
2

Γ(M
2

+ 1)

)(
2ε

T

)M
2

(E.18)

to prove equation (5.15).
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E.5 Estimation of the empirical observables for an

Hawkes point process

Consider a fully connected Hawkes process defined as in (5.39), characterized by

exogenous intensity µ and kernel parameters parameters α and β. We will show that

the qualitative features of the fully connected pairwise model associated through the

binning functions (5.47) and (5.48) can be obtained by using an approximate scheme.

More precisely, given a realization of a fully connected Hawkes point-process X and

a bin size δτ we will calculate the quantities

mi =
1

T

T∑

t=1

s
(t)
i (X, δτ) (E.19)

δcij =
N

T

[(
T∑

t=1

s
(t)
i (X, δτ) s

(t)
j (X, δτ)

)
−mimj

]
. (E.20)

First, one can easily notice (expanding the minimum inside the binning functions) that

any correlation function of the quantities b
(t)
i and s

(t)
i can be linked to the properties

the Hawkes processes under convolution. In particular, one has for the first two

momenta

E[b
(t)
i (X, δτ)] = fi(δτ) (E.21)

E[b
(t)
i (X, δτ) b

(t)
j (X, δτ)] = fi(δτ) + fj(δτ)− fi+j(δτ) , (E.22)

where fi(δτ) is the average number of events of type i during time δτ in the stationary

state, while fi+j(δτ) is the average number of events of type i or j, which is associated

with the convolution Xi+j = Xi + Xj. Thus, to calculate the quantities (E.19) and
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(E.20) one needs to calculate

E[b(t)
c ] =

∞∑

K=0

Prob[δXc(t δτ) ≥ 1, δX\c(t δτ) = K]

= 1−
∞∑

K=0

Prob[δXc(t δτ) = 0, δX\c(t δτ) = K] , (E.23)

where δXc(t δτ) = Xc(δτ(t + 1)) − Xc(δτt), while c ∈ {i, j, i + j} and \c ∈

{V \{i}, V \{j}, V \{i+ j}} refer to the channels which one needs to take into account

to calculate magnetizations and correlations. Above probability can be computed by

taking into account that:

• The convolution of a set of Hawkes processes is a Hawkes process.

• Probability (E.23) can be reduced via convolution to the probability of a 2-

variate Hawkes processes describing channel c and the environment \c.

The parameter set describing such convolution is given for c = i by µ = µ(1, N − 1),

β unchanged and

α̂ = α




0 1

N − 1 N − 2


 . (E.24)

The one describing the case c = i+ j has µ = µ(2, N − 2), β unchanged and

α̂ = α




1 2

N − 2 N − 3


 . (E.25)

With this in mind, one can expand probability (E.23) in term of the intensities and

obtain

E[b(t)
c ] = 1−

∞∑

K=0

1

K!

∫ δτ

0

dτK . . .

∫ δτ

0

dτ1 e
−

∫ δτ
0 duλc(u)+λc(u) λ\c(τk)

K∏

k=0

λ\cτk . (E.26)
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In principle, one should plug the initial conditions in the stochastic intensities λ(τ)

inside previous formula and compute the integral. For example, if one supposes the

initial intensities to correspond to the stationary state intensities, one should insert

into (E.26) the following expression

λc(τ) = µc + e−βτ (λ̄c − µc) +
K∑

k=1

αc,\c e
−β(τ−τk)θ(τ − τk) (E.27)

λ\c(τ) = µ\c + e−βτ (λ̄\c − µ\c) +
K∑

k=1

α\c,\c e
−β(τ−τk)θ(τ − τk) (E.28)

and perform explicitly the integral. This is very hard to do analytically, so that

we consider an approximate scheme in which it is possible to obtain a qualitatively

correct result for the averages, motivated by the fact that in both the cases that we

consider (c = i and c = i+ j) we have that α\c,c, α\c,c � αc,c, αc,\c and µ\c � µc. This

regime justifies the approximation in which the trajectory λ\c(τ) is described by the

deterministic function

λ\c(τ) = L0
\c ψ(δt) + L\c [1− ψ(δt)] , (E.29)

where

L\c(τ)0 =

[(
δ − α

β

)−1
]

\c,c
µc +

[(
δ − α

β

)−1
]

\c,\c
µ\c (E.30)

is the average intensity of channel \c in the stationary state in which channel c is free

to produce events, while

L\c =

(
1− α\c,\c

β

)−1

µ\c (E.31)

is the average in the stationary state in which channel c is conditioned in order not to

produce events. Finally ψ(δτ) is a generic function such that φ(0) = 1 and φ(∞) = 0.

Then, one can insert this approximation into equation (E.26), supposing that the

number of events K is deterministic and concentrated around its average number.
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Then we have

E[bc(δt)] = 1−
∑

k

Prob[δXc(δτ) = 0, δX\c(δτ = K)] (E.32)

≈ 1− e−
∫
du[L0

c ψ(u)+L\c (1−ψ(u)] . (E.33)

If for example we suppose that ψ(τ) = e−βτ , so that the relaxation dynamics for the

intensity is ruled by the same parameter β controlling the dynamics, we get

E[b
(t)
i ] −−−→

N→∞
1− exp

(
− µ δt

1− α/β

)
(E.34)

E[b
(t)
i ] −−−→

N→∞
1− exp

(
− 2µ δt

1− α/β

)

N
(
E[b

(t)
i b

(t)
j ]− E[b

(t)
i ]E[b

(t)
j ]
)
−−−→
N→∞

2αµ e−2µδt/(1−α/β)[e−βδt − 1 + βδt]

(α− β)2
.

This information can be exploited to compute m and δc, which after using the rule

s
(t)
c = 2b

(t)
c − 1 result

m = 1− 2e−µ δt/(1−α/β) (E.35)

δc =

(
8αµ e−2µδt/(1−α/β)[e−βδt − 1 + βδt]

(α− β)2

)
. (E.36)

This result provides a simple qualitative picture, whose degree of inaccuracy lies in

the choice of the function ψ(τ), and in the hypothesis that the trajectory of the

stochastic intensity concentrates around a deterministic function. Nevertheless, this

approximation captures some of the features that we find by computing magnetization

and correlations for various realizations of Hawkes processes for various bin sizes, as

shown in figure E.1. Notice in particular the qualitative features of the model correctly

reproduced in this scheme, namely (i) correlations drop to zero for small bin sizes

(Epps effect) or values δτ larger then the average inter-event time, (ii) correlations

increase with the interaction parameter α and are zero for the Poisson case α = 0. The
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Figure E.1: Approximate values of av-
erage magnetization m and rescaled
connected correlation δc associated
with a fully-connected pairwise model
used to describe a fully-connected
Hawkes process. We consider in par-
ticular models for which µ = 1, β =
2 and α = 0, 0.3, 0.6, 0.9 (respectively
blue, red, yellow and green line). The
corrected qualitative features of the
model are captured in this approximate
scheme.

magnetizations calculated in this way correspond instead to the exact value. In figure

E.2 we plot the ensemble averages of the model and the average inferred couplings

(h?, J?) in the case of a fully connected pairwise model for various choices of the bin

size and of the interaction parameter α. Finally, notice that this approximation is

able to capture the finiteness of δc, which implies that the description of data in term

of a fully connected ferromagnet doesn’t lead to a degenerate representation of the

model (see section 3.3).
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Figure E.2: Approximate values of the empirical averages (m, c) and of the inferred
couplings (h?, J?) obtained by using a fully connected pairwise model to fit a set of
Hawkes point process, for the same choice of models and color conventions as in the
previous plot, parametrically plotted as a function of the bin size δτ .
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Notation

List of Symbols

N System size
⌦ Configuration space
p Probability density
� Operator set
g Coupling vector
g? Estimator of a coupling vector g
M(⌦) Space of probability densities in ⌦
M(�) Space of statistical models associated to the operator set �
M Cardinality of the set of operators �
V Vertex set (the set of spins {1, . . . , N})
E Edge set
� Cluster (a generic subset of V )
p� Marginal probability associated to cluster �
F Free energy
h�i Ensemble averages
�̂ Generalized susceptibility matrix
S Shannon entropy
DKL(p||q) Kullback-Leibler divergence between distributions p and q
T Size of the empirical dataset
ŝ Empirical dataset
�̄ Empirical averages
p̄ Empirical frequencies
G(�) Marginal polytope (set of possible empirical averages) associated to the

operator set �

PT (ŝ|g) Likelihood function
PT (g|ŝ) Posterior function
P0(g) Prior
h. . .i Average on the measure defined by p
h. . .iT Average on the measure defined by PT (ŝ|g)

List of Subscripts

i, j, . . . Spin index
µ, ⌫, . . . Operator index
s, s0, . . . Configuration index
t, t0, . . . Sampled configuration index
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